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Abstract

Face hallucination is a super-resolution technique specially designed to reconstruct high-
resolution faces from low-resolution faces. Most state-of-the-art algorithms leverage
position-patch prior knowledge of human faces to better super-resolve face images. How-
ever, most of them assume the training face dataset is sufficiently large, well cropped or
aligned. This paper, proposes a novel example-based face hallucination method, based on
cluster consistent dictionary learning with the assumption that human faces have similar
facial structures. In this method, the paired face image patches are firstly labelled as face
areas including eyes, nose, mouth and other parts, as well as non-face areas without requir-
ing the training face images cropped and aligned. Then, the training patches are clustered
according their labels and textures. The cluster consistent dictionary is learned to represent
the low-resolution patches and the high-resolution patches. Finally, the high-resolution
patches of the input low-resolution face image can be efficiently generated by using the
adjusted anchored neighbourhood regression. As utilizing the labelled facial parts prior
knowledge, the proposed method represents more details in the reconstruction. Experi-
mental results demonstrate that the authors’ algorithm outperforms many state-of-the-art
techniques for face hallucination under different datasets.

1 INTRODUCTION

Face image related techniques have been well developed and
investigated in recent years. These techniques have been widely
used in many applications such as face recognition, video
surveillance, facial expression recognition, digital entertainment,
3D face modelling, and so on. However, due to the limitations
of capturing systems and the changes of environment, human
face images captured are very often of low resolution. The poor
quality of face images has adverse effect on the performances of
computer vision and pattern recognition applications. To solve
the problem, it is necessary to render a high-resolution (HR)
face image from the corresponding low-resolution (LR) one.
This technique is named face hallucination (FH) or face super-
resolution (SR) [1, 2].

The major difference between face hallucination and the gen-
eral super-resolution problem is that the face images have regu-
lar structures and textures. Compared with the general super-
resolution problem, face hallucination is challenging because
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people are sensitive to the changes in appearances and the
quality of human face images. Small deviations might signif-
icantly affect human perception, whereas for super-resolution
of generic images, such as buildings, plants, etc. the errors can
be more tolerant [3]. Another challenge of hallucinating face
images is that faces may be in complex conditions, such as under
variations of illumination, pose, and expression. Furthermore, it
is difficult to align faces in LR images [1, 3].

Different strategies have been researched for face halluci-
nation, such as interpolation-based, degrading model-based,
example-based methods and so on. Because of the simplicity
of interpolation, it is applied in those applications with low
requirements. However, this parametric method is often unable
to interpolate details well, such as texture and corner-like
local regions [3, 4]. Compared to the interpolation methods,
using edge-statistical information can well reconstruct edge
and corner areas. For example, Fattal and Raanan [5] imposed
edge statistics for image up-sampling. Sun et al. [6] proposed
an image super-resolution method by using edge and primal
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sketch priors. The major drawback of using edge priors is that
they focus on preserving edges so the performance in relatively
smooth regions is mediocre [2, 7]. Yang et al. combined a
landmark localization method and the gradient map to estimate
and align facial features for hallucination [8]. Gradient profile
prior was used to enhance the quality of the hallucinated HR
image [9]. However, this method is strongly dependent on the
results of landmark localization.

Example-based super-resolution schemes have proven to be
able to reconstruct significantly finer details from an LR image
compared with the interpolation-based schemes [4]. The gen-
eral idea of example-based approaches is to learn the statistical
correlation between pairs of LR and HR images from a face
dataset. The learned correlation is then applied to an input LR
image to reconstruct the corresponding HR image [3]. Different
methods have been studied to learn the mapping relationship
between LR and HR images [1, 10, 11], such as

1) Sparse representation-based approaches [12–14];
2) Subspace learning approaches, including local linear embed-

ding and linear subspace learning-based approaches [15–18];
3) Bayesian inference approaches: learning priors from numer-

ous feature vectors to generate a function, mapping features
from LR images to HR images [4, 16, 19].

Performance of learning-based SR methods heavily depends
on the similarity between the training and the testing images to
query input LR face images. The quality of the edges in a recon-
structed HR image can be significantly degraded when the edges
in training images cannot be matched or aligned well with the
corresponding input image [20].

Many researchers have presented that the structural con-
straints can be applied to improve the results of face hallucina-
tion. For example, Markov random fields can be used to reduce
the ambiguity between LR and HR images by learning the sta-
tistical relationship between a global face image and its local
features [3]. Face image structures like facial components are
exploited to transfer the high-frequency details for preserving
the structural consistency [8].

Similarly, the position information about face images can be
used to improve the face hallucination performance. Ma et al.
synthesized the high-resolution image patch using the same
position image patches of training image pairs [21]. Similar
strategy was also proposed in [22] by using convex optimiza-
tion. Jiang et al. proposed a face super-resolution via locality-
constrained neighbour representation based on the position
information [23] and contextual information [24]. Lie et al.
presented a robust locality-constrained bi-layer representation
model to hallucinate the face images [25]. Lu et al. proposed
manifold-regularized group locality-constrained representation
(MGLR) to exploit the multiple manifold structures rooted in
grouped self-similarly patches [26].

From these methods, we can see that faces are highly struc-
tured and the positions information of patches from facial
images are greatly concerned to improve the face hallucina-
tion performance by getting the same face patches’ positions.
However, most of the existing methods require the faces to be

well cropped and accurately aligned, which are challenging tasks,
especially for real world face images. In addition, they ignore a
fact that only using a single patch with local constraints may
result in unstable solutions [26].

Recently, deep learning based super resolution methods have
been proposed and claimed the state-of-the-art performance.
The pioneer work proposed by [27] is termed as SRCNN, which
learns an end-to-end mapping between the bicubic interpolated
LR images and the HR images. To get better performance,
Dong et al. redesigned the SRCNN structure as FSRCNN by
introducing a deconvolution layer at the end of the network
[28]. Smaller filter sizes but more mapping layers were adopted
to speed up the method. Yamanaka et al. proposed a model
with skip connection and network in network (DCSCN) to
improve the efficiency [29]. Kim et al. used a very deep con-
volutional network based on VGG-net to improve the accu-
racy of super resolution problem [30]. Li et al. proposed a feed-
back network (SRFBN) to refine low level representations with
high-level information [31]. Similarly, structure information was
considered in the deep learning framework. For example, Lu
et al. developed a parallel region based deep residual network
(PRDRN) to predict the missing detailed information for accu-
rate face hallucination [32]. Usually, deep learning based meth-
ods demand a large training dataset, intensive computation and
memory resources [29].

On the other hand, generative adversarial network (GAN)
was proposed for super resolution and face hallucination prob-
lems recently. The seminal work proposed by [33] was capable
of generating realistic textures during single image super reso-
lution. Wang et al. introduced residual-in-residual dense block
(RRDB) to improve the performance of the original SRGAN.
The discriminator predicted relative realness instead of the
absolute value for better visual quality [34]. Yu et al. proposed
transformative discriminative neural networks to avoid heav-
ily relying on accurate alignment of low-resolution (LR) faces
before upsampling them [20]. However, the hallucinated face
details by GAN based algorithms are often accompanied with
unpleasant artifacts.

Inspired by the successful application of example-based
learning methods for the super resolution problem and highly
structural characters of face images, in this paper, we propose a
novel example-based face hallucination method based on clus-
ter consistent dictionary learning. Traditional dictionary learn-
ing algorithms [10, 14, 15] focus on the best sparse representa-
tion for the training signals of the learned dictionary, but do not
consider the consistent capability of the dictionary [36]. Specif-
ically, in the face hallucination problem, similar image signals
(in feature spaces) may be represented by different atoms in the
dictionary. However, in the test stage, we strongly expect the
test image signal has a similar sparse representation to a train-
ing sample if they are close in a feature space from the same
face part (or in the same cluster). This is particularly useful for
face hallucination problems, as face images have similar struc-
tures including eyes, nose, mouth etc. Unfortunately, most dic-
tionary learning methods have not considered the cluster con-
sistency. In this project, we train a cluster consistent K-SVD
(CC K-SVD) dictionary combined with the adjusted anchored
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neighbourhood regression [18] for the face hallucination
problem.

The main contributions are summarized as follows: we study
the face patches clustering by both the texture similarity and
face parts positions. The generated clusters benefit to construct
consistent sparse dictionary. We develop a novel example-based
face hallucination method, based on discriminative cluster con-
sistent dictionary learning, to exploit facial parts similarity prior
without requiring the training face images cropped and aligned.
Extensive experimental results on several benchmarks indicate
that, by utilizing the prior knowledge of labelled facial parts, our
proposed method represents more details in the reconstruction
from a small training dataset than many state-of-the-art meth-
ods.

The remainder of this paper is organized as follows. Section
II reviews the related dictionary learning methods for super
resolution and face hallucination problems. In Section 3, we
present the details of our proposed method. In Section IV,
implementation details are described, and experimental results
are presented to show the performance of our method. Finally,
in Section V, we draw a conclusion.

2 RELATED WORK

Sparse coding has been successfully applied to the super-
resolution problem. The performance of sparse coding related
applications heavily relies on the quality of the over-complete
dictionary D. As our proposed method extends the traditional
dictionary learning algorithm for face hallucination problem,
in this section, we review the related dictionary-based methods
for SR.

2.1 Sparse coding approaches

Sparse coding approaches try to represent the patches by train-
ing a codebook of dictionary atoms.

min
𝛼

‖x − Dl𝛼‖2
2 + 𝜆‖𝛼‖1, (1)

where Dl is the learned dictionary, x is the low resolution input
patch, 𝜆 is a weighting factor, and 𝛼 is the sparse coefficient of
dictionary atoms for x.

In order to construct a high resolution image y, the LR and
HR dictionaries are jointly trained so that they can represent
HR patches and their corresponding LR counterparts using one
sparse representation [13, 14, 35]. For example,

min
Dl ,Dh,𝛼

‖D̃𝛼 − Ỹ‖2
2 + 𝜆‖𝛼‖1, (2)

where D̃ =

[
Dl

𝛽Dh

]
and Ỹ =

(
X

𝛽Y

)
,Dl , Dh are the LR, HR

dictionary respectively, 𝛼 is the sparse representation for both

X = [x1, … , xN ] and Y = [y1, … , yN ] denoting the LR and HR
image patches pairs in the training dataset, 𝜆 is a weighing factor
to balance the importance of the sparsity regularisation, and 𝛽
controls the tradeoff between matching the LR input and find-
ing an HR counterpart.

Once the dictionaries are trained, given the optimal solution
𝛼∗ of input testing LR patch x̂, the high-resolution patch can be
easily reconstructed as ŷ = Dh𝛼

∗.

2.2 Adjusted anchored neighbourhood
regression

Instead of considering the whole dictionary like the sparse
encoding approach, anchored neighbourhood regression
(ANR) reformulates the patch representation problem as a
least square regression regularised by the l2-norm in local
neighbourhoods like,

arg min
𝛼

‖x − Nl𝛼‖2
2 + 𝜆‖𝛼‖2, (3)

where Nl is the local neighbourhoods of the dictionary atoms.
A projection matrix can be precalculated based on the neigh-
bourhood. Finally, an LR input patch can be projected to HR
space as,

ŷ = Nh(NT
l

Nl + 𝜆I)−1NT
l

x = P j x, (4)

where Nh is the local neighbourhoods of HR dictionary; P j is
the stored projection matrix for dictionary atom dl j .

To improve the reconstruction quality, in adjusted anchored
neighbourhood regression (A+), the neighbourhood in terms
of the dense training samples rather than the sparse dictionary
atoms are used in the ridge regression formulation of ANR. The
optimization problem then can be presented as,

arg min
𝛿

‖x − Sl 𝛿‖2
2 + 𝜆‖𝛿‖2, (5)

where matrix Sl contains training samples that lie closest to the
dictionary atom to which the input patch y is matched; 𝛿 is the
weight vector for representing x. Similar to Equation (4), the
regressor can be defined by:

ŷ = Sh((Sl )T Sl + 𝜇I)−1(Sl )T x = Fx, (6)

F = Sh((Sl )T Sl + 𝜇I)−1(Sl )T , (7)

matrix Sl and Sh contain training samples that are most correla-
tive to the corresponding Dl and Dh dictionary atoms to which
the input patch x is matched; and 𝜇 is the regularization param-
eter.

Instead of Nl and Nh, Sl and Sh use the full training samples
learning the regressors on the dictionary as ANR method, which
improves the reconstruction performance.
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FIGURE 1 The framework of our proposed face hallucination method

3 PROPOSED METHOD

It is well known that human face images contain compli-
cated local structures. To represent the underlying face geomet-
ric structures well, we advocate dividing the processed image
patches into several groups such that each group shares similar
geometric structures of face attributes. To this end, we utilize
positions of facial landmarks to group the positioned training
patches. After that, we cluster the patches in each group based
on their texture similarities. Then, inspired by the scheme from
[36] for discriminative dictionary learning, we design a cluster
consistent dictionary learning for the FH problem.

In the traditional dictionary learning based method for SR,
the atoms in the dictionary are learned from the training patches
independently. These atoms spanned the whole space are used
as anchors in the construction step. However, in the testing
stage, the similar patches may be expressed by different anchors,
especially, when they are located in the boundary of different
areas spanned by different anchors. This inconsistent expres-
sion of similar feature patches may cause poor results in the
reconstruction step for the FH problem. In this paper, we
learn a single over-complete dictionary keeping cluster consis-
tent jointly, which yields dictionaries so that face feature patches
with the same class labels have similar sparse codes. Similar to
advances in the SR family of dictionary learning models and
anchored regressors, we also elaborate on designing a set of sim-
ple yet efficient linear regressors for FH reconstruction based
on the learned CC dictionary to find the underlying local mani-
fold structures such that the learned anchored points can better
approximate the subspace of the training dataset.

Figure 1 demonstrates the framework of the proposed face
hallucination method. It is comprised of two stages, that is, the
training stage and the testing stage. Firstly, we collect training
face images with face area label boxes and key feature positions

like eyes, noses, mouths etc.. Labelled face datasets [37, 38] or
classical face detection methods [39] can be utilized here for
getting face area label boxes and key feature positions. Then,
a large set of LR and HR paired patches are created from the
training set. We divide the patches into five areas as eyes, noses,
mouths, other face areas and non-face areas based on the dis-
tances between the patch centre positions and the key feature
positions. Next, the five areas are clustered respectively. A clus-
ter consistent matrix is constructed by the full clustered patches.
Based on the label consistent matrix, different with the tradi-
tional K-SVD method, a cluster consistent dictionary is learned
to represent the LR and HR patches jointly.

In the testing stage, a given LR image is first divided into the
different patches. An LR input patch can be projected to the HR
space by the neighbourhood in terms of the dense training sam-
ples using ridge regression formulation. Integrating all of the
obtained HR patches according to their positions, the final HR
image can be generated by averaging pixel values in the overlap-
ping regions.

3.1 Patches clustering

In order to apply the structure information of face images, we
first get the face areas (face boxes) from the training dataset.
For those datasets without images with labeled face compo-
nents, classical face detection algorithms can be used here, such
as those in [39–41]. The face components in a face box are
grouped as eyes, mouths and noses. For the face areas without
face components and background areas, we group them into
face-areas or non-face areas, as shown in Figure 2. Specifically,
for a patch in a face box area, if the minimum distance between
the patch centre and the marked position of a face component
is less than 1/4 of the width of the face box, we group the patch
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FIGURE 2 Example of a training image from LFPW face dataset: (a)
shows a detected face area described by a green rectangle, and key facial parts
are presented in green dots. The blue square patch is labelled as other face area,
while the red square patch is labelled as background and (b) shows a uniform
sample grid for training patches, where each dot represents the position of the
centre of a training patch

to the face component. Otherwise, it is grouped as the normal
face area. The left patches which are not inside the face box are
grouped into the non-face area or background. Figure 3 shows
examples of different groups of patches in facial areas.

Then we cluster the patches separately based on their group
labels by traditional clustering algorithms like K-means. We
empirically set the number of clusters in each group on different
face datasets. More details are described in Section 4. The total
cluster number is equal to the summary of the cluster numbers
in all groups of different labelled patches.

By performing a clustering algorithm like k-means, we can
label the training face patches with K clusters. Each cluster is
composed of the patches with similar geometric and texture
structures. To well adapt to different contents in an image, once
these clusters are formed, we can construct a cluster consistent
matrix for the cluster consistent dictionary learning.

3.2 Cluster consistent dictionary learning

In this section, we describe the construction of a cluster consis-
tent matrix and learning of a cluster consistent dictionary.

We aim to leverage the facial structural information (i.e. posi-
tion based labels) of input training image patches to learn a
reconstructive and label consistent dictionary. The dictionary
atoms can reveal different image structures in each cluster,
which spans the whole feature space. Each dictionary atom will
be chosen so that it represents a subset of the training patches

ideally from a single class (cluster), for example, each dictionary
item dk can be associated with a particular cluster such that rep-
resenting the corresponding underlying structure.

Consider a collection of N LR and HR image patch pairs
in the training dataset, denoted by X = [x1, … , xN ] ∈ Rm×N

and Y = [y1, … , yN ] ∈ RM×N , m and M are dimensions of LR
and HR image patches respectively. To learn a dictionary with
K items D = [d1, … , dK ] for sparse representation of X, the
consistent matrix H of all the training patches can be defined
according to the patch cluster labels.

For example, assuming five training patches [x1, x2, x3,

x4, x5] are from two clusters. Specifically, x1 and x2 are from
class 1, x3, x4 and x5 are from class 2. Then the label consistent
matrix can be constructed by

H ≡

⎡⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤⎥⎥⎥⎥⎦
. (8)

We say that hi is a cluster label vector of input patches X. The
non-zero values of hi at those indices indicate that the corre-
sponding patches are from the same cluster.

For obtaining label consistent sparse codes X with the learned
D, an objective function for dictionary construction is defined
by:

< D,A, 𝛼 >= arg min
{D,A,𝛼}

‖X − D𝛼‖2
2 + 𝜆‖H − A𝛼‖2

2,

s.t . ∀i, ‖𝛼i‖0 ≤ T .

(9)

The parameter 𝜆 controls the tradeoff between the reconstruc-
tion error and the label consistent regularization, T is a spar-
sity constraint factor. H ∈ RM×N is the cluster label consistent
matrix. A denotes a linear transformation matrix. If the non-
zero values hi occur at those positions, then the corresponding
input patches from X and the dictionary items from D share
the same label. The first term represents the reconstruction
error, while the second term represents the cluster label con-
sistent error, which enforces that the sparse codes 𝛼 approx-
imate the label consistent matrix sparse codes H and forces
the patches from the same class to have very similar sparse

FIGURE 3 Labelled face patches on LFPW dataset. (a) A group of eyes labelled patches, (b) a group of noses labelled patches (c) a group of mouths labelled
patches and (d) group of other face parts labelled patches
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representations (i.e., encouraging label consistency in the result-
ing sparse codes).

Considering that only a few atoms that are closely correlated
to the input contribute to the representation, it is reasonable to
divide the whole feature space into different groups, such that
the atoms in each group are closely correlated to each other.
Therefore, the dictionary learned in this way will be adaptive to
the underlying face local structure of the training data (leading
to a good representation for each member in the set with strict
sparsity constraints), and will generate consistent sparse codes
𝛼 regardless of the size of the dictionary. The anchored points
from the dictionary can better approximate the subspace of the
training dataset. In the next section, we will show that the con-
sistent property of sparse code 𝛼 benefits the performance of
face reconstruction.

3.3 Optimization

Traditional sparse coding methods for super resolution applica-
tions can use K-SVD algorithm to find the optimal solution for
all parameters simultaneously in Equation (2) [14]. K-SVD per-
forms dimensionality reduction on the patches through PCA
and using orthogonal matching pursuit (OMP) for the sparse
coding. For our face hallucination application, we learn dictio-
nary D, A and coefficient 𝛼 simultaneously. From Equation (2),
Equation (9) can be rewritten to,

< D̂,A, 𝛼 >= arg min
{D̂,A,𝛼}

‖ŷ − D̂𝛼‖2
2 + 𝜆‖H − A𝛼‖2

2

=
‖‖‖‖‖
(

ŷ√
𝜆H

)
−

(
D̂√
𝜆A

)
𝛼
‖‖‖‖‖

2

2

,

s.t . ∀i, ‖𝛼i‖0 ≤ T ,

(10)

where D̂ =

(
Dl

𝛽Dh

)
and ŷ =

(
X

𝛽Y

)
. The parameter 𝛽 controls

the tradeoff between matching the LR input and finding an HR
patch that is compatible with its neighbours. In all of our exper-
iments, we simply set 𝛽 = 1.

Let Ỹ = (ŷ;
√
𝜆H)T , D̃ = (D̂;

√
𝜆A)T , the optimization of

Equation (10) is equivalent to solving the following problem:

< D̃, 𝛼 >= arg min
D̃,𝛼

‖Ỹ − D̃𝛼‖2
2,

s.t . ∀i, ‖𝛼i‖0 ≤ T .

(11)

This is the classical problem that K-SVD solves [42]. Following
K-SVD, we can learn D̃, 𝛼 (e.g., D̂,A, 𝛼) simultaneously. We use
the efficient K-SVD algorithm to find the optimal solution for
all parameters, which produces a label consistent sparse repre-
sentation regardless of the size of the dictionary.

Let Ek = (Y −
∑

j≠k
d j𝛼

j ), where 𝛼 j is the jth row in 𝛼, d j

is the jth column of dictionary D. Let Ẽk, 𝛼k denote the result
of discarding the zero items in Ek and 𝛼k, respectively. dk and

𝛼k can be estimated by solving the following equation [12]:

dk, 𝛼k = arg min
dk,𝛼k

{Ẽk − dk𝛼k}.

Applying SVD decomposition Ẽk = UΣVT , then dk and 𝛼k are
computed as:

dk = U(∶, 1), (12)

𝛼k = Σ(1, 1)V (∶, 1). (13)

3.4 Training and test

At the training stage, given a set of HR face images, the cor-
responding LR images are generated by using a bicubic kernel
function. We randomly extract a large set of HR and LR patches
from the HR and LR image pairs to form a training set.

The patches represented as feature vectors with mean values
subtracted are assigned to different clusters based on their tex-
tures and facial structures as described in Section 3.1. We expect
that the patches in the same cluster have a similar distribution,
which does not require the face images to be strictly cropped
or aligned. Then, we learn a sparse dictionary Dl and its cor-
responding Dh by enforcing the same coefficients and cluster
consistency in the HR and LR patch decompositions over Dl

and Dh as Equation (11).
Instead of considering the whole dictionary like the sparse

encoding approach, local neighbourhoods of the dictionary or
neighbourhoods of training samples have been proven to pro-
vide better reconstruction quality [18]. Therefore, we follow the
A+ strategy to reconstruct HR patches by reusing the training
samples. Specifically, for each dictionary atom dl

k
, k ∈ (1,K ),

we define the neighbourhood {Sl
k
, Sh

k
} in terms of the dense

training samples rather than the sparse dictionary atoms. Then,
the regressor can be defined by Equation (6).

For testing, the input LR image is divided into patches. Each
LR patch is represented by the learned cluster label consistent
dictionary. When all of the K regressors corresponding to the
K clusters of patches obtained, for a given testing LR patch xl ,
the most correlated dictionary atom dl

k
and its corresponding

regressor are applied to estimate the output y by

ŷ = F j xl , (14)

where F j is the most matched regressor with xl , which is mea-
sured by the maximal absolute value of correlation between xl

and the atoms cross the dictionary Dl , that is

j = argmax
j=1,…K

[abs((d l
j )T xl )], (15)

where abs(⋅) denotes the absolute function.
Finally, the HR face image is reconstructed by averaging

the overlapped areas of the HR patches. The whole process is
shown in Algorithm 1.
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ALGORITHM 1 Face hallucination by label consistent dictionary learning

Input: Initial LR training set and corresponding HR training set; LR test
image xl .

Training stage:

1: Divide the LR and HR training faces into overlapping patches
X = [x1, … , xN ] and Y = [y1, … , yN ] with the corresponding patches
centre positions Pl = [p1

l
, … , pN

l
] and Ph = [p1

h
, … , pN

h
].

2: Group the patches based on the distances between the patch center and
the face land marks under predefined threshold 𝜃.

3: Get clusters labels in each group of patches by K-means clustering.
4: Construct cluster consistent matrix H via Equation (8).
5: Learn Dl , Dh and sparse coefficients 𝛼 via Equations (12) and (13).
6: Build the regressors F = [F1, … ,FK] via Equation (7).

Testing stage:

1: Patition the input test image xl into overlapping patches x1
l
, … , xn

l
.

2: Find the best matched regressor Fj for each patch, and compute the
HR patch via Equations (15) and (14).

Output: HR face image ŷ by integrating all the HR patches according the
positions and averaging overlapping regions.

The key difference between our method and A+ method is:
our dictionary gives patches in the same cluster a similar sparse
coefficient, for example, a consistent reconstructed result. As
only a few atoms that are closely correlated to the input fea-
ture vector to the sparse representation, when we choose suit-
able correlative neighbours of each LR atom from a learned LR
and HR dictionary pair, the atoms in the learned CC dictionary
can reveal different face image structures. We find such CC dic-
tionary can better represent face details in the face hallucina-
tion application. The main reason is the patches from the same
face parts have a similar sparse representation in our proposed
method. Therefore, they can be consistently reconstructed by
the anchored training patches, which give us better face halluci-
nation performance. This is particularly useful for face key parts
areas, as eyes, nose and mouth etc.

4 EXPERIMENTS

To illustrate the performance of the proposed method, we eval-
uate our algorithm on three popular face databases: FEI face
database [43], CelebA database [37] and LFPW database [38].

We compare our method with some classical and state-of-the-
art face hallucination and related image super resolution meth-
ods including bicubic, sparse coding Yang’s [12], A+ [18], FSR-
CNN [28], TRNR [44], SRGAN [33], TLcR-RL [24], ESRGAN
[34], SRFBN [31], and CCR [47]. For all the compared methods,
we have retrained the models using the same training dataset as
our proposed method. PSNR (valuated on the luminance chan-
nel in YCbCr color space for color images) and SSIM are used
as the objective measurements of the image quality.

4.1 Implementation and parameters setting

In this section, we describe the implementation details and the
main parameters of our proposed method. Since A+ is the clos-

est related method of ours, as a patch-based method, the train-
ing image patch is recommended with size of 12 × 12, and the
overlap between two adjacent patches is suggested to be 1 pixel.
We set the dictionary with 1024 anchored points and 2048, the
correlative neighbourhood size, for example, p = 2048 for fast
training as suggested by [18, 45]. We set 𝜆 = 0.001 empirically
for controlling the tradeoff between the sparse dictionary learn-
ing and the label consistence regularization. As some deep learn-
ing based methods only provide a training code on scale factor
4, without loss of generality, we only compare the results on
upscale factor 4.

Before training, we first detect the face parts by classical
detection methods. Without loss of generality, we extract the key
part positions including eyes, noses, mouths, and face boxes by
MTCNN [39], which is an efficient and effective open-source
tool for face detection. For those databases like CelebA and
LFPW, the images have been well labelled. The key part posi-
tions can also be extracted based on landmark points from the
ground truth.

Then, the patches are grouped into face areas or background
(non-face) areas based on their positions to the face boxes. Dif-
ferent from the methods for preparing traditional dictionary
training patches like KSVD [46], in this paper, the patches are
combined with position information for further labelling. In the
labelling step, the distances between the position of each patch
and the positions of key parts in each image are computed.
We compare the minimum distance with a predefined thresh-
old (e.g., the average distance between left and right eyes). If
the minimum distance is less than the predefined threshold 𝜃,
the patch is labelled as the corresponding face part. Specifically,
if the minimum distance between the centre of the patch and
the key part is less than 1∕4 width of the face box, the patch is
labelled corresponding to the nearest face key part group. Oth-
erwise, the unlabelled patches are grouped into the face area or
the background (non-face) area according the position in or out
the predicted face box.

Depending on the labels, we cluster the patches in each group
separately based on their textures. The number of cluster in each
group is set empirically. More details about the effect from the
cluster number K and the consistency controlling parameter 𝜆
will be discussed later.

4.2 FEI database

The FEI face database is composed of 400 frontal face images
of 200 persons, for example, two images per person with smiling
expression and neutral expression respectively.

In our experiments, the training set contains 360 face images,
which are randomly selected from the FEI database. For fair
comparison, we do not use data augment technology as applied
in GAN based methods like [31]. 1,300,000 LR and HR face
patch pairs are collected for training. The remaining images are
used for testing. Without loss of generality, we magnify the input
face image with a factor of 4. In other words, the original images
form the HR image dataset, which are down-sampled with a
factor of 4 to form the LR image dataset. We set four clusters
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TABLE 1 PSNR/SSIM performances of different algorithms on FEI database

Images Bicubic Yang’s A+ FSRCNN TRNR SRGAN SRFBN ESRGAN TLcR-RL CCR Proposed

PSNR 30.91 32.87 33.7 31.62 33.12 33.19 33.21 31.5635 34.19 33.88 34.27

SSIM 0.8715 0.9038 0.9189 0.9204 0.9222 0.8797 0.8805 0.8951 0.9370 0.9232 0.9247

FIGURE 4 Face hallucination results on the FEI dataset for scale 4 with different methods: (a) Bicubic interpolation, (b) Yang’s method , (c) A+, (d) FSRCNN,
(e) TRNR, (f) SRGAN, (g) TLcR-RL, (h) SRFBN, (i) ESRGAN, (j) CCR, (k) our method and (l) the original HR faces

for eyes, noses and mouths patches, 20 for other face areas, and
eight for background.

The quantitative comparison based on different methods
is shown in Table 1. The visual results are shown in Figure 4.
From Table 1, we can see that the simple bicubic interpolation
method cannot produce more high frequency details. Our
algorithm performs better than classical dictionary based meth-
ods such as Yang’s, A+, as well as clustering and collaborative
representation method with a margin of improvement of 0.36
in PSNR and 0.01 in SSIM.

Both TNRN and TLcR-RL apply a simple neighbour rep-
resentation for face hallucination problem. Concretely, TNRN
uses a simple neighbour representation with Tikhonov regular-
ization and position information. TLcR-RL uses context infor-
mation and reproducing learning by adding the hallucinated
HR face image to the training set. TLcR-RL presents com-
petitive results on the FEI dataset, however, they require the
training images well cropped (not suitable for FLPW dataset as
described in in the following section) and the reproducing learn-
ing in the reconstruction step is time consuming.

As for the deep learning based methods, such as FSRCNN
and SRFBN, we retrain them with FEI. Unfortunately, FSR-
CNN shows blurry results on facial images with a upscaling fac-
tor 4. SRFBN can well maintain the face contours due to their
global optimization scheme. However, it fails to capture high
frequency details (refer to the eyes, noses and mouths).

When compared with GAN based methods, SRGAN and
ESRGAN can be seen as the currently most popular super
resolution and face hallucination methods. Although some
results from GAN based methods present better perceptual loss
for super resolution of natural images, particularly, ESRGAN
achieves relatively sharper face contours, they tend to bring arti-
facts for human faces. For example, human faces, such as the
eyes parts are shown in columns (f) and (i) of Figure 4.

4.3 CelebA database

To further examine our algorithm, we also conduct the same
experiment on a large-scale real face CelebA dataset [37].
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TABLE 2 PSNR/SSIM performances of different algorithms on CelebA database

Images Bicubic Yang’s A+ FSRCNN TRNR SRGAN SRFBN ESRGAN TLcR-RL CCR Proposed

PSNR 28.33 29.54 29.94 28.76 28.91 30.06 29.81 28.51 29.58 29.95 30.17

SSIM 0.8132 0.8411 0.8512 0.8498 0.8159 0.8687 0.8483 0.8247 0.8445 0.8530 0.8617

FIGURE 5 Face hallucination results on the CelebA dataset for scale 4 with different methods: (a) Bicubic interpolation, (b) Yang’s method , (c) A+, (d)
FSRCNN, (e) TRNR, (f) SRGAN, (g) TLcR-RL, (h) SRFBN, (i) ESRGAN, (j) CCR, (k) our method and (l) the original HR faces

CelebA dataset consists of 20,000’s of face images, and each
image is labelled with five landmarks (two eyes, nose and mouth
corners). We randomly select 250 images as training set. For the
testing data, 100 images are randomly chosen in the remain-
ing images.

As shown in Table 2 and Figure 5, traditional interpola-
tion, dictionary learning and example based upsampling meth-
ods, that is, Yang’s, A+, TRNR and TLcR-RL cannot hallu-
cinate clear facial details. Particularly, the sparse coding based
super-resolution methods Yang’s and A+ may reconstruct sim-
ilar image signals (in feature spaces) by different atoms in the
dictionary without considering finding a consistent correspon-
dence between LR and HR patches. CCR uses local geome-
try property by clustering to improve the performance. How-
ever, the improvement is small. For TRNR and TLcR-RL meth-
ods, we adapt the original public codes for colour images. As
the samples in CelebA dataset including more different poses
are not well aligned as FEI dataset, face structure depended
TRNR and TLcR-RL methods cannot present a good perfor-
mance as shown on FEI dataset. With the help of the discrim-
inator network, SRGAN and ESRGAN methods can achieve
good perceptual loss on CelebA dataset. However, the PSNR
and SSIM performances are mediocre and they may hallucinate

distorted facial details especially in eyes areas. For deep con-
volutional network based methods SRFBN shows better per-
formance than FSRCNN. However, the performances on the
structural CelebA face images by SRFBN are not as good as
shown on natural images. Besides, both of them with a large
number of parameters, require more qualified hardware sup-
port (e.g. GPU) and training samples. This also implies that our
up-sampling method is more suitable for the face hallucination
task.

4.4 LFPW database

To further examine the robustness of our algorithm, we also
conduct the same experiments on the labelled face parts in-
the-wild (LFPW) face database without cropping and alignment
[38]. The LFPW database contains 1,432 images with differ-
ent sizes downloaded from the websites such as google.com,
yahoo.com, and flickr.com with large variations in pose, expres-
sion, illumination and occlusion. Each image is labelled with
35 landmark points. We randomly select and downsample 100
images as training set. For the testing data, 100 images are ran-
domly chosen in the remaining images.
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TABLE 3 PSNR/SSIM performances of different algorithms on LFPW database

Images Bicubic Yang’s A+ FSRCNN TRNR SRGAN SRFBN ESRGAN TLcR-RL CCR Proposed

PSNR 28.05 29.21 29.51 28.24 – 29.04 29.38 29.07 – 29.57 29.59

SSIM 0.8145 0.8450 0.8510 0.8374 – 0.8263 0.8404 0.8303 – 0.8512 0.8520

FIGURE 6 Face hallucination results on the LFPW dataset for scale 4 with different methods: (a) Bicubic interpolation, (b) Yang’s method , (c) A+, (d)
FSRCNN, (e) SRGAN, (f) SRFBN, (g) ESRGAN, (h) CCR, (i) our method and (j) the original HR faces

As TRNR and TLcR-RL methods require the training sam-
ples to be well cropped, and the LFPW database cannot meet
this requirement, we only provide the performances of other
methods. Comparing with other algorithms, as shown in Table 3
and Figure 6, our method yields better performance in terms of
both PSNR and SSIM.

4.5 Choice of sensitive parameters

An important parameter is the regularization parameter 𝜆 in the
cluster consistent dictionary learning model in Equation (10).
In this experiment, we investigate how the empirical parameter
𝜆 affects the performance of the CCFH method. To obtain an
optimal parameter to adapt the reconstruction error and the reg-
ularization term, we analyse the PSNR and SSIM performances
by varying 𝜆 in the range from 10−6 to 1.

Figure 7 shows the average performances of the PSNR and
SSIM scores corresponding to different regularization values on
CelebA dataset. Based on the results, we find that the value of 𝜆
does affect the cluster consistent based FH. Too small value of 𝜆
is insufficient to keep the consistent relationship, while too large
value may impact the reconstruction loss results. We can see that
the best regularization value corresponding to the highest PSNR
and SSIM is around 10−3. Based on the statistical results, we
empirically set 𝜆 to 10−3 in our experiment.

Another important parameter is the number of clusters. In
order to choose a reasonable cluster number for better recon-
struction, we make an empirical study on how the parameter
affects the construction quality by varying the cluster number K

within the range from 5 to 75.
The test is conducted on the training dataset CelebA contain-

ing the dictionary with 1024 anchored points for the magnifica-
tion factor as 4. Figure 8 displays the averaged PSNR and SSIM
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FIGURE 7 Choice of the regularization parameter 𝜆. (a) PSNR results by different values of 𝜆; (b) SSIM results by different values of 𝜆

FIGURE 8 The average of PSNR and SSIM scores of CelebA dataset varying with different cluster numbers. (a) PSNR results by different values of the cluster
number K ; (b) SSIM results by different values of the cluster number K

when different cluster numbers are applied to train the cluster
consistent dictionary. Based on the figure, we find that larger
number of cluster benefits lower reconstruction error. However,
when K is greater than 40, there is no obvious decrease in the
reconstruction error. Instead, too many clusters may impact the
reconstruction results. According to the experiment, we suggest
prefixing K = 40 throughout our experiment.

4.6 Computational complexity analysis

In this section, we discuss the running time of the proposed
FH algorithm. Because the running time in the testing stage is
the main factor for learning-based FH approaches, here we only
focus on the discussion about the computational complexity in

the testing stage. Our implementation of CCFH has a similar
computation time to that of A+ because of similar strategy,
whose time complexity for encoding LR input patches to HR
output patches is linear in the number of input image patches
and the number of anchoring atoms. Thus, the major proce-
dures of our method involve two parts, that is, the transforma-
tion from LR features to HR features and the adaption to esti-
mate the best regressor. The feature transformation from LR
to HR using the precomputed mapping matrix costs O(NmM ).
The computation of finding the most correlative neighbours
of N inputs takes O(NmKp) operations by projecting onto the
LR dictionary Dl and choosing the most correlative p neigh-
bours with the nearest neighbour searching algorithm. Thus, for
our proposed CCFH framework, the total complexity is about
O(Ndl Kp+ Ndl dh ).
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FIGURE 9 PSNR performance versus runtime (evaluated in seconds).
The results are evaluated on the CelebA dataset for an upscaling factor of ×4.
The proposed method achieves the best performance with relatively less
execution time

We further compare the computational efficiency of the dif-
ferent methods. All the comparative experiments are performed
on a 1.8 GHz Intel Core i7 CPU with 8 GB RAM and GTX1080
GPU for deep learning based methods. Figure 9 shows the aver-
aged PSNR performance versus runtime (in seconds) evaluated
on the CelebA dataset for an upscaling factor of 4. As demon-
strated, our method can achieve better FH quality with compet-
itive computational time.

5 DISCUSSION AND CONCLUSION

In this paper, we have presented a novel example-based face hal-
lucination method based on cluster consistent dictionary learn-
ing with the assumption that all face images have similar local
pixel structures and similar face image patches should be recon-
structed consistently on the same training dictionary. We have
grouped the face patches based on their positions to the face
key parts and face boxes. Then, all the patches are clustered in
each group separately. Cluster consistence matrix can be con-
structed for learning a constrained dictionary. We have found
that such dictionary can better represent face details in the face
hallucination application. The main reason is that the patches
from same face parts have a similar sparse representation in our
proposed method. Therefore, they can be consistently recon-
structed by the anchored training patches, giving us better face
hallucination performance. This is particularly useful face key
parts areas, as eyes, nose, mouth etc.

Experimental results show that the proposed method per-
forms well in terms of both reconstruction error and visual
quality. The PSNR and SSIM results of the experiments show
that our method can achieve competitive performance for
face hallucination.

Moreover, our label consistent method, which is a more flexi-
ble constraint to describe the neighbourhood of face image pix-

els, does not require the training face images well cropped and
aligned which is significant for some traditional methods.
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