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This paper studies the reliable uncapacitated facility location problem in which facilities are subject to

uncertain disruptions. A two-stage distributionally robust model is formulated, which optimizes the facility

location decisions so as to minimize the fixed facility location cost and the expected transportation cost of

serving customers under the worst-case disruption distribution. The model is formulated in a general form,

where the uncertain joint distribution of disruptions is partially characterized and is allowed to have any

pre-specified dependency structure. This model extends several related models in the literature, including

the stochastic one with explicitly given disruption distribution and the robust one with moment information

on disruptions. An efficient cutting plane algorithm is proposed to solve this model, where the separation

problem is solved respectively by a polynomial-time algorithm in the stochastic case and by a column

generation approach in the robust case. Extensive numerical study shows that the proposed cutting plane

algorithm not only outperforms the best-known algorithm in the literature for the stochastic problem under

independent disruptions but also efficiently solves the robust problem under correlated disruptions. The

practical performance of the robust models is verified in a simulation based on historical typhoon data in

China. The numerical results further indicate that the robust model with even a small amount of information

on disruption correlation can mitigate the conservativeness and improve the location decision significantly.
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1. Introduction

The uncapacitated facility location problem (UFLP) is one of the most well-studied loca-

tion problems. It is concerned with how to locate facilities among a given set of potential

locations and how to serve a given set of customers with known demand rate using these

facilities. The objective usually minimizes the total cost, including the fixed cost of setting

up facilities and the transportation cost of serving customers. In the classical UFLP, facili-

ties are assumed to be always available once constructed. However, in reality, facilities may

fail from time to time due to disruptive events, such as natural disasters, terrorist attacks,

or labor strikes. Though facility disruption is rare, once it occurs, serious interruptions and

huge losses can occur. For example, in 2005, Hurricane Katrina shut down the oil refineries

in the Gulf of Mexico, US. About 2 million barrels per day of refining capacity was lost

initially, and it took months before oil production and refining were fully restored (Bam-

berger and Kumins 2005, Cashell and Labonte 2005). One example of facility disruption

in the manufacturing industry was a fire in March 2000 at the Philips microchip factory

in Albuquerque, New Mexico, US, which supplied Ericsson with microchips for its mobile

phones. The fire left Ericsson millions of chips short, which interrupted the production of

phones and eventually brought a potential revenue loss of at least $400 million (Latour

2001). More examples in supply chain management can be found in Christopher and Peck

(2004), Sheffi (2001), and Tang (2006). In view of the damage and losses resulted from

facility disruptions, it is crucial to locate facilities wisely and design a reliable supply chain

network that can reliably withstand facility disruptions.

In recent decades, the reliable facility location problem under uncertain facility dis-

ruptions has been studied extensively. The two categories of existing works are based on

differing assumptions about facility disruptions. Some works assume the facility disrup-

tions occur independently, which is a reasonable assumption for disruptions caused by, for

example, facility contamination or plant fire. Stochastic approaches are generally applied

in these works, which sometimes suffer from computational efficiency. The other category

of works considers natural disaster disruptions such as floods or earthquakes, which simul-

taneously affect multiple facilities in the area. These works assume the facilities disrupt

with correlations and solve this problem by either scenario-based stochastic approach or

robust optimization, the latter of which is sometimes criticized as overly conservative. In

this paper, we propose a general two-stage distributionally robust model, which bridges
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the stochastic problem under independent disruptions and the robust problem under cor-

related disruptions. Efficient algorithms are proposed to solve this model. Moreover, we

also analyze the value of explicit correlation information in mitigating the conservativeness

of robust approaches.

This paper examines the reliable uncapacitated facility location problem (RUFLP) with

the consideration of uncertain facility disruptions. The disruptions are described as a ran-

dom binary vector with uncertain joint distribution belonging to a preset ambiguity set.

The ambiguity set is constructed according to the features of disruptive events considered

in reliable facility location problem. Note that geographically close locations are more likely

to be affected by the same disruptive event, so are the adjacent facilities in the supply

chain. Therefore, the ambiguity set is characterized by given pieces of information, where

each piece of information corresponds to the probability of a disruptive event and the asso-

ciated sets of affected/unaffected facilities. For instance, consider the RUFLP under the

threat of typhoons. The affected areas by a typhoon are closely related to the landing place,

the landing intensity, and the typhoon track. Thus, the ambiguity set can be defined based

on the frequency of typhoons landed in certain locations and the set of affected locations

along the typhoon tracks, which are available from the historical data. More importantly,

as can be seen in Section 3, the proposed ambiguity set generalizes several ambiguity sets

in the literature and can capture various dependency structures for disruptions.

We also notice that, in addition to uncertain facility disruptions, some relevant works on

disruptive events also consider other kinds of uncertainties, including demand (An et al.

2014), facility coverage (Lutter et al. 2017, Santos et al. 2019), facility capacity (Ahmadi-

Javid and Seddighi 2013), and transportation connection (Azad et al. 2013). This paper

focuses on uncertain facility disruptions, assuming that all the other parameters are deter-

ministic. Particularly, demand is assumed to be deterministic. We claim that this paper is

readily extended to the case when the uncertain demand is independent of the facility dis-

ruption. This independent demand case applies for many supply chain networks for general

goods where the demand is determined exogenously by the market and quite irrelevant to

the facility disruptions. For instance, Thailand suffered from severe floods during the 2011

monsoon season. As approximately 43% of the world’s hard disk drives were produced in

Thailand, the floods significantly reduced the hard disk drive shipment in Thailand and

severely affected the electronic companies all around the world (Haraguchi and Lall 2015).
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However, according to Chongvilaivan (2012), “the global demand remains robust.” More

recently, Typhoon Mangkhut, the largest storm in the world in 2018, made landfall in

Guangdong, China and adversely affected many companies with suppliers and partners

located in this area. Despite the supply disruption, some affected companies (e.g., Pop!

Promos, a company supplying promotional products) faced stable orders and maintained

the ability to fulfill orders from redundant sources (Ruvo 2018). The independence between

demand and disruption is also widely assumed in the location-inventory problems with

uncertain demand and disruption (Qi et al. 2010). Moreover, the disruption-correlated

uncertain demand can be easily incorporated in our approach if (1) the stochastic demand

is modeled by scenarios depending on uncertain disruptions in the scenario-based stochas-

tic model, or (2) the demand is defined as a linear function of uncertain disruptions, e.g.,

the settings in An et al. (2014) and Azad and Hassini (2019). More details of these gener-

alizations can be found in Appendix B.1.

In the literature, the reliable facility location problems considering facility disruptions

are generally built upon certain classical models (Snyder et al. 2006). This paper is based

on the UFLP, one of the most classical and commonly-used facility location models. Thus,

we consider the facility location decision and the transportation decision. Relevant works

based on other facility location models also consider the demand allocation decision (Azad

et al. 2013), the inventory positioning decision (Qi et al. 2010, most of which are based on

the location-inventory problems), as well as the vehicle routing decision (Xie et al. 2015b,

most of which are based on the location-routing problems). In this paper, we formulate a

two-stage distributionally robust model with a preset ambiguity set for the distribution of

disruptions. The facility location decision is made in the first stage before the disruptions,

and the transportation decision is made in the second-stage with the realized disruption

information. The objective is to minimize the fixed facility setup cost and the expected

transportation cost of serving customers under the worst-case disruption distribution.

The RUFLP in this paper is clearly NP-hard as it takes the UFLP, the well-known

NP-hard problem, as a special case. The distributionally robust model formulated in the

general form makes this problem more difficult. To solve this problem, we develop a cutting

plane algorithm, where the separation problem is exactly the evaluation of the worst-

case expected transportation cost. For the stochastic case, the separation problem can be

solved by a proposed polynomial-time algorithm under the assumption that the conditional
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disruption probability can be obtained easily. For the robust case, the separation problem

is solved by a column generation approach.

The main contributions of this paper can be summarized as follows.

• We formulate a general model for reliable facility location, which extends several

models in the literature, including the stochastic one with explicitly given disruption dis-

tribution and the robust one with given marginal and/or cross disruption probability.

• A cutting plane algorithm is developed, where the separation problem is solved respec-

tively by a polynomial-time algorithm in the stochastic case and by a column generation

approach in the robust case. The efficiency and effectiveness of the proposed algorithm are

validated through extensive numerical experiments.

• The value of considering exact correlation in the robust problem is analyzed by com-

paring the proposed robust model with the one based on marginal moment information.

The comparison indicates that the robust model based on marginal disruption probability

is sometimes overly conservative, and even a small amount of information on disruption

correlation can improve the location decision significantly.

The rest of this paper is organized as follows. In Section 2, we review the related lit-

erature. In Section 3, the distributionally robust model is formulated with the generally

characterized ambiguity set for disruption distribution. In Section 4, the cutting plane algo-

rithm is introduced, with its framework presented first, followed by the detailed methods

to efficiently evaluate the worst-case expected transportation and penalty cost. Exten-

sive numerical experiments are conducted in Section 5 to validate the performance of the

proposed cutting plane algorithm. In the last section, this paper is concluded with the

discussions of future works.

2. Literature Review

Facility disruptions are widely considered based on several classical facility location prob-

lems, including the UFLP, the set-covering problem, the maximal coverage problem, the

p-median problem, the capacitated fixed cost facility location problem, and the multi-

allocation hub location problem. To keep this literature review focused, we primarily review

the UFLP-based works, i.e., the RUFLP. For the works based on other types of classical

facility location problems, we refer to Snyder et al. (2006, 2016) for more detailed and

extensive reviews. In what follows, we first review the stochastic and the robust facility

location problems, respectively, and then review the distributionally robust optimization

approach, which is the methodology adopted in this paper.
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2.1. On the Stochastic Facility Location Problems

The RUFLP considering independent disruptions is firstly studied by Snyder and Daskin

(2005). They are motivated by a facility location problem of 49 cities in the United States,

and find that facility disruption at a certain city may result in a significant increase in

transportation costs. By assuming that facility disruptions occur independently with iden-

tical probabilities, they formulate the RUFLP into a linear integer program and propose a

Lagrangian relaxation algorithm. The assumption of identical disruption probabilities as

assumed in Snyder and Daskin (2005) greatly simplifies the model formulation and the

solution method of the RUFLP. When this assumption is relaxed, it becomes difficult to

calculate the expected transportation cost associated with the disruptions. To address this

difficulty, attempts are made by Shen et al. (2011), Cui et al. (2010), Aboolian et al. (2013),

etc. Shen et al. (2011) extend the model of Snyder and Daskin (2005) by considering site-

dependent disruption probabilities. They propose a nonlinear integer programming model

where the expected transportation cost is calculated using highly nonlinear multiplicative

terms. Several heuristic algorithms are developed to solve the proposed nonlinear model.

Cui et al. (2010) propose another nonlinear mixed integer programming model that allows

site-dependent disruption probabilities. By applying certain linearization techniques, they

reformulate the nonlinear model into a compact mixed integer linear model, which is then

solved by a Lagrangian relaxation algorithm. Aboolian et al. (2013) consider the same

nonlinear model as Cui et al. (2010). Instead of using the linearization techniques as in

Cui et al. (2010), they develop an approximation algorithm based on local search and cut-

ting plane procedure. They show that their method outperforms the Lagrangian relaxation

algorithm proposed by Cui et al. (2010) in both solving time and solution quality.

Another direction is to study the RUFLP by assuming correlated disruption. Liu et al.

(2009) and Shen et al. (2011) formulate scenario-based models, which incorporate the

correlated disruptions by properly defined scenarios. However, their models suffer from

poor numerical efficiency, especially when the number of scenarios increases. Some works

study the interdependent facility disruptions based on special physical structures, such as

“ripple effect” and “supporting stations.” Liberatore et al. (2012) study the ripple effect,

which occurs when the facility disruptions propagate, i.e., the failure in one facility will

cause capacity losses in other facilities. The ripple effect is captured by a deterministic

two-dimensional correlation matrix describing the pair-wise capacity losses. Li et al. (2013)



Li et al.: Reliable Facility Location Problem under Uncertain Disruptions
Article submitted to INFORMS Journal on Computing; manuscript no. (number XXXX) 7

and Xie et al. (2015a) introduce an extra layer of “supporting stations,” each of which

is properly connected to certain facilities, to describe the correlated disruptions. In their

work, each supporting station fails independently with identical probabilities, and the

failures in supporting stations cause the connected facilities to fail as well. In addition,

Li and Ouyang (2010), Berman and Krass (2011), Berman et al. (2013), and Lim et al.

(2013) apply the continuum approximation approach to study the RUFLP with correlated

disruption, which is approximated as a continuous location problem. In these works, the

correlated disruptions are captured by conditional probabilities, beta-binomial distribution

(Li and Ouyang 2010), correlation coefficients (Berman and Krass 2011, Berman et al.

2013), or correlated binomial random variables (Lim et al. 2013), respectively.

2.2. On the Robust Facility Location Problems

Thus far, all the aforementioned works consider the reliable facility location problem in

stochastic settings, where the disruption probabilities are exactly known. As this paper

proposes a general model in the form of a distributionally robust model, we further review

the relevant robust models considering correlated disruptions.

In the context of robust reliable facility location, there is a large amount of literature

that considers interdiction, i.e., the intentional attack of facilities (e.g., a terrorist strike)

designed to cause maximum disruption on a network. These works usually focus on the

question of how to fortify existing facilities (i.e., immunize the facilities from disruptions),

or how to locate new facilities from a given set of potential sites, so as to minimize the

demand-weighted distance from customers to non-disrupted facilities under the worst-case

interdiction. The former question is studied in the so-called fortification-interdiction prob-

lems (Church and Scaparra 2007, Scaparra and Church 2008a,b, Liberatore et al. 2011,

2012), while the latter is studied in the location-interdiction problems (O’Hanley and

Church 2011, An et al. 2014). Most of these works formulate robust models following the

min-max-min framework, where the innermost problem minimizes the demand-weighted

distance from customers to non-disrupted facilities, the problem in the middle represents

the actions of an interdictor who attempts to maximize the minimal distance through

interdictions, and the outermost problem minimizes the consequence of the worst-case

interdiction through fortification/location decisions. These interdiction models differ from

ours in two aspects. Firstly, rather than considering the intentional interdiction endoge-

nously caused by a malicious agent, we are concerned with the probabilistic disruption
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exogenously caused by natural events. We refer to Golany et al. (2009) for a discussion of

the differences between the intentional interdiction and the probabilistic disruption. Sec-

ondly, all of these interdiction models minimize the cost associated with the worst-case

interdiction over all possible scenarios, whereas our model minimizes the expected cost

corresponding to the worst-case distribution.

More recently, Lu et al. (2015) propose a distributionally robust reliable facility location

model, which is closely related to this paper and to our knowledge is the only distribu-

tionally robust model on the RUFLP. In their work, the facility disruptions are allowed

to be correlated with an uncertain joint distribution captured by the marginal disruption

probability of each facility. They optimize the expected transportation and penalty cost

under the worst-case distribution as we do. By proving the worst-case distribution, their

robust model is simplified into a stochastic model, which is solved by the standard Benders

decomposition method. Our work extends Lu et al. (2015) by considering a general ambigu-

ity set for disruption distribution, which is not limited to the one specified by the marginal

disruption probability of each facility. Besides, the cutting plane algorithm we propose can

solve the general robust model without knowing/proving the worst-case distribution. More

importantly, based on the general formulation, we could incorporate available correlation

information explicitly in the robust model. As can be seen in the numerical study, even a

small amount of information on disruption correlation can mitigate the conservativeness

of the robust marginal moment model and improve the location decisions significantly.

2.3. On the Distributionally Robust Optimization

In this work, the RUFLP is studied in the framework of distributionally robust optimization

(DRO), also known as minimax stochastic programming. DRO was pioneered by Scarf

(1958) and studied extensively in recent decades with abundant theoretical analysis (Delage

and Ye 2010, Wiesemann et al. 2014, and references therein) and a tremendous amount

of applications in many areas such as facility location, inventory management, scheduling,

finance, etc. A DRO model typically optimizes the worst-case expectation over all the

distributions in a prespecified ambiguity set. Thus, it is widely believed that DRO bridges

stochastic programming, which optimizes the expectation under a given distribution, and

classical robust optimization, which optimizes the worst-case objective value over all the

possible realizations of uncertain parameters in a prespecified uncertainty set.
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In the DRO literature, existing works consider a wide range of forms for the ambiguity

sets depending on specific context (Shapiro 2006 and references therein). The most pop-

ular type of the ambiguity sets is based on moment information, e.g., the exact moments

(Bertsimas and Popescu 2005, Bertsimas et al. 2010), the bounds on moments (El Ghaoui

et al. 2003, Delage and Ye 2010), or other generalized forms (Wiesemann et al. 2014). In

this paper, we consider a specific ambiguity set, which is closely related to the moment-

based ambiguity set and reflects the features of disruptive events for facilities. We describe

the facility disruptions as a random binary vector. The ambiguity set for its uncertain

joint distribution is characterized by certain pieces of information. Each piece of informa-

tion corresponds to the probability of a disruptive event or scenario and the associated

sets of affected and/or unaffected facilities. This enables the proposed ambiguity set to

represent any dependency structure for the disruptions. Moreover, the proposed set takes

several ambiguity sets in the literature as special cases, including a unique distribution as

in stochastic programming and those with exact values or bounds of moments. We notice

that more recently Ben-Tal et al. (2013), Bayraksan and Love (2015) and Esfahani and

Kuhn (2018) propose ambiguity sets using Phi-divergences, which measure the distance

between the uncertain distribution and the true one. Although in certain circumstances

the Phi-divergence ambiguity set is believed to be less conservative than the moment-based

one, it is difficult to uniquely specify correlations among random variables.

The tractability of a DRO model relies on both the nominal problem and the ambi-

guity set. For some well-structured problem classes, e.g., the Newsvendor problem, with

certain ambiguity sets, the DRO models have closed-form solutions for the worst-case dis-

tributions and can be solved by stochastic programming approaches (Scarf 1958, Popescu

2007, Lu et al. 2015). It is more common that the analytical worst-case distribution is

not available. In this case, global optimization approaches are applied after reformulating

the DRO models into tractable optimization problems, e.g., large-scale convex programs

(Wiesemann et al. 2014). This work also falls into this category, which adopts the cut-

ting plane algorithm to efficiently solve the large-scale reformulation. We further refer to

Chen et al. (2008), Goh and Sim (2010), See and Sim (2010), Kuhn et al. (2011), and Li

et al. (2017) for another stream of works that considers the linear decision rule to solve or

approximate the two-stage DRO models.
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In this paper, we reformulate the distributionally robust model as a mixed integer linear

program based on the Benders decomposition. In the literature, the Benders decomposition

is usually applied to solve the two-stage scenario-based stochastic models. Specifically, the

two-stage model is decomposed into a large-scale formulation with numerous constraints

and then solved by the cutting plane algorithm with valid Benders cuts added iteratively. In

this paper, however, we apply the Benders decomposition to solve the DRO model. In the

cutting plane algorithm, the separation problem to identify valid cuts is solved by column

generation and the classical Benders cut is reformulated and simplified by exploiting the

closed-form solution to certain subproblems. We notice that some relevant works also

propose cutting plane algorithms to solve robust problems. For example, Zeng and Zhao

(2013) present a column-and-constraint generation method to solve a two-stage adjustable

robust optimization model. In their algorithm, both constraints and columns are added

simultaneously to the master problem in each iteration. The underlying robust model and

the idea of the algorithm in their work are very different from those in this paper. Xu et al.

(2018) propose a cutting plane algorithm framework to solve moment-based DRO models.

This paper considers an ambiguity set more general than the moment-based one.

In sum, this work significantly differs from the existing stochastic models under cor-

related disruptions. In contrast to the robust models considering uncertain disruptions,

this work is essentially different from the interdiction models in terms of the nature of

disruptions, and greatly generalizes the only distributionally robust model in the literature.

3. Model Formulation

Consider the problem of locating facilities from a set J = {1, ..., |J |} of potential locations

to serve a set I = {1, ..., |I|} of customers. The demand rate of customer i ∈ I is di. The

fixed setup cost to open facility j ∈ J is fj and the unit shipment cost from facility j

to customer i is cij. If the demand of customer i is not served, a unit penalty cost ci0 is

incurred. We assume ci0 ≥ cij for all i ∈ I and j ∈ J , which indicates that any customer

should be served as long as there is an available facility.

Facilities are unreliable with unexpected failures. Let ξ̃ = (ξ̃1, ..., ξ̃|J |)
> represent the

failure status of all the facilities, where ξ̃j ∈ {0,1} is 1 if facility j is online and 0 if it is

disrupted. The set of all possible realizations of ξ̃ is denoted by

Ξ :=
{

(ξ1, ..., ξ|J |)
> |ξj ∈ {0,1} ∀j ∈ J

}
= {0,1}|J |.
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For any realization ξ ∈ Ξ, let pξ := Prob(ξ̃ = ξ) be the probability that the corresponding

disruptive scenario ξ ∈ Ξ occurs. A distribution of ξ̃ can then be represented by a vector

p of pξ for all ξ ∈ Ξ. Note that p has 2|J | components as the cardinality of Ξ is 2|J |.

Due to the high dimensionality, it is often challenging to determine the distribution p of

facility failures. Consequently, we assume that the distribution is partially characterized

by n pieces of information. For any k ∈ {1, ..., n}, the kth piece of information specifies

that the probability of all facilities in set Ak being online and all facilities in set Bk being

disrupted is within the interval [q
k
, qk], i.e., Prob(ξ̃j = 1∀j ∈ Ak, ξ̃j = 0∀j ∈ Bk) ∈ [q

k
, qk].

Therefore, the distribution p should be contained in the following set P :

P :=

p∈ [0,1](2
|J|)

∣∣∣∣∣∣∣∣
∑

ξ∈Ξ|ξj=1∀j∈Ak,
ξj=0∀j∈Bk

pξ ∈ [q
k
, qk] ∀k ∈ {1, ..., n},

∑
ξ∈Ξ

pξ = 1

 . (1)

To the best of our knowledge, the definition of P generalizes the characterization of the

disruption distribution in several existing works. Some special cases are discussed as follows.

• Stochastic model. The case with a completely known distribution p can be viewed as

P being a singleton defined by 2|J | pieces of information, i.e., n= 2|J | and q
k

= qk for all

k = 1, ..., n in (1). Specially for the scenario-based stochastic model with S scenarios, P

can be viewed as a singleton defined by S pieces of information. In this case, we have n= S

and q
k

= qk for all k= 1, ..., S, which corresponds to the probability for scenario k. The sets

Ak and Bk correspond to the set of online and offline facilities in scenario k, respectively.

• Marginal distribution model. In this case, P can be characterized by |J | pieces of

information, each of which specifies the marginal probability for a facility to be online.

More specifically, we have Prob(ξ̃j = 1) = qj for any j ∈ J and hence

P =
{
p∈ [0,1](2

|J|)
∣∣∣∑ξ∈Ξ|ξj=1 pξ = qj ∀j ∈ J,

∑
ξ∈Ξ pξ = 1

}
.

In other words, we have n= |J |,Ak = {k},Bk = ∅ and q
k

= qk = qk for all k= 1, ..., |J | in (1).

Note that Lu et al. (2015) consider the same characterization of the disruption probability.

• Moment model. Note that the κth cross moment of the random variables ξ̃j where

j ∈ {j1, ..., jκ} ⊆ J is Ep
[∏jκ

j=j1
ξ̃j

]
= Prob(ξ̃j = 1∀j ∈ {j1, ..., jκ}). Thus, the set P can be

used to represent the set of distributions specified by the moments of ξ̃. In particular,

suppose that the marginal moment of ξ̃j is qj for any j ∈ J , while the cross moment of
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ξ̃j1 and ξ̃j2 for any j1, j2 ∈ J and j1 < j2 is qj1j2 . Then the set P specified by the first two

moments can be written as

P =

p∈ [0,1](2
|J|)

∣∣∣∣∣∣∣∣
∑
ξ∈Ξ|ξj=1 pξ = qj, ∀j ∈ J,∑
ξ∈Ξ|ξj1=ξj2=1 pξ = qj1j2 , ∀j1, j2 ∈ J, j1 < j2,∑
ξ∈Ξ pξ = 1

 , (2)

i.e., we have n= |J |(|J |+1)/2 in (1). The ambiguity set P in (1) is more general than that

in (2) as (1) can also be used to model the cases with higher moments, partial moment

information, and/or probabilities falling in certain intervals.

Based on the available information, we need to set up facilities to serve the customers.

The facility setup decision is denoted by x= (x1, ..., x|J |)
>, where xj ∈ {0,1} is 1 if facility

j is set up and 0 otherwise. To decide x, all the cost components, including the fixed setup

cost fj to open facility j ∈ J , the unit transportation cost cij from facility j ∈ J to customer

i∈ I, and the unit penalty cost ci0 when customer i∈ I is not served, should be taken into

consideration at the same time. As all the facilities are uncapacitated, any customer should

be served by the closest open facility that is not disrupted. Therefore, given the decision

x and the realization ξ of the disruption status, the total transportation and penalty cost

to serve all the customers is

Q(x,ξ) :=
∑
i∈I

di min
j∈J∪{0}|xjξj=1

cij,

where we assume x0 ≡ 1 and ξ0 ≡ 1. The unit penalty cost ci0 is incurred only when all

the open facilities are disrupted. Recall that the disruption status ξ̃ is uncertain. If the

distribution of ξ̃ is completely known, we can take into account the expectation of Q(x, ξ̃)

when deciding x. However, the distribution of ξ̃ can only be characterized by the set P .

Thus, we instead consider the worst-case expectation of Q(x, ξ̃) among all the distributions

in the set P , i.e., maxp∈P Ep[Q(x, ξ̃)]. As a result, an optimal decision x should minimize

both the fixed setup cost and the worst-case expected transportation and penalty cost,

which leads to the following robust optimization problem:

P : min
x∈{0,1}|J|

{∑
j∈J

fjxj + max
p∈P

Ep[Q(x, ξ̃)]

}
. (3)

Obviously, model (3) is an NP-hard problem, as it generalizes the UFLP, which is a well-

known NP-hard problem. The NP-hardness implies that no polynomial-time algorithm
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exists for model (3) unless P=NP. However, we can reformulate model (3) into a mixed

integer linear program with a large number of constraints and then apply the cutting plane

algorithm to solve it.

4. The Cutting Plane Algorithm

Let η replace the worst-case expected transportation and penalty cost, then model (3)

turns into

P : min
x∈{0,1}|J|,η∈R

{∑
j∈J

fjxj + η
∣∣∣η≥Ep[Q(x, ξ̃)], ∀p∈ P

}
. (4)

We notice that, when a stochastic model is considered, i.e., when P is defined as a singleton

containing a completely known distribution, there is exactly one constraint in model (4).

However, when a robust model is considered where P is generally defined as in (1), there

are an infinite number of constraints in model (4) as P contains an infinite number of

distributions. This makes model (4) a difficult problem to solve.

To solve model (4) when P is generally defined, we propose a cutting plane algorithm.

As we shall see, the performance of the proposed cutting plane algorithm relies on the

efficient evaluation of maxp∈P Ep[Q(x, ξ̃)], i.e., the worst-case expected transportation and

penalty cost. Therefore, in the remainder of this section, we firstly present the general

framework of the proposed cutting plane algorithm as follows, and then show how to

evaluate maxp∈P Ep[Q(x, ξ̃)] efficiently.

Algorithm CP

Step 0. Consider a finite set Λ, each member of whom is a collection (p,y) such that

p∈ P and y ∈ {0,1}|J |, i.e., Λ⊆
{

(p,y)
∣∣p∈ P,y ∈ {0,1}|J |}.

Step 1. Solve the following problem

RP : min
x∈{0,1}|J|,

η∈R

∑
j∈J

fjxj + η

s.t. η≥Ep[Q(y, ξ̃)] +
∑
j∈J

(
Ep[Q(y ∨ zj, ξ̃)]−Ep[Q(y, ξ̃)]

)
·xj,

∀(p,y)∈Λ,

and obtain an optimal solution (x∗, η∗). In RP, zj denotes the vector of the same

dimension as y such that zj = 1 and zl = 0 for all l 6= j, and “∨” represents the

operation of taking componentwise maximum.
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Step 2. Evaluate the worst-case expected transportation and penalty cost, and obtain

the worst-case distribution, i.e., solve the separation problem Zsep(x
∗) :=

maxp∈P Ep[Q(x∗, ξ̃)] and obtain the optimal solution p∗. Particularly, if the

stochastic model is considered where P is defined as a singleton, e.g., P = {p†},

we have Zsep(x
∗) = Ep†[Q(x∗, ξ̃)] and p∗ = p†.

Step 3. If η∗ ≥ Zsep(x∗), return x∗ as the optimal solution to model (4). Otherwise, i.e.,

η∗ <Zsep(x
∗), add (p∗,x∗) into Λ, or equivalently, add the valid cut

η≥Ep∗[Q(x∗, ξ̃)] +
∑
j∈J

(
Ep∗[Q(x∗ ∨ zj, ξ̃)]−Ep∗ [Q(x∗, ξ̃)]

)
·xj (5)

into RP. Go to Step 1.

The following theorem guarantees that Algorithm CP provides the exact solution to

model (4).

Theorem 1. Algorithm CP solves model (4) to optimality within a finite number of

iterations.

The proof of Theorem 1 can be found in Appendix A.1. In the proof, model (4) is firstly

reformulated according to Benders decomposition. The reformulation is then written as a

tractable mixed integer linear program, which is exactly model RP including all valid cuts

in the form of (5).

In Algorithm CP, Step 1 is to solve problem RP, which is a mixed integer linear program

with a moderate number (|Λ|) of constraints and hence readily solved by commercial solvers

like CPLEX. Step 2 is to evaluate maxp∈P Ep[Q(x∗, ξ̃)] for given x∗, while Step 3 is to

formulate the valid cut (5) based on maxp∈P Ep[Q(x∗, ξ̃)]. Apparently, both Step 2 and Step

3 can be easily implemented, as long as maxp∈P Ep[Q(x∗, ξ̃)] can be evaluated efficiently.

To develop an efficient approach to evaluate maxp∈P Ep[Q(x∗, ξ̃)], we notice that differ-

ent situations are encountered depending on the definition of P . To be more specific, if a

robust model is considered where P is generally defined as in (1), the separation problem

Zsep(x
∗) turns into a linear program with an exponential number of decision variables,

which happens not to be easy. On the other hand, if a stochastic model is considered where

P = {p†}, we do not need to solve Zsep(x
∗) because the disruption distribution is com-

pletely known. However, evaluating Ep†[Q(x∗, ξ̃)] may be difficult because Ep†[Q(x∗, ξ̃)] =∑
ξ∈Ξ|p†ξ>0Q(x∗,ξ) and p† may contain a large number of non-zero entries. As a typical



Li et al.: Reliable Facility Location Problem under Uncertain Disruptions
Article submitted to INFORMS Journal on Computing; manuscript no. (number XXXX) 15

example, if the disruption of each facility is independent, as assumed in most existing

works, then p† consists of 2|J | non-zero entries.

In view of these different situations, we discuss the evaluation of maxp∈P Ep[Q(x∗, ξ̃)]

for robust and stochastic models in the following two subsections, respectively.

4.1. Separation Problem of the Stochastic RUFLP

When a stochastic model is considered, where P = {p†}, the separation problem can be sim-

plified as Zsep(x
∗) = Ep†[Q(x∗, ξ̃)]. Therefore, rather than solving the optimization problem

as in the robust case, we only need to evaluate Ep†[Q(x∗, ξ̃)]. Note that Ep†[Q(x∗, ξ̃)] =∑
ξ∈Ξ|p†ξ>0Q(x∗,ξ). If |{ξ ∈Ξ|p†ξ > 0}| is moderate, e.g., the scenario-based stochastic model

with a moderate number of scenarios, we can evaluate Ep†[Q(x∗, ξ̃)] directly by simple

summation. For instance, if S = |{ξ ∈ Ξ|p†ξ > 0}|, then the evaluation of Ep†[Q(x∗, ξ̃)] can

be completed in O(S|I||J |). However, in more general cases, p† may contain numerous

non-zero entries, e.g., 2|J | non-zero entries in the example with independent disruptions,

which makes the evaluation of Ep†[Q(x∗, ξ̃)] very tricky.

To address this difficulty, we assume that the conditional disruption probabilities, i.e.,

the disruption probability of a facility given that some other facilities are disrupted, can

be calculated in O(1). Several examples fall into this category including the one with

independent disruptions, the one with a closed-form formula to compute the probability

for any subset of facilities to fail simultaneously, and another where the correlations of

disruptions are induced from shared hazard exposure and follow certain known patterns as

assumed in Li and Ouyang (2010). With this assumption, the evaluation of Ep†[Q(x∗, ξ̃)]

can be completed efficiently by Algorithm 1.

In Algorithm 1, variable γ stores the joint disruption probability of facilities j1, ..., jt,

i.e., γ = Prob(ξj1 = 0, ..., ξjt = 0). Step A is to sort a list of at most |J | facilities for |I|

times, thus Step A runs in O(|I||J | log |J |). As we assume that the conditional probability

Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0) can be obtained in O(1), Step B runs in O(|J |) and hence

Lines 5-11 run in O(|I||J |). To summarize, Algorithm 1 runs in O(|I||J | log |J |+ |I||J |),

i.e., O(|I||J | log |J |).

To implement Algorithm CP for the stochastic model, we must discuss the algorith-

mic details in formulating the valid cut (5) for given x∗ and p†. On one hand, for the

scenario-based stochastic model, if S = |{ξ ∈Ξ|p†ξ > 0}| is moderate, then it is trivial that
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Algorithm 1 Evaluate Ep†[Q(x∗, ξ̃)] for given x∗ and p†

Input: The facility location decision x∗ and the disruption distribution p†.

Output: The value of Ep†[Q(x∗, ξ̃)]

1: for each customer i∈ I do . Step A (Lines 1-3)

2: Sort all the facilities in {j ∈ J |x∗j = 1} ∪ {0} in the nondecreasing order of unit

transportation/penalty cost. Let N :=
∑

j∈J x
∗
j , i.e., the number of open facilities in

decision x∗, and denote Li := {j1, ..., jN+1} as the list of indexes of facilities satisfying

cij1 ≤ ...≤ cijN+1
.

3: end for

4: cost← 0

5: for each customer i∈ I do

6: γ← 1

7: for jt ∈Li, i.e., t= 1, ...,N + 1 do . Step B (Lines 7-10)

8: cost← cost+ γ× (1−Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0))× dicijt
9: γ← γ×Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0)

10: end for

11: end for

12: return cost

the valid cut (5) can be formulated in O(S|I||J |2). On the other hand, with the aforemen-

tioned assumption about conditional disruption probability, we can develop an efficient

Algorithm 2 to formulate the valid cut. As discussed before, in Algorithm 2, Line 1 runs

in O(|I||J | log |J |), and Lines 3-6 run in O(|I||J |). Similar to Step B in Algorithm 1, Step

C runs in O(|J |) as well, thus Lines 7-17 run in O(|I||J |2). Therefore, Algorithm 2 runs in

O(|I||J | log |J |+ |I||J |+ |I||J |2), i.e., O(|I||J |2).

4.2. Separation Problem of the Robust RUFLP

When a robust model is considered, the separation problem Zsep(x) = maxp∈P Ep[Q(x, ξ̃)]

for a given x can be written as

Zsep(x) = max
pξ≥0

∑
ξ∈ΞQ(x,ξ)pξ

s.t.
∑
ξ∈Ξ pξ = 1,∑
ξ∈Ξ|ξj=1∀j∈Ak,ξj=0∀j∈Bk pξ ≤ qk, ∀k= 1, ..., n,

−
∑
ξ∈Ξ|ξj=1∀j∈Ak,ξj=0∀j∈Bk pξ ≤−qk, ∀k= 1, ..., n,

(6)

where the constraints are from the general definition of P as in (1).
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Algorithm 2 Formulate the valid cut (5) for given x∗ and p†

Input: The facility location decision x∗ and the disruption distribution p†.

Output: The valid cut (5)

1: Run Step A in Algorithm 1 to obtain Li for all i∈ I
2: cost← 0, cost(j)← 0 for all j ∈ J such that x∗j = 0

3: for each customer i∈ I do

4: γ← 1

5: Run Step B in Algorithm 1 to calculate cost

6: end for

7: for each j ∈ J such that x∗j = 0 do

8: for each customer i∈ I do

9: γ← 1

10: Insert j into the sorted list Li

11: for jt ∈Li, i.e.,t= 1, ...,N + 2 do . Step C (Lines 11-14)

12: cost(j)← cost(j) + γ× (1−Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0))× dicijt
13: γ← γ×Prob(ξjt = 0|ξj1 = 0, ..., ξjt−1 = 0)

14: end for

15: Remove j from the sorted list Li

16: end for

17: end for

18: return the valid cut η≥ cost+
∑

j∈J |x∗j=0 (cost(j)− cost) ·xj

For the separation problem in (6), we have the following theorem, the proof of which

can be found in Appendix A.2.

Theorem 2. Given x∈ {0,1}|J |, the separation problem in (6) is NP-hard.

The NP-hardness of Zsep(x) suggests that there is no polynomial-time algorithm for

it. Nevertheless, the fact that Zsep(x) is a linear program with an exponential number of

decision variables motivates us to apply the column generation approach to solve it.

Implementing the column generation approach to solve Zsep(x) is identical to imple-

menting the cutting plane approach to solve the corresponding dual problem, i.e., ZD
sep(x)

as follows:

ZD
sep(x) = min

α,β,β
α+

∑n
k=1(qkβk− qkβk)

s.t. α+
∑

k∈{1,...,n}|ξj=1∀j∈Ak,ξj=0∀j∈Bk(βk−βk)≥Q(x,ξ), ∀ξ ∈Ξ,

βk ≥ 0, β
k
≥ 0, ∀k= 1, ..., n,

(7)
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where α, βk and β
k

for all k= 1, ..., n are the dual variables associated with the constraints

in model (6), and β and β are the vectors of βk and β
k

for all k= 1, ..., n, respectively. The

column generation approach, or the cutting plane approach, starts from the relaxed prob-

lem of model (7) with only a subset of constraints considered. In each iteration, we solve

the relaxed problem and obtain the current dual solution α∗,β
∗
,β∗. Then, the following

pricing problem (also known as the reduced cost problem), denoted as RC(x),

RC(x) := max
ξ∈Ξ

Q(x,ξ)−α∗−
∑

k∈{1,...,n}|
ξj=1∀j∈Ak,ξj=0∀j∈Bk

(β
∗
k−β∗k)

 , (8)

is solved to identify violated constraints. Note that a special case of RC(x) with P char-

acterized by the first two moments is presented in model (15) in the appendix. The objec-

tive value of RC(x) indicates whether there are violated constraints for the current dual

solution. Specifically, if RC(x)≤ 0, all the constraints in model (7) are satisfied and the

algorithm terminates with the current solution as the optimal solution. Otherwise, i.e.,

RC(x)> 0, then the optimal solution to RC(x) provides a violated constraint to be added

to the relaxed problem. The updated relaxed problem is then solved, and this process

continues and repeats until the optimal solution is returned or the relaxed problem turns

out to be infeasible.

In general, the pricing problem RC(x) is a highly nonlinear integer program. Further-

more, for RC(x) we have the following corollary, which is a direct result from the proof of

Theorem 2.

Corollary 1. Given x∈ {0,1}|J | and the values of dual variables α∗, β
∗
, and β∗, the

problem RC(x) is NP-hard.

When implementing the column generation approach, the pricing problem needs to be

solved many times to identify effective columns, or decision variables, thus the efficiency

of solving the pricing problem significantly affects the efficiency of the whole algorithm.

Although the pricing problem (8) is proved to be NP-hard, indicating that no polynomial-

time algorithm exists unless P=NP, we can instead reformulate it into an equivalent integer

program with a moderate number of decision variables and constraints, which can be solved

satisfactorily by commercial solvers like CPLEX. The equivalent reformulation is presented

in the following theorem, the proof of which can be found in Appendix A.3.
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Theorem 3. Let Ak = {a1
k, ..., a

|Ak|
k } and Bk = {b1

k, ..., b
|Bk|
k } for any k ∈ {1, ..., n}. Then

model (8) is equivalent to

RC(x) = max
ξ∈Ξ,
π,λ

∑
i∈I

diπi−α−
n∑
k=1

(βk−βk)λk

s.t. πi ≤ cijxjξj + ci0(1−xjξj), ∀i∈ I, j ∈ J,

λk ≤ ξj, ∀k ∈ {1, ..., n}, j ∈Ak,

λk ≤ 1− ξj, ∀k ∈ {1, ..., n}, j ∈Bk,

λk ≥
∑

j∈Ak ξj +
∑

j∈Bk(1− ξj)− |Ak| − |Bk|+ 1, ∀k ∈ {1, ..., n},

λk ≥ 0, ∀k ∈ {1, ..., n},
(9)

where π and λ are the vectors of πi and λk, respectively.

According to Theorem 3, we can equivalently reformulate the pricing problem RC(x)

in (8), which is a highly nonlinear integer program, as model (9), which is a mixed integer

linear program. Although model (9) has more decision variables and constraints than model

(8), its numbers of variables and constraints are

|J |+ |I|+n and |I||J |+
n∑
k=1

(|Ak|+ |Bk|+ 2)≤ |I||J |+n(|J |+ 2),

respectively, and hence are still polynomial in the input size, i.e., |I|, |J | and n. Therefore,

model (9) can readily be solved by solvers like CPLEX.

As an illustration of Theorem 3, we consider P defined as in (2), which is characterized

by the first two moments of ξ̃, i.e., n= |J |(|J |+ 1)/2. The corresponding RC(x) in (15) in

the appendix can be reformulated as

RC(x) = max
ξ∈Ξ,
π,λ,µ

∑
i∈I

diπi−α−
∑
j∈J

βjξj−
∑

j1,j2∈J,j1<j2

βj1j2λj1j2

s.t. πi ≤ cijxjξj + ci0(1−xjξj), ∀i∈ I, j ∈ J,

λj1j2 ≤ ξj1, ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≤ ξj2, ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≥ ξj1 + ξj2 − 1, ∀j1, j2 ∈ J, j1 < j2,

λj1j2 ≥ 0, ∀j1, j2 ∈ J, j1 < j2.

(10)

Thus far, a column generation approach is proposed to evaluate maxp∈P Ep[Q(x∗, ξ̃)] for

given x∗ and to derive the worst-case distribution p∗. To implement Algorithm CP for the
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robust model, we must first discuss the algorithmic details in formulating the valid cut (5)

for given x∗ and p∗.

Given x∗ and p∗, a direct way to formulate the valid cut (5) is presented in Algorithm 3.

Variables cost and cost(j) store the values of
∑
ξ∈Ξ|p∗ξ>0 p

∗
ξQ(x∗,ξ) and

∑
ξ∈Ξ|p∗ξ>0 p

∗
ξQ(x∗∨

zj,ξ), respectively. Note that cost(j) = cost for all j ∈ J such that x∗j = 1. Thus we only

need to calculate cost(j) for all j ∈ J such that x∗j = 0.

Algorithm 3 Formulate the valid cut (5) for given x∗ and p∗

Input: The facility location decision x∗ and the disruption distribution p∗.

Output: The valid cut (5)

1: cost← 0, cost(j)← 0 for all j ∈ J such that x∗j = 0

2: for each ξ ∈Ξ such that p∗ξ > 0 do

3: Q← 0, Q(j)← 0 for all j ∈ J such that x∗j = 0

4: for each i∈ I do

5: cmin← ci0

6: for each j ∈ J such that x∗j = 1 and ξj = 1 do

7: cmin←min{cmin, cij}
8: end for

9: Q←Q+ dicmin

10: for each j ∈ J such that x∗j = 0 do

11: if ξj = 1 then

12: Q(j)←Q(j) + dimin{cmin, cij}
13: else

14: Q(j)←Q(j) + dicmin

15: end if

16: end for

17: end for

18: cost← cost+ p∗ξQ, cost(j)← cost(j) + p∗ξQ(j) for all j ∈ J such that x∗j = 0

19: end for

20: return the valid cut η≥ cost+
∑

j∈J |x∗j=0 (cost(j)− cost) ·xj

As P is characterized by n pieces of information, given p∗ as the optimal solution to

Zsep(x
∗), we have |{ξ ∈Ξ|p∗ξ > 0}| ≤ n+ 1, thus Algorithm 3 runs in O(n|I||J |).

Note that, when n′ = |{ξ ∈ Ξ|p†ξ > 0}| is moderate, Algorithm 3 for the robust model

can be also applied to the stochastic case, whose computational complexity is O(n′|I||J |).

If n′ < |J |, Algorithm 3 is more efficient than Algorithm 2, which runs in O(|I||J |2). On
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the other hand, Algorithm 2, designed for the stochastic model, can be applied to the

robust model as well if we make the same assumption that the conditional disruption

probabilities can be calculated in O(1). Furthermore, if |J | is significantly smaller than n,

then Algorithm 2, which runs in O(|I||J |2), is more efficient than Algorithm 3, which runs

in O(n|I||J |).

5. Numerical Study

In this section, we implement the proposed cutting plane algorithm to solve the stochastic

and robust RUFLP, evaluate its performance, and demonstrate its advantages by compar-

ing it with existing algorithms. The numerical study consists of the following two parts:

(i) For the stochastic RUFLP, we consider the instances with independent disruptions

following Aboolian et al. (2013). In Section 5.1, we compare the proposed cutting

plane algorithm with the search-and-cut (SnC) algorithm by Aboolian et al. (2013),

which to our knowledge is among the best algorithms for the problem with indepen-

dent disruptions.

(ii) For the robust RUFLP, we consider the instances with the marginal moment and

the partial cross moment of disruption probabilities. In Section 5.2, we compare the

proposed robust model with the stochastic one, as well as the one by Lu et al. (2015),

which to our knowledge is the only work considering the distributionally robust model

for the reliable facility location problem with prespecified marginal disruption proba-

bilities. To further demonstrate the practical performance of the two robust models,

a data-driven simulation is conducted in Section 5.3 based on historical typhoon data

in China.

The computation is conducted based on the same data set (from 1990 census data) as

used in Aboolian et al. (2013) and Lu et al. (2015). All the computational experiments are

coded with C++ and implemented using ILOG CPLEX Academic Initiative Edition 12.7.

5.1. Numerical Results on the Stochastic RUFLP

For the stochastic RUFLP, we implement the proposed cutting plane algorithm based on

the same instances as in Aboolian et al. (2013) and compare it with the SnC algorithm by

Aboolian et al. (2013).

The computation is conducted based on the instances with 50, 75, and 100 nodes, where

each node represents a potential location as well as an aggregated demand point. The
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demand, the fixed facility setup cost, the unit transportation cost, and the unit emergency

cost are set in the same way as in Aboolian et al. (2013) based on the data set. The facility

disruption of each node happens independently and the disruption probability 1− qj of

facility j is given as 1− qj = 0.01 + 0.1αe−Dj/400, which is the same as in Aboolian et al.

(2013). Specifically,Dj is the great circle distance in miles between node j and New Orleans,

Louisiana, US, the center of Hurricane Katrina (we change the notation dj in Aboolian

et al. (2013) to Dj in this paper to avoid confusion). The value 0.1α can be interpreted

as the probability that a disastrous event happens at the source New Orleans. Following

Aboolian et al. (2013), we set the value of α from 1.0 to 1.5 with a step length of 0.05,

i.e., the occurrence probability of disaster at the source is set from 0.1 to 0.15 with a step

length of 0.005. To show the impact of α on the disruption probability, we take the 50-

nodes instances as an example, where the minimum, median, and maximum values of Dj

for all j ∈ J are 16, 1023, and 2731 miles, respectively. When α change from 1.0 to 1.5, the

corresponding minimal, median, and maximal disruption probabilities at corresponding

facilities change from 0.1060, 0.0178, and 0.0101 to 0.1540, 0.0216, and 0.0102, respectively.

The proposed cutting plane algorithm is implemented following the framework of Algo-

rithm CP introduced in Section 4. In each iteration, the relaxed master problem RP is

solved by CPLEX under standard settings for mixed integer linear programs, the expected

transportation cost is evaluated by Algorithm 1, and the cut is added by Algorithm 2. For

the SnC algorithm proposed by Aboolian et al. (2013), we fix the maximum assignment

level R to the number of nodes so that its objective values are comparable with ours.

The neighborhood size is set to be 3 to achieve the best performance according to their

computational results. Both algorithms are solved to a 0.5% optimality gap or a maximum

CPU time of 3600 seconds, whichever occurs first. Specifically, the optimality gap is the

relative gap between the best lower bound and the best upper bound so far. For the pro-

posed cutting plane algorithm, the best lower bound is the optimal objective value of the

relaxed master problem in the last iteration, and the best upper bound is the objective

value corresponding to the best feasible solution so far. For the SnC algorithm by Aboolian

et al. (2013), the lower and upper bounds are specially designed and obtained, in short,

by solving a specific mixed integer program and by implementing a neighborhood search

starting from the current lower bound, respectively.
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Table 1 summarizes the computational results. The first two columns indicate the

instance with the number of nodes and the value of α. In this study, we consider 33

instances in total. For each instance, we report the CPU time in seconds, the optimality

gap, the total number of cuts, the number of open facilities in the best feasible solution, and

the best upper bound when the algorithm terminates in the column titled “CPU time,”

“Gap,” “#Cut,” “#Open,” and “UB,” respectively, under the name of the corresponding

algorithm.

From Table 1, we first observe that the proposed cutting plane algorithm significantly

outperforms the SnC algorithm with respect to computational time, as shown in the column

titled “CPU time.” For example, for the instance with 50 nodes and α= 1.00, the proposed

cutting plane algorithm solves this instance in 1.6 seconds and is around 31 times faster

than the SnC algorithm, which takes 51.4 seconds. For other instances with 50 or 75 nodes,

the proposed cutting plane algorithm runs about 14-92 times faster than the SnC algorithm

does. Particularly for the instances with 100 nodes, the SnC algorithm fails to solve 10

out of 11 instances to an optimality gap of 0.5% within 3600 seconds, while the proposed

cutting plane algorithm solves all the instances within 400 seconds.

It is further observed that the efficiency of the SnC algorithm is quite sensitive to the

value of α, i.e., the CPU time increases acutely with the value of α. For example, for the

instances with 75 nodes, as the value of α increases from 1.00 to 1.50, the CPU time of

the SnC algorithm increases from 224.1 seconds to 1033.9 seconds. This observation is

consistent with that in Aboolian et al. (2013). In contrast, for the proposed cutting plane

algorithm, the CPU time remains stable with the increase in α. For example, as the value

of α increases from 1.00 to 1.50, the CPU time for instances with 75 nodes ranges from

12.7 seconds to 28.5 seconds. Some instances with a larger value of α are solved even faster.

This observation demonstrates the stable and robust performance of the proposed cutting

plane algorithm.

Secondly, for both algorithms, the number of cuts added is moderate and increases

modestly with the problem size, as shown in the column titled “#Cuts.” For example,

for the instance with 50 nodes and α = 1.00, the cutting plane algorithm and the SnC

algorithm add 179 and 23 cuts, respectively. When the problem size increases, e.g., for the

instance with 75 nodes and α = 1.00, two algorithms add 320 and 24 cuts, respectively.

This indicates that, although theoretically there are an exponential number of cuts to be
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Table 1 Numerical results on the stochastic RUFLP

Instance Cutting plane algorithm SnC algorithm

Nodes α
CPU

time(s)

Gap

(%)
#Cut #Open

UB

(×103)

CPU

time(s)

Gap

(%)
#Cut #Open

UB

(×103)

50 1.00 1.6 0.04 179 9 1020.6 51.4 0.38 23 9 1020.2

50 1.05 1.5 0 183 9 1021.0 50.5 0.50 23 9 1021.0

50 1.10 2.4 0 165 9 1021.9 61.6 0.46 27 9 1021.9

50 1.15 2.3 0 199 9 1022.8 74.9 0.49 31 9 1022.8

50 1.20 2.3 0 201 9 1023.6 82.3 0.47 33 9 1023.6

50 1.25 1.6 0.49 153 9 1025.0 86.6 0.47 35 9 1024.5

50 1.30 2.0 0 205 9 1025.3 100.9 0.48 39 9 1025.3

50 1.35 1.8 0.42 195 9 1026.2 111.0 0.48 42 9 1026.2

50 1.40 2.3 0.11 207 9 1027.0 135.7 0.49 49 9 1027.0

50 1.45 1.7 0.49 219 9 1027.8 160.8 0.40 56 9 1027.8

50 1.50 1.9 0 232 9 1028.5 161.9 0.49 57 9 1028.5

75 1.00 15.9 0 320 10 1148.5 224.1 0.41 24 10 1148.5

75 1.05 17.2 0 379 10 1149.5 247.6 0.42 26 10 1149.5

75 1.10 12.7 0.20 352 10 1152.8 261.0 0.47 27 10 1150.5

75 1.15 16.9 0 338 10 1151.5 318.4 0.46 32 10 1151.5

75 1.20 14.8 0 358 10 1152.5 394.8 0.49 38 10 1152.5

75 1.25 19.2 0.20 353 10 1155.8 474.1 0.44 44 10 1153.5

75 1.30 21.8 0.48 414 10 1160.0 543.7 0.43 49 10 1154.5

75 1.35 23.2 0 413 10 1155.5 590.3 0.50 52 10 1155.5

75 1.40 18.6 0 328 10 1156.5 701.7 0.49 59 10 1156.5

75 1.45 18.5 0.43 361 10 1157.5 878.8 0.50 70 10 1157.5

75 1.50 28.5 0.28 488 10 1161.8 1033.9 0.50 79 10 1158.5

100 1.00 246.7 0.38 849 13 1248.9 2708.4 0.50 67 13 1248.9

100 1.05 218.1 0.31 834 13 1253.6 3620.9 0.53 80 13 1249.8

100 1.10 262.4 0.23 931 13 1253.5 3644.7 0.63 82 13 1250.7

100 1.15 299.4 0.45 872 12 1255.1 3649.9 0.76 81 13 1251.6

100 1.20 257.7 0.45 690 13 1252.4 3650.0 0.87 82 13 1252.4

100 1.25 263.4 0.33 830 13 1253.3 3632.3 0.99 81 13 1253.3

100 1.30 281.4 0.46 846 13 1257.8 3610.0 1.11 81 13 1254.2

100 1.35 259.4 0.40 872 13 1260.1 3638.0 1.23 82 13 1255.1

100 1.40 259.1 0.45 779 13 1259.0 3611.3 1.35 81 13 1256.0

100 1.45 306.3 0.24 929 13 1256.9 3641.2 1.46 82 13 1256.9

100 1.50 398.9 0 1100 13 1257.8 3617.9 1.58 82 13 1257.8

added when applying the cutting plane algorithm, only a very small portion of them are

actually needed to obtain an optimal solution.

It is interesting that the proposed cutting plane algorithm adds many more cuts but

solves faster than the SnC algorithm. This observation can be justified as follows. Note

from the column titled “UB” that the best upper bound of two algorithms are close to
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each other, even for the instances with 100 nodes, where the SnC algorithm fails to reduce

the optimality gap to and below 0.5%. One can infer that the SnC algorithm generates a

good upper bound quickly, but updates the lower bound slowly, making the optimality gap

converge inefficiently. In contrast, the proposed cutting plane algorithm adds more cuts

into the relaxed master problem, which gives a good lower bound because the lower bound

is obtained by solving the relaxed master problem at the current iteration.

5.2. Numerical Results on the Robust RUFLP

For the robust RUFLP, we consider the model with the marginal moment and the partial

cross moment of disruption probabilities, which is referred to as the cross moment model.

The cross moment model is solved by the cutting plane algorithm in Section 4 to numer-

ically validate the effectiveness and efficiency of the proposed algorithm. The proposed

cross moment model is compared with the marginal moment model in Lu et al. (2015),

namely the robust model making reliable location decisions based on marginal disruption

probabilities, which is the only distributionally robust model on the RUFLP to our knowl-

edge. The comparison between the cross moment model and the marginal moment model

demonstrates the value of cross moment information in making location decisions. We also

compare the cross moment model with the stochastic model, which assumes independent

disruptions among facilities. The comparison between the cross moment model and the

stochastic model illustrates the value of correlation information in decision making.

We consider instances with 20, 50, 75, and 100 nodes. Following Lu et al. (2015), the

marginal disruption probability is given by 1− qj = βe−Dj/θ for all j ∈ J . Specifically, the

parameter Dj denotes the great circle distance in miles between node j and New Orleans,

the center of Hurricane Katrina. The parameter β measures the source disaster occurrence

probability, i.e., the probability that a disastrous event happens at the source New Orleans.

The parameter θ measures the disruption propagation effect, where the larger θ indicates

that the disaster affects a larger area. In this numerical study, β takes the value of 0.1

or 0.2, and θ takes the value of 200, 400, or 800, similar to the settings in Lu et al.

(2015). For the partial cross moment, it is assumed that if the distance between any two

facilities is no less than 2500 kilometers, then the disruptions of these two facilities are

independent, i.e., the cross disruption probability of these two facilities, say facilities j and

k, is 1− (qj + qk− qjk) = (1− qj)(1− qk). For this data set, the number of facility pairs with

cross disruption probability is 7, 24, 42, and 115 for the instances with 20, 50, 75, and 100



Li et al.: Reliable Facility Location Problem under Uncertain Disruptions
26 Article submitted to INFORMS Journal on Computing; manuscript no. (number XXXX)

nodes, respectively. Taking the marginal probability into account, the value of n, i.e., the

number of pieces of information used to define the ambiguity set P in (1), equals 27, 74,

117, and 225, respectively, for the corresponding instances. To illustrate the scalability of

the proposed algorithm for larger n values, we conduct additional numerical studies and

the results are presented in Appendix B.2. The demand, the fixed facility setup cost, the

unit transportation cost, and the unit emergency cost are generated in a similar way as in

Lu et al. (2015) based on the same data set.

The cross moment model is solved by Algorithm CP. In each CP iteration, the relaxed

master problem RP is solved by CPLEX under standard setting for mixed integer linear

programs. The separation problem Zsep is handled by the column generation approach

in Section 4.2, where the reduced cost RC is obtained by solving a revised formulation

of model (10) in accordance with the partial cross moment information. A warm start is

performed to solve the separation problem in the CP iterations. Note that each column

in the separation problem Zsep(x) corresponds to a specific disruption scenario ξ. Some

trivial columns are always considered in the master problem, including the columns with

all facilities online/offline, the columns with only one facility online/offline, the columns

with a pair of facilities corresponding to a cross moment online/offline, etc. Besides, the

columns generated in the previous CP iteration are randomly preserved and inherited to

the next CP iteration for a better column generation start. Furthermore, Algorithm CP

considers valid CP cuts (5) characterized by optimal solutions p∗ and x∗ to Zsep and RP,

respectively. Notice that it is also possible to get a valid CP cut even if p∗ and x∗ are not

optimal. Thus, to speed up the convergence, in certain randomly selected CP iterations,

sub-optimal solutions of the separation problem Zsep and the relaxed master problem RP

are also used to generate the CP cuts.

As for the two benchmark problems, the marginal moment model is also solved following

the framework of Algorithm CP, where the evaluation of the worst-case transportation

cost is based on the closed-form worst-case distribution in Lu et al. (2015). The stochastic

model is solved in the same way as in Section 5.1. For all the three models, Algorithm

CP terminates when the optimality gap, i.e., the relative gap between the best upper

bound (the objective value corresponding to the best feasible solution) and the best lower

bound (the optimal objective value of RP in the current CP iteration), is no more than

0.5%. The algorithm then outputs the best feasible solution, which is regarded as an
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optimal solution in the following discussion. Indeed, we observe from additional numerical

experiments (which are not reported for conciseness) that, for some instances if we set a

lower stopping gap, for example, 0.01% or even 0% (i.e., the algorithm terminates only

if the best lower bound equals the best upper bound, or equivalently, η∗ ≥ Zsep(x∗) as in

Step 3 of Algorithm CP), the algorithm may output the same solution as the one with

the stopping gap being 0.5%. This implies that the algorithm actually finds an optimal

solution before the optimality gap reaches 0.5% and takes some more time to reduce the

optimality gap (or prove the optimality) by improving the best lower bound.

The numerical results are shown in Table 2. The first three columns represent the

instances defined by the combination of (Nodes, β, θ). Thus, 24 instances are considered

in total. For each instance, the cross moment model in this paper, the marginal moment

model in Lu et al. (2015), and the stochastic model with independent disruptions are

solved, respectively. For each model, the solution time, the number of cutting plane cuts,

the number of open facilities in the best feasible solution, and the objective value of the

best feasible solution (i.e., the best upper bound) are recorded accordingly in the columns

titled “CPU time,” “#Cut,” “#Open,” and “Obj.” Particularly for the cross moment

model, there are three columns under the name “CPU time”: i) the column titled “Total”

records the total CPU time to solve the instance, ii) the column titled “Zsep” records the

cumulative CPU time for solving Zsep, i.e., identifying the valid cut (5) in the cutting plane

process, and, iii) the column titled “RC” records the cumulative CPU time for solving

RC, i.e., identifying the valid column for Zsep in the column generation process.

To evaluate the value of cross moment information in making reliable location decisions,

we further calculate the regret and the relative regret of ignoring cross moment informa-

tion in the columns titled “Regret” and “Regret%” under the name “Marginal moment

model,” respectively. Similarly, we calculate the regret and the relative regret of ignoring

the correlation information in the columns titled “Regret” and “Regret%” under the name

“Stochastic model,” respectively. The regret of the marginal moment model (or stochastic

model) denotes the cost increase of ignoring the cross moment information (or the cor-

relation information) and implementing the location decisions by the marginal moment

model (or the stochastic model). To be specific, let x† be the optimal location decision

by the marginal moment model or the stochastic model, PCM be the set of distributions in
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the cross moment model, and ObjCM be the optimal objective value of the cross moment

model. Then Regret and Regret% can be calculated as follows:

Regret = f>x†+ maxp∈PCM
Ep[Q(x†, ξ̃)]−ObjCM

Regret% = 100·Regret/ObjCM

From Table 2 we have several observations:

First, the proposed cutting plane algorithm can solve the cross moment model within

reasonable CPU time with a moderate number of cutting plane cuts added (cf. column

“Total” under “CPU time” and column “#Cut” of “Cross moment model”). Instances

with 20 or 50 nodes can be solved efficiently within 2 seconds or 1 minute with less than

25 or 120 cutting plane cuts added, respectively, while those with 75 and 100 nodes can be

solved within 2 and 6 hours with less than 1000 cuts added, respectively. Considering the

frequency of making location decisions, the computational effort required by the proposed

model and algorithm is satisfactory.

For most instances, the solving time of the separation problem Zsep takes up more than

half of the CPU time and this percentage goes to more than 80% for the instances with

100 nodes (cf. column “Zsep” under “CPU time” of “Cross moment model”). When solving

Zsep by the column generation approach, the computation of the reduced cost RC takes

a significant amount of time for most instances (cf. column “RC” under “CPU time” of

“Cross moment model”). The long solving time of the separation problem explains why the

CPU time of the cross moment model is much longer than that of the marginal moment

model or the stochastic model (cf. column “CPU time” of “Marginal moment model”

or “Stochastic model”). For the marginal moment model, we use the closed-form worst-

case distribution proven by Lu et al. (2015), while for the stochastic model, the facility

disruptions are assumed to be independent. In both cases, there is no need to solve the

separation problem by the column generation approach, and hence the CPU time is much

shorter.
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Table 2 Numerical results on the robust RUFLP

Instance Cross moment model Marginal moment model Stochastic model

Nodes β θ
CPU time(s)

#Cut #Open
Obj

(×105)

CPU

time(s)
#Cut #Open

Obj

(×105)

Regret

(×105)

Regret%

(%)

CPU

time(s)
#Cut #Open

Obj

(×105)

Regret

(×105)

Regret%

(%)Total Zsep RC

20 0.1 200 0.6 0.4 0.3 10 4 5.03 0.4 9 4 5.03 0 0 0.1 9 4 4.98 0 0

400 0.8 0.4 0.3 17 4 6.11 0.2 14 4 6.11 0 0 0.1 9 4 5.06 0 0

800 1.4 1.0 0.9 17 5 7.67 0.3 15 4 9.58 1.91 24.88 0.2 11 4 5.22 2.89 37.66

0.2 200 0.4 0.2 0.2 10 4 5.10 0.1 9 4 5.10 0 0 0.2 9 4 5.02 0 0

400 1.0 0.5 0.4 22 4 6.79 0.2 11 4 6.79 0 0 0.1 10 4 5.15 0.45 6.65

800 1.2 0.7 0.6 21 5 8.44 0.3 9 4 12.72 4.28 50.64 0.2 14 4 5.48 7.72 91.38

50 0.1 200 7.7 3.7 0.8 39 6 6.59 4.4 35 6 6.60 0.01 0.21 3.5 31 6 6.57 0 0

400 21.6 13.6 9.8 71 7 7.10 2.9 37 6 7.15 0.05 0.73 4.2 38 6 6.62 0.02 0.30

800 25.8 18.0 14.5 78 7 7.87 1.6 30 6 10.45 2.58 32.79 4.8 38 6 6.75 3.02 38.36

0.2 200 8.5 4.2 1.5 41 6 6.61 2.9 37 6 6.63 0.01 0.18 3.3 34 6 6.58 0 0

400 17.8 10.9 8.0 60 7 7.36 4.6 47 6 7.68 0.32 4.39 5.4 42 6 6.69 0.33 4.44

800 38.7 24.8 19.8 117 6 9.04 1.6 29 6 14.04 5.01 55.39 9.5 56 6 6.96 6.17 68.31

75 0.1 200 48.5 37.3 2.1 50 7 7.52 6.8 46 6 7.52 0 0.05 10.5 57 7 7.50 0 0

400 168.9 136.7 76.8 87 7 7.93 11.9 60 6 8.14 0.21 2.64 5.7 52 7 7.57 0.22 2.72

800 339.6 223.9 130.7 164 7 8.81 6.6 45 6 11.92 3.11 35.35 16.6 66 6 7.71 3.65 41.47

0.2 200 66.4 48.5 9.4 73 7 7.57 14.3 49 7 7.57 0 0 8.3 56 6 7.53 0.01 0.09

400 183.2 135.4 80.4 109 7 8.25 10.7 60 6 8.81 0.56 6.75 8.3 60 7 7.67 0.57 6.92

800 4066.6 1152.4 747.9 734 6 10.28 4.8 30 6 16.10 5.82 56.61 22.9 90 7 7.96 7.20 70.03

100 0.1 200 1055.8 1000.3 292.1 64 7 8.08 20.7 58 7 8.08 0.01 0.09 14.6 63 7 8.06 0.01 0.09

400 10936.7 10772.8 6522.2 128 7 8.39 40.4 85 7 8.77 0.38 4.47 28.7 83 7 8.15 0.39 4.70

800 5034.9 4753.1 3630.1 239 7 9.25 27.1 62 7 12.86 3.61 39.05 51.0 109 7 8.33 4.30 46.44

0.2 200 892.4 829.6 21.7 88 7 8.13 32.6 66 7 8.13 0 0 62.4 71 7 8.09 0.01 0.09

400 6630.9 6455.0 4397.8 143 7 8.69 61.3 99 7 9.45 0.75 8.68 61.9 88 7 8.25 0.83 9.50

800 20659.3 17057.7 12782.4 815 7 10.61 59.1 80 8 17.29 0.39 3.63 379.7 172 7 8.57 8.40 79.17
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Second, the number of open facilities in the solution roughly increases with the number

of nodes, the value of β (the source disaster probability), and the value of θ (the disrup-

tion propagation effect), for all the models (cf. column “#Open”). As a matter of fact,

we observe from the computing process (which is not reported for conciseness) that the

location decision and the number of open facilities fluctuate significantly as the algorithm

converges. This implies that the robust models (both the cross moment model and the

marginal moment model) along with the proposed algorithm make a complex tradeoff

between opening more facilities to serve demand nodes with lower transportation cost and

opening fewer facilities for a smaller risk of correlated facility disruptions.

We also notice that the cross moment solution opens more facilities than the marginal

moment solution for most instances, especially for those with a larger value of θ. For

example, for the instance (20,0.1/0.2,800), the cross moment model opens 5 facilities while

the marginal moment model opens 4 facilities. This observation may be because the cross

moment model makes the location decision based on the cross moment information, i.e.,

the independence of certain facility pairs, hence it is natural for the cross moment model

to “aggressively” open more facilities that are independent of one another. In contrast,

the marginal moment model makes the location decision ignoring the independent infor-

mation, thus it tends to be more conservative, opening fewer facilities. The only exception

is the instance (100,0.2,800), where the cross moment solution opens 7 facilities while the

marginal moment solution opens 8 facilities. This contrasting observation can be explained

by the incidental fact that the marginal moment solution happens to open two facilities

that are independent of each other.

Recall that each combination of (Nodes, β, θ) only corresponds to one instance whose

parameters are calculated based on the 1990 census data. To eliminate the incidental issues,

we conduct further numerical experiments based on randomly generated instances with 20

nodes. The details of the numerical studies are presented later in this section and also in

Appendix B.3. It is observed in Appendix B.3 that the cross moment model opens more

facilities on average than the marginal moment model. On the other hand, the stochastic

model opens the least number of facilities on average among the three models for most

randomly generated instances. This observation can be explained by the fact that the

stochastic model assumes independent disruptions for all the facility pairs, thus it tends

to make the most “optimistic” location decision with the least number of open facilities.
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Note that the numerical studies in Appendix B.3 also report how the number of open

facilities for all the three models change with β and θ. To sum up the comparison of

the location decisions by the three models, we could infer that, with more facility pairs

having independent disruptions (or in other words, with more information on correlation

specifying independent disruptions), the number of open facilities of the cross moment

model is likely to increase first (deviating from the marginal moment decision) and then

decrease (tending to the stochastic decision). Interestingly, this insight is partially verified

by the numerical results in Appendix B.2.

Third, the regret of ignoring cross moment information fluctuates greatly for different

instances and it can be substantial for some instances (cf. the columns “Regret” and

“Regret%” of “Marginal moment model”). As can be observed from the columns under

“Marginal moment model,” the value of Regret% generally increases with the number of

nodes and the values of β and θ, ranging from 0% to 56.61%. For most instances with

θ = 800, the value of Regret% is above 24%, implying that the cost increases by at least

24% if one ignores the cross moment information and implements the location decision

by the marginal moment model in these instances. The only exception is the instance

(100,0.2,800), where the value of Regret% suddenly decreases to 3.63%, comparing to 8.68%

in instance (100,0.2,400) and 39.05% in instance (100,0.1,800). This is because the marginal

moment model happens to choose some facilities that are independent of one another. The

worst-case expected transportation cost of the marginal moment decision is consequently

close to that of the cross moment decision, which is determined with the independent cross

moment information. As a result, the value of Regret% is small.

We also observe that, the regret of ignoring correlation fluctuates greatly for different

instances and is tremendous for some instances (cf. columns “Regret” and “Regret%” of

“Stochastic model”). Note that Lu et al. (2015) compare the stochastic model with the

marginal moment model to reveal the regret of ignoring correlation, while in this work,

we compare the stochastic model with the cross moment model. As can be observed from

the columns under “Stochastic model,” the value of Regret% generally increases with the

number of nodes and the values of β and θ, ranging from 0% to 91.38%. For most instances

with θ = 800, the value of Regret% is above 37%, implying that the cost increases by

at least 37% if one ignores the correlation and implements the location decision by the

stochastic model assuming independent disruptions in these instances.
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Figure 1 Impact of β and θ on average Regret%

To clearly see how the values of Regret% of the marginal moment model and the stochas-

tic model change with β and θ, we conduct further experiments based on randomly gen-

erated instances with 20 nodes. In these instances, we randomly generate the location,

demand, and fixed facility setup cost of each node, based on which the unit transporta-

tion cost and marginal/cross disruption probability are calculated accordingly. To see how

Regret% changes with the value of β, we fix θ to be 800 and set the value of β from

0.025 to 0.300 with a step length of 0.025. To see how Regret% changes with the value

of θ, we fixed β to be 0.2 and set the value of θ from 200 to 800 with a step length of
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50. For each value of β or θ, 100 scenarios are randomly generated, and the average value

of Regret% is calculated and presented in Figure 1. More details of the numerical studies

based on randomly generated instances can be found in Appendix B.3. Figure 1 shows that

the regret of the stochastic model is generally larger than that of the marginal moment

model, indicating that the regret of ignoring correlation is generally higher than that of

ignoring cross moment information. As the value of β increases, the average Regret% of

the marginal moment model increases significantly from around 5% to around 40%, while

the increase of the average Regret% of the stochastic model is substantially larger, ranging

from around 6% to around 63%. A similar observation can be made when we increase the

value of θ. With the increasing value of θ, the average Regret% of the marginal moment

model grows from around 0% to around 31%, while that of the stochastic model grows

from around 0% to around 50%.

5.3. Data-Driven Simulation

To compare the aforementioned two robust models in more practical disaster scenarios,

we conduct the following data-driven simulation based on the historical typhoon data in

China.

The data is collected by the Shanghai Typhoon Institute and the Shenzhen Meteorol-

ogy Bureau of the China Meteorology Administration1. The data set covers all typhoons

landed in China from 1949 to 2019 and records typhoon information such as serial number,

typhoon name, landing location, landing time, landing intensity, and typhoon track.

In this simulation, we extract the data from 2007 to 2019, which includes 100 typhoons in

total. Each typhoon is regarded as one scenario and the track of this typhoon indicates the

affected locations in this scenario. To have a discrete location set, we focus on the southeast

coastal area of China, which is the area most frequently affected by typhoons in China.

This area is divided into 16 locations according to the provincial administrative division.

They are East Guangdong, West Guangdong, South Fujian, North Fujian, South Hainan,

North Hainan, South Taiwan, North Taiwan, South Zhejiang, North Zhejiang, Guangxi,

Jiangsu, Jiangxi, Shandong, Anhui, and Shanghai, among which 5 provinces are divided

into two parts respectively due to the high frequency of typhoon hits. For each location,

the demand is set as the population and the fixed location cost is estimated according to

1 Data source: Shanghai Typhoon Institute (http://tcdata.typhoon.org.cn) and Shenzhen Meteorology Bureau
(http://tf.121.com.cn)
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the housing price. The unit transportation cost between any two locations is proportional

to the distance between them.

Table 3 Numerical results on simulation based on historical typhoon data

Data from 2008 to 2017 Data from 2007 to 2016

CM MM CM MM

CPU time (s) 31.99 0.12 50.02 0.04

#Cut 133 14 84 8

#Open 4 4 4 4

Open locations Jiangsu,

Guangxi,

Jiangxi,

Shandong

Shanghai,

Guangxi,

Jiangxi,

Shandong

Anhui,

Guangxi,

Jiangxi,

Shandong

Shanghai,

Guangxi,

Jiangxi,

Shandong

Cost (×106) Location 7.03 14.53 6.25 14.53

Transportation 13.69 14.23 13.92 14.23

Total (i.e., Obj) 20.71 28.75 20.17 28.75

Scenario 2017 Total cost (×106) - - 11.38 19.79

Total cost% - 73.90%

Scenario 2018 Total cost (×106) 13.10 20.53 12.01 20.53

Total cost% 56.72% 71.03%

Scenario 2019 Total cost (×106) 12.08 19.42 10.99 19.42

Total cost% 60.72% 76.74%

The results are presented in Table 3. We first use the data from 2008 to 2017, which

covers 75 typhoon scenarios, to generate the marginal/cross disruption probabilities (cf.

columns under “Data from 2008 to 2017”). To have more observations, we also use the

data from 2007 to 2016, which covers 74 typhoon scenarios, to generate these parameters

(cf. columns under “Data from 2007 to 2016”). The cross moment model (cf. “CM”) and

the marginal moment model (cf. “MM”) are compared. For each model, the solution time,

the number of CP cuts, the number of open locations in the optimal solution, and the

name of the open locations are recorded accordingly in the rows titled with “CPU time,”

“#Cut,” “#Open,” and “Open locations.” The fixed location cost, the worst-case expected

transportation cost, and the total cost (i.e., the objective value) of the optimal solution are

presented in the rows titled with “Cost” followed by “Location,” “Transportation,” and

“Total,” respectively. The data in 2018-2019 or 2017-2019 is used as testing scenarios to

evaluate the performance of the optimal solutions by two robust models. Specifically, we
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calculate the total cost of the corresponding solutions under the typhoon scenario 2017,

2018, and 2019, respectively (cf. row “Total cost” of “Scenario 2017,” “Scenario 2018,” and

“Scenario 2019,” respectively). The relative total cost increase of the MM model comparing

to the CM model is also presented in the row titled “Total cost%” of the corresponding

scenario.

If we use the data from 2008 to 2017 to generate the disruption probabilities (cf. the

columns under “Data from 2008 to 2017”), it can be observed that both models can be

solved in short CPU time with a moderate number of CP cuts generated. Both models open

four locations, but the CM and the MM models open Jiangsu and Shanghai, respectively,

in addition to the three locations in both solutions (i.e., Guangxi, Jiangxi, and Shandong).

Interestingly, the MM model chooses Shanghai as one of the open locations, leading to a

very high location cost (cf. row “Location” of “Cost”). This is because the MM model is

more conservative in the sense that it optimizes the worst-case expected transportation

cost with the marginal moment information, and the corresponding worst-case expected

transportation cost is higher than that of the CM model. Thus, the MM model tends to

open some locations (i.e., Shanghai in this case) with high fixed location cost but low unit

transportation cost, so as to decrease the worst-case expected transportation cost as far

as possible and achieve the balance between the location cost and the transportation cost

in the objective function.

Under the testing scenarios 2018 and 2019 (cf. rows “Scenario 2018” and “Scenario

2019”), the total costs of both robust models are much lower than the worst-case coun-

terparts. For example, the total costs of the CM and the MM models under scenario 2018

are 13.10 and 20.53 million, respectively, while the worst-case counterparts are 20.71 and

28.75 million, respectively. However, the MM model bears a total cost that is 56.72% and

60.72% higher than the CM model under the two testing scenarios, respectively.

If we use the data from 2007 to 2016 to generate the disruption probabilities (cf. the

columns under “Data from 2007 to 2016”), it can be observed that the optimal solution

of the CM model is different with the open location Jiangsu changed to Anhui, while

that of the MM model remains the same (cf. row “Open location”). In a certain sense,

this indicates that the CM model is more sensitive to the input data and can better

utilize the information, especially the correlation information in this simulation. As for

the performance under the testing scenarios (cf. rows “Scenario 2017,” “Scenario 2018,”
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and “Scenario 2019”), the MM model still bears a higher total cost than the CM model.

Moreover, the relative total cost increases are higher than those under “Data from 2008

to 2017,” e.g., raising from 56.72% to 71.03% under scenario 2018.

6. Conclusions

In this paper, we study the reliable supply chain network design problem that generalizes

the classical uncapacitated facility location problem by considering uncertain facility dis-

ruptions. This problem is formulated as a distributionally robust model in a general form,

which extends several existing models, including the stochastic model with given disruption

distribution, the robust model with marginal disruption probability, and the robust model

with cross disruption probability. To solve this model, an efficient cutting plane algorithm

is proposed, where the separation problem is solved respectively by a polynomial-time

algorithm in the stochastic case and by a column generation approach in the robust case.

Extensive numerical studies shows that the proposed cutting plane algorithm not only

outperforms the best algorithm in the literature for the stochastic model with independent

disruptions, but also efficiently solves the robust model with correlated disruptions.

This paper can be extended to the case with uncertain demand when the demand is

independent of the facility disruption, or the dependency between demand and disruption

is scenario-based or expressed by linear functions. However, the proposed approach can

not be easily applied to handle more general dependency between demand and facility

disruption, which is one limitation of this work. Another limitation is that the facilities

are all uncapacitated, and the inventory positioning decisions are not considered in this

work. In our future work, this UFLP-based problem will be extended to incorporate the

inventory positioning and allocation decisions. Moreover, if this problem is considered in a

general supply chain with customer sourcing decisions, it might be interesting to study how

the customer sourcing decisions are affected by facility disruption or supplier reliability.
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Appendix A: Proofs of Theorems

A.1. Proof of Theorem 1

Proof. Notice that the optimal solution p∗ to Zsep(x
∗) must be attained at an extreme point of P ,

thus the number of iterations in Algorithm CP is bounded above by |{y ∈ {0,1}|J|}|, i.e., 2|J|, times the
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quantity of extreme points of P , which is a finite number. Therefore, Algorithm CP must terminate within

finite iterations. To show that Algorithm CP terminates with the optimal solution to model (4), we firstly

develop an algorithm for model (4) based on the Benders decomposition, and then show that the Benders

decomposition algorithm can solve model (4) to optimality and is equivalent to Algorithm CP.

Given the solution (x, η) and the scenario ξ, the subproblem Q(x,ξ) can be written as

Q(x,ξ) = min
v

∑
i∈I

∑
j∈J∪{0}

dicijvij

∣∣∣∣∣∣
∑

j∈J∪{0} vij = 1, ∀i∈ I,
−vij ≥−xjξj , ∀i∈ I, j ∈ J ∪{0},
vij ≥ 0, ∀i∈ I, j ∈ J ∪{0}


= max

σ,ω

∑
i∈I

σi−
∑
i∈I

∑
j∈J∪{0}

xjξjωij

∣∣∣∣ σi−ωij ≤ dicij , ∀i∈ I, j ∈ J ∪{0},σi ∈R, ωij ≥ 0, ∀i∈ I, j ∈ J ∪{0}


where v is the vector of the primal variables vij for all i ∈ I and j ∈ J ∪ {0}, and σ and ω are the vectors

of the dual variables σi (for all i ∈ I) and ωij (for all i ∈ I and j ∈ J ∪ {0}), respectively. It is obvious that

Q(x,ξ) is always feasible and has a finite optimal objective value, because vi0 = 1 and vij = 0 for all i∈ I and

j ∈ J is a trivial feasible solution to Q(x,ξ), and the corresponding objective value
∑

i∈I dici0 is an upper

bound of Q(x,ξ). Therefore, the dual problem of Q(x,ξ) is always feasible with a bounded optimal value.

Thus, an optimal solution to the dual problem of Q(x,ξ) must be attained at an extreme point of its feasible

region. Let ΦEP denote the set of all the extreme points for the dual problem of Q(x,ξ). Model (4) can be

put in the following form:

P : min
x∈{0,1}|J|,

η∈R

∑
j∈J

fjxj + η

s.t. η≥
∑

ξ∈Ξ|pξ>0

pξ

∑
i∈I

σξ,i−
∑
i∈I

∑
j∈J∪{0}

xjξjωξ,ij

 , ∀p∈ P, (σξ,ωξ)∀ξ∈Ξ ∈ΦEP ,

(11)

where (σξ,ωξ) denotes the dual variables to Q(x,ξ) with the subscript ξ expressed to avoid confusion. The

entries of σξ and ωξ are denoted as σξ,i and ωξ,ij , respectively.

We next develop an algorithm for model (11) based on the Benders decomposition. In each typical iteration

of the Benders decomposition algorithm, we consider a relaxed master problem, which has the same objective

as model (11), but involves only a subset of the constraints. The relaxed master problem is firstly solved

and the corresponding optimal solution is denoted as (x∗, η∗). Then the separation problem Zsep(x
∗) =

maxp∈P Ep[Q(x∗, ξ̃)] as defined in Algorithm CP is solved to check whether the current solution (x∗, η∗) is

also a feasible solution to the original problem P: (i) if η∗ ≥Zsep(x∗), (x∗, η∗) is feasible and also optimal to

the original problem P, (ii) otherwise, i.e., η∗ <Zsep(x
∗), we have to identify a valid cut and add it to the

relaxed master problem. In view of the constraints in model (11), the valid cut can be constructed as follows:

Denote p∗ as the optimal solution to Zsep(x
∗). For every ξ ∈ Ξ such that p∗ξ > 0, solve the dual problem of

Q(x∗,ξ) and obtain the dual optimal solution (σ∗ξ ,ω
∗
ξ). Then, the following constraint is the constraint of

model (11) violated by the current solution (x∗, η∗), i.e., the valid cut:

η≥
∑

ξ∈Ξ|p∗
ξ
>0

p∗ξ

∑
i∈I

σ∗ξ,i−
∑
i∈I

∑
j∈J∪{0}

xjξjω
∗
ξ,ij

 . (12)

This valid cut is then added to the relaxed master problem, which leads to a new iteration.
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The Benders decomposition algorithm described above can solve model (11) to optimality. This is because:

On one hand, as model (11) is a minimization problem, the optimal objective value of the relaxed master

problem is smaller than or equal to that of the original problem P. On the other hand, when the Benders

decomposition algorithm terminates with the solution (x∗, η∗), we have η∗ ≥Zsep(x∗), i.e., η∗ ≥Ep[Q(x∗, ξ̃)]

for all p∈ P . Thus, (x∗, η∗) is feasible to the original problem P, implying that the optimal objective value

of the relaxed master problem is greater than or equal to that of the original problem P. Therefore, when

the Benders decomposition algorithm terminates, the optimal objective value of the relaxed master problem

is equal to that of the original problem P, and we have that the Benders decomposition algorithm can solve

model (11) to optimality.

We next show that the Benders decomposition algorithm is equivalent to Algorithm CP. Note that the

separation problems Zsep(x
∗) are the same for two algorithms, thus it remains to show that the valid cuts

added in each typical iteration of these two algorithms, i.e., (5) and (12), are the same.

Notice that constraint (12) can be simplified because a dual optimal solution (σ∗ξ ,ω
∗
ξ) to Q(x∗,ξ) can be

written explicitly as:
σ∗ξ,i = diminj∈J∪{0}|x∗j ξj=1 cij , ∀i∈ I,
ω∗ξ,ij = 0, ∀i∈ I, j ∈ J ∪{0}|x∗jξj = 1,
ω∗ξ,ij = max{0, σ∗ξ,i− dicij}

= dimax{0,minl∈J∪{0}|x∗
l
ξl=1 cil− cij}, ∀i∈ I, j ∈ J ∪{0}|x∗jξj = 0,

which are compactly written as{
σ∗ξ,i = diminj∈J∪{0}|x∗j ξj=1 cij , ∀i∈ I,
ω∗ξ,ij = dimax{0,minl∈J∪{0}|x∗

l
ξl=1 cil− cij}, ∀i∈ I, j ∈ J ∪{0}.

Thus, constraint (12) can be reformulated as:

η≥
∑

ξ∈Ξ|p∗
ξ
>0 p

∗
ξ

(∑
i∈I σ

∗
ξ,i−

∑
i∈I

∑
j∈J xjξjω

∗
ξ,ij

)
⇔ η≥

∑
ξ∈Ξ|p∗

ξ
>0
p∗ξ
∑

i∈I σ
∗
ξ,i−

∑
ξ∈Ξ|p∗

ξ
>0
p∗ξ
∑

i∈I

∑
j∈J xjξjω

∗
ξ,ij

⇔ η≥
∑
ξ∈Ξ|p∗

ξ
>0
p∗ξQ(x∗,ξ) +

∑
j∈J xj

∑
ξ∈Ξ|p∗

ξ
>0
p∗ξ [Q(x∗ ∨ zj ,ξ)−Q(x∗,ξ)]

where zj and “∨” are defined as in Algorithm CP. The third line comes from the facts that∑
i∈I σ

∗
ξ,i =

∑
i∈I diminj∈J∪{0}|x∗j ξj=1 cij =Q(x∗,ξ)∑

i∈I ξjω
∗
ξ,ij =

∑
i∈I ξjdimax{0,minl∈J∪{0}|x∗

l
ξl=1 cil− cij}

=
∑

i∈I ξjdi
(
minl∈J∪{0}|x∗

l
ξl=1 cil−min{cij ,minl∈J∪{0}|x∗

l
ξl=1 cil}

)
= ξj

(∑
i∈I diminl∈J∪{0}|x∗

l
ξl=1 cil−

∑
i∈I dimin{cij ,minl∈J∪{0}|x∗

l
ξl=1 cil}

)
= Q(x∗,ξ)−Q(x∗ ∨ zj ,ξ).

By inserting in the closed-form dual optimal solution, one can easily write constraint (12) in the form of

constraint (5). The latter constraint is beneficial in the sense that, once the distribution p∗ is available, the

latter constraint can be constructed directly from the expectation of Q(·, ξ̃) without solving the dual problem

of Q(x∗,ξ) for each scenario ξ with positive probability p∗ξ. In more general cases when the closed-form

dual optimal solution is not available, we may not be able to derive cuts similar to those in constraint (5),

but the cutting plane algorithm can still be applied by adding cuts in the form of constraint (12). To sum

up, the Benders decomposition algorithm and Algorithm CP are exactly the same. We can conclude that:

Algorithm CP terminates within a finite number of iterations and provides an optimal solution to model (4).

This completes the proof. �
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A.2. Proof of Theorem 2

The following definitions and lemmas will be used in the proof of Theorem 2. Let K be a convex and compact

set in Rn.

Definition 1. (Grötschel et al. 1993, Definition 2.1.1) Strong optimization problem: Given a vector c ∈
Rn, find a vector y ∈K that maximizes c>x on K, or assert that K is empty.

Definition 2. (Grötschel et al. 1993, Definition 2.1.4) Strong separation problem: Given a vector y ∈Rn,

decide whether y ∈K, and if not, find a hyperplane that separates y from K; more exactly, find a vector

c∈Rn such that c>y>max{c>x|x∈K}.
Definition 3. (Grötschel et al. 1993, Definition 2.1.5) Strong membership problem: Given a vector y ∈

Rn, decide whether y ∈K.

Lemma 1. (Grötschel et al. 1993, Theorem 6.4.9) Any one of the following two problems:

- strong separation,

- strong optimization,

can be solved in oracle-polynomial time for any well-described polyhedron given by an oracle for the other

problem.

Lemma 2. (Grötschel et al. 1993, Theorem 6.5.14) There exists an oracle-polynomial time algorithm that,

for any well-described polyhedron given by a strong separation oracle and for any c∈Qn, either

(i) finds a basic optimum standard dual solution, or

(ii) asserts that the dual problem is unbounded or has no solution.

To put it shortly, Lemma 1 indicates the equivalence of strong separation problem and strong optimization

problem in terms of polynomial-time solvability. Lemma 2 implies that the strong optimization problem of

the dual problem is polynomial-time solvable as long as the strong separation problem of the primal problem

is polynomial-time solvable.

The proof of Theorem 2 is presented as follows.

Proof of Theorem 2. To prove the NP-hardness of Zsep(x), it is sufficient to prove the NP-hardness of

the following problem, which is a special case of the general Zsep(x) with the set P captured by the first two

moments.
Zsep(x) = max

pξ≥0

∑
ξ∈ΞQ(x,ξ)pξ

s.t.
∑
ξ∈Ξ

pξ = 1,∑
ξ∈Ξ|ξj=1

pξ = qj ∀j ∈ J,∑
ξ∈Ξ|ξj1=ξj2=1 pξ = qj1j2 ∀j1, j2 ∈ J, j1 < j2.

(13)

Note that the dual problem of model (13), denoted as ZDsep(x), is:

ZDsep(x) = min
α,β

α+
∑

j∈J qjβj +
∑

j1,j2∈J,j1<j2
qj1j2βj1j2

s.t. α+
∑

j∈J|ξj=1
βj +

∑
j1,j2∈J,j1<j2|ξj1=ξj2=1

βj1j2 ≥Q(x,ξ), ∀ξ ∈Ξ,
(14)

where α, βj , and βj1j2 are the dual variables associated with the constraints in model (13), respectively, and

β is the vector of βj and βj1j2 for all j, j1, j2 ∈ J, j1 < j2.

If we suppose that Zsep(x) in model (13) is polynomial-time solvable, then according to Lemma 1, its strong

separation problem is also polynomial-time solvable. Consequently, the dual strong optimization problem of
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Zsep(x), i.e., ZDsep(x) in model (14), is also polynomial-time solvable (according to Lemma 2), and so is the

strong separation problem of ZDsep(x) (according to Lemma 1). Furthermore, the strong membership problem

of ZDsep(x) is also solvable, which is a trivial result from Definition 1 and Definition 3. However, we next show

that the strong membership problem of ZDsep(x) is NP-hard.

According to Definition 3, the strong membership problem of ZDsep(x), denoted as ZDsep(x)-Smem, can be

written as follows:

- ZDsep(x)-Smem: Given a vector π∗ of the same dimension as (α,β>)>, decide whether π∗ ∈Π, where Π

is the feasible region of ZDsep(x), i.e.,

Π :=

(α,β>)>

∣∣∣∣∣∣α+
∑

j∈J|ξj=1

βj +
∑

j1j2∈J,j1<j2,ξj1=ξj2=1

βj1j2 ≥Q(x,ξ), ∀ξ ∈Ξ

 .

The ZDsep(x)-Smem problem is equivalent to the following problem, which is denoted as RC(x)-Decision:

- RC(x)-Decision: Given x ∈ {0,1}|J| and vector π∗ = (α∗,β∗>)>, decide whether RC(x) ≤ 0, where

RC(x) is defined as

RC(x) := max
ξ∈Ξ

Q(x,ξ)−α∗−
∑

j∈J|ξj=1

β∗j −
∑

j1j2∈J,j1<j2,ξj1=ξj2=1

β∗j1j2

 . (15)

Note that RC(x) is exactly the pricing problem (also known as the reduced cost problem) if we solve Zsep(x)

using the column generation approach. The equivalence of the ZDsep(x)-Smem problem and the RC(x)-

Decision problem can be seen from the fact that the answer to the ZDsep(x)-Smem problem is “yes” if and

only if that of the RC(x)-Decision problem is “yes,” i.e., π∗ ∈Π if and only if RC(x)≤ 0.

We next show that the RC(x)-Decision problem is NP-hard. This can be achieved by showing that

there exists a NP-complete decision problem that reduces to the RC(x)-Decision problem. Consider the

following decision version of the MaxCut problem (denoted as MaxCut-Decision), which is a well-known

NP-complete problem: (Gary and Johnson 1979)

- MaxCut-Decision: Given a simple graph G= (V,E) and an integer K ∈ Z+, decide whether there is

a cut of size at least K, or more exactly, whether there is a partition of V into two disjoint sets V1 and V2

such that the quantity of edges between V1 and V2 is at least K.

The MaxCut-Decision problem is equivalent to: decide whether

max
yi∈{−1,1}

{
1

4

∑
i,j∈V,i6=j

wij(1− yiyj)

}
≥K,

where wij = 1 for any (i, j) ∈E, and otherwise, wij = 0. The decision variable yi for all i ∈ V represents the

partition of V , i.e., yi = 1 if i∈ V1 and yi =−1 if i∈ V2. Note that the size of cut (the quantity of edges) can

only take integer values and K ∈ Z+. Thus the answer to the MaxCut-Decision problem is “yes” if and

only if the answer to the following problem is “no”: decide whether

max
yi∈{−1,1}

{
1

4

∑
i,j∈V,i6=j

wij(1− yiyj)

}
≤K − 1.
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Given any instance of the MaxCut-Decision problem characterized by G= (V,E) and K, we can con-

struct in polynomial time an equivalent instance of the RC(x)-Decision problem. Recall that Q(x,ξ) =∑
i∈I diminj∈J∪{0}|xjξj=1 cij . Let cij = ci0 = 0 for all i∈ I and j ∈ J . Then we have Q(x,ξ) = 0 and hence

RC(x) =−α+ max
ξj∈{0,1}

{
−
∑
j∈J

βjξj −
1

2

∑
j1,j2∈J,j1 6=j2

βj1j2ξj1ξj2

}
.

Define a new decision variable yj := 2ξj − 1, i.e., ξj = (yj + 1)/2 for any j ∈ J . We have yj ∈ {−1,1} for all

j ∈ J and

RC(x) =−α+ max
yj∈{−1,1}

−
∑
j∈J

βj ·
yj + 1

2
− 1

2

∑
j1,j2∈J,
j1 6=j2

βj1j2 ·
yj1 + 1

2
· yj2 + 1

2


=−α+ max

yj∈{−1,1}

{(
−1

2

∑
j∈J

βj −
1

8

∑
j1,j2∈J,j1 6=j2

βj1j2

)

−
∑
j∈J

(
1

2
βj +

1

4

∑
j′∈J,j′ 6=j

βjj′

)
· yj −

∑
j1,j2∈J,j1 6=j2

1

8
βj1j2yj1yj2

}
.

Let J = V and 

1

8
βj1j2 =

1

4
wj1j2 , ∀j1, j2 ∈ J, j1 6= j2,

1

2
βj +

1

4

∑
j′∈J,j′ 6=j

βjj′ = 0, ∀j ∈ J,

−1

2

∑
j∈J

βj −
1

8

∑
j1,j2∈J,j1 6=j2

βj1j2 =
1

4

∑
j1,j2∈J,j1 6=j2

wj1j2 ,

−α= 1−K
i.e.,

βj1j2 = 2wj1j2 ∀j1, j2 ∈ J, j1 6= j2, βj =−
∑

j′∈J,j′ 6=j

wjj′ ∀j ∈ J, α=K − 1.

Then, it is straightforward that this specific instance of the RC(x)-Decision problem is equivalent to the

counterpart of the MaxCut-Decision problem, in the sense that the former one is a YES-instance if and

only if the latter one is a NO-instance. Given any instance of the MaxCut-Decision problem, we can

find its answer by considering an equivalent instance of the RC(x)-Decision problem. In other words, the

MaxCut-Decision problem can be transformed to the RC(x)-Decision problem in polynomial time. It

shows that the RC(x)-Decision problem is “at least as hard” as the MaxCut-Decision problem. Thus,

the RC(x)-Decision problem is NP-hard, and so is the ZDsep(x)-Smem problem. According to the discussion

in the beginning of this proof, Zsep(x) is also NP-hard, and this completes the proof. �

A.3. Proof of Theorem 3

Proof. Substitute the expression of Q(x,ξ), and RC(x) can be formulated as

RC(x) = max
ξ∈Ξ

{∑
i∈I

di min
j∈J∪{0}|xjξj=1

cij −α−
n∑
k=1

(βk−βk)
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′)

}
.

Let πi represent the term minj∈J∪{0}|xjξj=1 cij for any i∈ I. We can write RC(x) as

RC(x) = max
ξ∈Ξ,π

∑
i∈I diπi−α−

∑n

k=1
(βk−βk)

∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′)
s.t. πi ≤ cijxjξj + ci0(1−xjξj), ∀i∈ I, j ∈ J.
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Consider the term −(βk − βk)
∏
j∈Ak

ξj
∏
j′∈Bk

(1 − ξj′) for any k ∈ {1, ..., n} in the objective function.

We can introduce a new decision variable λk to represent
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′). Then the term −(βk −

β
k
)
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′) can be replaced with −(βk−βk)λk by adding the constraints

λk ≤ ξj , ∀j ∈Ak, λk ≤ 1− ξj , ∀j ∈Bk, λk ≥
∑
j∈Ak

ξj +
∑
j∈Bk

(1− ξj)− |Ak| − |Bk|+ 1, and λk ≥ 0.

This immediately yields the equivalent reformulation in model (9). �

Appendix B: Supplementary Discussions

B.1. Model Generalization to the Cases with Uncertain Demand

In Section 1, we claim that the proposed model and algorithm can be extended in the following cases with

uncertain demand if: i) the demand is independent of the facility disruption, ii) the demand is defined in

each scenario of facility disruption in the scenario-based stochastic model, and iii) the demand is defined as

a linear function of facility disruption, e.g., the settings in An et al. (2014) and Azad and Hassini (2019).

The first two cases are trivial from the model formulation in Section 3 and Section 4. In this section, we

illustrate the third case in detail following the setting in An et al. (2014).

If the disruption-dependent demand is denoted as (1− θξi)di, i.e., a linear function on disruption status ξi

with parameter θ ∈ (−∞,1] indicating how demand is affected by disruption, we then update the definition

of Q(x,ξ) as

Q(x,ξ) :=
∑
i∈I

(1− θξi)di min
j∈J∪{0}|xjξj=1

cij .

Note that Theorem 1 holds for this new Q(x,ξ), because the Benders decomposition is derived based on

scenarios and the Benders cut is simplified for each given scenario ξ in the proof of Theorem 1.

With this new Q(x,ξ), the reduced cost is as follows,

RC(x) = max
ξ∈Ξ

{∑
i∈I

(1− θξi)di min
j∈J∪{0}|xjξj=1

cij −α−
n∑
k=1

(βk−βk)
∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′)

}
.

Note that (1− θξi)≥ 0 for all θ ∈ (−∞,1]. Thus RC(x) can be written as

RC(x) = max
ξ∈Ξ,π,δ

∑
i∈I diδi−α−

∑n

k=1
(βk−βk)

∏
j∈Ak

ξj
∏
j′∈Bk

(1− ξj′)
s.t. δi ≤ πi +Mξi, ∀i∈ I,

δi ≤ (1− θ)πi +M(1− ξi), ∀i∈ I,
πi ≤ cijxjξj + ci0(1−xjξj), ∀i∈ I, j ∈ J,

where M denotes a big constant. As shown in the proof of Theorem 3, we can linearize the remaining

multiplication terms in the objective function, so RC(x) can be also written as a mixed integer linear

program.

To sum up, this paper can be extended to the demand setting in An et al. (2014) where the demand is a

linear function of facility disruption.
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B.2. The Scalability of Algorithm CP with More Cross Moment Information

In Section 5.2, we apply the Algorithm CP to solve the robust cross moment model, where n pieces of

information are used to determine the ambiguity set P , including the marginal disruption probabilities and

some of the cross disruption probabilities. To illustrate the scalability of the proposed algorithm with larger

n values, we conduct additional numerical studies in this section.

In Section 5.2, the partial cross moment is set by assuming independent disruptions if the distance between

any two facilities is no less than a distance threshold, which is set to 2500 km (kilometer). In this section,

we change the distance threshold to generate multiple instances with different cross moment information

and different n values. This numerical study is based on the instances with 20 nodes, β = 0.2 and θ = 800.

Because the maximal distance between two facilities in the data set with 20 nodes is 2701 km, we change

the distance threshold from 2800 km to 2000 km with a step size of 100 km. We also solve instances with the

distance threshold being 1500 km and 1000 km, respectively. Apparently, the smaller the distance threshold,

the larger the n value, i.e., the more cross moment information is available. Note that the changing values

of n in this numerical study do not affect the solution of the marginal moment model and the stochastic

model assuming independent disruption between facilities. For all three models, the optimality gap (i.e., the

relative gap between the best upper bound and the best lower bound) is set to be 0.01%, rather than 0.5%

for the results in Table 2, to get more precise results.

Table 4 Numerical results with different n values

MM model Stochastic model

Model
Distance

threshold
n

CPU time (s)
#Cut #Open

Obj

(×105)

Regret

(×105)

Regret%

(%)

Regret

(×105)

Regret%

(%)Total Zsep RC

Stochastic - - 0.4 - - 16 4 5.48 - - - -

MM - - 0.3 - - 13 4 12.72 - - - -

CM 2800 20 0.7 0.3 0.3 13 4 12.72 0 0 3.44 27.04

2700 21 1.1 0.4 0.4 19 5 9.98 2.74 27.51 6.18 61.99

2600 22 1.1 0.4 0.4 14 5 9.44 3.28 34.71 6.72 71.14

2500 27 2.4 1.5 1.4 21 5 8.44 4.28 50.64 7.72 91.38

2400 34 3.8 2.4 2.2 25 4 8.19 0 0 7.97 97.32

2300 40 4.6 3.4 2.9 19 4 7.19 1.00 13.96 8.97 124.87

2200 43 3.8 2.9 2.4 27 4 7.19 1.00 13.96 8.97 124.87

2100 46 7.3 5.9 5.2 37 4 7.19 1.00 13.96 8.97 124.87

2000 51 7.8 6.5 5.6 25 4 6.72 1.46 21.69 0 0

1500 83 54.4 52.3 47.7 37 4 6.48 1.27 19.60 0 0

1000 117 176.7 173.9 163.3 43 4 6.36 1.34 21.01 0.12 1.82

The results are presented in Table 4. We first solve the stochastic model (cf. “Stochastic”) and the marginal

moment model (cf. “MM”). For the cross moment model (cf. “CM”), we consider 11 instances with different

distance thresholds ranging from 2800 km to 1000 km (cf. column “Distance threshold”) and accordingly
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different n values from 20 to 117 (cf. column “n”). For each instance, the solution time is recorded in the

columns titled “CPU time.” The total solution time, the cumulative solution time for Zsep, and the cumulative

solution time for RC are presented in the columns titled “Total,” “Zsep,” and “RC,” respectively. The

number of cutting plane cuts, the number of open facilities in the optimal solution, and the optimal objective

value are recorded in the columns titled “#Cut,” “#Open,” and “Obj.” For the MM model or the stochastic

model, the regret and relative regret of ignoring cross moment information or assuming independence are

reported in the columns titled “Regret” and “Regret%” under the name “MM model” or “Stochastic model,”

respectively.

It can be observed from Table 4 that, with the decrease of the distance threshold, i.e., the increase of

the n value, the CPU time of the CM model gradually increases and more CP cuts are generated. This is

reasonable because larger n values indicate more cross moment information, and it takes more efforts for the

CM model to calculate the worst-case expected transportation cost, balance the transportation cost with

the fixed location cost, and determine the optimal decision.

Compare the CM model with the MM model. For the instance with 2800 km distance threshold, i.e.,

n= 20, indicating that no cross moment information is available, the CM model gives the same solution as

the MM model and the Regret% under the MM model is 0%. With the increase of the n value, the Regret%

of the MM model generally increases, ranging from 13.96% to 50.64%. Even for the instance with 2700 km

distance threshold, i.e., n= 21, indicating that the available cross moment information is only one pair of

facilities having independent disruptions, the Regret% of the MM model is 27.51%. For certain instances,

e.g., the instance with 2400 km distance threshold in Table 4, the CM model gives the same solution as the

MM model regardless of the cross moment information.

Compare the CM model with the stochastic model. As the n value increases, the Regret% of the stochastic

model firstly increases from 27.04% to 124.87% and then suddenly drops to around 0%. Note that the cross

moment information for the CM model is actually the independence between facility disruptions. The higher

n value indicates more pairs of facilities have independent disruptions. Therefore, the sudden drop of the

Regret% of the stochastic model comes from the fact that the CM model may give the same or similar

solution as that of the stochastic model, given certain facility pairs with independent disruptions. This is

consistent with another observation that, with the increasing value of n, i.e., more facility pairs are assumed

to have independent disruptions, the number of open facilities by the CM model first increases from 4 facilities

(which equals that of the MM solution) to 5 facilities and then decreases back to 4 facilities (which equals

that of the stochastic solution).

B.3. Detailed Numerical Results Based on Randomly Generated Instances

In Section 5.2, the numerical experiment is conducted based on the existing data set, where each combination

of (Nodes, β, θ) in Table 2 corresponds to only one instance with all parameters calculated according to

the data set. In order to have more observations on how the values of Regret% and the numbers of open

facilities for different models change with β and θ, we further conduct this numerical study based on randomly

generated instances with 20 nodes. We randomly generate the location, demand, and fixed facility setup cost

of each node, within the same range as those in the data set, respectively. The unit transportation cost and
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the marginal/cross disruption probability are calculated based on these randomly generated data. To see

how Regret% changes with the value of β, we fix θ to be 800 and set the value of β from 0.025 to 0.300 with

a step length of 0.025. To see how Regret% changes with the value of θ, we fixed β to be 0.2 and set the

value of θ from 200 to 800 with a step length of 50. For each value of β or θ, 100 scenarios are randomly

generated, and the average values are reported in Table 5. The average Regret% is also presented in Figure

1, while the average #Open is presented in Figure 2.

Table 5 Numerical results of random instances

Instance CM model MM model Stochastic model

Nodes β θ #Open #Open Regret% (%) #Open Regret% (%)

20 0.025 800 8.21 7.97 4.56 7.83 6.44

20 0.050 800 8.23 8.01 10.33 7.87 14.59

20 0.075 800 8.14 8.07 14.65 7.93 22.65

20 0.100 800 8.29 8.14 19.05 7.99 28.70

20 0.125 800 8.32 8.16 22.58 8.00 35.25

20 0.150 800 8.29 8.19 24.99 8.01 41.22

20 0.175 800 8.21 8.17 28.57 8.03 46.60

20 0.200 800 8.33 8.11 31.40 8.08 50.54

20 0.225 800 8.28 8.15 33.66 8.13 54.06

20 0.250 800 8.29 8.15 34.78 8.19 58.06

20 0.275 800 8.32 8.16 36.79 8.23 60.37

20 0.300 800 8.23 8.10 40.68 8.24 63.30

20 0.200 200 7.84 7.81 0.07 7.80 0.07

20 0.200 250 7.88 7.87 0.04 7.81 0.39

20 0.200 300 8.04 7.92 0.82 7.89 1.16

20 0.200 350 8.22 8.03 1.86 7.93 3.32

20 0.200 400 8.26 8.04 4.06 7.96 6.76

20 0.200 450 8.26 8.14 6.96 7.92 12.55

20 0.200 500 8.28 8.16 10.03 7.97 17.40

20 0.200 550 8.28 8.14 14.24 7.98 22.88

20 0.200 600 8.32 8.16 16.56 7.96 29.15

20 0.200 650 8.30 8.16 20.68 7.98 35.70

20 0.200 700 8.25 8.20 24.33 8.02 40.85

20 0.200 750 8.27 8.15 28.12 8.04 46.21

20 0.200 800 8.33 8.11 31.40 8.08 50.54

Table 5 reveals the same observations on the values of Regret% of the MM and the stochastic models, which

have been discussed in details in Section 5.2. The values of Regret% of the MM model and the stochastic

model both increase with β and θ. Moreover, the value of Regret% of the stochastic model is generally larger

than that of the MM model.

Table 5 and Figure 2 provide additional observations on the numbers of open facilities for different models

(cf. column “#Open”). First, for any of these models, the number of open facilities generally increases with
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Figure 2 Impact of β and θ on average #Open

the values of β and θ (i.e., facility disruption probability). This is consistent with the observations in Section

4.2 and also the intuition that more facilities should be open under higher risks of disruptions. Second, for

most cases, the cross moment model tends to open the largest number of facilities among the three models,

while the stochastic model tends to open the least number of facilities for most instances with moderate

values of β and θ, e.g., the instances with β below 0.225 and θ equal to 800. This is consistent with the

observations for most instances in Section 4.2. Third, with the increasing values of β and θ, the number of

open facilities by the stochastic model increases gradually and may exceed that of the marginal moment

model or even the cross moment model when β is large enough. This could be explained by the fact that

the stochastic model makes the location decision assuming independent disruptions for all the facility pairs.

Thus, with the increase of facility disruption probability, the stochastic model tends to be more “confident”

on opening more facilities with the knowledge of independent facility disruptions.
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