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Abstract: In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative dam-
age in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation
of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However,
the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in
modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an
in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison
to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative
damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of
cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2

did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D
levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function.
Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for
optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal
stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in
wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated
that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in
human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a
potential remedy for oxidative damage in RPE and AMD.

Keywords: age-related macular degeneration; hydroquinone; oxidative stress; autophagy; ubiquitin-
proteasome system (UPS); lysosomal alkalization

1. Introduction

Oxidative stress is a hallmark of several age-related disorders, including cardiovas-
cular diseases, chronic obstructive pulmonary disease, chronic kidney disease, cancers,
and neurodegenerative diseases [1]. Oxidative stress can lead to an accumulation of dam-
aged and misfolded proteins and obsolete organelles, and eventually to dysregulation of
cellular homeostasis and the development of human diseases [2–4]. More importantly,
therefore, the quantification of reactive oxygen species (ROS) production alone is insuf-
ficient when evaluating oxidative stress because the status of the cellular antioxidative
defense machinery also has to be considered [1,5].

Cellular catabolic pathways, including autophagy and the ubiquitin-proteasome sys-
tem (UPS), play an antioxidative role as they regulate protein homeostasis, mitochondrial

Int. J. Mol. Sci. 2021, 22, 9042. https://doi.org/10.3390/ijms22169042 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8808-1340
https://orcid.org/0000-0001-6876-9914
https://orcid.org/0000-0002-5256-4380
https://orcid.org/0000-0002-8516-4711
https://orcid.org/0000-0002-1938-8397
https://orcid.org/0000-0001-7561-9121
https://doi.org/10.3390/ijms22169042
https://doi.org/10.3390/ijms22169042
https://doi.org/10.3390/ijms22169042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22169042
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22169042?type=check_update&version=3


Int. J. Mol. Sci. 2021, 22, 9042 2 of 21

quality control, ROS production, and cellular adaptation [4,6]. Both pathways cooperate in
maintaining proteostasis but are unique in substrate selection. The proteasome is efficient
in degrading smaller and short-lived proteins, whereas larger and long-lived substrates are
targeted for autophagy-lysosomal degradation [7]. Despite their unique roles in proteolysis,
they are functionally connected [7,8]. The crosstalk and interplay between autophagy and
the UPS have been described under conditions of cellular stress [7,8]. Evidence suggests
that UPS inhibition can be compensated for by upregulating autophagy, but dysfunctional
autophagy has been demonstrated to inhibit proteasome activity and dysregulate cellular
homeostasis [7]. Moreover, upregulating proteasome activity was found to be ineffective as
a protective mechanism against cellular stress mediated by impaired autophagy [7]. There-
fore, depending on the changes in autophagy and proteasome activity by a compound, it
may induce oxidative damage in cells or protect them against it.

The benzene metabolite hydroquinone (HQ) is an important environmental toxicant
because of its widespread industrial application and health impact [9]. It has a high redox
activity, resulting in increased ROS production and oxidative stress [9]. HQ exposure
has also been identified as an underlying risk factor in cancerous diseases, inflammation,
and neurodegenerative disorders [9]. Age-related macular degeneration (AMD), a central
retinal disorder that causes visual impairment, is one of the neurodegenerative diseases for
which the contribution of HQ has been well-studied. The aetiology of AMD is multifacto-
rial, including genetic and environmental underpinnings, but it is commonly characterized
by drusen and retinal pigment epithelial (RPE) abnormalities at the earliest pathophys-
iological stage [10]. Proteomic data from the retina of AMD donors’ eyes with drusen
show highly enriched oxidative protein modifications, supporting oxidative stress as an
important environmental risk factor for AMD [11]. Further, epidemiological data have
shown that smoking cigarettes increases the risk for RPE oxidative damage and AMD [12]
and increased plasma levels of HQ almost twice compared to non-smokers [13]. Under
controlled laboratory conditions, chronic exposure to cigarette smoke or HQ in mice led
to oxidative damage in RPE and AMD-like pathology [14–16]. Furthermore, in vitro HQ
caused oxidative damage of cultured human RPE cells, leading to dysregulated vascular
endothelial growth factor (VEGF) homeostasis and increased inflammatory cytokine levels,
which mirror significant events in the pathogenesis of AMD [17,18].

On the basis that human RPE cells are highly resistant to multiple pro-oxidants [19] but
comparatively prone to HQ damage, we hypothesized that changes in autophagy and/or
proteasome activity may underlie HQ-toxicity. An improved understanding of HQ-induced
effects on cellular antioxidative pathways may lead to therapeutic strategies for RPE
protection against oxidative damage and the development of AMD. In the current study,
HQ inhibited autophagy and induced proteasomal activity in human RPE cells, whereas
the ROS inducer H2O2 had the opposite effect. Autophagy inhibition by HQ involved
downregulation of the lysosomal membrane-stabilizing protein LAMP2, lysosomal enzyme
cathepsin D, and lysosomal alkalization, indicating loss of lysosomal membrane integrity
and function. Proteasome inhibition with MG132, however, stabilized lysosomes, induced
autophagy, and ameliorated HQ-induced oxidative damage in wildtype RPE cells but
not in shRNA ATG5 transfected cells. The current study demonstrates the involvement
of autophagy-lysosomal dysfunction in HQ-induced oxidative stress, suggests crosstalk
between autophagy and UPS, and highlights lysosomal stabilization, via proteasome
inhibition, as an interventional strategy against RPE oxidative damage and AMD.

2. Results
2.1. Comparative Vulnerability of RPE Cells to HQ-Induced Oxidative Damage

HQ has been implicated in the oxidative damage of human RPE during AMD patho-
genesis [14,16]. To confirm the vulnerability of human RPE cells to HQ-induced oxidative
stress, assays for ROS levels, protein carbonyls, and cell viability were performed on cells
incubated for 2 h with HQ or H2O2 [20]. A 2-h incubation interval was selected to reflect the
elimination half-life of HQ in vivo, as HQ is rapidly metabolized, and the parent compound
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and metabolites are largely eliminated within 1 h [21]. HQ doses below 25 µM were used
for investigating oxidative stress to avoid potential genotoxic effects of HQ that may occur
at doses above 25 µM [22]. Moreover, this dose range corresponds with available data on
HQ levels in the blood after benzene/HQ exposure [23]. Literature data indicate that the
highest H2O2 level measured in human tissue or blood is about 35 µM [24]. However, we
used up to 500 µM H2O2 because earlier reports and our preliminary studies suggested the
relative resistance of human RPE cells to H2O2-induced oxidative stress [19]. Both HQ and
H2O2 caused dose-dependent increases in ROS levels, protein carbonyl levels, and the loss
of cell viability in RPE cells (Figure 1A,B). Interestingly, while HQ-induced elevation of ROS
levels was notably much lower than with H2O2 (Figure 1A,B), HQ induced higher protein
carbonyl levels and loss of viability (Figure 1B). For instance, 62.5 µM H2O2 generated a
significant increase in ROS levels yet caused little or no effect on the protein carbonyl levels
and cell viability. In contrast, 20 µM HQ generated a comparable increase in ROS levels
and at the same time caused a significant increase in protein carbonyl levels (p < 0.001,
one-way ANOVA) and loss of cell viability (p < 0.001; one-way ANOVA; Figure 1B). These
results confirmed the relative vulnerability of RPE cells to HQ-induced stress.
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Figure 1. ARPE-19 cells are vulnerable to hydroquinone (HQ)-induced oxidative damage. (A) Live-cell confocal micros-
copy for intracellular reactive oxygen species (ROS) using CM-H2DCFDA dye after incubation of cells with HQ or H2O2 
Figure 1. ARPE-19 cells are vulnerable to hydroquinone (HQ)-induced oxidative damage. (A) Live-cell confocal microscopy
for intracellular reactive oxygen species (ROS) using CM-H2DCFDA dye after incubation of cells with HQ or H2O2 for 2 h.
Basal ROS level in the control is barely visible compared to H2O2 treatment or HQ upon calibration. (B) Quantification
of the (i) cell viability by Trypan blue dye exclusion assay, (ii) ROS levels, and (iii) protein carbonyl levels by fluorescent
spectrometry using a microplate reader following incubation with HQ or H2O2 for 2 h. Data represent the mean (+standard
deviation, SD) of 3 independent experiments of 3 replicates each. Statistical analysis was performed by one-way ANOVA
followed by Dunnett’s multiple comparison tests. * p < 0.05, ** p < 0.01, *** p < 0.001, significant difference relative to the
controls. Fluorescence intensity units (F.I.U.).
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2.2. HQ-Induced Mitochondrial Dysfunction

The mitochondrion is a primary source of intracellular ROS and, therefore, is affected
early in oxidative stress-mediated cell death [25]. To demonstrate that oxidative stress was
involved in HQ-induced RPE damage, we examined the impact of HQ on the mitochondrial
morphology and mitochondrial membrane potential of RPE cells. Healthy mitochondria
exist as a dynamic network of an interconnected tubular structure, and a compromise
of the mitochondrial function distorts this arrangement, resulting in altered connectivity
and formation of short, round mitochondria [26]. Moreover, the mitochondrial membrane
potential is directly correlated with ATP production because it reflects the process of
electron transport and oxidative phosphorylation [27]. Our results showed that cells
incubated with HQ had marked disorganization of the mitochondrial network compared
with control RPE cells (Figure 2A). Further, HQ exposure led to a significant reduction
in the mitochondrial membrane potential of human RPE cells (Figure 2B), in agreement
with recent studies [28]. While H2O2-treated cells also showed some changes in the
mitochondrial network morphology (Figure 2A), the mitochondrial membrane potential
remained unaffected after treatment with up to 500 µM H2O2 (Figure 2B), confirming
the relative resistance of RPE cells against H2O2-induced damage. These data, therefore,
underpin oxidative stress as the underlying cause of HQ-induced RPE damage.
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Figure 2. Effects of hydroquinone (HQ) and H2O2 on mitochondrial morphology and mitochondrial membrane potential.
(A) Live-cell fluorescence microscopy with the MitoTracker Green FM dye to determine changes in mitochondrial morphol-
ogy in cells after incubation with HQ or H2O2 for 2 h. (B) Measurement of mitochondrial membrane potential using TMRE
dye in cells after treatment with HQ or H2O2 for 2 h and using a fluorescence microplate reader at excitation/emission
of 549 nm/575 nm. Data represent the mean (+standard deviation, SD) of 3 independent experiments of 3 replicates
each. Statistical analysis was performed by one-way ANOVA followed by Dunnett’s multiple comparison tests. * p < 0.05,
** p < 0.01, significant difference relative to the controls. Arbitrary unit (a.u.).
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2.3. HQ Impairs Autophagy Flux in RPE Cells

The autophagy-lysosomal pathway (ALP) participates in the cellular response to
oxidative stress through the degradation of oxidized proteins, lipids, and damaged mito-
chondria, particularly in post-mitotic cells [4]. We investigated the role of the ALP in HQ-
and H2O2 induced toxicity on RPE cells. Autophagosomes are double-membrane vesicles
that sequester intracellular substrates for lysosomal degradation [29]. Their membrane
contains lapidated, membrane-bound LC3 protein (LC3-II), a commonly used marker for
autophagosomal staining. In transfected RPE cells expressing GFP-LC3, HQ and H2O2
increased the number of autophagosomes, as demonstrated by increased numbers of GFP-
LC3 puncta, which reflect clusters of LC3-II in autophagosomes (Figure 3A). Furthermore,
we observed that the endogenous LC3-II level increased dose-dependently when cells were
treated with HQ (Figure 3B). At concentrations up to 250 µM, H2O2 also dose-dependently
increased LC3-II, but at 500 µM, H2O2 caused LC3-II to decline (Figure 3C). [30]. Since the
net formation and degradation of autophagosomes (or LC3-II) determine its expression
level in a cell, an increase in autophagosome number (or LC3-II) may indicate autophagy
upregulation or the block of autophagy flux [30,31].

To determine if altered protein levels of LC3-II after treatment with HQ and H2O2 were
due to changes in the rate of autophagosome formation or lysosomal degradation the exact
role of autophagy, we assessed the levels of LC3-II in the presence of the lysosomal inhibitor
chloroquine (CQ), which blocks the later stage of autophagy flux, thereby facilitating
selective quantification of treatment-induced autophagosome (or LC3-II) formation [32].
When the autophagy flux is blocked by CQ, an additional increase in LC3-II levels by
a drug will indicate autophagosome induction. As expected, treatment of the RPE cells
with 50 µM CQ for 8 h resulted in a dramatic increase in LC3-II levels compared to the
control (Figure 3D) due to the inhibition of basal autophagy and LC3-II degradation [33].
Following CQ treatment, additional treatment with HQ did not affect LC3-II protein
levels, indicating that HQ did not alter autophagosome formation but likely reduced
autophagosome flux (Figure 3D). In stark contrast, co-incubation with H2O2 and CQ
led to increased LC3-II levels relative to treatment with CQ alone (Figure 3E), indicating
H2O2-induced upregulation of autophagosome formation. In RPE cells and other cell
types, autophagy upregulation was found to be protective against H2O2-induced oxidative
damage [34,35]. The H2O2-mediated induction of autophagosome formation and flux may
explain comparatively lower protein carbonyl levels and mitochondrial dysfunction after
H2O2 treatment, relative to HQ treatment, despite H2O2 leading to more ROS formation.
Together, these results demonstrated that HQ, unlike H2O2, inhibited autophagy in human
RPE cells, and relative to H2O2, CQ dysregulates cellular homeostasis more potently.

2.4. HQ Does Not Downregulate TFEB or Downstream Autophagy Genes

TFEB is the master transcription factor coordinating autophagy and lysosomal bio-
genesis through transcriptional regulation of a network of genes known as the CLEAR
network [36]. Hence, to fully elucidate the role of HQ on the ALP, we sought to deter-
mine whether impaired TFEB activity was involved. TFEB activation leads to its nuclear
translocation and binding to the promoter regions of the CLEAR network, resulting in
TFEB overexpression and autophagy induction [37]. Expression levels of TFEB as well
as its downstream target genes (including ATG5 and ATG7 involved in autophagosome
formation) are good indicators of TFEB activity and, therefore, were evaluated. The data
revealed that HQ elevated the protein expression of TFEB (Figure 4A) and the mRNA
levels of ATG5 and ATG7 (Figure 4B). These data rule out HQ-mediated dysregulation of
autophagy at the transcriptional level.
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Figure 3. Differential effects of hydroquinone (HQ) and H2O2 on autophagy flux in ARPE-19 cells. (A) Increased GFP-LC3
puncta indicating the accumulation of autophagosomes in cells transfected with the GFP-LC3 plasmid and incubated with
HQ or H2O2 for 2 h. (B,C) Immunoblot showing a dose-dependent increase in the autophagy marker LC3-II in ARPE-19
cells treated with HQ or H2O2 for 2 h. (D,E) Autophagy flux in cells with chloroquine (CQ) pretreatment for 8 h, followed
by incubating with HQ or H2O2 for 2 h. Densitometry quantification of protein levels was normalized with β-actin and
expressed as a ratio relative to the control. Data represent the mean + SD of 3 independent experiments of 3 replicates
each. Statistical analysis using one-way ANOVA followed by Sidak or Dunnett’s multiple comparison test. ** p < 0.01,
*** p < 0.001 vs. control, significant difference relative to the controls.

2.5. HQ Downregulates LAMP2 and Cathepsin D Expression

Autophagy inhibition resulting in autophagosome (or LC3-II) accumulation may arise
from deficits in the autophagosome-lysosome fusion and/or lysosomal degradation [38].
Hence, we determined whether HQ impaired lysosomal function by monitoring changes in
the lysosome membrane protein LAMP2, which is integral in the control of autolysosome
formation and degradation of autophagosomes [38,39]. We found that HQ treatment led to
a decline in LAMP2 levels in a dose-dependent manner (Figure 4C), suggesting that HQ
impaired lysosomal function in RPE cells.

The lysosomal aspartic protease cathepsin D is also a relevant indicator of lysosomal
activity as it is involved in proteolytic degradation of autophagy substrate [40]. LAMP2
downregulation affects cathepsin D since the former is involved in the trafficking of the
latter to lysosomes via endosomes after synthesis by the rough endoplasmic reticulum and
Golgi complex [39,40]. Moreover, LAMP2 deficiency also leads to the loss of lysosomal
membrane integrity, resulting in reduced retention of cathepsin D within the lumen [41].
Given the intimate relationship between LAMP2 and cathepsin D, we determined the
effect of HQ on cathepsin D protein expression in RPE cells. Consistent with reduced
LAMP2 expression, the cathepsin D levels also dose-dependently decreased following
HQ treatment (Figure 4D), suggesting that dysregulated LAMP2 expression also affected
cathepsin D expression and lysosomal homeostasis.

2.6. HQ Induces Lysosomal Alkalization

Intra-lysosomal enzymes involved in substrate degradation function optimally within
a narrow range of acidic pH values [42,43]. Therefore, lysosome-alkalizing substances
significantly impair lysosomal function and autophagy. Alteration of the lysosomal pH
affects both autophagy and the phagocytic RPE functions [42]. The effect of HQ on the
intra-lysosomal pH was determined using a ratiometric probe that changed from blue to
yellow fluorescence with increasing acidity. While the exposure of cells to 62.5 µM H2O2,
about twice the physiological concentration of H2O2 found in the body, did not affect the
lysosomal pH, HQ at concentrations as low as 2.5 µM significantly increased the luminal
pH to 5.6 compared with the control 5.1 (Figure 5A, p < 0.001, one-way ANOVA, Dunnett’s
post hoc test). Thus, exposure of RPE cells to HQ may cause lysosomal dysfunction through
the loss of lysosomal membrane integrity (i.e., downregulation of LAMP2 and cathepsin D
levels) and lysosomal alkalization.
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Figure 4. Effect of hydroquinone (HQ) on mRNA and protein markers of the autophagy-lysosomal pathway. (A,B) Over-
expression of TFEB protein and elevated mRNA levels of ATG5 and ATG7 in ARPE-19 incubated with HQ for 2 h. (C,D) 
Immunoblots for LAMP2 and cathepsin D levels in whole-cell lysate from cells exposed to HQ for 2 h. Densitometric 
quantification of protein levels was normalized to β-actin and expressed as a ratio of the control. Data represent the mean 

Figure 4. Effect of hydroquinone (HQ) on mRNA and protein markers of the autophagy-lysosomal
pathway. (A,B) Overexpression of TFEB protein and elevated mRNA levels of ATG5 and ATG7 in
ARPE-19 incubated with HQ for 2 h. (C,D) Immunoblots for LAMP2 and cathepsin D levels in
whole-cell lysate from cells exposed to HQ for 2 h. Densitometric quantification of protein levels
was normalized to β-actin and expressed as a ratio of the control. Data represent the mean + SD of 3
independent experiments of 3 replicates each. Statistical analysis using one-way ANOVA followed
by Dunnett’s multiple comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001, significant difference
relative to the controls.
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2.7. HQ Upregulates Proteasome Activity in RPE Cells

Crosstalk between autophagy and the UPS is observed in many systems [7,8]. Inhibi-
tion of proteasome activity increases autophagy, supporting a compensatory regulation
between these pathways under cellular stress conditions [44,45]. We therefore assessed
the interplay between autophagy and UPS under oxidative stress using HQ and H2O2.
We found that the two oxidants affected proteasome activity differently as HQ-treated
cells showed increased proteasome activity (Figure 5B) whereas H2O2-treated cells had
a decline in proteasome activity (Figure 5C). Our data confirm compensatory regulation
between autophagy and UPS under oxidative stress in RPE cells with H2O2 causing protea-
some and increased autophagy, and HQ treatment causing the opposite effect, consistent
with literature findings [44]. However, these results challenge an earlier hypothesis that
proteasome inactivation was a crucial event in the oxidative damage of RPE cells [46,47].
Our data demonstrated that compensatory proteasome activation in autophagy-deficient
HQ-treated cells did not provide effective protection against oxidative stress.

2.8. MG132 Stabilizes Lysosomes, Improves Autophagy, and Protects against Oxidative Damage

Recently, the peptide aldehyde proteasome inhibitor MG132 was found to stabilize
the lysosomal membrane, restore lysosomal pH homeostasis, and induce autophagy in



Int. J. Mol. Sci. 2021, 22, 9042 10 of 21

macrophages [48]. In addition, MG132 was shown to enhance cathepsin D activity and
elevate LAMP1 levels [45]. Therefore, we tested MG132 in HQ-treated RPE cells. Firstly, we
performed a dose-response study to investigate the effect of MG132 on proteasome activity,
ROS generation, and apoptosis in ARPE-19 cells. We observed that MG132 inhibited
proteasome activity dose-dependently from 2.5 µM to10 µM (Figure 6A) without affecting
ROS levels (data not shown), compared with the solvent control (i.e., ethanol). However,
we found that treating cells with 10 µM MG132 induced apoptosis in RPE cells (Figure 6B).
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Next, we assessed the effect of MG132 on autophagy in human RPE cells. Our re-
sults demonstrated that MG132 treatment increased LC3-II in a dose-dependent manner
including in the presence of CQ (Figure 7A,B), consistent with MG132 increasing au-
tophagosome formation. Moreover, MG132 upregulated LAMP2, a lysosomal membrane
protein involved in lysosomal stabilization and homeostasis (Figure 7C). Thus, our results
corroborated the efficacy of MG132 in the stabilization of lysosomes and induction of
autophagy [45,48].
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Figure 7. MG132 upregulates autophagy and LAMP2 expression in human RPE cells. (A) LC3-II
levels increased in ARPE-19 cells after treatment with MG132 for 5 h. (B) LC3-II levels in cells
incubated with chloroquine for 8 h followed by incubating with MG132 for 5 h. (C) LAMP2 levels
increased in cells after 5 h incubation with MG132. Protein levels were normalized with β-actin and
expressed as a ratio of the control. Data represent the mean (+SD) of 3 independent experiments
of 3 replicates each. Statistical analysis using one-way ANOVA followed by Dunnett’s or Sidak’s
multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, significant difference relative to
the controls.

Pre-treatment of RPE cells with MG132 ameliorated the toxic effects of 25 µM HQ.
Specifically, HQ-induced apoptosis, protein carbonylation, and mitochondrial depolar-
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ization were significantly reduced with MG132 pre-treatment (Figure 8A), supporting its
protection against HQ-induced oxidative damage. The lowest dose of MG132 (i.e., 2.5 µM)
most effectively reduced HQ-induced apoptosis likely because MG132, at higher doses,
had a pro-apoptotic effect itself.
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(A) Flow cytometry using annexin V-FITC/PI staining in cells treated with MG132 or vehicle (ethanol) for 3 h before
incubation with 25 µM HQ for 2 h. (B) Measures of cell viability, protein carbonyl level, and mitochondrial membrane
potential in cells pretreated with 2.5 µM MG 132 or vehicle for 3 h before incubation with 25 µM HQ for 2 h. (C) Autophagy
inhibition following transfection of shRNA against ATG5 caused loss of MG132-mediated protection against HQ-induced
apoptotic damage in cells. Data represent the mean (+SD) of 3 independent experiments of 3 replicates each. Statistical
analysis using one-way ANOVA followed by Sidak or Dunnett’s multiple comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001,
significant difference relative to the control.

To confirm that the cytoprotective effects of MG132 were mediated through in-
creased autophagosomal flux, autophagy-defective cells expressing shRNA against ATG5
(Supplementary Materials) were used for the additional experiment. In autophagy-deficient
cells, the cytoprotective effect of MG132 against HQ-toxicity was completely lost with a
higher number of the HQ- and M132-treated cells progressing from early to late apoptosis
relative to cells treated only with HQ (Figure 8C). Thus, in the absence of compensatory
upregulation of the ALP, proteasome inhibition with MG132 in itself does not confer any
protection against HQ-induced toxicity [8].

3. Discussion

Oxidative damage induced by hydroquinone affects different cells in the body, con-
tributing to several human diseases. The RPE is a specialized epithelium interfaced between
the neuroretina and choriocapillaris. This layer is critical in the maintenance of retinal
homeostasis due to its multifunctional roles, which include the transport of nutrient and
metabolic waste between the neuroretina and choriocapillaris, the re-isomerization of
visual pigments involved in phototransduction, phagocytosing of shed photoreceptor
outer segments, and its protection against photooxidation [49,50]. The present study con-
firmed earlier work on the RPE’s relative resistance to oxidative stress from H2O2 and
relative vulnerability to HQ [14,15]. We further investigated the mechanisms involved in
hydroquinone-induced RPE oxidative damage because insight into such mechanisms may
allow the formulation of therapeutic strategies for RPE protection and potential for the
treatment of AMD. This study highlights the central role of the ALP in the response of RPE
to HQ-induced oxidative stress. We demonstrated that HQ impaired lysosomal function
and autophagy via lysosomal alkalization and disruption of lysosomal membrane integrity.
These events led to the accumulation of damaged proteins, mitochondrial dysfunction, and
RPE cell apoptosis. Our results also provided evidence that safeguarding lysosomes was
an effective interventional approach to preventing HQ-induced autophagy dysfunction
and oxidative damage in RPE cells.

3.1. Autophagy and Its Protective Role in Oxidative Stress

Autophagy, in general, can act either as a pro-life or pro-death mechanism; hence,
its role in AMD development could be inhibitory or progressive [51]. The antioxidative
role of autophagy, however, is one of the pathways contributing to the promotion of cell
survival under stressful conditions. Emerging evidence demonstrates the protective role
of autophagy in several oxidative stress-linked neurodegenerative disorders, including
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and motor neuron dis-
eases [52]. Oxidative stress causes protein damage and undermines mitochondrial quality
control mechanisms, while autophagy exerts protective effects by eliminating toxic protein
aggregates and defective mitochondria, thereby restoring cell and tissue homeostasis [53].
In this study, HQ-induced autophagy deficits in RPE cells, leading to autophagosome
accumulation, protein oxidation, mitochondrial dysfunction, and apoptosis. The find-
ings of the present in vitro study mirror the post-mortem findings in human donors with
AMD, which include toxic protein aggregation, mitochondria defects, and poorly degraded
autophagic substrates in the RPE [53]. In addition, chronic HQ exposure of malignant
tumors and cancer cell lines of human origin demonstrate a central role of autophagy in
promoting cell resistance against chemotherapy [54–56]. Autophagy inhibition usually
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led to the loss of their resistance against anticancer treatments, leading to apoptosis in
HQ-induced cancer cells [54–56]. However, upregulation of autophagy and cytoprotection
in cancer cells hints at a different role of HQ in the development of cancers relative to AMD
development. Due to the similarities of cellular pathology observed in HQ-treated RPE
cell culture and AMD, we believe that the findings of lysosomal dysfunction in this study
are also relevant to the understanding of AMD pathogenesis. Hence, interventions that
improve lysosomal function and mitigate autophagy inhibition in RPE cells may also hold
potential as therapeutic strategies in AMD management.

3.2. Lysosomal Dysfunction Underlying HQ-Induced Autophagy Deficit and RPE Damage

AMD donor eyes show evidence of dysfunctional autophagy and decline in lysosomal
activity, believed to be crucial in drusen formation and the pathogenesis of the disease [57].
Our results pointed to lysosomal dysfunction as the cause of the autophagy deficit in
HQ-induced oxidative stress. This is consistent with recent emphases on the importance
of lysosomal homeostasis in promoting autophagy and cell survival under oxidative
stress [58,59]. Lysosomal degradation of a substrate in RPE cells is dependent on lysosomal
hydrolases with acidic pH optima between 4.5 and 5.2 [42,43]. A low luminal pH requires an
intact lysosomal membrane barrier composed of ubiquitous highly glycosylated, lysosome-
associated membrane proteins including LAMP1 and LAMP2 [60]. LAMP2 also regulates
the intracellular transport of hydrolases to lysosomes after sorting from the trans-Golgi
network, and lysosomal membrane fusion with autophagosomes [60]. While dysregulated
LAMP1 expression does not cause apparent lysosomal defects, LAMP2 deficiency impairs
lysosomal degradation and autophagy and is implicated in Danon disease [60]. Therefore,
based on the HQ-mediated decline in LAMP2 and cathepsin D levels and the alkalizing
effect of HQ on lysosomes, the results of this study supported that loss of lysosomal
membrane integrity and lysosomal function were critical events in mediating the toxicity
of HQ in RPE cells [57,58,60]. Similar harmful effects of HQ on lysosomes as observed
with HQ have also been observed with prooxidants including paraquat and lipofuscin,
substances that inhibit autophagy and phagocytosis [58,59].

We ruled out the possibility of transcriptional downregulation of autophagy by demon-
strating that HQ induced overexpression of TFEB and the activation of autophagy genes.
The overexpression of TFEB in cells exposed to HQ may be a compensatory mechanism
to induce lysosomal biogenesis [61]. However, TFEB activation may not reverse the au-
tophagy deficit because it primarily controls the transcriptional activation of the ALP,
whereas HQ may also affect the ALP at the protein level, in addition to its downstream
lysosomal alkalizing effect.

3.3. Role of Autophagy and UPS Crosstalk in HQ-Induced Oxidative Stress

Under oxidative stress in RPE cells, previous reports indicated that the UPS is com-
promised, implicating the downregulation of UPS in RPE damage [47]. Our data, on the
contrary, showed increased proteasome activity when human RPE cells were exposed to
HQ. It is known, however, that the effect of an oxidant on the UPS depends on the severity
of ROS levels and whether the exposure is transient/sustained [6]. Hence, the differential
effects between HQ and H2O2 on proteasome activity may be related to differences in
their ROS generating capacities, which was much lower with HQ treatment for the tested
concentrations. Furthermore, we demonstrated that proteasome inhibition with MG132
stabilized lysosomes, induced autophagy, and protected RPE cells from oxidative damage.
Thus, the evidence in this study suggested compensatory crosstalk between the UPS and
autophagy and supported the potential benefit of proteasome inhibition with MG132 in
the management of AMD.

3.4. Conclusions

Overall, this study identified lysosomal dysfunction and autophagy deficits as the
mechanisms underlying HQ-induced oxidative damage in human RPE. From our data,



Int. J. Mol. Sci. 2021, 22, 9042 15 of 21

therefore, we propose treatments targeted at promoting lysosomal homeostasis and au-
tophagy via proteasome inhibition, as potential therapeutic strategies in the management
of AMD. While this strategy is feasible in our experiments, further studies to ascertain the
criteria and the extent to which the cross-talk between autophagy and proteasome activity
could be adequately altered without any harmful effects are warranted since increased
proteasome inhibition or overstimulated autophagy with higher doses of MG132 offered
no cytoprotection.

4. Materials and Methods
4.1. Cell Culture and Treatment

Human RPE cells (ARPE-19 cell line, ATCC® CRL2302™) were cultured with Dul-
becco’s modified Eagle’s medium (DMEM)/F12 (Sigma-Aldrich, St. Louis, MO, USA)
containing 10% fetal bovine serum (Invitrogen-Gibco, Grand Island, NY, USA) and 1%
penicillin/streptomycin antibiotic mixture (Thermal Fisher Scientific, Rockford, IL, USA).
The cell line was thoroughly tested for mycoplasma using three different methods—agar
culture (direct) method, Hoechst DNA stain (indirect) method, and PCR assay (lot #:
70022669, ATCC®). The medium was renewed every three days, and the cells were incu-
bated at 37 ◦C in a humidified atmosphere containing 5% CO2.

For experiments, cells grown to 80% confluency between passage 11 and 16 were
used as recommended by the supplier. After 24 h of serum starvation, cells were incu-
bated with HQ (hydroquinone, H9003, Sigma-Aldrich), H2O2 (hydrogen peroxide 30%,
107209, Merck Millipore, Burlington, MA, USA), CQ (chloroquine diphosphate salt, C6628,
Sigma-Aldrich), MG132 (M8699, Sigma-Aldrich), or a combination of these treatments. The
whole-cell lysate was prepared using ice-cold 1× RIPA lysis buffer [0.5 M Tris-HCl (pH 7.4),
1.5 M NaCl, 2.5% deoxycholic acid, 10% NP-40, and 10 mM EDTA (Millipore)] containing
1:100 protease inhibitor cocktail (Thermo Scientific, Waltham, MA, USA) unless other-
wise stated. Bio-Rad Protein Assay was used to quantify sample protein concentrations
(Bio-Rad Laboratories).

4.2. Cell Viability Assay

The Trypan blue dye exclusion assay was used to assess cell viability. Briefly, ARPE-19
cells with a seeding density of 1 × 106 cells/well cultured in 6-well plates were incubated
with treatments as desired in triplicate. After trypsinization and centrifugation at 1500 rpm
for 5 min, cells were stained with 0.4% trypan blue solution (Sigma-Aldrich, T6146) to
quantify viability as a percentage of the control.

4.3. Intracellular ROS Assay

Cells were plated on 96-well plates (1.5 × 104 cells/well) or 35-mm MatTek glass-
bottom dishes (MatTek Corp., Ashland, MA, USA) (1 × 106 cells/dish) overnight. On the
next day, cells were rinsed with PBS and incubated with 5 µM 5-(and-6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate (CM-H2DCFDA, C6827, Invitrogen, NY, USA) for
1 h in the dark at 37 ◦C. Afterward, cells were treated with HQ or H2O2 for 2 h or MG132
for 5 h. Intracellular ROS accumulation leads to increased fluorescence of cells due to the
conversion of the cell-permeable dye from the non-fluorescent dichlorodihydrofluorescein
(DCFH) to a highly fluorescent dichlorofluorescein (DCF) form within cells. A Clariostar
microplate reader (BMG Labtech, Offenburg, Germany) or confocal microscopy (Eclipse
Ti2-E, Nikon Instruments Europe B.V., Amsterdam, The Netherlands) was used to assess
the fluorescence intensity at excitation/emission wavelengths of 483/530 nm. Data were
normalized with Hoechst stain.

4.4. Live Cell Intra-Lysosomal pH Measurement

The ratiometric fluorescent dye LysoSensor™ Yellow/Blue DND-160 (cat # L7545,
Thermo Fisher Scientific) was used to measure the pH of lysosomes. This dye permeates
live cells and accumulates in the lysosomes where it shifts fluorescence from blue to yellow
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depending on the acidity. For quantification of the intra-lysosomal pH, cells plated on
a black 96-well plate (1.5 × 104 cells/well) and treated as designated were loaded with
1 µM LysoSensor™ Yellow/Blue DND-160 for 5 min. A pH calibration curve using pH
values of 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 was then generated by incubating cells with standard
buffers of known pH containing 10 µM nigericin for 10 min, as described previously [62].
The ionophore nigericin equilibrates pH across cells so that the final ion gradients depend
on the experimental conditions [63]. Fluorescence intensity was measured in triplicate
using the Varioskan LUX Multimode Microplate Reader (Thermo Fisher Scientific) for
light emitted at 440 nm and 540 nm with reference excitation wavelengths of 329 nm and
384 nm, respectively. The lysosomal pH of samples was determined with the help of the
calibration curve.

4.5. Mitochondrial Membrane Potential

Mitochondrial membrane potential was measured using the tetramethylrhodamine,
ethyl ester (TMRE) potentiometric probe according to the manufacturer’s protocol (cat #
87917, Sigma-Aldrich). In brief, ARPE-19 cells seeded at approximately 1 × 104 cells/well
on a 96-well plate were grown for 48 h. Cells treated as designated or with the negative
control, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), for 10 min [64]
were incubated with 400 nM TMRE dye at 37 ◦C for 15 min, followed by repeat rinsing
with 1 × PBS/0.2% BSA. Fluorescence at excitation/emission wavelengths of 549/575 nm
was quantified using a Clariostar microplate reader (BMG Labtech). Data were normalized
with Hoechst stain fluorescence.

4.6. Mitochondrial Morphology Using Confocal Microscopy

An assessment of the mitochondrial morphology was performed using the fluorescent
mitochondrial marker MitoTracker Green FM (M7514, Thermo Fischer Scientific) which
is stable and unaffected by changes in mitochondrial membrane potential [65]. Briefly,
cells were seeded onto 35 mm MatTek glass-bottom dishes (1 × 106cells/dish), cultured
for 48 h, and treated as indicated, followed by loading with 50 nM MitoTracker Green FM.
After a 15-min incubation in the dark, cells were rinsed and visualized in a serum-free
medium under an inverted confocal microscope (Eclipse Ti2-E, Nikon Instruments Europe
B.V., Amsterdam, The Netherlands) using a 63×magnification with excitation/emission
wavelengths of 490/516 nm.

4.7. Flow Cytometry with Annexin V-FITC/PI

Cellular apoptosis was assessed using flow cytometry and the Annexin V Apoptosis
Detection Kit (Cat # 640914, BioLegend Inc., San Diego, CA, USA) using the manufacturer-
recommended propidium iodide (PI) double staining approach. Briefly, trypsinized cells
were rinsed twice, and cells were suspended at a density of 1 × 106cells/mL incubated
with 5µL Annexin V-FITC for 10 minutes in the dark at room temperature, followed
by incubation with 10µL PI for 5 minutes and dilution with 400 µL binding buffer for
flow cytometry (BD FACSVia Flow Cytometer, BD Biosciences, Franklin Lakes, NJ, USA).
Unstained cells in the presence of dyes (FITC−, PI−) are viable; the FITC-stained cells
(FITC+, PI−) are undergoing early apoptosis, and double-stained cells (FITC+, PI+) indicate
late apoptosis or necrosis [66].

4.8. Autophagosome Accumulation Assessment by GFP-LC3 Puncta

Expression of GFP-LC3 in ARPE-19 cells at a cell density of 1.0 × 106 cells was per-
formed by transfection with 2.5µg pEGFP-LC3 plasmid (Addgene plasmid # 24920) using
Lipofectamine 3000 (Invitrogen) for 24 hours in a 35 mm confocal dish. After pharmacolog-
ical treatment, autophagy flux was assessed by quantifying the GFP-LC3 puncta number
per cell using an inverted confocal microscope (Eclipse Ti2-E, Nikon Instruments Europe
B.V., Amsterdam, The Netherlands) with a 63× objective. For each treatment condition,
the average GFP-LC3 puncta per cell were determined by counting 30 cells.
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4.9. Protein Carbonyl Assay

Spectrophotometry measurement of the protein carbonyl level was performed using
an ELISA kit following the manufacturer’s instructions (Oxiselect™ protein carbonyl,
STA-310, Cell Biolabs, San Diego, CA, USA). Briefly, lysate from cells at cell density
of 1.5 × 106 cells/well treated as designated in a 6-well plate was incubated with 1%
streptomycin sulfate (S9137, Sigma-Aldrich), and protein extract at a concentration of
10 µg/mL was adsorbed onto a 96-well plate for 2 h at 37 ◦C, and protein carbonyls
were then derivatized to DNP hydrazine. Finally, samples were incubated with an anti-
DNP antibody followed by HRP conjugated secondary antibody, and the absorbance was
measured at 450 nm wavelength using a microplate Reader plate (Ao, Azure Biosystems
Inc., Dublin, CA, USA).

4.10. Proteasome Activity Assay

Proteasome activity was measured using a fluorogenic 7-amino-4-methyl coumarin
(AMC)-tagged substrate kit to detect chymotrypsin-like activity following the manufac-
turer’s protocol (Cat #: K245, Biovision, San Francisco, CA, USA). Briefly, lysate from
treated cells was extracted using 25 mM Tris-HCl buffer and loaded onto a 96-well plate in
duplicate for incubation with the fluorescent substrate at 37 ◦C for 30 min in the presence
of MG132 (proteasome inhibitor) or without (as control). Due to the chymotrypsin-like
activity of proteasomes, highly fluorescent AMC is released from the AMC-tagged peptide
substrate. Fluorescence intensity was then measured at excitation/emission of 350/440 nm
using a Clariostar microplate reader (BMG Labtech). Results were normalized to the
protein concentration of samples.

4.11. Western Blot

A 30 µg denatured protein sample was loaded onto each well of a separating gel
for SDS-PAGE electrophoresis (10% SDS-PAGE gels). Electro-transfer of proteins from
gel to an Immobilon-FL PVDF membrane (Millipore) took 2 h in prechilled buffer with
cold pack using 250 mA. Membrane blocking involved incubation with 5% non-fat milk
in Tris-buffered saline containing 0.05% Tween 20 (Bio-Rad Laboratories) for 1 h at room
temperature. Primary antibody incubation with anti-LC3 (NB100-2220, Novus Biologicals,
Littleton, CO, dilution 1:1000), anti-LAMP2 (sc-18822, Santa Cruz Biotechnology, Dallas,
TX, USA, dilution 1:2000), anti-cathepsin D (sc-377299, Santa Cruz Biotechnology, dilution
1:500), anti-TFEB (D2O7D, Cell Signaling Technology, Davers, MA, USA, 1:500), and β-actin
(AC-15, Thermo Fisher Scientific, dilution 1:2000) was performed overnight at 4 ◦C. The
washed membrane was incubated with horseradish peroxidase HRP-conjugated secondary
antibodies including anti-mouse IgG (H + L, A16066) and anti-rabbit IgG (H + L, A16110;
Thermo Fisher Scientific, dilution 1:2000) for 1 h, washed, and developed by incubation
with ECL substrate solutions for 5 min. The western blot images were acquired using the
Chemidoc MP Imaging System (Bio-Rad, Hercules, CA, USA).

4.12. shRNA Knockdown of ATG5

Stable knockdown of ATG5 in ARPE-19 cells was achieved using lentiviral delivery of
short hairpin RNA (shRNA). HEK293T cells seeded in a 10 cm culture dish (3 × 106 cell/dish)
were transfected with a lentiviral vector coding a scrambled shRNA plasmid (Addgene
plasmid # 1864) or ATG5 shRNA, TRC numbers: TRCN0000151474 (Sigma-Aldrich) using
Lipofectamine 2000 (Invitrogen). The transfection lasted for 8 h followed by incubation
in a fresh medium for 48 h. Virions were collected and precipitated overnight using PEG
before filtering with a 0.45 µm filter. ARPE-19 cells were incubated with virions for 48 h for
cell transduction, followed by treatment with puromycin (1.0 µg/mL) for 10 days for the
identification of transduced, puromycin-resistant colonies.
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4.13. RNA Extraction and Quantitative RT-PCR

cDNA was synthesized (High Capacity cDNA Reverse Transcription Kit, Thermo
Fisher Scientific) from 1µg total RNA extracted using Trizol (Invitrogen) as described pre-
viously [18]. The reaction mixture used in quantitative RT-PCR contained 2µL cDNA
template, 5µL LightCycler 480 SYBR Green I Master mix (Roche Diagnostics, Mannheim,
Germany), 1µL nuclease-free water, and 1µL of gene-specific primers. Primer sequences
were as follows: ATG5 forward: 5′-AAGCTGTTTCGTCCTGTGGC-3′ and ATG5 reverse:
5′-CCGGGTAGCTCAGATGTTCA-3′; ATG7 forward: 5′-CGTTGCCCACAGCATCATCTTC-
3′ and ATG7 reverse: 5′-TCCCATGCCTCCTTTCTGGTTC-3′; β-actin forward: 5′-CCAAC
CGCGAGAAGATGA-3′ and β-actin reverse: 5′-CCAGAGGCGTACAGGGATAG-3′. The
conditions used to run the LightCycler®480 Instrument II (Roche Diagnostics) included denat-
uration at 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for
30 s. Fold changes were calculated using the change in the Cycle threshold (∆∆CT) method.
β-actin was used for normalizing the expressions of other genes following the validation of
its stability by the coefficient of variation analysis (CV) in ARPE-19 cells under normal and
treatment conditions.

4.14. Data Analysis

GraphPad Prism (Graphpad Software Inc., San Deigo, CA, USA) was used for analyz-
ing data. All data are presented as the mean ± SD. In determining the difference between
treatments, an unpaired t-test was used for two treatment groups, and one-way ANOVA
followed by Sidak’s/Dunnett’s multiple comparison post hoc tests was performed when
three or more treatment groups were involved. p < 0.05 indicates statistical significance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22169042/s1, Figure S1: Transfection of cells with lentivirus particles coding shRNA ATG5
or scrambled RNA.
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