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Abstract: Although the organic and the conventional inorganic thermoelectric (TE) materials have
been extensively developed in recent years, the number of cases involving conducting metallopoly-
mers is still quite limited. In view of the versatile coordination capability of the terpyridine fraction
and the electron-rich nature of the 3,4-ethylenedioxythiophene moiety, a bis-terpyridine-featured
ligand was designed, and a series of metallopolymers were then synthesized. Upon the addition of
single-walled carbon nanotube (SWCNT), the TE properties of the resulting metallopolymer-SWCNT
composite films were investigated. It was found that metal centres played an important role in affect-
ing the morphology of the thin films, which was a key factor that determined the TE performances
of the composites. Additionally, the energy levels of the metallopolymers were feasibly tuned by
selecting different metal centres. With the combined effects of a uniform and condensed surface
and an optimized band structure, the highest power factor was achieved by the Cu(II)-containing
metallopolymer-SWCNT composite at the doping ratio of 75%, which reached 38.3 µW·m−1·K−2.

Keywords: thermoelectric; metallopolymer; terpyridine; composite

1. Introduction

As a green approach to convert heat into electrical energy, thermoelectric (TE) ma-
terials are showing their promising prospect in both macro-scaled and mini-scaled ap-
plications, such as power generation, health monitors, etc. [1,2], and thus have received
tremendous attention. The TE performance of a material is assessed by its figure-of-merit
(ZT): ZT = S2σT/κ, where S is the Seebeck coefficient (V·K−1), σ is the electrical con-
ductivity (S·m−1), T is the absolute temperature (K), and κ is the thermal conductivity
(W·m−1·K−1) [2,3]. Apparently, materials exhibiting high electrical conductivity, high
Seebeck coefficient but low thermal conductivity are expected. In this respect, conventional
inorganic materials do a great job as they are always demonstrated to show high ZT values
exceeding 1.0. For example, via the hot pressing technique, nanocrystalline BiSbTe bulk
materials were synthesized from its nanopowders, achieving a peak ZT of 1.4 at 100 ◦C [4].
By controlling the doping ratio of iodine, the n-type semiconductor PbTe1−xIx gave the ZT
value up to 1.4 from 700 K to 800 K [5]. In 2020, Zhu et al. developed a bismuth antimony
chalcogenide material with the highest ZT value reaching ca. 1.4 within a temperature
range from 300 K to 575 K [6].

Despite the satisfactory energy conversion efficiency, these inorganic materials bear
inevitable shortcomings, including the use of heavy metals and rare elements, their hard
and fragile characters, and high performances only at high temperature [7–9]. In contrast,
by virtue of good flexibility, light weight, diverse chemical structures, and the ease of
processing, a number of organic TE materials have been synthesized and studied. In
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light of the extremely low thermal conductivity (generally below 1 W·m−1·K−1) [10],
another parameter—power factor (PF)—is useful to characterize the TE performance of
the organic materials as: PF = S2σ [7,9,10]. As the most successful instance, poly(3,4-
ethylenedioxythiophene):poly(styrenensulfonate) (PEDOT:PSS) has been extensively stud-
ied for years, not only due to its high TE performance (sometimes comparable to the
inorganics), but it also possesses some attractive features including the realised proces-
sibility in aqueous media and high thermal stability [6,11]. By adjusting the stacking
structure of PEDOT:PSS, the prepared thin film gave a high PF up to 330.597 µW·m−1,
and a device was made to recycle the heat in the form of solar energy [12]. Besides, some
electron-rich conducting polymers including polypyrroles [13–16], polythiophenes, and
their composites [17,18] also exhibited their potential in TE applications.

Emerging as a new class of TE materials, metallopolymer-based TE materials bring
the advantages of metallation to pure organic polymers [9]. The involvement of ap-
propriate transition metal ions could increase the probability to provide active species
during the electrical conducting process [19–21], tune the energy levels through d-π
conjugation feasibly [19,22], generate various molecular geometries according to the
coordinating properties of the metal centres and lower the thermal conductivity [9].
In this regard, Zhu et al. successfully developed a series of 1,1,2,2-ethenetetrathiolate-
based metallopolymers [poly(M(ett)] with tunable TE performances when different metal
centres or processing methods were adopted [23–25]. For example, poly[Nax(Ni-ett)]
and poly[Kx(Ni-ett)] were demonstrated to be n-type semiconductors with their room-
temperature (RT) PF of around 26 µW·m−1·K−2, but poly[Cux(Cu-ett)] was a p-type TE
material which produced the RT PF of 38.6 µW·m−1·K−2 [23]. Other representative cases
mainly included 2,3,6,7,10,11-hexaiminotriphenylene- [26,27] and porphyrin-based 2D
framework materials [28,29] and metalated poly(Schiff base)s [30,31]. However, the num-
ber of metallopolymer-derived TE materials is still quite limited.

In light of the versatile coordination capability [32–36], the terpyridine moiety always
appears as a popular fragment in coordination chemistry, and its related materials were
found to exhibit interesting properties in a wide range of applications. For example, in
2016, Liang et al. synthesized a series of bis(terpyridine)-based Fe(II) complexes which
displayed rapid and reversible electrochromic behaviour between blue and pale yellow
upon repeated redox process [37]. By employing a hexylthiophene-modified terpyridine as
the ligand and Ru(II) as the metal centre, two ruthenium-containing sensitizers for solar
cells have been developed and improved molar absorption coefficients were observed [38].
Additionally, a metal-organic framework based on Eu(III) and terpyridine was proved
to be a highly selective and sensitive probe for Fe3+ in aqueous solution and even in
biological systems [39]. Moreover, Elgrishi found that the reduction of proton and CO2
could be feasibly realised under the catalysis of several cobalt-terpyridine coordination
compounds [40]. However, the application of terpyridine-based materials towards TEs is
still rarely seen.

In this work, a bis(terpyridine)-based new ligand was designed. The EDOT fragment
was selected as the bridge to link the two terminal terpyridine chelating sites, due to its
electron-rich property as well as the potential capability to enhance the TE performance [41].
Through the coordination with various transition metal ions (Co2+, Ni2+ and Cu2+), a series
of terpyridine-based metallopolymers were prepared (Figure 1). Then, by blending with
single-walled carbon nanotubes (SWCNTs), the TE properties of the resulting composites
were measured at different doping ratios (f C, f C = mSWCNT/mcomposite). The factors that
affected the TE performance are discussed in detail from the perspectives of the morphology
evolution and the role played by metal centres were highlighted. It is the first time that the
TE performance of the terpyridine-based metallopolymer–SWCNT composite materials
was assessed systematically.
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Figure 1. Synthetic route of PM(epy).

2. Materials and Methods
2.1. Materials

Co(BF4)2·6H2O and Cu(BF4)2·6H2O were purchased from Energy Chemical, and
Ni(BF4)2·6H2O was purchased from Alfa Aesar. SWCNTs (purity > 95%), with diameters
of 1–2 nm and lengths of 5–30 µm, were purchased from XFNANO. 1,2-Dichloroethane
was purchased from TCI, and other organic solvents were purchased from Alfa Aesar. Flat
glass sheets with a dimension of 15 mm × 15 mm × 1 mm (length × width × height) were
cleaned and used as substrates for the film deposition. As a typical cleaning procedure, the
glass sheets were fully immersed and sonicated in the aqueous solutions of 5% hydrochloric
acid and 5% sodium carbonate successively, washed with deionized water before and after
each sonication, and finally rinsed with absolute ethanol thoroughly before drying in vacuo.

2.2. Synthesis
2.2.1. Preparation of the Metallopolymer PM(epy)

The detailed synthetic route is shown in Figure S1. As a general procedure, 19 mg epy
(24 µmol) was dissolved in 10 mL THF under nitrogen. With vigorous stirring, a solution of
24 µmol M(BF4)2 in a mixed solvent of 0.5 mL deionized water and 2 mL MeOH was added
into the ligand solution in a dropwise manner. The reaction was maintained at RT for 1 day,
after which the precipitate was collected by filtration, washed thoroughly with deionized
water and THF, and dried in a vacuum oven. Pure PCo(epy), PNi(epy), and PCu(epy)
were furnished as a red powder, a dark yellow powder, and a brown powder, respectively.

2.2.2. Preparation of PM(epy)-SWCNT Composite Films

In a round-bottomed flask, 50 mg SWCNT and 50 mL 1,2-dichloroethane were mixed.
Then, the flask was immersed in an ice bath at 0 ◦C and the mixture was dispersed with an
ultrasonic homogenizer at a power of 95 W for 1.5 h. To a glass vial containing a specific
amount of the metallopolymer powder, 1.0 mL of the formed SWCNT dispersion was
added. Then, the vials were sealed and sonicated at 0 ◦C for 2 h. After that, gel-like
mixtures were formed and dropped onto clean glass substrates. Qualified thin composite
films were obtained after solvent evaporation and their thickness was measured before the
measurements of the TE properties.
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2.3. Characterization

The nuclear magnetic resonance (NMR) spectra were acquired on a Varian VNMRS
400 spectrometer or a Bruker AVANCE III 400 spectrometer. 1H NMR spectra were quoted
relative to the internal reference tetramethylsilane (TMS, δ = 0.00 ppm). For 13C NMR acqui-
sitions, the spectra were referenced to the recommended values [42] of the deuterated sol-
vent signals: δ(d6-acetone) = 29.84 ppm, δ(CDCl3) = 77.16 ppm, and δ(d8-THF) = 25.31 ppm.
Matrix-assisted laser desorption/ ionization-time of flight (MALDI-TOF) mass spectra
were acquired on a Bruker UltrafleXtreme MALDI-TOF mass spectrometer with α-cyano-4-
hydroxycinnamic acid or 2,5-dihydroxybenzoic acid employed as the matrix. Samples for
Fourier-transform infrared (FTIR) spectroscopy were prepared by using the KBr pellets
and the spectra were measured on an Agilent Cary 670 spectrometer. Raman spectra
were collected on a Renishaw Micro-Raman microscope, under the irradiation of a laser at
785 nm. Scanning electron microscopic (SEM) images were captured on a JEOL JSM-6490
electron microscope. Transmission electron microscopic (TEM) images were obtained on a
JEOL JEM-2100F model. Elemental analysis was tested on a Vario EL Cube elemental anal-
yser. UV-Vis reflection spectra of powdered samples were collected on a Varian Cary 4000
spectrophotometer with the integrating sphere accessories. The UV-Vis-NIR absorption
spectrum was measured on a Shimadzu UV-3600 Plus spectrometer. The X-ray photo-
electron spectra (XPS) were acquired on a Thermo Scientific Nexsa system. Each survey
spectrum was accumulated for 5 times and each high-resolution spectrum was acquired
with 20 scans. The thickness of the thin films was measured on a Bruker DektakXT Surface
optical profiler equipped with a diamond-tipped stylus showing a radius of 2.5 µm.

The TE properties of the thin films were tested on a JouleYacht MRS-3RT TE Testing
System at RT. The glass substrate with the thin film was fixed in the sample chamber
where light was avoided. The four-point method was applied to measure the electrical
conductivity. For the tests of Seebeck coefficient, the temperature gradient was generated
between two thermocouples where one maintained the temperature of the cold terminal at
around RT and the other one heated the films up gradually. The highest temperature of the
hot end was confined within 60 ◦C and the entire heating process took ca. 60 s. The whole
course was controlled automatically by the system and the data were recorded in real time.
Upon each completion of the Seebeck coefficient measurement, the heating process stopped
immediately and the thin film was allowed to cool to RT naturally.

3. Results and Discussion
3.1. Chemical Structure Determination

Due to the highly conjugated and rigid molecular structures, all these metallopoly-
mers were insoluble in common organic solvents. Consequently, their nuclear magnetic
resonance spectra were not obtained. As a workaround, FTIR spectroscopy was used
to determine the chemical structures of the products. As displayed in Figure 2, the ab-
sorption bands within the spectral region from 3200 cm−1 to 2800 cm−1 were assigned
to the stretching vibration of C-H bond [43]. The peaks shown at 2186 cm−1 depict the
presence of the internal C≡C bond [43]. After the metal coordination, the absorption bands
at around 1078 cm−1 were broadened, probably due to the combination of the signals from
B-F bonds [44]. Particularly, the absorption peak corresponding to the C=N stretching
vibration of the pyridine ring [34] from epy at 1566 cm−1 shifted to the long wavelength
region, which implied the successful coordination of the metal ions.
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Figure 2. FTIR spectra of PM(epy). Expansion (right): the spectral region involving the absorption of
C=N bond from the pyridine ring.

3.2. Electrochemical Properties

The electrochemical properties of PM(epy) were investigated by cyclic voltammetry
(CV). As shown in Figure 3, all metallopolymers exhibited both oxidative and reductive
waves, implying their capabilities to convey electrons and holes [45]. At 0.45 V, an irre-
versible oxidation of the organic backbone was detected for all metallopolymers, from
which the highest occupied molecular orbital (HOMO) or singly occupied molecular orbital
(SOMO) energy values were calculated and listed in Table 1. It can be seen that the incor-
poration of these metal ions hardly affected the positions of the HOMO or SOMO levels.
PNi(epy) exhibited an additional wave at ca. 0.97 V, which may be ascribed to the oxidative
process from Ni(II) to Ni(III) [20]. At the reduction region, a characteristic redox-reversible
process was detected at −1.16 V from PCo(epy), which revealed the electrochemical con-
version between Co(II) and Co(I) [46–48]. By comparison, the electrochemical process
occurring on the metal centre of PCu(epy) was not found, which implied the redox-inactive
property of Cu(II) [20].
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Table 1. The HOMO or SOMO energies of PM(epy).

Metallopolymers HOMO or SOMO (eV)

PCo(epy) −5.00
PNi(epy) −5.01
PCu(epy) −5.06

3.3. Morphology Studies

The morphology of the prepared composite thin films was studied under an SEM. As
revealed in Figure 4, the morphology change of the thin films heavily depended on the
SWCNT content. At f C = 15%, serious macro-phase separation was observed. SWCNTs
formed condensed layered structures with large metallopolymer aggregates sitting atop
or sandwiched between adjacent layers. A closer observation found that the aggregated
PNi(epy) particles are of smaller size than other two analogues (Figure 4d), suggesting
an improved contact area with SWCNTs. PCu(epy) formed a layer-by-layer structure
with smooth surface (Figure 4g), which was in favour of establishing strong interfacial
interactions with the SWCNTs. At the medium doping level (f C = 60%), much better
dispersed composites were developed, except for PCo(epy)-SWCNT where the aggrega-
tion of the metallopolymer was not effectively alleviated (Figure 4b). By contrast, the
PCu(epy)-SWCNT composite was highlighted by its uniform morphology (Figure 4h). All
metallopolymer particles were perfectly dispersed and coated on the SWCNT network
evenly. With the CNT content increased up to 90%, a homogeneous surface was evolved.
A condensed and inter-connected CNT network was observed and the inter-layered in-
teraction was significantly enhanced with only a few PCo(epy) and PNi(epy) particles
appeared, which provided an efficient charge carrier transporting system.
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3.4. Raman Spectral Analysis of the PM(epy)-SWCNT Composites

The gradual evolution of the morphology possibly implied the effective establishment
of the interactions between the metallopolymers and SWCNTs. Here, Raman spectra
were acquired for verification. As shown in Figure 5, a series of characteristic absorption
peaks were detected from the Raman spectrum of the pure SWCNT thin film, including a
radial breathing mode (RBM) at 161 cm−1, a D-band from sp3-hybridized carbon atoms at
1306 cm−1, a G-band from sp2-hybridized carbon atoms (involving a G- band at 1571 cm−1

and a G+ band at 1592 cm−1), and a 2D band at 2591 cm−1 [49]. After doping with PM(epy),
a slight spectral shift of the G+ band was found, especially for PCu(epy)-SWCNT composite
whose peak shifted to the long wavelength region the most significantly, which may benefit
from the increased contact area. This phenomenon revealed the presence of the interfacial
interactions between the metallopolymers and the SWCNTs. Besides, for the composites,
the emergence of the new peak at 2192 cm−1 corresponded to the stretching vibration of the
C≡C bond. The presence of additional peaks from PCu(epy) may imply that the energy
gap of the metallopolymer matched well with the energy of the incident laser.
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Figure 5. Raman spectra of pure SWCNTs and the PM(epy)-SWCNT composites at f C = 60%.

3.5. TE Performances

The electrical conductivities and the Seebeck coefficients of the prepared composites
were assessed on a JouleYacht MRS-3RT TE testing system at RT. From Figure 6a, the
increasing amount of SWCNT helped to boost the electrical conductivity of the composite
remarkably. At f C = 15%, PNi(epy)-SWCNT and PCu(epy)-SWCNT showed almost the
same conductivity, which was 60% higher than that of the PCo(epy)-SWCNT composite. As
for PNi(epy), the CV curves displayed that the oxidation wave of the metal centre was quite
close to that of the organic backbone, which may imply a redox-matched scenario. Judging
from the molecular structures, all these metallopolymers are Wolf type III conducting
polymers where metal centres appear in the polymer main chain and act as linkers [50]. In a
typical conducting process, the oxidized organic backbone was doped and became a highly
conductive bridge or a hopping station between any adjacent two metal centres at different
oxidation states (Ni2+/Ni3+). The resulting inter-chain interactions and intra-chain charge
transfer in superexchange (Figure 7a) and charge hopping (Figure 7b) fashions together
account for the high electrical conductivity [19,20]. In the case of PCu(epy)-SWCNT,
although Cu2+ was considered redox-inactive and the composite should have suffered
from low conductivity, a high conductivity was detected unexpectedly. The possible
reasons could be due to the flat surfaces of PCu(epy) particles, the resulting stronger
interactions with the SWCNT networks and the paramagnetic property of Cu2+ [51]. By
contrast, large aggregates of PCo(epy) not only enlarged the distance between adjacent
SWCNT networks, but also decreased the contact area. The increment of the doping ratio
brought about a significant enhancement on the electrical conductivities of all composites,
which benefited from the gradual formation of a uniform composite surface and increased
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charge carrier concentration. Notably, PCu(epy)-SWCNT always kept the highest value at
all doping ratios, with the top value reaching 4.41 × 104 S·m−1.
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The dependence of Seebeck coefficient on f C was shown in Figure 6b. As expected,
all samples gave positive S values, suggesting that holes were the main charge carriers
and these composites were p-type conductors. When more SWCNT were introduced,
the Seebeck coefficients of PCo(epy)-SWCNT and PNi(epy)-SWCNT dropped, which
was caused by the inversed relationship between electrical conductivity and Seebeck
coefficient [3]. However, the S value of the PCu(epy)-SWCNT composites climbed up
slightly. Such an interesting phenomenon probably stemmed from the energy filtering
effect at the PCu(epy)-SWCNT interfaces. At the crystallite boundaries, such an effect
filtered off most low-energy charge carriers and only those with high energy were allowed
to transmit [52–54]. In view of the better developed interfacial interactions, the energy
filtering effect played a leading role in determining the Seebeck coefficient, and therefore
gradually elevated S values were recorded at high f C.

The PFs of the composite thin films were shown in Figure 6c, which exhibited a
similar variation trend to the electrical conductivity. The highest PF of 38.29 µW·m−1·K−2

was achieved by PCu(epy)-SWCNT at f C = 75%. In summary, the TE properties of the
PM(epy)-SWCNT composites at f C = 75% are summarized in Table 2.

Table 2. The TE properties of the PM(epy)-SWCNT composites at f C = 75%.

Composites σ (S·m−1) S (µV·K−1) PF (µW·m−1·K−2)

PCo(epy)-SWCNT 1.13 × 104 33.6 12.8
PNi(epy)-SWCNT 1.33 × 104 32.5 14.1
PCu(epy)-SWCNT 4.41 × 104 29.5 38.3
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3.6. Energy Band Analysis

The solid state UV-Vis diffused reflection spectra (Figure 8a) of neat PM(epy) were
acquired to further investigate the factors that affect the electrical conductivity from the
perspective of band structure. For the convenience of analysis, the reflection spectra were
transformed into the Kubelka–Monk function—photon energy plot (Figure 8b). The optical
energy gaps of PCo(epy), PNi(epy), and PCu(epu) were measured to be 2.20 eV, 2.53 eV,
and 2.16 eV, respectively, suggesting that PCu(epy) possessed the narrowest optical band
gap and the smallest activation energy. Therefore, PCu(epy) was expected to afford the
highest electrical conductivity. Besides, as the HOMO level of SWCNT was positioned at
−5.05 eV [55,56], PCu(epy) also gave the narrowest energy gap between the SOMO level of
the metallopolymer and the HOMO level of the SWCNT, which was in favour of the hole
transport [55] and thus rendered PCu(epy)-SWCNT the most conductive composites in the
metallopolymer-SWCNT blending system at almost all doping ratios. As for the PNi(epy)-
SWCNT composites, although the redox-matching effect was present, the obvious phase
separation morphology of the composite films and the wide optical energy gap of PNi(epy)
together diminished the electrical conductivity.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 12 
 

 

3.6. Energy Band Analysis 
The solid state UV-Vis diffused reflection spectra (Figure 8a) of neat PM(epy) were 

acquired to further investigate the factors that affect the electrical conductivity from the 
perspective of band structure. For the convenience of analysis, the reflection spectra were 
transformed into the Kubelka–Monk function—photon energy plot (Figure 8b). The op-
tical energy gaps of PCo(epy), PNi(epy), and PCu(epu) were measured to be 2.20 eV, 2.53 
eV, and 2.16 eV, respectively, suggesting that PCu(epy) possessed the narrowest optical 
band gap and the smallest activation energy. Therefore, PCu(epy) was expected to afford 
the highest electrical conductivity. Besides, as the HOMO level of SWCNT was posi-
tioned at −5.05 eV [55,56], PCu(epy) also gave the narrowest energy gap between the 
SOMO level of the metallopolymer and the HOMO level of the SWCNT, which was in 
favour of the hole transport [55] and thus rendered PCu(epy)-SWCNT the most conduc-
tive composites in the metallopolymer-SWCNT blending system at almost all doping ra-
tios. As for the PNi(epy)-SWCNT composites, although the redox-matching effect was 
present, the obvious phase separation morphology of the composite films and the wide 
optical energy gap of PNi(epy) together diminished the electrical conductivity. 

 
Figure 8. (a) UV-Vis diffused reflection spectra of neat PM(epy) powders. Inset: the photos of each 
sample taken under daylight. (b) The Kubelka–Monk function versus energy plots of the metallo-
polymers. 

4. Conclusions 
In summary, three terpyridine-based metallopolymers were synthesized and 

blended with SWCNT to assess the TE performances of the resulting composite films. CV 
curves of the neat metallopolymers indicated that the organic backbone was oxidized at 
ca. 0.45 V and PNi(epy) displayed an additional oxidation wave corresponding to the 
conversion from Ni(II) to Ni(III) at 0.97 V. Morphology studies showed uniform thin 
films were gradually formed with an elevated content of SWCNTs, which promoted high 
electrical conductivities. Raman spectra revealed the presence of the interfacial interac-
tions between the metallopolymers and SWCNTs. TE tests indicated that the electrical 
conductivity was remarkably enhanced when more SWCNTs were introduced. Particu-
larly, PCu(epy)-SWCNT composites always possessed the highest values compared with 
other two analogues (i.e., PCo(epy)-SWCNT and PNi(epy)-SWCNT), which was bene-
fited from the well dispersed morphology and the optimized band structures. Among all 
the prepared composite thin films, the highest PF was achieved by the PCu(epy)-SWCNT 
composite at fC = 75%, reaching a value of 38.3 μW·m−1·K−2. This research revealed a 
promising application prospect of terpyridine-based metallopolymer materials towards 
TEs, and the metallation process was demonstrated to be a critical but convenient ap-
proach to tune the TE properties of these materials. 

Supplementary Materials: The following are available online, detailed experimental procedures, 
XPS of the metallopolymers, NMR spectra and mass spectra of the intermediates, UV-Vis-NIR ab-
sorption spectrum of the SWCNT dispersion, and TEM image of the SWCNT bundles. 

Figure 8. (a) UV-Vis diffused reflection spectra of neat PM(epy) powders. Inset: the photos of
each sample taken under daylight. (b) The Kubelka–Monk function versus energy plots of the
metallopolymers.

4. Conclusions

In summary, three terpyridine-based metallopolymers were synthesized and blended
with SWCNT to assess the TE performances of the resulting composite films. CV curves of
the neat metallopolymers indicated that the organic backbone was oxidized at ca. 0.45 V
and PNi(epy) displayed an additional oxidation wave corresponding to the conversion
from Ni(II) to Ni(III) at 0.97 V. Morphology studies showed uniform thin films were
gradually formed with an elevated content of SWCNTs, which promoted high electri-
cal conductivities. Raman spectra revealed the presence of the interfacial interactions
between the metallopolymers and SWCNTs. TE tests indicated that the electrical con-
ductivity was remarkably enhanced when more SWCNTs were introduced. Particularly,
PCu(epy)-SWCNT composites always possessed the highest values compared with other
two analogues (i.e., PCo(epy)-SWCNT and PNi(epy)-SWCNT), which was benefited from
the well dispersed morphology and the optimized band structures. Among all the prepared
composite thin films, the highest PF was achieved by the PCu(epy)-SWCNT composite
at f C = 75%, reaching a value of 38.3 µW·m−1·K−2. This research revealed a promising
application prospect of terpyridine-based metallopolymer materials towards TEs, and the
metallation process was demonstrated to be a critical but convenient approach to tune the
TE properties of these materials.
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Supplementary Materials: The following are available online, Figure S1: Detailed experimental
procedures; Figure S2: XPS of the metallopolymers; Figure S3: NMR spectra and mass spectra of the
intermediates; Figures S4–S7: UV-Vis-NIR absorption spectrum of the SWCNT dispersion; Figure S8:
TEM image of the SWCNT bundles.
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