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APPROXIMATION OF TWO-STAGE STOCHASTIC GENERALIZED

EQUATIONS\ast 

XIAOJUN CHEN\dagger , ALEXANDER SHAPIRO\ddagger , AND HAILIN SUN\S 

Abstract. A solution of two-stage stochastic generalized equations is a pair: a first stage
solution which is independent of realization of the random data and a second stage solution which is
a function of random variables. This paper studies convergence of the sample average approximation
of two-stage stochastic nonlinear generalized equations. In particular, an exponential rate of the
convergence is shown by using the perturbed partial linearization of functions. Moreover, sufficient
conditions for the existence, uniqueness, continuity, and regularity of solutions of two-stage stochastic
generalized equations are presented under an assumption of monotonicity of the involved functions.
These theoretical results are given without assuming relatively complete recourse and are illustrated
by two-stage stochastic noncooperative games of two players.
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1. Introduction. Consider the following two-stage stochastic generalized equa-
tions (SGE)

0 \in \BbbE [\Phi (x, y(\xi ), \xi )] + \Gamma 1(x), x \in X,(1.1)

0 \in \Psi (x, y(\xi ), \xi ) + \Gamma 2(y(\xi ), \xi ) for almost every (a.e.) \xi \in \Xi .(1.2)

Here X \subseteq \BbbR n is a nonempty closed convex set, \xi : \Omega \rightarrow \BbbR d is a random vector
defined on a probability space (\Omega ,\scrF ,\BbbP ), whose probability distribution P = \BbbP \circ \xi  - 1 is
supported on set \Xi := \xi (\Omega ) \subseteq \BbbR d, \Phi : \BbbR n\times \BbbR m\times \BbbR d \rightarrow \BbbR n and \Psi : \BbbR n\times \BbbR m\times \BbbR d \rightarrow \BbbR m,
and \Gamma 1 : \BbbR n \rightrightarrows \BbbR n and \Gamma 2 : \BbbR m\times \Xi \rightrightarrows \BbbR m are multifunctions (point-to-set mappings).
We assume throughout the paper that \Phi (\cdot , \cdot , \xi ) and \Psi (\cdot , \cdot , \xi ) are Lipschitz continuous
with Lipschitz moduli \kappa \Phi (\xi ) and \kappa \Psi (\xi ), respectively, and y(\cdot ) \in \scrY , with \scrY being the
space of measurable functions from \Xi to \BbbR m such that the expected value in (1.1) is
well-defined.

Solutions of (1.1)--(1.2) are searched over x \in X and y(\cdot ) \in \scrY to satisfy the cor-
responding inclusions, where the second stage inclusion (1.2) should hold for a.e. re-
alization of \xi . The first stage decision x is made before observing realization of the
random data vector \xi , and the second stage decision y(\xi ) is a function of \xi .
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136 XIAOJUN CHEN, ALEXANDER SHAPIRO, AND HAILIN SUN

When the multifunctions \Gamma 1 and \Gamma 2 have the form

\Gamma 1(x) := \scrN C(x) and \Gamma 2(y, \xi ) := \scrN K(\xi )(y),

where \scrN C(x) is the normal cone to a nonempty closed convex set C \subseteq \BbbR n at x,
and similarly for \scrN K(\xi )(y), the SGE (1.1)--(1.2) reduce to the two-stage stochastic
variational inequalities (SVI) as in [2, 25]. The two-stage SVI represent first order
optimality conditions for the two-stage stochastic optimization problem [1, 27] and
models several equilibrium problems in a stochastic environment [2, 5]. Moreover, if
the sets C and K(\xi ), \xi \in \Xi , are closed convex cones, then

\scrN C(x) = \{ x\ast \in C\ast : x\top x\ast = 0\} , x \in C,

where C\ast = \{ x\ast : x\top x\ast \leq 0 \forall x \in C\} is the (negative) dual of cone C. In that case,
the SGE (1.1)--(1.2) reduce to the following two-stage stochastic cone VI:

C \ni x \bot \BbbE [\Phi (x, y(\xi ), \xi )] \in  - C\ast , x \in X,

K(\xi ) \ni y(\xi ) \bot \Psi (x, y(\xi ), \xi ) \in  - K\ast (\xi ) for a.e. \xi \in \Xi .

In particular, when C := \BbbR n
+ with C\ast =  - \BbbR n

+, and K(\xi ) := \BbbR m
+ with K\ast (\xi ) =

 - \BbbR m
+ for all \xi \in \Xi , the SGE (1.1)--(1.2) reduce to the two-stage stochastic nonlinear

complementarity problem (SNCP)

0 \leq x \bot \BbbE [\Phi (x, y(\xi ), \xi )] \geq 0,

0 \leq y(\xi ) \bot \Psi (x, y(\xi ), \xi ) \geq 0 for a.e. \xi \in \Xi ,

which is a generalization of the two-stage stochastic linear complementarity problem
(SLCP)

0 \leq x \bot Ax+ \BbbE [B(\xi )y(\xi )] + q1 \geq 0,(1.3)

0 \leq y(\xi ) \bot L(\xi )x+M(\xi )y(\xi ) + q2(\xi ) \geq 0 for a.e. \xi \in \Xi ,(1.4)

where A \in \BbbR n\times n, B : \Xi \rightarrow \BbbR n\times m, L : \Xi \rightarrow \BbbR m\times n, M : \Xi \rightarrow \BbbR m\times m, q1 \in \BbbR n, q2 : \Xi \rightarrow 
\BbbR m. The two-stage SLCP arises from the KKT condition for the two-stage stochastic
linear programming [2]. Existence of solutions of (1.3)--(1.4) has been studied in [3].
Moreover, the progressive hedging method has been applied to solve (1.3)--(1.4), with
a finite number of realizations of \xi , in [23].

Most existing studies for two-stage stochastic problems assume relatively complete
recourse; that is, for every x \in X and a.e. \xi \in \Xi , the second stage problem has at least
one solution. However, for the SGE (1.1)--(1.2), it could happen that for a certain
first stage decision x \in X, the second stage generalized equation

(1.5) 0 \in \Psi (x, y, \xi ) + \Gamma 2(y, \xi )

does not have a solution for some \xi \in \Xi . For such x and \xi , the second stage decision
y(\xi ) is not defined. If this happens for \xi with positive probability, then the expected
value of the first stage problem is not defined and such x should be avoided. In
practice, a relatively complete recourse condition may not hold in many real world
applications. For example, when considering making a decision on building a power
station for providing electrical power to satisfy the demand, it could be practically
impossible to make sure that the uncertain demand will be satisfied under any possible
circumstances.
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 137

In this paper, without assuming relatively complete recourse, we study conver-
gence of the sample average approximation (SAA)

0 \in N - 1
N\sum 
j=1

\Phi (x, yj , \xi 
j) + \Gamma 1(x), x \in X,(1.6)

0 \in \Psi (x, yj , \xi 
j) + \Gamma 2(yj , \xi 

j), j = 1, . . . , N,(1.7)

of the two-stage SGE (1.1)--(1.2) with yj being a copy of the second stage vector for
\xi = \xi j , j = 1, . . . , N , where \xi 1, . . . , \xi N is an independent and identically distributed
(i.i.d.) sample of random vector \xi . Note that (1.1)--(1.2) is a two-stage extension
of the one-stage SGE. The convergence analysis and exponential rate of convergence
of the one-stage SGE have been investigated in a number of publications (see, e.g.,
[19, 27, 30] and references therein). We extend those convergence analysis results
from the one-stage SGE to the two-stage SGE in a significant way. Our SAA method
for the two-stage SGE (1.1)--(1.2) is different from the discretization scheme for the
two-stage SLCP in [3]. The main difference is that the discretization scheme in [3]
uses the partition of the support set \Xi and the conditional expectations of random
functions, but our SAA method does not.

The paper is organized as follows. In section 2, we investigate the almost sure
and exponential rate of convergence of solutions of the SAA of the two-stage SGE.
In section 3, convergence analysis of the mixed two-stage SVI-NCP is presented. In
particular, we give sufficient conditions for the existence, uniqueness, continuity, and
regularity of solutions by using the perturbed linearization of functions \Phi and \Psi .
Theoretical results, given in sections 2 and 3, are illustrated by numerical examples,
using the progressive hedging method (PHM), in section 4. It is worth noting that
PHM is well-defined for the two-stage monotone SVI without relatively complete
recourse. Finally, section 5 is devoted to conclusion remarks.

We use the following notation and terminology throughout the paper. Unless
stated otherwise, \| x\| denotes the Euclidean norm of vector x \in \BbbR n. By \scrB := \{ x :
\| x\| \leq 1\} we denote a unit ball in a considered vector space. For two sets A,B \subset \BbbR m,
we denote d(x,B) := infy\in B \| x - y\| the distance from a point x \in \BbbR m to the set B,
d(x,B) = +\infty if B is empty, \BbbD (A,B) := supx\in A d(x,B) the deviation of set A from
the set B, and \BbbH (A,B) := max\{ \BbbD (A,B),\BbbD (B,A)\} . The indicator function of a set
A is defined as IA(x) = 0 for x \in A and IA(x) = +\infty for x \not \in A. By bd(A), int(A),
and cl(A) we denote the boundary, interior, and topological closure of a set A \subset \BbbR m.
By reint(A) we denote the relative interior of a convex set A \subset \BbbR m. A multifunction
(point-to-set mappings) \Gamma : \BbbR n \rightrightarrows \BbbR m assigns a point x \in \BbbR n to a set \Gamma (x) \subset \BbbR m.
A multifunction \Gamma : \BbbR n \rightrightarrows \BbbR m is said to be closed if xk \rightarrow x, x\ast k \in \Gamma (xk), and
x\ast k \rightarrow x\ast ; then x\ast \in \Gamma (x). It is said that a multifunction \Gamma : \BbbR n \rightrightarrows \BbbR n is monotone
if (x  - x\prime )\top (y  - y\prime ) \geq 0, for all x, x\prime \in \BbbR n, and y \in \Gamma (x), y\prime \in \Gamma (x\prime ). Note that
for a nonempty closed convex set C, the normal cone multifunction \Gamma (x) := \scrN C(x)
is closed and monotone. Note also that the normal cone \scrN C(x), at x \in C, is the
(negative) dual of the tangent cone \scrT C(x). We use the same notation for \xi considered
as a random vector and as a variable \xi \in \BbbR d. Which of these two meanings is used will
be clear from the context. For vector d \in \BbbR n, dJ is a subvector of d whose entries are
in the index J \subseteq \{ 1, . . . , n\} . Similarly, for matrix D \in \BbbR n\times m, DJ1J2

is a submatrix
of D whose entries are in the index J1 \times J2 \subseteq \{ 1, . . . , n\} \times \{ 1, . . . ,m\} .

2. SAA of the two-stage SGE. In this section, we discuss statistical properties
of the first stage solution \^xN of the SAA problem (1.6)--(1.7). In particular, we
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138 XIAOJUN CHEN, ALEXANDER SHAPIRO, AND HAILIN SUN

investigate conditions ensuring convergence of \^xN , with probability one (w.p.1) and
exponential, to its counterpart of the true problem (1.1)--(1.2).

Denote by \scrX the set of x \in X such that the second stage generalized equation
(1.5) has a solution for a.e. \xi \in \Xi . The condition of relatively complete recourse
means that \scrX = X. Note that \scrX is a subset of X, and if (\=x, \=y(\cdot )) is a solution of
(1.1)--(1.2), then \=x \in \scrX . It is possible to formulate the two-stage SGE (1.1)--(1.2) in
the following equivalent way. Let \^y(x, \xi ) be a solution function of the second stage
problem (1.5) for x \in \scrX and \xi \in \Xi , i.e.,

0 \in \Psi (x, \^y(x, \xi ), \xi ) + \Gamma 2(\^y(x, \xi ), \xi ), x \in \scrX , a.e. \xi \in \Xi .

Then the first stage problem becomes

(2.1) 0 \in \BbbE [\Phi (x, \^y(x, \xi ), \xi )] + \Gamma 1(x), x \in \scrX .

If \=x is a solution of (2.1), then (\=x, \^y(\=x, \cdot )) is a solution of (1.1)--(1.2). Conversely if
(\=x, \=y(\cdot )) is a solution of (1.1)--(1.2), then \=x is a solution of (2.1). Note that problem
(2.1) is a generalized equation which has been studied in past decades; see, e.g.,
[19, 22, 24, 26].

It could happen that the second stage problem (1.5) has more than one solution
for some x \in \scrX . In that case, the choice of \^y(x, \xi ) is somewhat arbitrary and the
corresponding SGE are not well-posed. This motivates the following condition.

Assumption 2.1. For a.e. \xi \in \Xi , problem (1.5) has a unique solution for all x \in \scrX .

Under Assumption 2.1, the value \^y(x, \xi ) is uniquely defined for all x \in \scrX and
a.e. \xi \in \Xi , and the first stage problem (2.1) can be written as the following generalized
equation:

(2.2) 0 \in \phi (x) + \Gamma 1(x), x \in \scrX ,

where

(2.3) \phi (x) := \BbbE [\^\Phi (x, \xi )] and \^\Phi (x, \xi ) := \Phi (x, \^y(x, \xi ), \xi ).

If the SGE have relatively complete recourse, then under Assumption 2.1 the SAA
problem (1.6)--(1.7) can be written as

(2.4) 0 \in \^\phi N (x) + \Gamma 1(x), x \in X,

where \^\phi N (x) := N - 1
\sum N

j=1
\^\Phi (x, \xi j), with \^\Phi (x, \xi ) as defined in (2.3). Problem (2.4)

can be viewed as the SAA of the first stage problem (2.2). If (\^xN , \^yjN ) is a solution
of the SAA problem (1.6)--(1.7), then \^xN is a solution of (2.4) and \^yjN = \^y(\^xN , \xi 

j),
j = 1, . . . , N . Note that the SAA problem (1.6)--(1.7) can be considered without
assuming relatively complete recourse, although in that case it could happen that
\^\phi N (x) is not defined for some x \in X \setminus \scrX and solution \^xN of (1.6) is not implementable
at the second stage for some realizations of the random vector \xi . Our aim is the
convergence analysis of the SAA problem (1.6)--(1.7) when sample size N increases.

Denote by \scrS \ast the set of solutions of the first stage problem (2.2) and by \^\scrS N the
set of solutions of the SAA problem (1.6) (in case of relatively complete recourse, \^\scrS N

is the set of solutions of problem (2.4) as well). By \=\scrX (\xi ) we denote the set of x \in X
such that problem (1.5) has a solution and by \=\scrX N := \cap N

j=1
\=\scrX (\xi j) the set of x such

that problems (1.7) have a solution. Note that the set \scrX is equal to the intersection
of \=\scrX (\xi ) for a.e. \xi \in \Xi ; i.e., \scrX = \cap \xi \in \Xi \setminus \Upsilon \=\scrX (\xi ) for some set \Upsilon \subset \Xi such that P (\Upsilon ) = 0.
Note also that if the two-stage SGE have relatively complete recourse, then \=\scrX (\xi ) = X
for a.e. \xi \in \Xi .
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2.1. Almost sure convergence. Consider the solution \^y(x, \xi ) of the second
stage problem (1.5). To ensure continuity of \^y(x, \xi ) in x \in \scrX for \xi \in \Xi , in addition
to Assumption 2.1, we need the following boundedness condition.

Assumption 2.2. For every \xi and every x \in \=\scrX (\xi ), there is a neighborhood \scrV of x
and a measurable function v(\xi ) such that \| \^y(x\prime , \xi )\| \leq v(\xi ) for all x\prime \in \scrV \cap \=\scrX (\xi ).

Note that function v(\xi ) depends on point x and its neighborhood \scrV . We suppress
this in the notation of v(\xi ).

Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold and for a.e. \xi \in \Xi the
multifunction \Gamma 2(\cdot , \xi ) is closed. Then for a.e. \xi \in \Xi the solution \^y(x, \xi ) is a continuous
function of x \in \scrX .

Proof. The proof is quite standard. We argue by a contradiction. Suppose that
for some \=x \in \scrX and \xi \in \Xi the solution \^y(\cdot , \xi ) is not continuous at \=x. That is,
there is a sequence xk \in \scrX converging to \=x \in \scrX such that yk := \^y(xk, \xi ) does not
converge to \=y := \^y(\=x, \xi ). Then, by the boundedness assumption, by passing to a
subsequence if necessary we can assume that yk converges to a point y\ast different from
\=y. Consequently, 0 \in \Psi (xk, yk, \xi )+\Gamma 2(yk, \xi ) and \Psi (xk, yk, \xi ) converges to \Psi (\=x, y\ast , \xi ).
Since \Gamma 2(\cdot , \xi ) is closed, it follows that 0 \in \Psi (\=x, y\ast , \xi ) + \Gamma 2(y

\ast , \xi ). Hence, by the
uniqueness assumption, y\ast = \=y, which gives the required contradiction.

Suppose for the moment that in addition to the assumptions of Lemma 2.1, the
SGE have relatively complete recourse. We can then apply general results to verify the
consistency of the SAA estimates. Consider function \^\Phi (x, \xi ) defined in (2.3). By the
continuity of \Phi (\cdot , \cdot , \xi ) and \^y(\cdot , \xi ), we have that \^\Phi (\cdot , \xi ) is continuous on X. Assuming
further that there is a compact set X \prime \subseteq X such that \scrS \ast \subseteq X \prime and \| \^\Phi (x, \xi )\| x\in X\prime is
dominated by an integrable function, we have that the function \phi (x) = \BbbE [\^\Phi (x, \xi )] is
continuous on X \prime and \^\phi N (x) converges w.p.1 to \phi (x) uniformly on X \prime . Note that the
boundedness condition of Lemma 2.1 and continuity of \Phi (\cdot , \cdot , \xi ) imply that \^\Phi (\cdot , \xi ) is
bounded on X \prime . Then consistency of SAA solutions follows by [27, Theorem 5.12].
We give below a more general result without the assumption of relatively complete
recourse.

Lemma 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then for a.e. \xi \in \Xi the
set \=\scrX (\xi ) is closed.

Proof. For a given \xi \in \Xi , let xk \in \=\scrX (\xi ) be a sequence converging to a point \=x.
We need to show that \=x \in \=\scrX (\xi ). Let yk be the solution of (1.5) for x = xk and \xi .
Then, by Assumption 2.2, there is a neighborhood \scrV of \=x and a measurable function
v(\xi ) such that \| yk\| \leq v(\xi ) when xk \in \scrV . Hence, by passing to a subsequence, we can
assume that yk converges to a point \=y \in \BbbR m. Since \Psi (\cdot , \cdot , \xi ) is continuous and \Gamma 2(\cdot , \xi )
is closed, it follows that \=y is a solution of (1.5) for x = \=x, and hence \=x \in \=\scrX (\xi ).

By saying that a property holds w.p.1 for N large enough we mean that there is
a set \Sigma \subset \Omega of \BbbP -measure zero such that for every \omega \in \Omega \setminus \Sigma there exists a positive
integer N\ast = N\ast (\omega ) such that the property holds for all N \geq N\ast (\omega ) and \omega \in \Omega \setminus \Sigma .

For \delta \in (0, 1), consider a compact set \=\Xi \delta \subset \Xi such that \BbbP (\=\Xi \delta ) \geq 1  - \delta and the
multifunction \Delta \delta : X \rightrightarrows \=\Xi \delta is defined as

(2.5) \Delta \delta (x) := \{ \xi \in \=\Xi \delta : x \in \=\scrX (\xi )\} .

Assumption 2.3. For any \delta \in (0, 1), the multifunction \Delta \delta (\cdot ) is outer semicontin-
uous.
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The following lemma shows that this assumption holds under mild conditions.
Note that since the set \=\Xi \delta is compact, the multifunction \Delta \delta (\cdot ) is outer semicontinuous
if and only if it is closed (cf. [24, Chapter 5(B)]).

Lemma 2.3. Suppose \Psi (\cdot , \cdot , \cdot ) is continuous, \Gamma 2(\cdot , \cdot ) is closed, and Assumption 2.2
holds. Then the multifunction \Delta \delta (\cdot ) is outer semicontinuous.

Proof. Consider the second stage generalized equation (1.2) and any sequence
\{ (xk, yk, \xi k)\} such that xk \in X, \xi k \in \Delta \delta (xk) with a corresponding second stage
solution yk and (xk, \xi k) \rightarrow (x\ast , \xi \ast ) \in X \times \Xi . Since \Psi is continuous w.r.t. (x, y, \xi ) and
\Gamma 2(\cdot , \cdot ) is closed, we have that under Assumption 2.2, \{ yk\} has accumulation points
and any accumulation point y\ast satisfies

0 \in \Psi (x\ast , y\ast , \xi \ast ) + \Gamma 2(y
\ast , \xi \ast ),

which implies \xi \ast \in \Delta \delta (x
\ast ). This shows that the multifunction \Delta \delta (\cdot ) is closed. Since

\=\Xi \delta is compact, the closeness of \Delta \delta (\cdot ) implies the outer semicontinuity of \Delta \delta (\cdot ).
Note that in the case when \Xi is compact, we can set \delta = 0 and replace \=\Xi \delta by \Xi .

Theorem 2.4. Suppose that (i) Assumptions 2.1--2.3 hold, (ii) the multifunctions
\Gamma 1(\cdot ) and \Gamma 2(\cdot , \xi ), \xi \in \Xi , are closed, (iii) there is a compact subset X \prime of X such that
\scrS \ast \subset X \prime and w.p.1 for all N large enough the set \^\scrS N is nonempty and is contained
in X \prime , (iv) \| \^\Phi (x, \xi )\| x\in \scrX is dominated by an integrable function, and (v) the set \scrX is
nonempty. Let dN := \BbbD 

\bigl( 
\=\scrX N \cap X \prime ,\scrX \cap X \prime \bigr) . Then \scrS \ast is nonempty and the following

statements hold:
(a) dN \rightarrow 0 and \BbbD ( \^\scrS N ,\scrS \ast ) \rightarrow 0 w.p.1 as N \rightarrow \infty .
(b) In addition, assume that (vi) for any \delta > 0, \tau > 0 and a.e. \omega \in \Omega , there exist

\gamma > 0 and N0 = N0(\omega ) such that for any x \in \scrX \cap X \prime + \gamma \scrB and N \geq N0,
there exists zx \in \scrX \cap X \prime such that1

(2.6) \| zx  - x\| \leq \tau , \Gamma 1(x) \subseteq \Gamma 1(zx) + \delta \scrB , and \| \^\phi N (zx) - \^\phi N (x)\| \leq \delta .

Then w.p.1 for N large enough it follows that

(2.7) \BbbD ( \^\scrS N ,\scrS \ast ) \leq \tau +\scrR  - 1

\biggl( 
sup

x\in \scrX \cap X\prime 
\| \phi (x) - \^\phi N (x)\| 

\biggr) 
,

where for \varepsilon \geq 0 and t \geq 0,

\scrR (\varepsilon ) := inf
x\in \scrX \cap X\prime , d(x,\scrS \ast )\geq \varepsilon 

d
\bigl( 
0, \phi (x) + \Gamma 1(x)

\bigr) 
,

\scrR  - 1(t) := inf\{ \varepsilon \in \BbbR + : \scrR (\varepsilon ) \geq t\} .

Proof. Part (a). Let \xi j = \xi j(\omega ), j = 1, . . . , be the i.i.d. sample, defined on the
probability space (\Omega ,\scrF ,\BbbP ), and let \=\scrX N = \=\scrX N (\omega ) be the corresponding feasibility set
of the SAA problem. Consider a point \=x \in X \prime \setminus \scrX and its neighborhood \scrV \=x = \=x+ \gamma \scrB 
for some \gamma > 0. We have that probability p := \BbbP \{ \xi \in \Xi : \=x \not \in \=\scrX (\xi )\} is positive.
Moreover, it follows by Assumption 2.3 that we can choose \gamma > 0 such that probability
\BbbP 
\bigl\{ 
\scrV \=x \cap \=\scrX (\xi ) = \emptyset 

\bigr\} 
is positive. Indeed, for \delta := p/4 consider the multifunction \Delta \delta 

1Recall that \^\phi N (x) = \^\phi N (x, \omega ) are random functions defined on the probability space (\Omega ,\scrF ,\BbbP ).
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 141

defined in (2.5). By outer semicontinuity of \Delta \delta we have that for any \varepsilon > 0 there is
\gamma > 0 such that for all x \in \scrV \=x it follows that \Delta \delta (x) \subset \Delta \delta (\=x) + \varepsilon \scrB . That is,

\cup x\in \scrV \=x\{ \xi \in \=\Xi \delta : x \in \=\scrX (\xi )\} \subset \{ \xi \in \=\Xi \delta : \=x \in \=\scrX (\xi )\} + \varepsilon \scrB \subset \{ \xi \in \Xi : \=x \in \=\scrX (\xi )\} + \varepsilon \scrB .

It follows that we can choose \varepsilon > 0 small enough such that

\BbbP 

\Biggl( \bigcup 
x\in \scrV \=x

\{ \xi \in \=\Xi \delta : x \in \=\scrX (\xi )\} 

\Biggr) 
\leq 1 - p/2.

Since \delta = p/4, we obtain

\BbbP 

\Biggl( \bigcup 
x\in \scrV \=x

\{ \xi \in \Xi : x \in \=\scrX (\xi )\} 

\Biggr) 
\leq 1 - p/4.

Noting that the event
\bigl\{ 
\scrV \=x \cap \=\scrX (\xi ) = \emptyset 

\bigr\} 
is a complement of the event

\bigl\{ 
\cup x\in \scrV \=x

\{ \xi \in \Xi :

x \in \=\scrX (\xi )\} 
\bigr\} 
, we obtain that \BbbP 

\bigl\{ 
\scrV \=x \cap \=\scrX (\xi ) = \emptyset 

\bigr\} 
\geq p/4.

Consider the event EN :=
\bigl\{ 
\scrV \=x \cap \=\scrX N \not = \emptyset 

\bigr\} 
. The complement of this event is Ec

N =\bigl\{ 
\scrV \=x \cap \=\scrX N = \emptyset 

\bigr\} 
. Since the sample \xi j , j = 1, . . . , is i.i.d., we have

\BbbP 
\bigl\{ 
\scrV \=x \cap \=\scrX N \not = \emptyset 

\bigr\} 
\leq 

N\prod 
j=1

\BbbP 
\bigl\{ 
\scrV \=x \cap \=\scrX (\xi j) \not = \emptyset 

\bigr\} 
=

N\prod 
j=1

\bigl( 
1 - \BbbP 

\bigl\{ 
\scrV \=x \cap \=\scrX (\xi j) = \emptyset 

\bigr\} \bigr) 
\leq (1 - p/4)N ,

and hence
\sum \infty 

N=1 \BbbP 
\bigl\{ 
\scrV \=x \cap \=\scrX N \not = \emptyset 

\bigr\} 
<\infty . It follows by the Borel--Cantelli lemma that

\BbbP (lim supN\rightarrow \infty EN ) = 0. That is, for all N large enough, the events Ec
N happen

w.p.1. Now for a given \varepsilon > 0 consider the set \scrX \varepsilon := \{ x \in X \prime : d(x,\scrX ) < \varepsilon \} . Since the
set X \prime \setminus \scrX \varepsilon is compact, we can choose a finite number of points x1, . . . , xK \in X \prime \setminus \scrX \varepsilon 

and their respective neighborhoods \scrV 1, . . . ,\scrV K covering the set X \prime \setminus \scrX \varepsilon such that for
all N large enough the events \{ \scrV k \cap \=\scrX N = \emptyset \} , k = 1, . . . ,K, happen w.p.1. It follows
that w.p.1 for all N large enough \=\scrX N is a subset of \scrX \varepsilon . This shows that dN tends to
zero w.p.1.

To show that \BbbD ( \^\scrS N ,\scrS \ast ) \rightarrow 0 w.p.1, the arguments now basically are deterministic;
i.e., dN and \^xN \in \^\scrS N are viewed as random variables, dN = dN (\omega ), \^xN = \^xN (\omega ),
defined on the probability space (\Omega ,\scrF ,\BbbP ), and we want to show that d(\^xN (\omega ),\scrS \ast )
tends to zero for all \omega \in \Omega except on a set of \BbbP -measure zero. Therefore we consider
sequences dN and \^xN as deterministic, for a particular (fixed) \omega \in \Omega , and drop
mentioning w.p.1. Since dN \rightarrow 0, there is \~xN \in \scrX such that \| \^xN  - \~xN\| tends to zero.
Note that as an intersection of closed sets, the set \scrX is closed. By the assumption
(iv) and continuity of \^\Phi (\cdot , \xi ) we have that \^\phi N (\cdot ) converges w.p.1 to \phi (\cdot ) uniformly on
the compact set \scrX \cap X \prime (this is the so-called uniform law of large numbers (see, e.g.,
[27, Theorem 7.48]); i.e., for all \omega \in \Omega except on a set of \BbbP -measure zero,

sup
x\in \scrX \cap X\prime 

\| \^\phi N (x) - \phi (x)\| \rightarrow 0 as N \rightarrow \infty .

By passing to a subsequence if necessary we can assume that \^xN converges to a point
x\ast . It follows that \~xN \rightarrow x\ast and hence \^\phi N (\~xN ) \rightarrow \phi (x\ast ). Thus \^\phi N (\^xN ) \rightarrow \phi (x\ast ).
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142 XIAOJUN CHEN, ALEXANDER SHAPIRO, AND HAILIN SUN

Since \Gamma 1 is closed, it follows that 0 \in \phi (x\ast ) + \Gamma 1(x
\ast ), i.e., x\ast \in \scrS \ast . This completes

the proof of part (a) and also implies that the set \scrS \ast is nonempty.
Part (b). By [19, Theorem 3.1(ii)], \scrR (0) = 0, \scrR (\varepsilon ) is nondecreasing on [0,\infty ),

and \scrR (\varepsilon ) > 0 for all \varepsilon > 0. Note that it follows that \scrR  - 1(t) is nondecreasing on
[0,\infty ) and tends to zero as t \downarrow 0.

Let \delta = \scrR (\varepsilon )/4. By part (a) and the uniform law of large numbers we have w.p.1
that for N large enough

sup
x\in \scrX \cap X\prime 

\| \phi (x) - \^\phi N (x)\| \leq \delta .

Then, w.p.1 for N large enough such that dN \leq \varepsilon , for any point x \in \=\scrX N \cap X \prime with
d(zx,\scrS \ast ) \geq \varepsilon it follows that

d(0, \^\phi N (x) + \Gamma 1(x))

\geq d(0, \^\phi N (zx) + \Gamma 1(zx) + \delta \scrB ) - \BbbD (\^\phi N (x) + \Gamma 1(x), \^\phi N (zx) + \Gamma 1(zx) + \delta \scrB )
\geq d(0, \phi (zx) + \Gamma 1(zx) + \delta \scrB ) - \BbbD (\^\phi N (zx) + \Gamma 1(zx) + \delta \scrB , \phi (zx) + \Gamma 1(zx) + \delta \scrB )

 - \BbbD (\^\phi N (x) + \Gamma 1(x), \^\phi N (zx) + \Gamma 1(zx) + \delta \scrB )
\geq d(0, \phi (zx) + \Gamma 1(zx) + \delta \scrB ) - \| \^\phi N (zx), \phi (zx)\|  - \| \^\phi N (x), \^\phi N (zx)\| 

 - \BbbD (\Gamma 1(x),\Gamma 1(zx) + \delta \scrB )
\geq 3\delta  - \delta  - \delta  - 0 = \delta ,

which implies x /\in \^\scrS N . Then

d(x,\scrS \ast ) \leq \| x - zx\| + d(zx,\scrS \ast ) \leq \tau +\scrR  - 1

\biggl( 
sup

x\in \scrX \cap X\prime 
\| \phi (x) - \^\phi N (x)\| 

\biggr) 
.

This completes the proof.

The assumption that the set \^\scrS N is nonempty means existence of solutions of
the SAA problem (1.6)--(1.7). Existence of the solutions of deterministic VI and
infinite dimensional VI has been well investigated in [10, 12], respectively. Existence
of a solution to the perturbed generalized equations has been investigated in the
literature of deterministic generalized equations. For instance, in [16] a number of
sufficient conditions is derived which ensure solvability (existence of a solution) of
perturbed generalized equations. Similar conditions were further investigated in [15],
and their one-stage stochastic extension has been presented in [19]. Those results can
be applied to the one-stage version (2.2) of (1.1)--(1.2) and its SAA problem (2.4)
directly. Moreover, in section 3, based on the results in [12] for infinite dimensional
VI, we propose sufficient conditions of existence and uniqueness of the solutions of
two-stage SVI-NCP, a special case of two-stage SGE (1.1)--(1.2).

In case of relatively complete recourse, there is no need for condition (vi), the
estimate (2.7) holds with \tau = 0, and the derivations can follow the similar results in
[19, 27, 30] directly. It is interesting to consider how strong condition (vi) is. In the
following remark, we show that condition (vi) can also hold without the assumption
of relatively complete recourse under mild conditions.

Remark 2.1. In condition (vi), the third inequality of (2.6) can be easily verified
when N is sufficiently large and \^\Phi (\cdot , \xi ) is Lipschitz continuous with Lipschitz moduli
\kappa \^\Phi (\xi ) and \BbbE [\kappa \^\Phi (\xi )] <\infty . In Lemma 2.7 and Theorem 3.7 below, we verify the third
inequality of (2.6) under moderate conditions.

Moreover, in the case when \Gamma 1(\cdot ) := \scrN C(\cdot ) with a nonempty polyhedral convex set
C, the first and second inequalities of (2.6) hold automatically. Let \frakF = \{ F1, . . . , FK\} 
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 143

be the family of all nonempty faces of C, and let

\scrK := \{ k : \scrX \cap X \prime \cap Fk \not = \emptyset , k = 1, . . . ,K\} .

Then w.p.1 for N sufficiently large, \=\scrX N \cap X \prime \cap Fk = \emptyset for all k /\in \scrK . Note that for all
k \in \scrK , \=\scrX N \cap X \prime \cap Fk \not = \emptyset . Moreover, it is important to note that for all x1 \in reint(Fk)
and x2 \in Fk, k \in \{ 1, . . . ,K\} , \scrN C(x1) \subseteq \scrN C(x2). Then, for any x \in \=\scrX N \cap X \prime \setminus \scrX ,
there exists k \in \scrK such that x \in reint(Fk). To see this, we assume for contradiction
that x \in Fk \setminus reint(Fk) for some k \in \scrK and there is no k \in \scrK such that x \in reint(Fk).
Then there exist some \=k \in \{ 1, . . . ,K\} such that x \in reint(F\=k) (if F\=k is singleton, then
reint(F\=k) = F\=k) and

\=k /\in \scrK ). This contradicts that \=\scrX N \cap X \prime \cap Fk = \emptyset for all k /\in \scrK .
Note that \BbbH 

\bigl( 
\=\scrX N \cap X \prime ,\scrX \cap X \prime \bigr) \leq dN and dN \rightarrow 0 as N \rightarrow \infty w.p.1. Let zx =

argminz\in \scrX \cap X\prime \cap Fk
\| z  - x\| . Then \scrN C(x) \subseteq \scrN C(zx) and for

\tau N := max
k\in \scrK 

max
x\in \=\scrX N\cap X\prime \cap Fk

min
z\in \scrX \cap X\prime \cap Fk

\| z  - x\| 

we have that \tau N \rightarrow 0 as dN \rightarrow 0. Hence (2.6) is verified.
From Figure 1, it is easy to observe the relationship between x \in \=\scrX N \cap X \prime and

zx \in \scrX \cap X \prime : they are in the same face of the polyhedral convex set C = \BbbR 2
+ and

\scrN \BbbR 2
+
(x) \subseteq \scrN \BbbR 2

+
(zx), where \scrX , \=\scrX N , and X \prime are indicated in the figure. Moreover,

\tau \rightarrow 0 with \gamma \rightarrow 0. In the general case when C is not polyhedral, let \Gamma 1(x) = \scrN C(x).
Without complete recourse, even if x and zx are sufficiently close to each other,
\BbbD (\scrN C(x),\scrN C(zx)) may still be the infinity. Then condition (2.6) fails.

Fig. 1. Relationship between x and zx.

2.2. Exponential rate of convergence. We assume in this section that the
set \scrS \ast of solutions of the first stage problem is nonempty and the set X is compact.
The last assumption of compactness of X can be relaxed to assuming that there is a
compact subset X \prime of X such that w.p.1 \^\scrS N \subset X \prime and to deal with the set X \prime rather
than X. For simplicity of notation, we assume directly compactness of X.

Under Assumption 2.2 and by Lemma 2.1, we have that \^\Phi (x, \xi ), defined in (2.3),
is continuous in x \in \scrX . However, to investigate the exponential rate of convergence,
we need to verify the Lipschitz continuity of \^\Phi (\cdot , \xi ). To this end, we assume the Clarke
differential (CD) regularity property of the second stage generalized equation (1.2).
By \pi y\partial (x,y)(\Psi (\=x, \=y, \=\xi )) we denote the projection of the Clarke generalized Jacobian
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\partial (x,y)\Psi (\=x, \=y, \=\xi ) in \BbbR m\times n \times \BbbR m\times m onto \BbbR m\times m: the set \pi y\partial (x,y)\Psi (\=x, \=y, \=\xi ) consists of
matrices J \in \BbbR m\times m such that the matrix (S, J) belongs to \partial (x,y)\Psi (\=x, \=y, \=\xi ) for some
S \in \BbbR m\times n.

Definition 2.5. For \=\xi \in \Xi , a solution \=y of the second stage generalized equation
(1.2) is said to be parametrically CD-regular, at x = \=x \in \=\scrX (\=\xi ), if for each J \in 
\pi y\partial (x,y)\Psi (\=x, \=y, \=\xi ) the solution \=y of the following SGE is strongly regular:

(2.8) 0 \in \Psi (\=x, \=y, \=\xi ) + J(y  - \=y) + \Gamma 2(y, \=\xi ).

That is, there exist neighborhoods \scrU of \=y and \scrV of 0 such that for every \eta \in \scrV the
perturbed (partially) linearized SGE of (2.8)

\eta \in \Psi (\=x, \=y, \=\xi ) + J(y  - \=y) + \Gamma 2(y, \=\xi )

has in \scrU a unique solution \^y\=x(\eta ), and the mapping \eta \rightarrow \^y\=x(\eta ) : \scrV \rightarrow \scrU is Lipschitz
continuous.

Assumption 2.4. For a.e. \xi \in \Xi , there exists a unique, parametrically CD-regular
solution \=y = \^y(\=x, \xi ) of the second stage generalized equation (1.2) for all \=x \in \scrX .

Proposition 2.6. Suppose Assumption 2.4 holds. Then for a.e. \xi \in \Xi the so-
lution mapping \^y(x, \xi ) of the second stage generalized equation (1.2) is a Lipschitz
continuous function of x \in \scrX with Lipschitz constant \kappa (\xi ).

The result is implied directly by [14, Theorem 4] and the compactness of \scrX \subseteq X.
Moreover, note that for any \=x \in \scrX , if the generalized equation

0 \in G\=x(y) := \Psi (\=x, \=y, \=\xi ) + J(y  - \=y) + \Gamma 2(y, \=\xi ) for which G\=x(\=y) \ni 0

has a locally Lipschitz continuous solution function at 0 for \=y with Lipschitz constant
\kappa G(\=x, \xi ), then, by [9, Theorem 1.1], we have that

\kappa \=x(\xi ) = \kappa G(\=x, \xi )\kappa \Psi (\xi ) <\infty 

is a Lipschitz constant of the second stage solution function \^y(x, \xi ) at \=x.

Assumption 2.5. The set \scrX is convex, its interior int(\scrX ) \not = \emptyset , and for a.e. \xi \in \Xi ,
the generalized equation

0 \in G\=x(y) = \Psi (\=x, \=y, \xi ) + J(y  - \=y) + \Gamma 2(y, \xi ), for which G\=x(\=y) \ni 0,

has a locally Lipschitz continuous solution function at 0 for \=y with Lipschitz constant
\kappa G(\=x, \xi ) for all \=x \in \scrX and there exists a measurable function \=\kappa G : \Xi \rightarrow \BbbR + such that
\kappa G(x, \xi ) \leq \=\kappa G(\xi ) and \BbbE [\=\kappa G(\xi )\kappa \Psi (\xi )] <\infty .

Under Assumption 2.5, it can be seen that \BbbE [\^y(x, \xi )] is Lipschitz continuous over
x \in \scrX with Lipschitz constant \BbbE [\=\kappa G(\xi )\kappa \Psi (\xi )]. We then consider the first stage (1.1)
of the SGE as the generalized equation (2.2) with the respective second stage solution
\^y(x, \xi ) (recall definition (2.3) of \^\Phi (x, \xi ) and \phi (x)).

Lemma 2.7. Suppose that Assumptions 2.4--2.5 hold, \BbbE [\kappa \Phi (\xi )] <\infty , and

\BbbE [\kappa \Phi (\xi )\=\kappa G(\xi )\kappa \Psi (\xi )] <\infty .

Then, for a.e. \xi \in \Xi , \^\Phi (x, \xi ) and \phi (x) are Lipschitz continuous over x \in \scrX with
respective Lipschitz moduli

\kappa \Phi (\xi ) + \kappa \Phi (\xi )\=\kappa G(\xi )\kappa \Psi (\xi ) and \BbbE [\kappa \Phi (\xi )] + \BbbE [\kappa \Phi (\xi )\=\kappa G(\xi )\kappa \Psi (\xi )].
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Remark 2.2. Specifically, we study Assumptions 2.2--2.5 in the framework of the
following SGE:

0 \in \BbbE [\Phi (x, y(\xi ), \xi )] + \Gamma 1(x), x \in X,(2.9)

0 \in \Psi (x, y(\xi ), \xi ) +\scrN \BbbR m
+
(H(x, y(\xi ), \xi )) for a.e. \xi \in \Xi ,(2.10)

where H(x, y, \xi ) : \BbbR n \times \BbbR m \times \Xi \rightarrow \BbbR m. Let h(x, y, \xi ) := min\{ \Psi (x, y, \xi ), H(x, y, \xi )\} .
Then the second stage VI (2.10) is equivalent to

(2.11) h(x, y, \xi ) = 0 for a.e. \xi \in \Xi .

For x = \=x and \xi \in \Xi , let \=y be a solution of (2.11), and suppose that each matrix
J \in \pi y\partial h(\=x, \=y, \xi ) is nonsingular for a.e. \xi . Then, by Clarke's inverse function theorem,
there exists a Lipschitz continuous solution function \^y(x, \xi ) such that \^y(\=x, \xi ) = \=y and
the Lipschitz constant is bounded by \| J - 1(x, y, \xi )S(x, y, \xi )\| for all

(S(x, y, \xi ), J(x, y, \xi ))\top \in \pi x,y\partial h(x, y, \xi ).

Then Assumption 2.4 holds. Moreover, if we assume

\BbbE 
\bigl[ 
\| J - 1(x, \^y(x, \xi ), \xi )S(x, \^y(x, \xi ), \xi )\| 

\bigr] 
<\infty 

for all x \in \scrX , then Assumption 2.5 holds.

Now we investigate the exponential rate of convergence of the two-stage SAA
problem (1.6)--(1.7) by using a uniform large deviations theorem (cf. [27, 28, 30]).
Let

M i
x(t) := \BbbE 

\Bigl\{ 
exp
\bigl( 
t[\^\Phi i(x, \xi ) - \phi i(x)]

\bigr) \Bigr\} 
be the moment generating function of the random variable \^\Phi i(x, \xi )  - \phi i(x), i =
1, . . . , n, and let

M\kappa (t) := \BbbE 
\bigl\{ 
exp

\bigl( 
t
\bigl[ 
\kappa \Phi (\xi ) + \kappa \Phi (\xi )\kappa (\xi ) - \BbbE [\kappa \Phi (\xi ) + \kappa \Phi (\xi )\kappa (\xi )

\bigr] \bigr] \bigr) \bigr\} 
.

Assumption 2.6. For every x \in \scrX and i = 1, . . . , n, the moment generating func-
tions M i

x(t) and M\kappa (t) have finite values for all t in a neighborhood of zero.

Theorem 2.8. Suppose (i) Assumptions 2.1, 2.3--2.6 hold, (ii) \scrS \ast is nonempty
and w.p.1 for N large enough, \^\scrS N are nonempty, and (iii) the multifunctions \Gamma 1(\cdot )
and \Gamma 2(\cdot , \xi ), \xi \in \Xi , are closed and monotone. Then the following statements hold:

(a) For sufficiently small \varepsilon > 0, there exist positive constants \varrho = \varrho (\varepsilon ) and
\varsigma = \varsigma (\varepsilon ), independent of N , such that

(2.12) \BbbP 
\biggl\{ 
sup
x\in \scrX 

\bigm\| \bigm\| \^\phi N (x) - \phi (x)
\bigm\| \bigm\| \geq \varepsilon 

\biggr\} 
\leq \varrho (\varepsilon )e - N\varsigma (\varepsilon ).

(b) Assume in addition the following: (iv) The condition of part (b) in Theorem
2.4 holds, and w.p.1 for N sufficiently large,

(2.13) \scrS \ast \cap cl
\bigl( 
bd(\scrX ) \cap int( \=\scrX N )

\bigr) 
= \emptyset .

(v) \phi (\cdot ) has the following strong monotonicity property for every x\ast \in \scrS \ast :

(2.14) (x - x\ast )\top (\phi (x) - \phi (x\ast )) \geq g(\| x - x\ast \| ) \forall x \in \scrX ,
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where g : \BbbR + \rightarrow \BbbR + is such a function that function r(\tau ) := g(\tau )/\tau is mono-
tonically increasing for \tau > 0.
Then \scrS \ast = \{ x\ast \} is a singleton and for any sufficiently small \varepsilon > 0, there
exists N sufficiently large such that

(2.15) \BbbP 
\Bigl\{ 
\BbbD ( \^\scrS N ,\scrS \ast ) \geq \varepsilon 

\Bigr\} 
\leq \varrho 

\bigl( 
r - 1(\varepsilon )

\bigr) 
exp

\bigl( 
 - N\varsigma 

\bigl( 
r - 1(\varepsilon )

\bigr) \bigr) 
,

where \varrho (\cdot ) and \varsigma (\cdot ) are as defined in (2.12), and r - 1(\varepsilon ) := inf\{ \tau > 0 : r(\tau ) \geq 
\varepsilon \} is the inverse of r(\tau ).

Proof. Part (a). By Lemma 2.7, because of conditions (i) and (ii) and the com-
pactness of X, we have by [27, Theorem 7.67] that for every i \in \{ 1, . . . , n\} and \varepsilon > 0
small enough, there exist positive constants \varrho i = \varrho i(\varepsilon ) and \varsigma i = \varsigma i(\varepsilon ), independent of
N , such that

\BbbP 
\biggl\{ 
sup
x\in \scrX 

\bigm| \bigm| (\^\phi N )i(x) - \phi i(x)
\bigm| \bigm| \geq \varepsilon 

\biggr\} 
\leq \varrho i(\varepsilon )e

 - N\varsigma i(\varepsilon ),

and hence (2.12) follows.
Part (b). By condition (iv) we have that \BbbD (\scrS \ast , \=\scrX N \setminus \scrX ) > 0. Let \varepsilon be sufficiently

small such that w.p.1 for N sufficiently large,

\BbbD (\scrS \ast , \=\scrX N \setminus \scrX ) \geq 3\varepsilon .

Note that since \scrX \subseteq \=\scrX N+1 \subseteq \=\scrX N , \BbbD (\scrS \ast , \=\scrX N \setminus \scrX ) is nondecreasing with N \rightarrow \infty .
By Theorem 2.4(b), w.p.1 for N sufficiently large such that \tau \leq \varepsilon , we have

\scrR  - 1

\biggl( 
sup
x\in \scrX 

\| \^\phi N (x) - \phi (x)\| 
\biggr) 

\leq \varepsilon 

and

\BbbD ( \^\scrS N ,\scrS \ast ) \leq \tau +\scrR  - 1

\biggl( 
sup
x\in \scrX 

\| \^\phi N (x) - \phi (x)\| 
\biggr) 

\leq 2\varepsilon .

By condition (iv), when N is sufficiently large w.p.1, for any point \~x \in \=\scrX N \setminus \scrX ,
\BbbD (\~x,\scrS \ast ) \geq 3\varepsilon , which implies \^\scrS N \subset \scrX , and then

(2.16) \BbbD ( \^\scrS N ,\scrS \ast ) \leq \scrR  - 1

\biggl( 
sup
x\in \scrX 

\| \^\phi N (x) - \phi (x)\| 
\biggr) 
.

In order to use (2.16) to derive an exponential rate of convergence of the SAA esti-
mators, we need an upper bound for \scrR  - 1(t) or, equivalently, a lower bound for \scrR (\varepsilon ).
Note that because of the monotonicity assumptions we have that \scrS \ast = \{ x\ast \} .

For x \in \scrX and z \in \Gamma 1(x), we have

(x - x\ast )\top (\phi (x) - \phi (x\ast )) = (x - x\ast )\top (\phi (x) + z  - \phi (x\ast ) - z) \leq (x - x\ast )\top (\phi (x) + z),

where the last inequality holds since  - \phi (x\ast ) \in \Gamma 1(x
\ast ) and because of monotonicity

of \Gamma 1. It follows that

(x - x\ast )\top (\phi (x) - \phi (x\ast )) \leq \| x - x\ast \| \| \phi (x) + z\| 
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and since z \in \Gamma 1(x) was arbitrary that

(x - x\ast )\top (\phi (x) - \phi (x\ast )) \leq \| x - x\ast \| d
\bigl( 
0, \phi (x) + \Gamma 1(x)

\bigr) 
.

Together with (2.14) this implies

d
\bigl( 
0, \phi (x) + \Gamma 1(x)

\bigr) 
\geq r(\| x - x\ast \| ).

It follows that \scrR (\varepsilon ) \geq r(\varepsilon ), \varepsilon \geq 0, and hence

\scrR  - 1(t) \leq r - 1(t),

where r - 1(\cdot ) is the inverse of function r(\cdot ). Then, by (2.12), (2.15) holds.

Note that if g(\tau ) := c \tau \alpha for some constants c > 0 and \alpha > 1, then r - 1(t) =
(t/c)1/(\alpha  - 1). In particular, for \alpha = 2, condition (2.14) assumes strong monotonicity
of \phi (\cdot ). Note also that condition (iv) is not needed if the relatively complete recourse
condition holds.

It is also interesting to consider how strong condition (2.13) is. Note that when
\scrS \ast \subset int(\scrX ), condition (2.13) holds. Moreover, we can also see from the following
simple example that even when \scrS \ast \cap bd(\scrX ) \not = \emptyset , condition (2.13) may still hold.

Example 2.1. Consider a two-stage SLCP

0 \leq 
\biggl( 
x1
x2

\biggr) 
\bot 
\biggl( 
1 0
0 1

\biggr) \biggl( 
x1
x2

\biggr) 
+

\biggl( 
\BbbE [y1(\xi )]
\BbbE [y2(\xi )]

\biggr) 
\geq 0,

0 \leq 
\biggl( 
y1(\xi )
y2(\xi )

\biggr) 
\bot 
\biggl( 
\alpha (x1, \xi ) 0

0 \alpha (x2, \xi )

\biggr) \biggl( 
y1(\xi )
y2(\xi )

\biggr) 
 - 
\biggl( 
x1
x2

\biggr) 
\geq 0 a.e. \xi \in \Xi ,

where

\alpha (t, \xi ) =

\biggl\{ 1
t+\xi +51 if t+ \xi \leq 100,

0 otherwise,

and \xi follows uniform distribution in [ - 50, 50].
By simple calculation, we have that \scrS \ast = \{ (0, 0)\} and \scrX = [0, 50] \times [0, 50].

Moreover, consider an i.i.d. sample \{ \xi j\} Nj=1 with maxj \xi 
j = 49, \=\scrX N = [0, 51]\times [0, 51].

Let X = \{ x : 0 \leq x1, x2 \leq 100\} . It is easy to observe that although \scrS \ast = \{ (0, 0)\} is
at the boundary of \scrX \cap X, condition (2.13) still holds.

Remark 2.3. It is also interesting to estimate the required sample size of the SAA
problem for the two-stage SGE. Similar to a discussion in [28, p. 410], if there exists
a positive constant \sigma > 0 such that

(2.17) M i
x(t) \leq exp\{ \sigma 2t2/2\} \forall t \in \BbbR , i = 1, . . . , n,

then it can be verified that Iix(z) \geq z2

2\sigma 2 for all z \in \BbbR , where Iix(z) := supt\in \BbbR \{ zt  - 
logM i

x(t)\} is the large deviations rate function of random variable \^\Phi i(x, \xi )  - \phi i(x),
i = 1, . . . , n. Note that if \^\Phi i(x, \xi )  - \phi i(x) is a sub-Gaussian random variable, (2.17)
holds, i = 1, . . . , n. Then it can be verified that if

N \geq 32n\sigma 

\varepsilon 2

\biggl[ 
ln(n(2\Pi + 1)) + ln

\biggl( 
1

\alpha 

\biggr) \biggr] 
,

then

\BbbP 
\biggl\{ 
sup
x\in \scrX 

\bigm\| \bigm\| \^\phi N (x) - \phi (x)
\bigm\| \bigm\| \geq \varepsilon 

\biggr\} 
\leq \alpha ,
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where \Pi := (O(1)D\BbbE [\kappa \Phi (\xi ) + \kappa \Phi (\xi )\kappa (\xi )]/\varepsilon )
n
and D is the diameter of X. Conse-

quently, it follows by (2.16) that if

N \geq 32n\sigma 

(r - 1(\varepsilon ))2

\biggl[ 
ln(n(2\^\Pi + 1)) + ln

\biggl( 
1

\alpha 

\biggr) \biggr] 
,

with \^\Pi :=
\bigl( 
O(1)D\BbbE [\kappa \Phi (\xi ) + \kappa \Phi (\xi )\kappa (\xi )]/r

 - 1(\varepsilon )
\bigr) n

, then we have

\BbbP 
\Bigl\{ 
\BbbD ( \^\scrS N ,\scrS \ast ) \geq \varepsilon 

\Bigr\} 
\leq \alpha .

Confidence intervals based on the SAA were studied in [18] for one-stage SVI
problems. It could be possible to extend those results to two-stage SGE under mild
conditions. This could be a topic for a future research.

In the next section, we will verify the conditions of Theorems 2.4 and 2.8 for the
two-stage SVI-NCP under moderate assumptions.

3. Two-stage SVI-NCP and its SAA problem. In this section, we inves-
tigate convergence properties of the two-stage SGE (1.1)--(1.2) when \Phi (x, y, \xi ) and
\Psi (x, y, \xi ) are continuously differentiable w.r.t. (x, y) for a.e. \xi \in \Xi and \Gamma 1(x) := \scrN C(x)
and \Gamma 2(y) := \scrN \BbbR m

+
(y), with C \subseteq \BbbR n being a nonempty, polyhedral, convex set. That

is, we consider the mixed two-stage SVI-NCP

0 \in \BbbE [\Phi (x, y(\xi ), \xi )] +\scrN C(x),(3.1)

0 \leq y(\xi ) \bot \Psi (x, y(\xi ), \xi ) \geq 0 for a.e. \xi \in \Xi (3.2)

and study convergence analysis of its SAA problem

0 \in N - 1
N\sum 
j=1

\Phi (x, y(\xi j), \xi j) +\scrN C(x),(3.3)

0 \leq y(\xi j) \bot \Psi (x, y(\xi j), \xi j) \geq 0, j = 1, . . . , N.(3.4)

We first give some required definitions. Let \scrY be the space of measurable functions
u : \Xi \rightarrow \BbbR m with a finite value of

\int 
\| u(\xi )\| 2P (d\xi ), and let \langle \cdot , \cdot \rangle denote the scalar

product in the Hilbert space \BbbR n\times \scrY equipped with an \scrL 2-norm; that is, for x, z \in \BbbR n

and y, u \in \scrY ,

\langle (x, y), (z, u)\rangle := x\top z +

\int 
\Xi 

y(\xi )\top u(\xi )P (d\xi ).

Consider mapping \scrG : \BbbR n \times \scrY \rightarrow \BbbR n \times \scrY defined as

\scrG (x, y(\cdot )) :=
\bigl( 
\BbbE [\Phi (x, y(\xi ), \xi )],\Psi (x, y(\cdot ), \cdot )

\bigr) 
.

Monotonicity properties of this mapping are defined in the usual way. In particular,
the mapping \scrG is said to be strongly monotone if there exists a positive number \=\kappa 
such that for any (x, y(\cdot )), (z, u(\cdot )) \in \BbbR n \times \scrY , we have\biggl\langle 

\scrG (x, y(\cdot )) - \scrG (z, u(\cdot )),
\biggl( 

x - z
y(\cdot ) - u(\cdot )

\biggr) \biggr\rangle 
\geq \=\kappa (\| x - z\| 2 + \BbbE [\| y(\xi ) - u(\xi )\| 2]).

Definition 3.1 (see [12, Definition 12.1]). The mapping \scrG : \BbbR n \times \scrY \rightarrow \BbbR n \times \scrY 
is hemicontinuous on \BbbR n \times \scrY if \scrG is continuous on line segments in \BbbR n \times \scrY ; i.e., for
every pair of points (x, y(\cdot )), (z, u(\cdot )) \in \BbbR n \times \scrY , the following function is continuous:

t \mapsto \rightarrow 
\biggl\langle 
\scrG (tx+ (1 - t)z, ty(\cdot ) + (1 - t)u(\cdot )),

\biggl( 
x - z

y(\cdot ) - u(\cdot )

\biggr) \biggr\rangle 
.
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Definition 3.2 (see [12, Definition 12.3(i)]). The mapping \scrG : \BbbR n\times \scrY \rightarrow \BbbR n\times \scrY 
is coercive if there exists (x0, y0(\cdot )) \in \BbbR n \times \scrY such that\biggl\langle 
\scrG (x, y(\cdot )),

\biggl( 
x - x0

y(\cdot ) - y0(\cdot )

\biggr) \biggr\rangle 
\| x - x0\| + \BbbE [\| y(\xi ) - y0(\xi )\| ]

\rightarrow \infty as \| x\| +\BbbE [\| y(\xi )\| ] \rightarrow \infty and (x, y(\cdot )) \in \BbbR n \times \scrY .

Note that the strong monotonicity of \scrG implies the coerciveness of \scrG ; see [12,
Chapter 12]. In section 3.1, we consider the properties in the second stage SNCP.

3.1. Lipschitz properties of the second stage solution mapping. Strong
regularity of VI was investigated in Dontchev and Rockafellar [8]. We apply their
results to the second stage SNCP. Consider a linear VI

(3.5) 0 \in Hz + q +\scrN U (z),

where U is a closed nonempty, polyhedral, convex subset of \BbbR l.

Definition 3.3 (see [8, Definition 2]). The critical face condition is said to hold
at (q0, z0) if for any choice of faces F1 and F2 of the critical cone \scrC 0 with F2 \subset F1,

u \in F1  - F2, H\top u \in (F1  - F2)
\ast =\Rightarrow u = 0,

where critical cone \scrC 0 = \scrC (z0, v0) := \{ z\prime \in \scrT U (z0) : z\prime \bot v0\} , with v0 = Hz0 + q0.

Theorem 3.4 (see [8, Theorem 2]). The linear variational inequality (3.5) is
strongly regular at (q0, z0) if and only if the critical face condition holds at (q0, z0),
where z0 is the solution of the linear VI: 0 \in Hz + q0 +\scrN U (z).

Corollary 3.1 (see [8, Corollary 1]). A sufficient condition for strong regularity
of the linear VI (3.5) at (q0, z0) is that u

\top Hu > 0 for all vectors u \not = 0 in the subspace
spanned by the critical cone \scrC 0.

Note that when H is a positive definite matrix, the condition in Corollary 3.1
holds and we do not need to assume the critical face condition in Definition 3.3. Then
we apply Corollary 3.1 to the two-stage SVI-NCP and consider the Clarke generalized
Jacobian of \^y(x, \xi ). To this end, we introduce some notations: let

\alpha (\^y(x, \xi )) = \{ i : (\^y(x, \xi ))i > (\Psi (x, \^y(x, \xi ), \xi ))i\} ,
\beta (\^y(x, \xi )) = \{ i : (\^y(x, \xi ))i = (\Psi (x, \^y(x, \xi ), \xi ))i\} ,
\gamma (\^y(x, \xi )) = \{ i : (\^y(x, \xi ))i < (\Psi (x, \^y(x, \xi ), \xi ))i\} .

Note that for any x \in \scrX and a.e. \xi \in \Xi , \^y(x, \xi ), \alpha (\^y(x, \xi )), \beta (\^y(x, \xi )), and \gamma (\^y(x, \xi )
are uniquely defined. For simplicity, we use \alpha = \alpha (\^y(x, \xi )), \beta = \beta (\^y(x, \xi )), and
\gamma = \gamma (\^y(x, \xi )). Let \nabla x\Psi (x, y, \xi ) and \nabla y\Psi (x, y, \xi ) be the Jacobians of \Psi (x, y, \xi ) w.r.t.
x and y, respectively.

Assumption 3.1. For a.e. \xi \in \Xi and all x \in \scrX \cap C, \Psi (x, \cdot , \xi ) is strongly monotone;
that is, there exists a positive valued measurable \kappa y(\xi ) such that for all y, u \in \BbbR m,

\langle \Psi (x, y, \xi ) - \Psi (x, u, \xi ), y  - u\rangle \geq \kappa y(\xi )\| y  - u\| 2,

with \BbbE [\kappa y(\xi )] < +\infty .

Applying Corollary 2.1 in [17] to the second stage of the SVI-NCP, we have the
following lemma.
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Lemma 3.5. Suppose Assumption 3.1 holds and for a fixed \=\xi \in \Xi , \Psi (x, y, \xi ) is
continuously differentiable w.r.t. (x, y). Then, for the fixed \=\xi \in \Xi , (a) \^y(x, \=\xi ) is a
unique solution of the second stage NCP (3.2), and (b) \^y(x, \=\xi ) is F-differentiable at
\=x \in \scrX \cap C if and only if \beta (\^y(\=x, \=\xi )) is empty and

(\nabla x\^y(\=x, \xi ))\alpha =  - (\nabla y\Psi \alpha \alpha (\=x, \^y(\=x, \xi ), \xi ))
 - 1\nabla x\Psi \alpha (\=x, \^y(\=x, \xi ), \xi ), (\nabla x\^y(\=x, \xi ))\gamma = 0

or

\nabla x\Psi \beta (\=x, \^y(\=x, \xi ), \xi ) = \nabla y\Psi \beta \alpha (\=x, \^y(\=x, \xi ), \xi )(\nabla y\Psi \alpha \alpha (\=x, \^y(\=x, \xi ), \xi ))
 - 1\nabla x\Psi \alpha (\=x, \^y(\=x, \xi ), \xi ).

In this case, the F-derivative of \^y(\cdot , \xi ) at \=x is given by

(\nabla x\^y(\=x, \xi ))\alpha =  - (\nabla y\Psi \alpha \alpha (\=x, \^y(\=x, \xi ), \xi ))
 - 1\nabla x\Psi \alpha (\=x, \^y(\=x, \xi ), \xi ),

(\nabla x\^y(\=x, \xi ))\beta = 0, (\nabla x\^y(\=x, \xi ))\gamma = 0.

Theorem 3.6. Let \Psi : \BbbR n \times \BbbR m \times \Xi \rightarrow \BbbR m be Lipschitz continuous and con-
tinuously differentiable over \BbbR n \times \BbbR m for a.e. \xi \in \Xi . Suppose Assumption 3.1 holds
and \Phi (x, y, \xi ) is continuously differentiable w.r.t. (x, y) for a.e. \xi \in \Xi . Then, for a.e.
\xi \in \Xi and x \in \scrX , the following hold:

(a) The second stage SNCP (3.2) has a unique solution \^y(x, \xi ) which is paramet-
rically CD-regular, and the mapping x \mapsto \rightarrow \^y(x, \xi ) is Lipschitz continuous over
\scrX \cap X \prime , where X \prime is a compact subset of \BbbR n.

(b) The Clarke Jacobian of \^y(x, \xi ) w.r.t. x is as follows:

\partial \^y(x, \xi ) = conv
\Bigl\{ 
lim
z\rightarrow x

\nabla z\^y(z, \xi ) : \nabla z\^y(z, \xi )

=  - [I  - D\alpha (I  - M(z, \^y(z, \xi ), \xi ))] - 1D\alpha L(z, \^y(z, \xi ), \xi )
\Bigr\} 
,

where M(x, y, \xi ) = \nabla y\Psi (x, y, \xi ), L(x, \^y(x, \xi ), \xi ) = \nabla x\Psi (x, \^y(x, \xi ), \xi ).

Proof. Part (a). Note that by Lemma 3.5(a), for almost all \=\xi \in \Xi and every
\=x \in \scrX \cap X \prime , there exists a unique solution \^y(\=x, \=\xi ) of the second stage SNCP (3.2).
Moreover, consider the LCP

(3.6) 0 \leq y \bot \Psi (\=x, \=y, \=\xi ) +\nabla y\Psi (\=x, \=y, \=\xi )(\=y  - y) \geq 0,

where \=y = \^y(\=x, \=\xi ). By the strong monotonicity of \Psi (\=x, \cdot , \=\xi ), \nabla y\Psi (\=x, \=y, \=\xi ) is positive
definite. Then, by Corollary 3.1, the LCP (3.6) is strongly regular at \=y. This implies
the parametrically CD-regularity of the second stage SNCP (3.2) with \=x at solution
\=y. Then the Lipschitz property follows from [14, Theorem 4] and the compactness of
X \prime .

Part (b). For any fixed \=\xi , by part (a), there exists a unique Lipschitz function
\^y(\cdot , \=\xi ) such that, for any x \in \scrX , \^y(x, \=\xi ) solves

0 \leq y \bot \Psi (x, y, \=\xi ) \geq 0.

Note that \^y(\cdot , \=\xi ) is Lipschitz continuous and hence F-differentiable almost every-
where over \scrB \delta (\=x). Then, for any x\prime \in \scrB \delta (\=x) such that \^y(x\prime , \=\xi ) is F-differentiable, by
Lemma 3.5(b), we have that \beta (\^y(x\prime , \xi )) is empty and
(3.7)
(\nabla x\^y(x

\prime , \xi ))\alpha =  - (\nabla y\Psi (x\prime , \^y(x\prime , \xi ), \xi )) - 1
\alpha \alpha (\nabla x\Psi (x\prime , \^y(x\prime , \xi ), \xi ))\alpha , (\nabla x\^y(x

\prime , \xi ))\gamma = 0
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or \beta (\^y(x\prime , \xi )) is not empty and

(3.8)
(\nabla x\^y(x

\prime , \xi ))\alpha =  - (\nabla y\Psi (x\prime , \^y(x\prime , \xi ), \xi )) - 1
\alpha \alpha (\nabla x\Psi (x\prime , \^y(x\prime , \xi ), \xi ))\alpha ,

(\nabla x\^y(x
\prime , \xi ))\beta = 0, (\nabla x\^y(x

\prime , \xi ))\gamma = 0.

Let DJ \in \scrD be an m-dimensional diagonal matrix with J \in \scrJ and

(3.9) (DJ)jj :=

\biggl\{ 
1 if j \in J,
0 otherwise,

M(x, y, \xi ) = \nabla y\Psi (x, y, \xi ), and W (x, \xi ) = [I  - D\alpha (I  - M(x, y, \xi ))] - 1D\alpha . Then, by
(3.7) and (3.8), similarly to [6, Theorem 2.1],

\nabla x\^y(x
\prime , \xi ) =  - [I  - D\alpha (I  - M(x\prime , \^y(x\prime , \=\xi ), \xi ))] - 1D\alpha L(x

\prime , \^y(x\prime , \=\xi ), \=\xi ),

where L(x, \^y(x, \xi ), \xi ) = \nabla x\Psi (x, \^y(x, \xi ), \xi ). Let

(3.10) UJ(M) = (I  - DJ(I  - M)) - 1DJ \forall J \in \scrJ .

By the definition and outer semicontinuity of the Clarke generalized Jacobian we have

\partial \^y(x, \xi ) = conv
\Bigl\{ 
lim
z\rightarrow x

\nabla z\^y(z, \xi ) : \nabla z\^y(z, \xi )

=  - [I  - D\alpha (I  - M(z, \^y(z, \xi ), \xi ))] - 1D\alpha L(z, \^y(z, \xi ), \xi )
\Bigr\} 

\subseteq conv\{  - UJ(M(x, \^y(x, \xi ), \xi ))L(x, \^y(x, \xi ), \xi ) : J \in \scrJ \} .

The proof is complete.

It is easy to observe that

(3.11)

\partial \^y(x, \xi ) = conv
\Bigl\{ 
lim
z\rightarrow x

\nabla z\^y(z, \xi ) : \nabla z\^y(z, \xi )

=  - [I  - D\alpha (I  - M(z, \^y(z, \xi ), \xi ))] - 1D\alpha L(z, \^y(z, \xi ), \xi )
\Bigr\} 

\subseteq conv\{  - UJ(M(x, \^y(x, \xi ), \xi ))L(x, \^y(x, \xi ), \xi ) : J \in \scrJ \} ,

where \scrJ := 2\{ 1,...,m\} and DJ and UJ are defined in (3.9) and (3.10), respectively.
Under Assumption 3.1, the two-stage SVI-NCP can be reformulated as a single

stage SVI with \^\Phi (x, \xi ) = \Phi (x, \^y(x, \xi ), \xi ) and \phi (x) = \BbbE [\^\Phi (x, \xi )] as follows:

(3.12) 0 \in \phi (x) +\scrN C(x).

With the results in Theorem 3.6, SVI (3.12) has the following properties. Let

\Theta (x, y(\xi ), \xi ) =

\biggl( 
\Phi (x, y(\xi ), \xi )
\Psi (x, y(\xi ), \xi )

\biggr) 
,

and let \nabla \Theta (x, y, \xi ) be the Jacobian of \Theta . Then

\nabla \Theta (x, y, \xi ) =

\biggl( 
A(x, y, \xi ) B(x, y, \xi )
L(x, y, \xi ) M(x, y, \xi )

\biggr) 
,

where A(x, y, \xi ) = \nabla x\Phi (x, y, \xi ), B(x, y, \xi ) = \nabla y\Phi (x, y, \xi ), L(x, y, \xi ) = \nabla x\Psi (x, y, \xi ),
and M(x, y, \xi ) = \nabla y\Psi (x, y, \xi ).
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Theorem 3.7. Suppose the conditions of Theorem 3.6 hold. Let X \prime \subseteq C be a
compact set for any \xi \in \Xi , let Y (\xi ) = \{ \^y(x, \xi ) : x \in X \prime \} , and let \nabla \Theta (x, y, \xi ) be the
Jacobian of \Theta . Assume

(3.13) \BbbE [\| A(x, \^y(x, \xi ), \xi ) - B(x, \^y(x, \xi ), \xi )M(x, \^y(x, \xi ), \xi ) - 1L(x, \^y(x, \xi ), \xi )\| ] < +\infty 

over \scrX \cap X \prime . Then the following hold:
(a) \^\Phi (x, \xi ) is Lipschitz continuous w.r.t. x over \scrX \cap X \prime for all \xi \in \Xi .
(b) \BbbE [\^\Phi (x, \xi )] is Lipschitz continuous w.r.t. x over \scrX \cap X \prime .

Proof. Part (a). By the compactness of X \prime and Theorem 3.6(a), Y (\xi ) is compact
for almost all \xi \in \Xi . By the continuity of \nabla \Theta (x, \^y(x, \xi ), \xi ) we have that

A(x, \^y(x, \xi ), \xi ) - B(x, \^y(x, \xi ), \xi )M(x, \^y(x, \xi ), \xi ) - 1L(x, \^y(x, \xi ), \xi )

is continuous over X \prime . Then we have

sup
x\in X\prime 

\| A(x, \^y(x, \xi ), \xi ) - B(x, \^y(x, \xi ), \xi )M(x, \^y(x, \xi ), \xi ) - 1L(x, \^y(x, \xi ), \xi )\| < +\infty .

Moreover, by Theorem 3.6(b) and (3.11), the Lipschitz module of \^\Phi (x, \xi ), denoted by
lip\Phi (\xi ), satisfies

lip\Phi (\xi )
\leq sup

x\in X\prime 
\| A(x, \^y(x, \xi ), \xi ) - B(x, \^y(x, \xi ), \xi )M(x, \^y(x, \xi ), \xi ) - 1L(x, \^y(x, \xi ), \xi )\| 

< +\infty .

Part (b). The proof comes from part (a) and (3.13) directly.

3.2. Existence, uniqueness, and CD-regularity of the solutions. Con-
sider the mixed SVI-NCP (3.1)--(3.2) and its one stage reformulation (3.12). If we
replace Assumption 3.1 by the following assumption, we can have stronger results.

Assumption 3.2. For a.e. \xi \in \Xi , \Theta (x, y(\xi ), \xi ) is strongly monotone with parame-
ter \kappa (\xi ) at (x, y(\cdot )) \in C \times \scrY , where \BbbE [\kappa (\xi )] < +\infty .

Note that Assumption 3.1 can be implied by Assumption 3.2 over C \times \scrY .

Theorem 3.8. Suppose Assumption 3.2 holds over C \times \scrY and \Phi (x, y, \xi ) and
\Psi (x, y, \xi ) are continuously differentiable w.r.t. (x, y) for a.e. \xi \in \Xi . Then the fol-
lowing hold:

(a) \scrG : C \times \scrY \rightarrow C \times \scrY is strongly monotone and hemicontinuous.
(b) For all x and almost all \xi \in \Xi , \Psi (x, y(\xi ), \xi ) is strongly monotone and con-

tinuous w.r.t. y(\xi ) \in \BbbR m.
(c) The two-stage SVI-NCP (3.1)--(3.2) has a unique solution.
(d) The two-stage SVI-NCP (3.1)--(3.2) has relatively complete recourse: that is,

for all x and almost all \xi \in \Xi , the NCP (3.2) has a unique solution.

Proof. Parts (a) and (b) come from Assumption 3.2 over C\times \scrY directly. Since the
strong monotonicity of \scrG and \Psi implies the coerciveness of \scrG and \Psi (see [12, Chapter
12]), by [12, Theorem 12.2 and Lemma 12.2] we have parts (c) and (d).

With the results in section 3.1 and above, we have the following theorem by only
assuming that Assumption 3.2 holds in a neighborhood of Sol\ast \cap X \prime \times \scrY . Our result
extends [3, Proposition 2.1] for the two-stage SLCP.
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Theorem 3.9. Let Sol\ast be the solution set of the mixed SVI-NCP (3.1)--(3.2).
Suppose (i) there exists a compact set X \prime such that Sol\ast \cap X \prime \times \scrY is nonempty, (ii)
Assumption 3.2 holds over Sol\ast \cap X \prime \times \scrY , and (iii) the conditions of Theorem 3.7 hold.
Then the following hold:

(a) For any (x, y(\cdot )) \in Sol\ast , every matrix in \partial \^\Phi (x) is positive definite and \^\Phi and
\phi are strongly monotone at x.

(b) Any solution x\ast \in \scrS \ast \cap X \prime of SVI (3.12) is CD-regular and an isolate solution.
(c) Moreover, if replacing conditions (i) and (ii) by supposing (iv) Assumption

3.2 holds over \BbbR n \times \scrY , then SVI (3.12) has a unique solution x\ast and the
solution is CD-regular.

Proof. Part (a). Note that under Assumption 3.2, for any (x, y(\cdot )) \in Sol\ast , the
matrix \biggl( 

A(x, y(\xi ), \xi ) B(x, y(\xi ), \xi )
L(x, y(\xi ), \xi ) M(x, y(\xi ), \xi )

\biggr) 
\succ 0.

From (ii) of Lemma 2.1 in [3] we have

A(x, y(\xi ), \xi ) - B(x, y(\xi ), \xi )UJ(M(x, y(\xi ), \xi ))L(x, y(\xi ), \xi ) \succ 0 \forall J \in \scrJ .

For any \=x such that (\=x, \=y(\cdot )) \in Sol\ast , let \scrB \delta (\=x) be a small neighborhood of \=x,

\scrD \^y(\=x) := \{ x\prime : x\prime \in \scrB \delta (\=x), \^y(x\prime , \xi ) is F-differentiable w.r.t. x at x\prime \} 

and
\scrD \^\Phi (\=x) := \{ x\prime : x\prime \in \scrB \delta (\=x), \^\Phi (x\prime , \xi ) is F-differentiable w.r.t. x at x\prime \} .

Since \Phi (x, y, \xi ) is continuously differentiable w.r.t. (x, y), \^y(\cdot , \xi ) is F-differentiable
w.r.t. x, which implies that \^\Phi (\cdot , \xi ) is F-differentiable w.r.t. x. Then \scrD \^y(\=x) \subseteq \scrD \^\Phi (\=x).

Moreover, since \^y(x, \xi ) and \^\Phi (x, \xi ) are Lipschitz continuous w.r.t. x over \scrB \delta (\=x), they
are F-differentiable almost everywhere over \scrB \delta (\=x). Then the measure of \scrD \^\Phi (\=x)\setminus \scrD \^y(\=x)
is zero. By Theorem 3.6(b), (3.11), and the definition of the Clarke generalized
Jacobian, we have
(3.14)

\partial x \^\Phi (\=x, \xi )

= conv
\Bigl\{ 
lim
x\prime \rightarrow \=x

\nabla x
\^\Phi (x\prime , \xi ) : x\prime \in \scrD \^\Phi (\=x)

\Bigr\} 
= conv

\Bigl\{ 
lim
x\prime \rightarrow \=x

\nabla x\Phi (x
\prime , \^y(x\prime , \xi ), \xi ) +\nabla y\Phi (x

\prime , \^y(x\prime , \xi ), \xi )\nabla x\^y(x
\prime , \xi ) : x\prime \in \scrD \^y(\=x)

\Bigr\} 
= conv

\Bigl\{ 
lim
x\prime \rightarrow \=x

A(x\prime , \^y(x\prime , \xi ), \xi )

 - B(x\prime , \^y(x\prime , \xi ), \xi )U\alpha (\^y(x\prime ,\xi ))(M(x\prime , \^y(x\prime , \xi ), \xi ))L(x\prime , \^y(x\prime , \xi ), \xi ) : x\prime \in \scrD \^y(\=x)\} 
\subset conv \{ A(x, \^y(x, \xi ), \xi )

 - B(x, \^y(x, \xi ), \xi )UJ(M(x, \^y(x, \xi ), \xi ))L(x, \^y(x, \xi ), \xi ) : J \in \scrJ \} ,

where the second equation is from [29, Theorem 4] and the fact that the measure of
\scrD \^\Phi (\=x)\setminus \scrD \^y(\=x) is 0. By (3.14), every matrix in \partial x \^\Phi (\=x, \xi ) is positive definite. And then
\^\Phi is strongly monotone, which implies \phi is strongly monotone at \=x.

Part (b). By Corollary 3.1, the linearized SVI

0 \in Vx\ast (x - x\ast ) + \BbbE [\^\Phi (x\ast , \xi )] +\scrN C(x)

is strongly regular for all Vx\ast \in \partial \phi (x\ast ) \subseteq \BbbE [\partial x \^\Phi (x\ast , \xi )]. Then the NCP (3.12) at x\ast 

is CD-regular. Moreover, by the definition of CD-regular, x\ast is a unique solution of
the NCP (3.12) over a neighborhood of x\ast .
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Part (c). By part (a) and Theorem 3.8, NCP (3.12) has a unique solution x\ast .
The CD-regularity of NCP (3.12) at x\ast follows from part (b).

3.3. Convergence analysis of the SAA two-stage SVI-NCP. Consider the
two-stage SVI-NCP (3.1)--(3.2) and its SAA problem (3.3)--(3.4).

We discuss the existence and uniqueness of the solutions of the SAA two-stage
SVI (3.3)--(3.4) under Assumption 3.2 over C \times \scrY first. Define

\scrG N (x, y(\cdot )) :=

\left(     
N - 1

\sum N
j=1 \Phi (x, y(\xi 

j), \xi j)

\Psi (x, y(\xi 1), \xi 1)
...

\Psi (x, y(\xi N ), \xi N )

\right)     .

Theorem 3.10. Suppose Assumption 3.2 holds over C \times \scrY and \Phi (x, y, \xi ) and
\Psi (x, y, \xi ) are continuously differentiable w.r.t. (x, y) for a.e. \xi \in \Xi . Then the following
hold:

(a) \scrG N : C \times \scrY \rightarrow C \times \scrY is strongly monotone with N - 1
\sum N

j=1 \kappa (\xi 
j) and hemi-

continuous.
(b) The SAA two-stage SVI (3.3)--(3.4) has a unique solution.

Proof. By Assumption 3.2, we have parts (a) and (b).

Then we investigate the almost sure convergence and convergence rate of the first
stage solution \=xN of (3.3)--(3.4) to optimal solutions of the true problem by only
supposing Assumption 3.2 holds at a neighborhood of Sol\ast \cap X \prime \times \scrY .

Note that the normal cone multifunction x \mapsto \rightarrow \scrN C(x) is closed. Note also that
function \^\Phi (x, \xi ) = \Phi (x, \^y(x, \xi ), \xi ), where \^y(x, \xi ) is a solution of the second stage
problem (3.2). Then the first stage of the SAA problem with the second stage solution
can be written as

(3.15) 0 \in N - 1
N\sum 
j=1

\^\Phi (x, \xi j) +\scrN C(x).

Under the conditions (i)--(iii) of Theorem 3.9, the two-stage SVI-NCP (3.1)--(3.2)
and its SAA problem (3.3)--(3.4) satisfy conditions of Theorem 2.4 and with \scrR  - 1(t) \leq 
t
c for some positive number c (by Remark 2.1, the strong monotonicity of \phi , and the
argument in the proof of Theorem 2.8(b)). Then Theorem 2.4 can be applied directly.

Definition 3.11 (see [10, 21]). A solution x\ast of the SVI (3.12) is said to be
strongly stable if for every open neighborhood \scrV of x\ast such that SOL(C, \phi )\cap cl\scrV = \{ x\ast \} 
there exist two positive scalars \delta and \epsilon such that for every continuous function \~\phi 
satisfying

sup
x\in C\cap cl\scrV 

\| \~\phi (x) - \phi (x)\| \leq \epsilon 

the set SOL(C, \~\phi ) \cap \scrV is a singleton; moreover, for another continuous function \=\phi 
satisfying the same condition as \~\phi , it holds that

\| x - x\prime \| \leq \delta \| [\phi (x) - \~\phi (x)] - [\phi (x\prime ) - \=\phi (x\prime )]\| ,

where x and x\prime are elements in the sets SOL(C, \~\phi )\cap \scrV and SOL(C, \=\phi )\cap \scrV , respectively.
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Theorem 3.12. Suppose conditions (i)--(iii) of Theorem 3.9 hold. Let x\ast be a
solution of the SVI (3.12) and X \prime be a compact set such that x\ast \in int(X \prime ). Assume
there exists \varepsilon > 0 such that for N sufficiently large,

(3.16) x\ast /\in cl(bd(\scrX ) \cap int( \=\scrX N \cap X \prime )).

Then there exist a solution \^xN of the SAA problem (3.15) and a positive scalar \delta such
that \| \^xN  - x\ast \| \rightarrow 0 as N \rightarrow \infty w.p.1 and for N sufficiently large w.p.1,

(3.17) \| \^xN  - x\ast \| \leq \delta sup
x\in \scrX \cap X\prime 

\| \^\phi N (x) - \phi (x)\| .

Proof. By Theorem 3.9(b), the SVI (3.12) at x\ast is CD-regular. By [21, Theorem
3] and [10], x\ast is a strong stable solution of the SVI (3.12). Note that by Theorem
3.9(a) and [27, Theorem 7.48] we have that

sup
x\in \scrX \cap X\prime 

\| \^\phi N (x) - \phi (x)\| 

converges to 0 uniformly. Then, by Definition 3.11 and (3.16), there exist two positive
scalars \delta , \epsilon such that for N sufficiently large, w.p.1

sup
x\in \scrX \cap X\prime 

\| \^\phi N (x) - \phi (x)\| \leq min\{ \epsilon , \varepsilon /\delta \} 

and
\| \^xN  - x\ast \| \leq \delta sup

x\in \scrX \cap X\prime 
\| \^\phi N (x) - \phi (x)\| ,

which implies that \^xN \in \scrX .

Note that Theorem 3.12 guarantees that \scrR  - 1(t) \leq \delta t and condition (3.16) is dis-
cussed after Theorem 2.8. Note also that replacing conditions (i)--(ii) and condition
(3.16) by supposing condition (iv) of Theorem 3.9, conclusion (3.17) also holds. More-
over, in this case, by Theorem 3.9(c) and Theorem 3.10, x\ast and \^xN are the unique
solutions of the SVI (3.12) and its SAA problem (3.15), respectively.

Then we consider the exponential rate of convergence. Note that under As-
sumption 3.1, for the SAA problem of the mixed two-stage SVI-NCP (3.3)--(3.4),
Assumptions 2.1, 2.4, and 2.5 and condition (iii) in Theorem 2.8 hold. If we replace
Assumption 3.1 by Assumption 3.2 over Sol\ast \cap X \prime \times \scrY , we have the following theorem.

Theorem 3.13. Let X \prime \subset C be a convex compact subset such that \scrB \delta (x
\ast ) \subset X \prime .

Suppose the conditions in Theorem 3.12 and Assumption 2.6 hold. Then for any
\varepsilon > 0 there exist positive constants \delta > 0 (independent of \varepsilon ), \varrho = \varrho (\varepsilon ), and \varsigma = \varsigma (\varepsilon ),
independent of N , such that

(3.18) \sansP \sansr 

\biggl\{ 
sup
x\in \scrX 

\bigm\| \bigm\| \^\phi N (x) - \phi (x)
\bigm\| \bigm\| \geq \varepsilon 

\biggr\} 
\leq \varrho (\varepsilon )e - N\varsigma (\varepsilon )

and

(3.19) \sansP \sansr \{ \| xN  - x\ast \| \geq \varepsilon \} \leq \varrho (\varepsilon /\delta )e - N\varsigma (\varepsilon /\delta ).

Proof. By Theorem 3.9(a), Assumption 2.6, and [27, Theorem 7.67], the con-
ditions of Theorem 2.8(a) hold and then (3.18) holds. Under condition (3.16) in
Theorem 3.12, (3.19) follows from (3.17) and (3.18).
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The two-stage SVI-NCP is a class of important two-stage SGE and can cover a
wide class of real world applications. Moreover, the structure of the second stage NCP
has been well investigated in the literature (see, e.g., [6, 17]). By combining those
results in our case we can formulate the Clarke generalized Jacobian of the solution
function of the second stage NCP and derive stability analysis of the first stage SVI.
We will consider the two-stage SVI in further research.

4. Examples. In this section, we illustrate our theoretical results in the last
sections by a two-stage stochastic noncooperative game of two players [3, 20]. Let
\xi : \Omega \rightarrow \Xi \subseteq \BbbR d be a random vector, and let xi \in \BbbR ni and yi(\cdot ) \in \scrY i be the strategy
vectors and policies of the ith player at the first stage and second stage, respectively,
where \scrY i is a measurable function space from \Xi to \BbbR mi , i = 1, 2, n = n1 + n2,
m = m1 +m2. In this two-stage stochastic game, the ith player solves the following
optimization problem:

(4.1) min
xi\in [ai,bi]

\theta i(xi, x - i) + \BbbE [\psi i(xi, x - i, y - i(\xi ), \xi )],

where \theta i(xi, x - i) :=
1
2x

T
i Hixi + qTi xi + xTi Pix - i,

(4.2) \psi i(xi, x - i, y - i(\xi ), \xi ) := min
yi\in [li(\xi ),ui(\xi )]

\phi i(yi, xi, x - i, y - i(\xi ), \xi )

is the optimal value function of the recourse action yi at the second stage, with

\phi i(yi, xi, x - i, y - i(\xi ), \xi ) =
1

2
y\top i Qi(\xi )yi + ci(\xi )

\top yi +

2\sum 
j=1

y\top i Sij(\xi )xj + y\top i Oi(\xi )y - i(\xi ),

ai, bi \in \BbbR ni , li, ui : \Xi \rightarrow \BbbR mi are vector valued measurable functions, li(\xi ) < ui(\xi )
for all \xi \in \Xi , Hi and Qi(\xi ) are symmetric positive definite matrices for a.e \xi \in \Xi ,
x = (x1, x2), y(\cdot ) = (y1(\cdot ), y2(\cdot )), x - i = xi\prime , and y - i = yi\prime for i

\prime \not = i. We use yi(\xi ) to
denote the unique solution of (4.2).

By [11, Theorem 5.3 and Corollary 5.4], \psi i(xi, x - i, y - i(\xi ), \xi ) is continuously dif-
ferentiable w.r.t. xi and

\nabla xi
\psi i(xi, x - i, y - i(\xi ), \xi ) = ST

ii (\xi )yi(\xi ).

Hence the two-stage stochastic game can be formulated as a two-stage stochastic
linear VI

 - \nabla xi
\theta i(xi, x - i) - \BbbE [\nabla xi

\psi i(xi, x - i, y - i(\xi ), \xi )] \in \scrN [ai,bi](x),
 - \nabla yi(\xi )\phi i(yi(\xi ), xi, x - i, y - i(\xi ), \xi ) \in \scrN [li(\xi ),ui(\xi )](yi(\xi ))

for a.e. \xi \in \Xi 

for i = 1, 2 with the following matrix-vector form:

(4.3)
 - Ax - \BbbE [B(\xi )y(\xi )] - h1 \in \scrN [a,b](x),

 - M(\xi )y(\xi ) - L(\xi )x - h2(\xi ) \in \scrN [l(\xi ),u(\xi )](y(\xi )) for a.e. \xi \in \Xi ,

where

A =

\biggl( 
H1 P1

P2 H2

\biggr) 
, B(\xi ) =

\biggl( 
ST
11(\xi ) 0
0 ST

22(\xi )

\biggr) 
,

L(\xi ) =

\biggl( 
S11(\xi ) S12(\xi )
S21(\xi ) S22(\xi )

\biggr) 
, M(\xi ) =

\biggl( 
Q1(\xi ) O1(\xi )
O2(\xi ) Q2(\xi )

\biggr) 
,
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h1 = (q1, q2), and h2(\xi ) = (c1(\xi ), c2(\xi )). Moreover, if there exists a positive continuous
function \kappa (\xi ) such that \BbbE [\kappa (\xi )] < +\infty and for a.e. \xi \in \Xi ,

(4.4)
\bigl( 
z\top , u\top 

\bigr) \biggl( A B(\xi )
L(\xi ) M(\xi )

\biggr) \biggl( 
z
u

\biggr) 
\geq \kappa (\xi )(\| z\| 2 + \| u\| 2) \forall z \in \BbbR n, u \in \BbbR m,

the two-stage box constrained SVI (4.3) satisfy Assumption 3.2. By the Schur com-
plement condition for positive definiteness [13], a sufficient condition for (4.4) is

4H2  - (P1 + P\top 
2 )H - 1

1 (P1 + P\top 
2 ) is positive definite

and for some k1 > 0 and a.e. \xi \in \Xi ,

\lambda min(M(\xi ) +M(\xi )\top  - (B(\xi ) + L(\xi )\top )(A+A\top ) - 1(B(\xi ) + L(\xi )\top )) \geq k1 > 0,

where \lambda min(V ) is the smallest eigenvalue of V \in \BbbR m\times m.
Under condition (4.4), by Corollary 3.1 and Theorem 3.8, the conditions in The-

orem 2.8 hold for (4.3). To see this, we only need to show that condition (vi) of
Theorem 2.8 holds for (4.3). Consider the second stage VI of (4.3) for fixed \xi and x;
by the proof of [4, Lemma 2.1], we have

\^y(x, \xi ) - \^y(x\prime , \xi ) =  - (I  - D(x, x\prime , \xi ) +D(x, x\prime , \xi )M(\xi )) - 1D(x, x\prime , \xi )L(\xi )(x - x\prime ),

which implies that

(4.5) \partial x\^y(x, \xi ) \subseteq \{  - (I  - D +DM(\xi )) - 1DL(\xi ) : D \in \scrD 0\} ,

where D(x, x\prime , \xi ) is a diagonal matrix with diagonal elements

di =

\left\{       
0 if (\^yi(x, \xi ))i  - zi(x, \xi ), (\^y(x

\prime , \xi ))i  - zi(x
\prime , \xi ) \in [ui(\xi ),\infty ),

0 if (\^y(x, \xi ))i  - zi(x, \xi ), (\^y(x
\prime , \xi ))i  - zi(x

\prime , \xi ) \in ( - \infty , li(\xi )],
1 if (\^y(x, \xi ))i  - zi(x, \xi ), (\^y(x

\prime , \xi ))i  - zi(x
\prime , \xi ) \in (li(\xi ), ui(\xi )),

(\^y(x,\xi ))i - (\^y(x\prime ,\xi ))i
(\^y(x,\xi ))i - zi(x,\xi ) - ((\^y(x\prime ,\xi ))i - zi(x\prime ,\xi ) otherwise,

zi(x, \xi ) = (M(\xi )\^y(x, \xi ) + L(\xi )x + h2(\xi ))i, di \in [0, 1], i = 1, . . . ,m, and \scrD 0 is a set
of diagonal matrices in \BbbR m\times m with the diagonal elements in [0, 1]. Then we consider
the one stage SVI with \^y(x, \xi ) as follows:

(4.6)  - Ax - \BbbE [B(\xi )\^y(x, \xi )] - h1 \in \scrN [a,b](x).

By using arguments similar to those in the proof of Theorem 3.9 and (4.5), every
element of the Clarke Jacobian of Ax + \BbbE [B(\xi )\^y(x, \xi )] + h1 is a positive definite
matrix. Then (4.6) is strongly monotone and hence condition (vi) of Theorem 2.8
holds. In what follows, we verify the convergence results in Theorem 2.8 numerically.

Let \{ \xi j\} Ni=1 be an i.i.d. sample of random variable \xi . Then the SAA problem of
(4.3) is

(4.7)
 - Ax - 1

N

\sum N
j=1B(\xi j)y(\xi j) - h1 \in \scrN [a,b](x),

 - M(\xi j)y(\xi j) - L(\xi j)x - h2(\xi 
j) \in \scrN [l(\xi j),u(\xi j)](y(\xi 

j)), j = 1, . . . , N.

PHM converges to a solution of (4.7) if condition (4.4) holds.
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Algorithm 4.1 (PHM). Choose r > 0 and initial points x0 \in \BbbR n, x0j = x0 \in \BbbR n,

y0j \in \BbbR m, and w0
j \in \BbbR n, j = 1, . . . , N , such that 1

N

\sum N
j=1 w

0
j = 0. Let \nu = 0.

Step 1. For j = 1, . . . , N , solve the box constrained VI

(4.8)
 - Axj  - B(\xi j)yj  - h1  - w\nu 

j  - r(xj  - x\nu j ) \in \scrN [a,b](xj),
 - M(\xi j)yj  - L(\xi j)xj  - h2(\xi 

j) - r(yj  - y\nu j ) \in \scrN [l(\xi j),u(\xi j)](yj),

and obtain a solution (\^x\nu j , \^y
\nu 
j ), j = 1, . . . , N .

Step 2. Let \=x\nu +1 = 1
N

\sum N
j=1 \^x

\nu 
j . For j = 1, . . . , N , set

x\nu +1
j = \=x\nu +1, y\nu +1

j = \^y\nu j , w\nu +1
j = w\nu 

j + r(\^x\nu j  - x\nu +1
j ).

Note that PHM is well-defined if
\bigl( A B(\xi j)

L(\xi j) M(\xi j)

\bigr) 
, j = 1, . . . , N , are positive semidef-

inite, that is, (4.8) has a unique solution for each j; even for some x and \xi j , the second
stage problem  - M(\xi j)y  - L(\xi j)x - h2(\xi 

j) \in \scrN [l(\xi j),u(\xi j)](y) has no solution.

4.1. Generation of matrices satisfying condition (4.4). We generate matri-
ces A, B(\xi ), L(\xi ),M(\xi ) by the following procedure. Randomly generate a symmetric
positive definite matrix H1 \in \BbbR n1\times n1 and matrices P1 \in \BbbR n1\times n2 , P2 \in \BbbR n2\times n1 . Set
H2 = 1

4 (P
\top 
1 + P2)H

 - 1
1 (P1 + P\top 

2 ) + \alpha In2
, where \alpha is a positive number. Randomly

generate matrices with entries within [ - 1, 1]:

\=S11 \in \BbbR m1\times n1 , \=S12 \in \BbbR m1\times n2 , \=S21 \in \BbbR m2\times n1 ,

\=S22 \in \BbbR m2\times n2 , \=O1 \in \BbbR m1\times m2 , \=O2 \in \BbbR m2\times m1 .

Randomly generate two symmetric matrices \=Q1 \in \BbbR m1\times m1 and \=Q2 \in \BbbR m2\times m2 whose
diagonal entries are greater than m  - 1 + \alpha and whose off-diagonal entries are in
[ - 1, 1], respectively.

Generate an i.i.d. sample \{ \xi j\} Nj=1 \subset [0, 1]10\times [ - 1, 1]10 of random variable \xi \in \BbbR 20

following uniform distribution over \Xi = [0, 1]10 \times [ - 1, 1]10. Set

S11(\xi ) = \xi j1
\=S11, S12(\xi ) = \xi j2

\=S12, S21(\xi ) = \xi j3
\=S21,

S22(\xi ) = \xi j4
\=S22, O1(\xi ) = \xi j5

\=O1, O2(\xi ) = \xi j6
\=O2,

Q1(\xi ) = \=Q1 +

\biggl( 
\xi j7 +

(n+m)2

\lambda min(A+AT )

\biggr) 
Im1 , Q2(\xi ) = \=Q2 +

\biggl( 
\xi j8 +

(n+m)2

\lambda min(A+AT )

\biggr) 
Im2 .

Set B(\xi j), L(\xi j),M(\xi j) as in (4.3).
The matrices generated by this procedure satisfy condition (4.4). Indeed, since

H1 and 4H2 - (P1+P
T
2 )H - 1

1 (P1+P
T
2 ) are positive definite, by the Schur complement

condition for positive definiteness [13], A+AT is symmetric positive definite, and thus
A is positive definite. Moreover, since the matrix

\=M :=

\biggl( 
\=Q1

\=O1
\=O2

\=Q2

\biggr) 
is diagonally dominant with positive diagonal entries \=Mii \geq m - 1 + \alpha , it is positive
definite and the eigenvalues M +MT are greater than 2\alpha . Hence, for any y \in \BbbR m,
we have

yT (M(\xi ) +M(\xi )T  - (B(\xi )T + L(\xi ))(A+AT ) - 1(B(\xi ) + L(\xi )T ))y

\geq 
\biggl( 
2\alpha +

(n+m)2

\lambda min(A+AT )

\biggr) 
\| y\| 2  - 1

\lambda min(A+AT )
\| (B(\xi )T + L(\xi ))\| 2\| y\| 2 \geq 2\alpha \| y\| 2,
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where we use \| B(\xi )T + L(\xi )\| 2 \leq \| B(\xi )T + L(\xi )\| 21 \leq (m + n)2. Using the Schur
complement condition for positive definiteness [13] again, we obtain condition (4.4).

Finally, we generate the box constraints, h1 and h2(\cdot ). For the first stage, the
lower bound is set as a = 01n, and the upper bound of the box constraints b is
randomly generated from [1, 50]6. For the second stage, we set l(\xi ) = (1 + \xi 9)\=l and
u(\xi ) = (1 + \xi 10)\=u, where 1n \in \BbbR n is a vector with all elements 1, \=l is randomly
generated from [0, 1]10, and \=u is randomly generated from [3, 50]10. Moreover, the
vector h1 is randomly generated from [ - 5, 5]6 and h2(\xi ) = (\xi 11, \cdot \cdot \cdot , \xi 20) is a random
vector following uniform distribution over [ - 1, 1]10.

4.2. Numerical results. For each sample size of N = 10, 50, 250, 1250, 2250,
we randomly generate 20 test problems and solve the box-constrained VI in Step 1 of
PHM by the homotopy-smoothing method [7]. We stop the iteration when

(4.9) res :=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| x - mid

\Biggl( 
x - Ax - 1

N

N\sum 
j=1

B(\xi j)\^y(x, \xi j) - h1, a, b

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 10 - 5,

or the iterations reach 5000, where mid(\cdot ) denotes the componentwise median op-
erator, and \^y(x, \xi j) is the solution of the second stage box constrained VI with x
and \xi j .

Parameters for the numerical tests are chosen as follows: n1 = n2 = 3, m1 =
m2 = 5, \alpha = 1 and the maximum iteration number is 5000.

Figure 2 shows the convergence tendency of x1, x2, x3, x4, x5, and x6, respectively.
Note that since we use the homotopy-smoothing method to solve the box-constrained
VI in Step 1 of PHM and the stop criterion is 10 - 5, x2 is not always feasible. However,
[ai  - xi]+ + [xi  - bi]+ \leq 10 - 5, i = 1, . . . , 6, which is related to the stopping criterion
of the homotopy-smoothing method.

We use xNt,j , j = 1, . . . , 3000, t = 1, . . . , 5, to denote the computed solutions with
sample size Nt for the jth test problem shown in Figure 2. Then we compute the
mean, variance, and 95\% confidence interval (CI) of the corresponding res defined in
(4.9) with x = xNt,j by using a new set of 20 randomly generated test problems with
sample size N = 3000 for computing \^y(xNt,j , \xi j), j = 1, . . . , 3000, t = 1, . . . , 5. We
can see that the average of the mean, variance, and the width of the 95\% CI of res
in Table 1 decreases as the sample size increases.

5. Conclusion remarks. Without assuming relatively complete recourse, we
prove the convergence of the SAA problem (1.6)--(1.7) of the two-stage SGE (1.1)--
(1.2) in Theorem 2.4 and show the exponential rate of the convergence in Theorem 2.8.
When the two-stage SGE (1.1)--(1.2) has relatively complete recourse, Assumption 2.3,
conditions (v)--(vi) in Theorem 2.4, and condition (iv) in Theorem 2.8 hold.

In section 3, we present sufficient conditions for the existence, uniqueness, con-
tinuity, and regularity of solutions of the two-stage SVI-NCP (3.1)--(3.2) by using
the perturbed linearization of functions \Phi and \Psi and then show the almost sure
convergence and exponential convergence of its SAA problem (3.3)--(3.4). Numer-
ical examples in section 4 satisfy all conditions of Theorem 2.8, and we show the
convergence of the SAA method numerically.

Acknowledgment. We are grateful to the anonymous referees for their con-
structive comments which helped us to improve presentation of the paper.
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Fig. 2. Convergence of x1--x6.

Table 1
Mean, variance, and 95\% CI of res.

N1 = 10 N2 = 50 N3 = 250 N4 = 1250 N5 = 2250
Mean 0.22449 0.13753 0.04820 0.02885 0.02500

Variance 0.01984 0.00605 0.00118 0.00023 0.00016
95\% CI [0.2158, 0.2332] [0.1349, 0.1402] [0.0477, 0.0487] [0.0287, 0.0290] [0.0249, 0.0251]
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