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Abstract. The Energy Direct Inversion on the Iterative Subspace (EDIIS) algorithm was de-
signed to globalize Anderson acceleration, a method for improving the performance of fixed point
iteration. The motivating application is electronic structure computations. In this paper we prove a
convergence result for that algorithm and illustrate the theory with a computational example.
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1. Introduction. The purpose of this paper is to analyze the convergence of the
Energy Direct Inversion on the Iterative Subspace (EDIIS) algorithm [21]. EDIIS is a
modification of Anderson acceleration [1] or the Direct Inversion on the Iterative Sub-
space (DIIS) method [34, 37, 22, 21]. EDIIS relaxes the need for a sufficiently accurate
initial iterate. EDIIS is the default solver for the self-consistent field (SCF) iteration
in the widely used Gaussian [12] quantum chemistry code. We prove convergence
from any starting point in a convex set in which the fixed point map is a contraction
and then analyze local convergence. Our local convergence is an improvement of the
result in [41] and applies to both EDIIS and Anderson acceleration.

We will begin this introductory section with a review of Anderson acceleration and
some of the recent convergence results. We will then describe the EDIIS algorithm.
In section 2 we prove our convergence results. Finally, in section 3 we report on
a computation which both illustrates the theory and, as is also done in [21], shows
how the convergence speeds for EDIIS and Anderson acceleration, while identical in
theory, can differ significantly in practice.

Our notational convention is that vectors and vector-valued functions in RN are
in bold. Scalars and elements of infinite dimensional spaces (e.g., integral operators
and the functions acted upon by those operators) are in the usual italic math font.

Anderson acceleration [1] is an iterative method for fixed point problems of the
form

(1.1) u = G(u),
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A366 XIAOJUN CHEN AND C. T. KELLEY

where u ∈ RN and G : RN → RN . The method was designed to accelerate Picard or
fixed point iteration, i.e.,

(1.2) uk+1 = G(uk).

Anderson acceleration was originally designed for integral equations and has been
widely used in electronic structure computations (see [9] and many references since
then) and is now very common in that field. Anderson acceleration is essentially
the same as Pulay mixing [33, 32], DIIS [34, 37, 22, 21], and nonlinear GMRES
[25, 30, 45, 4]. Other applications include nuclear reactor design [42, 16], stiff dynamics
[13], hydrology [24], and fluid-structure interaction [10, 15, 23], where the method is
called interface quasi-Newton.

The analysis of Anderson acceleration is far from complete. In this paper we
assume, as do all theoretical results about this algorithm, that the map G is a con-
traction. In practice, however, Anderson acceleration does very well for problems in
which G is either definitely not a contraction [41] or not provably a contraction. The
results here do not explain those cases.

Anderson acceleration was designed for a problem where Newton’s method is
not practical because obtaining approximate Jacobians or Jacobian-vector products
is too costly. One should expect that Newton’s method would perform better when
derivative information can be had at a reasonable cost, and we have certainly found
that to be the case in our own recent work [16]. Anderson iteration maintains a
history of residuals

F(u) = G(u)− u

of size at most m + 1, where the depth m is an algorithmic parameter. When m is
important, we will call the iteration Anderson(m). Anderson(0) is Picard iteration by
definition.

The formal description in Algorithm 1.1 is most convenient for analysis and ex-
position, but not for implementation. We refer the reader to [44, 41, 7, 38, 43, 39] for
examples of efficient implementations.

Algorithm 1.1 Anderson Acceleration

anderson(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0

for k = 1, . . . do
Choose mk ≤ min(m, k)
Fk = G(uk)− uk
Minimize ‖

∑mk
j=0 α

k
jFk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1

uk+1 =
∑mk
j=0 α

k
jG(uk−mk+j)

end for

The iteration uses the most recent m+1 residuals F(uj) for k−mk ≤ j ≤ k where
mk ≤ min(k,m). The key step in the iteration is solving the optimization problem

(1.3) Minimize

∥∥∥∥mk∑
j=0

αkjF(uk−mk+j)

∥∥∥∥ subject to

mk∑
j=0

αkj = 1

for the coefficients {αkj }.
Any vector norm can be used in the optimization problem with no change in the

convergence theory [41]. In particular, the optimization problem for the coefficients
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EDIIS A367

in either the `1 or the `∞ norm can be formulated as a linear programming problem
[8]. The optimization problem is easier to solve if one uses the `2 norm, and that
is standard practice. In this case optimization problem for the coefficients can be
expressed as a linear least squares problem and solved very inexpensively. One way
to do this is to solve the linear least squares problem

(1.4) Minimize

∥∥∥∥F(uk) +

mk−1∑
j=0

αkj (F(uk−mk+j)− F(uk))

∥∥∥∥2
2

for {αkj }
mk−1
j=0 . Then one recovers αkmk by

αkmk = 1−
mk−1∑
j=0

αkj .

The choice of mk is, in the original form, simply min(m, k). One can adapt mk as
the iteration progresses to, for example, enforce well-conditioning of the linear least
squares problem (1.4) [44, 39].

One can also [11, 35, 34, 44, 31] show that Anderson acceleration is related to
multisecant quasi-Newton methods or, in the case of linear problems, GMRES. None
of these results lead to a convergence proof, even in the linear case, unless the available
storage is large enough to allow GMRES to take a number of iterations equal to the
dimension of the problem. The recent work of one of the authors and his students
[41, 40, 39] contains the first convergence theory for Anderson acceleration as it is
applied in practice.

1.1. Convergence theory. Theorem 1.1 is one of the convergence results from
[41]. That paper also has results for several special cases. We assume that G is a
contraction with contractivity constant c ∈ (0, 1) in a closed set D ⊂ RN ,

(1.5) ‖G(u)−G(v)‖ ≤ c‖u− v‖

for all u,v ∈ D. The contraction mapping theorem implies that G has a unique fixed
point u∗ ∈ D. As is standard, we let e = u− u∗ and make the assumption from [41]
on the smoothness of G and the Anderson iteration coefficients.

The convergence of the Picard iteration for a contraction map is q-linear [19] with
q-factor c, i.e.,

‖ek‖ ≤ c‖ek−1‖.

We will show in this paper that Anderson acceleration is r-linear with r-factor c, which
means

‖ek‖ = O(ck).

Assumption 1.1. G is Lipschitz continuously differentiable in the ball

B(r̂) = {u | ‖e‖ ≤ r̂} ⊂ D

for some r̂ > 0.
There is Mα such that for all k ≥ 0

mk∑
j=0

|αkj | ≤Mα.
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A368 XIAOJUN CHEN AND C. T. KELLEY

The differentiability assumption is needed in the analysis, but not in the formula-
tion or implementation of the algorithm. Our convergence result in section 2.2 relaxes
the assumption to continuous differentiability.

Theorem 1.1 ([41]). Let Assumption 1.1 hold, and let c < r̂ < 1. Then if u0 is
sufficiently close to u∗, the Anderson iteration converges to u∗. In fact, for all k ≥ 0,

(1.6) ‖F(uk)‖ ≤ r̂k‖F(u0)‖ and ‖ek‖ ≤
(

1 + c

1− c

)
r̂k‖e0‖.

The interpretation of this result is that if the initial data are sufficiently good, then
the r-factor for Anderson iteration is no worse than the q-factor of Picard iteration
as predicted by the contractivity constant c. While r-linear convergence is weaker
than q-linear convergence, Anderson acceleration is often faster than Picard iteration
in practice. The requirement that the initial iterate be near the solution is also
meaningful in practice [36, 46, 47] and motivated the EDIIS algorithm [21], which is
the subject of this paper.

Both Picard iteration and Anderson acceleration can perform better than the
prediction (see section 3). In practice, Anderson acceleration is often significantly
better than Picard iteration, but there is no theory that explains this under practical
(i.e., very limited storage) operating conditions.

1.2. The EDIIS algorithm. Anderson acceleration performs poorly for some
applications. One example is electronic structure computations for metallic systems
where the HOMO-LUMO gap is small and a good initial iterate is difficult to obtain.
In this case both Picard iteration and Anderson acceleration perform poorly [21]. In
such cases one can sometimes use a small mixing parameter to ensure convergence,
especially when the initial iterate is poor. However, a small mixing parameter may
degrade the performance of the iteration—especially when near the solution. The role
of the damping parameter β in Picard iteration is simple damping:

uk+1 = (1− β)uk + βG(uk).

If one applies EDIIS or Anderson acceleration to

Gβ(u) = (1− β)u + βG(u),

then [40] one obtains

uk+1 = (1− β)

mk∑
j=0

αkjuk−mk+j + β

mk∑
j=0

αkjG(uk−mk+j),

which is how damping is done in Anderson acceleration [1].
One attempt to solve these problems for small systems is the EDIIS algorithm

from [21]. In [21] the authors also formulated the fixed point problem to directly mini-
mize energy (hence the name of the method), but that does not affect the convergence
analysis in this paper.

EDIIS differs from Anderson acceleration by imposing a nonnegativity constraint
on the coefficients. So, the optimization problem becomes

(1.7) Minimize

∥∥∥∥ mk∑
j=0

αkjFk−mk+j

∥∥∥∥ subject to

mk∑
j=0

αkj = 1, αkj ≥ 0.
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In [21] the authors present an example where EDIIS does well and both Picard
and Anderson acceleration fail and another example where Anderson acceleration
is successful and EDIIS, while converging, does not perform as well. We present
another such example in section 3. One reason EDIIS might perform worse than
Anderson acceleration could be that the optimization problem (1.7) for EDIIS has a
more restricted feasible set and therefore a larger optimal value.

2. Convergence results. Our global convergence is Theorem 2.1. The proof
does not require differentiability, but the convergence speed estimate is very pes-
simistic with an r-factor of c1/(m+1). We follow the global theorem with a local the-
orem that shows how the convergence behavior becomes locally r-linear with r-factor
c, improving on the local results in [41].

2.1. Global convergence.

Theorem 2.1. Let G be a contraction on a convex set D ⊂ RN with contractivity
constant c. Let u∗ be the unique fixed point of G in D. Then for any u0 ∈ D,
EDIIS(m) converges to u∗ r-linearly with r-factor

ĉ = c1/(m+1).

In fact,

(2.1) ‖ek‖ ≤ ĉk‖e0‖.

Proof. The proof does not use the optimality properties of the coefficients and
only requires that the iteration {uk} have the form

(2.2) uk+1 =

mk∑
j=0

αkjG(uk−mk+j),

where mk ≤ m, αkj ≥ 0, and
∑mk
j=0 α

k
j = 1.

We induct on k. Clearly (2.1) holds for both mk = 0, by definition, and k =
1,mk = 0 because the iteration in that case is a single Picard iteration (i.e., one
step of Anderson(0)). Assume that the result holds for k ≤ K. Then (2.2) and∑mK
j=0 α

K
j = 1 imply that

eK+1 =

mK∑
j=0

αKj (G(uK−mK+j)− u∗).

Note that since αKj ≥ 0,
∑mK
j=0 α

K
j = 1, ĉ < 1, and mK ≤ m, we have

mK∑
j=0

αKj ĉ
K−mK+j ≤ ĉK−m.

Hence

‖eK+1‖ ≤
∑mK
j=0 α

K
j ‖G(uK−mK+j)− u∗‖

≤
∑mK
j=0 α

K
j c‖uK−mK+j − u∗‖

≤ c
∑mK
j=0 α

K
j ĉ

K−mK+j‖e0‖ ≤ cĉK−m‖e0‖ ≤ ĉK+1(cĉ−m−1)‖e0‖ = ĉK+1‖e0‖.
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A370 XIAOJUN CHEN AND C. T. KELLEY

Theorem 2.1 implies that for any δ > 0 there is K such that all iterations {uk}k≥K
are in the set

B(δ) = {u | ‖u− u∗‖ ≤ δ}.

Hence, starting an Anderson acceleration iteration after sufficiently many EDIIS iter-
ations will result in local convergence at the rate predicted by Theorem 1.1, which is
better than (2.1) since r̂ can be arbitrarily near c and does not depend on m. How-
ever, it is not clear how to decide when to restart. The main result in section 2.2,
Theorem 2.2, applies to both EDIIS and Anderson acceleration, generalizes the local
convergence result from [41, Theorem 1.1], and says that one can simply continue with
the EDIIS iteration and the local convergence estimate for Anderson acceleration will
hold.

2.2. Local convergence. Theorem 2.2 is the local convergence result. The the-
orem generalizes the result in [41] by both weakening the assumptions and improving
the r-factor.

We will assume that an iteration begins with a history that lies in B(δ) for δ
sufficiently small. This history could be either from the EDIIS iteration or from the
Anderson acceleration iteration itself. Hence the assumption covers not only EDIIS
but also allows us to improve the convergence theory from [41]. We will show that the
residuals converge r-linearly to zero with an r-factor of c. Formally our assumption is
as follows.

Assumption 2.1. G is a continuously differentiable contraction on D ⊂ RN with
contractivity constant c and u∗ is the unique fixed point of G in D.

The iteration begins with {ul}ml=0 ⊂ B(δ) ⊂ D. There are real {αkj }
mk
j=0 with

0 ≤ mk ≤ min(m, k) such that
mk∑
j=0

αkj = 1,

(2.3) uk+1 =

mk∑
j=0

αkjG(uk−mk+j),

and

(2.4)

∥∥∥∥ mk∑
j=0

αkjF(uk−mk+j)

∥∥∥∥ ≤ ‖F(uk)‖.

Finally, there is ĉ ∈ (c, 1) so that

(2.5) ‖F(ul)‖ ≤ ĉl‖F(u0)‖ for 0 ≤ l ≤ m.

Theorem 2.1 implies that Assumption 2.1 will hold after sufficiently many EDIIS
iterations. In the theorem there is no history if m = 0 and in that case the iteration
is a Picard iteration. While we are motivated by a local iteration from the EDIIS
algorithm, the local theory does not require that the coefficients be nonnegative.

Assumption 2.1 weakens the ones in [41] in two ways. The first is that we no
longer assume that G is Lipschitz continuously differentiable. The second is that
we do not assume that the coefficients {αkj } come from any particular optimization
problem—only that the linear combination of residuals has norm no larger than that
of the most recent residual.
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The idea of the analysis is that as the iteration converges, the upper bound for
the r-factor will approach c and therefore the r-factor is no larger than c. In the case
where there is no history, this fact was implicit in the results from [41]. Adding the
history makes the bookkeeping more difficult, and the proof of Theorem 2.2 must
account for that.

Theorem 2.2. Let Assumption 2.1 hold. Assume that there is Mα such that

(2.6)

mk∑
j=0

|αkj | ≤Mα

for all k ≥ 0. Then if δ is sufficiently small, the iteration given by (2.3) and (2.4)
converges to u∗ and

(2.7) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c.

Proof. Let 0 < ε < ĉ− c. We will show that for ‖e0‖ sufficiently small,

(2.8) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c+ ε.

This will complete the proof since ε is arbitrary and we can restart the proof once we
have m vectors in the history which are near enough to u∗ to reduce ε further.

We induct on k. Define L = (c/ĉ)m. We will show that

(2.9) ‖F(uk)‖ ≤ L(c+ ε)k‖F(u0)‖

for all k. Our assumption on the history that ‖F(ul)‖ ≤ ĉl‖F(u0)‖ implies that (2.9)
holds for 0 ≤ k ≤ m. Now suppose that (2.9) holds for all 0 ≤ l ≤ k with k ≥ m.

We will establish the bound for k + 1. The analysis has three steps. We first
set δ small enough for the iteration to remain in D. We then derive an estimate for
F(uk+1) and finally use that estimate to continue the induction.

Step 1, initialization of δ. Since G′ is continuous in D, there is a nondecreasing
function ρ ∈ C[0,∞) with ρ(0) = 0 so that

(2.10) ‖G′(u)−G′(u∗)‖ ≤ ρ(‖e‖)

for all u ∈ D. This implies that for all u ∈ D,

(2.11) G(u) = G(u∗) +

∫ 1

0

G′(u∗ + te)e dt = u∗ + G′(u∗)e + ∆(e),

where
‖∆(e)‖ ≤ ρ(‖e‖)‖e‖.

Contractivity of G implies that

‖F(u)‖/(1 + c) ≤ ‖e‖ ≤ ‖F(u)‖/(1− c).

Assumption 2.1 implies that

B(δ) ∩ {u | ‖F(u)‖ ≤ ‖F(u0)‖} ⊂ D.
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Reduce δ if necessary so that

(2.12) ρ

(
MαL(c+ ε)k−mδ

1 + c

1− c

)
≤ cm+1(1− c)

2Mα

(
1− c

c+ ε

)
.

This implies that

(2.13) wk =

mk∑
j=0

αkjuk−mk+j ∈ D

for sufficiently small δ because
(2.14)
‖wk − u∗‖ ≤

∑mk
j=0 |αkj |‖ek−mk+j‖

≤MαL(c+ ε)k−m‖F(u0)‖/(1− c) ≤MαL(c+ ε)k−mδ(1 + c)/(1− c).

Step 2, estimation of F(uk+1). We may write, for k ≥ m− 1,

F(uk+1) = G(uk+1)− uk+1

= G(uk+1)−G(
∑mk
j=0 α

k
juk−mk+j) + G(

∑mk
j=0 α

k
juk−mk+j)− uk+1.

We will estimate the two parts of the sum

Ak = G(uk+1)−G

( mk∑
j=0

αkjuk−mk+j

)
and

Bk = G

( mk∑
j=0

αkjuk−mk+j

)
− uk+1

separately.
Using only contractivity of G and (2.4), we have

(2.15)

‖Ak‖ = ‖G(uk+1)−G(
∑mk
j=0 α

k
juk−mk+j)‖

≤ c‖uk+1 −
∑mk
j=0 α

k
juk−mk+j‖

= c‖
∑mk
j=0 α

k
j (G(uk−mk+j)− uk−mk+j)‖

= c‖
∑mk
j=0 α

k
jF(uk−mk+j)‖ ≤ c‖F(uk)‖.

We now estimate Bk. Using (2.12), we have for all u ∈ D with

‖e‖ ≤MαL(c+ ε)k−mδ(1 + c)/(1− c)

(2.16)

‖∆(e)‖ ≤ ρ(‖e‖)‖F(u)‖/(1− c)

≤ ρ(MαL(c+ ε)k−mδ(1 + c)/(1− c))‖F(u)‖/(1− c)

≤ cm+1

2Mα

(
1− c

c+ε

)
‖F(u)‖.
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The final stage in the proof is to show that, reducing δ if needed,

(2.17) ‖Bk‖ ≤ L(c+ ε)k+1

(
1− c

c+ ε

)
‖F(u0)‖.

Recall that

Bk = G(
∑mk
j=0 α

k
juk−mk+j)− uk+1

= G(
∑mk
j=0 α

k
juk−mk+j)−

∑mk
j=0 α

k
jG(uk−mk+j).

We use (2.11) to obtain

G(
∑mk
j=0 α

k
juk−mk+j) = G(wk) = u∗ + G′(u∗)

∑mk
j=0 α

k
j ek−mk+j + ∆(wk − u∗)

=
∑mk
j=0 α

k
j (u∗ + G′(u∗)ek−mk+j) + ∆(wk − u∗)

=
∑mk
j=0 α

k
jG(uk−mk+j) +

∑mk
j=0 α

k
j∆(ek−mk+j) + ∆(wk − u∗).

Hence

‖Bk‖ ≤
mk∑
j=0

|αkj |‖∆(ek−m+1)‖+ ‖∆(wk − u∗)‖.

We will estimate terms separately. First
(2.18)∑mk

j=0 |αkj |‖∆(ek−m+1)‖ ≤ cm+1

2Mα

(
1− c

c+ε

)∑mk
j=0 |αkj |‖F(uk−mk+j)‖

≤ cm+1

2Mα

(
1− c

c+ε

)∑mk
j=0 |αkj |L(c+ ε)k−mk+j‖F(u0)‖

≤ cm+1

2

(
1− c

c+ε

)
L(c+ ε)k−mk‖F(u0)‖

≤ (L/2)(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖.

Finally, using (2.14) and (2.16),
(2.19)
‖∆(wk − u∗)‖ ≤ ρ(‖wk − u∗‖)‖F(wk)‖/(1− c)

≤ ρ(MαL(c+ ε)k−mδ(1 + c)/(1− c))MαL(c+ ε)k−m‖F(u0)‖/(1− c)

≤ (L/2)(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖.

Adding the two estimates (2.18) and (2.19) leads to (2.17).
Step 3, continuation of the induction. Combining (2.15), (2.17), (2.9), and

the induction hypotheses, we have

(2.20)

‖F(uk+1)‖ ≤ c‖F(uk)‖+ L(c+ ε)k+1
(
1− c

c+ε

)
‖F(u0)‖

≤
(
Lc(c+ ε)k + L(c+ ε)k+1

(
1− c

c+ε

))
‖F(u0)‖

≤ L(c+ ε)k+1‖F(u0)‖.

This implies (2.8), which in turn implies (2.7) because ε is arbitrary.
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Theorem 2.2 and nonsingularity of F′(u∗) also imply r-linear convergence of the
errors with r-factor c. This extends and sharpens (1.6).

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. If F′(u∗) is nonsin-
gular, then

(2.21) lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ c.

Proof. We will use Lemma 5.2.1 from [19], which states that if u is sufficiently
near u∗ and F′(u∗) is nonsingular, then

‖e‖
‖e0‖

≤ 4‖F′(u∗)‖‖F′(u∗)−1‖ ‖F(u)‖
‖F(u0)‖

.

Hence

lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ lim
k→∞

(
4‖F′(u∗)‖‖F′(u∗)−1‖|

)1/k
lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖|

)1/k

≤ c,

which is (2.21).

3. Numerical example. We will use an example [41] to show how the actual
performance of EDIIS and Anderson acceleration can differ, even though the theoret-
ical limiting convergence estimates are identical. Another point of this section is that
the solver for the optimization problem can significantly affect the results.

The results in [21] also illustrate this point. Our example is simple enough to
directly compare the iteration histories for Picard iteration, EDIIS, and Anderson
with the worst-case prediction given by the contractivity constant. We find that
when Anderson acceleration performs well, as it does in this example, EDIIS offers
no advantage. Moreover, the additional constraint on the optimization problem for
the coefficients leads to slower convergence, exactly matching Picard iteration in this
case.

The optimization problem for EDIIS requires more care than the linear least
squares problem one must solve for Anderson acceleration. The reason for this is that
one cannot simply use a QR factorization to solve (1.4). Instead one must apply a
more sophisticated iterative solver. The approach of [21] is a direct examination of the
boundary of the feasible simplex, which is not practical for a depth much greater than
m = 3. Since m is small in practice, expressing the optimization problem as a bound-
constrained quadratic program is an efficient alternative. References [27, 26] survey
the literature on this topic. For example, a bound-constrained quadratic programming
code such as the MINQ [29] code is a reasonable choice. However, this approach
squares the condition number and can (and did in our testing) result in a singular
or nearly singular KKT system and failure of the optimization code’s internal linear
solvers. The method of [6], while still squaring the condition number, is more robust
and terminated without error for this example. The classic method from [14] uses
an active set method and the QR factorization to avoid using the normal equations.
The approach in [14] performed better in the example here, where the least squares
coefficient matrix for the optimization problem is ill-conditioned [41].

The example is the midpoint rule discretization of the Chandrasekhar H-equation
[5, 3].

(3.1) F(H)(µ) = H(µ)−
(

1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1
= 0.
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We seek a solution H∗ ∈ C[0, 1]. When the parameter ω is important we will write
H∗ as a function H∗(µ, ω) of both µ and ω.

The integral equation and its midpoint discretization share the properties that
the fixed point map

G(H)(µ) =

(
1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1
is a contraction for 0 ≤ ω < 1, but not for ω = 1. The Fréchet derivative (and the
Jacobian for the discrete case) is singular at the solution for ω = 1, which is a simple
fold singularity [17, 28].

In this section we will compare the performance of Picard iteration, Anderson
acceleration, and EDIIS for the case ω = .5 on an N = 100 point mesh. We terminated
the iteration when the residual had decreased by a factor of 10−12.

One interesting result from [41] is that Anderson(m) is more efficient than New-
ton’s method for this example, even in the singular case. In the context of this paper
it is important to note that Picard iteration converges faster than one would expect
from estimating the contractivity parameter by the spectral radius of the Fréchet
derivative of G at the solution, which is a lower bound for the operator norm of G.
From [41]

ρ(G′(H∗)) = 1−
√

1− ω ≈ .293.

However [18, 20, 2], the solution is analytic in ω and Picard iteration exploits that
property to obtain q-linear convergence with q-factor ≤ ρ(G′(H∗)) and much less for
small ω. In fact, if

H∗(µ, ω) =

∞∑
m=0

ωmam(µ)

is the Taylor expansion of H∗ in ω, then the coefficient functions {am(µ)} are non-
negative for 0 ≤ µ ≤ 1. Moreover, the series converges for ω = 1. Hence, if Hk is the
kth Picard iteration and H0 ≡ 0, then for all k ≥ 0 and ω, µ ∈ [0, 1],

Hk(µ, ω) ≤ Hk+1(µ, ω) ≤ H∗(µ, ω).

All of the above statements about the singularity at ω = 1, the spectral radius of
the Fréchet derivative, and the performance of Picard iteration apply to the discrete
problem

(3.2) G(h)i =

1− ω

2N

N∑
j=1

hjµi
µi + µj

−1 , 1 ≤ i ≤ N.

In (3.2) µi = (i − 1/2)/N is the ith quadrature node for the N point composite
midpoint rule, the vector h∗ is the solution of the discrete problem h = G(h), G(h∗)i
is the ith component of G(h∗), and the ith component of h∗ is h∗i ≈ H∗(µi).

As noted above, the optimization problem (1.7) for EDIIS is harder than the one
for Anderson acceleration, and the choice of solver can be important. We compare the
method of [14], as implemented in the MATLAB lsqlin code with the “active-set”
option, with the method from [6], as implemented with the “interior-point” option
in lsqlin. The method of [6] uses the normal equations and did exhibit problems
with ill-conditioning. The computations were done on an Apple Macintosh running

D
ow

nl
oa

de
d 

10
/0

5/
21

 to
 1

58
.1

32
.1

61
.1

85
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A376 XIAOJUN CHEN AND C. T. KELLEY

Table 3.1
Convergence r-factors.

Anderson Picard EDIIS-A EDIIS-I ρ(G′(H∗))
No condition limit

1.06e-02 1.72e-01 1.72e-01 2.62e-01 2.93e-01
Condition limit 105

2.59e-02 1.72e-01 1.72e-01 2.62e-01 2.93e-01

0 5 10 15 20

iterations

10
-15

10
-10

10
-5

10
0

10
5

||
 F

 |
|

No condition limit

Anderson

EDIIS-A

EDIIS-I

Picard

0 5 10 15 20

iterations

10
-15

10
-10

10
-5

10
0

10
5

||
 F

 |
|

Condition limit 10 5

Anderson

EDIIS-A

EDIIS-I

Picard

Fig. 3.1. Residual histories for ω = .5.

MAC OS 10.13.6 with MATLAB 2017a. The “active-set” option was removed with
MATLAB 2017b. The codes that generated Table 3.1 and Figure 3.1 are supplemen-
tary materials (see Supplementary Materials.zip [local/web 5.62KB]) for this paper.

In the left plot of Figure 3.1 we compare Picard iteration, Anderson acceleration,
and EDIIS with the active-set option (EDIIS-A) and the interior-point option (EDIIS-
I). The depth was m = 3 for the Anderson and EDIIS computations. Picard iteration
and EDIIS-A are identical. The optimization problem for EDIIS cannot match the re-
sults from Anderson acceleration, which has fairly large negative coefficients. Rather,
EDIIS-A finds that the coefficients for Picard iteration are optimal.

Table 3.1 compares ρ(G′(H∗)) to the r-factors of the residuals for Anderson ac-
celeration, Picard iteration, and EDIIS. We estimate the r-factors by(

‖F(hk)‖
‖F(h0)‖

)1/k

,

where the final iteration upon termination is hk. Note that, as discussed above, the
q-factor for Picard iteration is smaller than the spectral radius. Anderson acceleration
also does better than the theory predicts and, in fact, is more efficient than Newton-
GMRES [41].

EDIIS-I is the only one of the methods which is sensitive to the ill-conditioning of
the optimization problem. We examined this sensitivity by solving the problem twice,
once with no limit on the condition number and again by reducing mk if necessary to
limit the condition number to 105. This has no effect on EDIIS-A and slightly slows
Anderson acceleration down. We show the residual histories in Figure 3.1, where one
can clearly see the effect of limiting the condition number. As reported in [41], the
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optimization problem becomes more ill-conditioned as the iteration progresses. The
figures show that the convergence of EDIIS-I degrades at the 6th iteration, but to a
lesser degree when the condition number is limited. Note that the estimated r-factor
seems to stabilize near the end and is, in the condition number limited case, back to
Picard iteration for the final three iterations, albeit from a worse starting point.

4. Conclusions. The EDIIS algorithm was designed to improve the global con-
vergence properties of the DIIS algorithm, which is also known as Anderson accel-
eration. We prove global convergence of the iteration and prove a local convergence
result that applies to both EDIIS and Anderson acceleration and improves the results
in [41]. We observe, as did the inventors of the method [21], that the unmodified
version of Anderson acceleration can have better local convergence in practice.

Acknowledgments. The authors are grateful to Elena Jakubikova for making
us aware of the global convergence issues in Anderson acceleration, James Nance for
pointing out [21], and two very thoughtful referees.
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