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Abstract 

The prevalence of shared bikes in many cities is a double-edged sword to the local mass transit services. 

Some transit patrons may switch to cycling, causing declines in the transit ridership. Others may benefit 

from using bikes instead of walking to access transit. The complicated interactions between the two 10 

modes entail the necessity of designing them jointly. Unfortunately, the literature has focused on either 

the design of a single mode or joint designs idealized by assuming a uniform demand pattern. The latter 

class of works has limited practical values. 

 This paper develops a continuum approximation (CA) model for optimizing the hybrid design 

of shared-bike and transit services in a corridor under spatially heterogeneous demand patterns. The 15 

model minimizes the generalized system cost considering various route options that patrons can choose 

from, including transit routes with walking or biking access and bike-only routes. The methodological 

challenges that arise due to patrons’ route choices in the heterogeneous operating environment are 

overcome by incorporating a route assignment model into the CA modeling framework. We propose a 

bi-level algorithm to solve the model, where the upper level optimizes the hybrid design by exploiting 20 

some analytical properties of the CA model, and the lower level calculates the route assignment 

equilibrium. 

 Numerical experiments show that the optimal hybrid design outperforms the conventional 

transit design for a wide range of operating conditions. The cost saving can be over 20%. Under certain 

conditions, the hybrid design can even reduce the total operating cost, making bike-sharing profitable 25 

for transit agencies. The practical applicability of our model is demonstrated via a case study of a real 

bus line in Chengdu, China. 

Keywords: bike-sharing; transit corridors; continuum approximation; heterogeneous demand; route 

assignment 

 30 

1. Introduction 

As an individual travel mode, bike-sharing bears more than the benefits of cycling, e.g., the convenience, 

affordability, and healthy and environmental merits. It also exhibits new appealing elements, e.g., the 

relief of bike ownership (Shaheen et al., 2010). As a result, bike-sharing systems have been widespread 

in over 1,000 cities worldwide (Wikipedia, 2019). Recent reports show that 51 million trips were taken 35 
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on shared bikes in the U.S. in 2018 (NACTO, 2018). In China, that number even reached 25 billion 

(People’s Daily, 2018). 

The success of bike-sharing is accompanied by mixed impacts on public transportation systems. 

Metro and subway systems are generally believed to benefit from the shared bikes. For instance, Ma et 

al. (2015) reported that a 10% increase of shared-bike rides led to a 2.8% increase in the Metrorail 40 

ridership in Washington, D.C. Graehler Jr. et al. (2019) revealed from the data of 22 major U.S. cities 

that a 4.2-6.9% increase in rail transit ridership could be attributed to bike-sharing programs. For bus 

transit, however, bike-sharing appears to be more of a competitor than a feeder mode in European and 

North American cities. For example, empirical studies of those cities accused bike-sharing of creating 

a 1-3% decrease in bus ridership (e.g., Parkes et al., 2013; Campbell and Brakewood, 2017; Graehler 45 

Jr. et al., 2019). On the other hand, studies of Chinese cities spoke to the opposite. For example, Ma et 

al. (2019) found that each shared bike in Chengdu brought in 4.23 additional daily bus trips on weekdays, 

albeit together with a reduction of 0.56 daily bus trips on weekends. 

The empirical evidence shows that shared bikes and transit interact in a rather complicated way. 

However, proper long-term planning can render more synergistic interactions between the two modes 50 

(Singleton and Clifton, 2014). Efforts to integrate the two modes have been attempted in practice. These 

include the deployment of bike docking stations at transit stops (Martens, 2004; Rietveld, 2000) and 

launches of new bike-sharing systems directly operated by transit agencies (e.g., Call a Bike, 2019; 

Metro Bike Share, 2019). 

Research works are ample in this realm too. For example, some focused on the bike docking-55 

station location problem where existing transit stops were treated as candidate locations (Lin and Yang, 

2011; García-Palomares et al., 2012; Lin et al., 2013; Conrow et al., 2018). Others examined the bike-

sharing network design problem, considering patrons’ mode choice between biking and an existing 

transit system (Chow and Sayarshad, 2014; Tavassoli and Tamannaei, 2020). On the other hand, transit 

system design problems given pre-existing shared bikes were also explored (e.g., Liu et al., 2019). 60 

Regrettably, all the above-cited works assumed either the transit network or the bike-sharing system is 

fixed. As a result, the joint design of the two systems has largely gone unreported.1 

 To our best knowledge, the first work on the optimal joint design of bike-sharing and transit 

services is Wu et al. (2020), where the shared bikes were used as feeders to the transit service. Analytical 

models were developed to optimize bike station density, transit line spacing, and transit headways. The 65 

work revealed that, in addition to reducing transit patrons’ travel time, the joint design could even save 

the agency’s operating cost under certain conditions. The overall system cost saving can be above 10% 

as compared to an optimal conventional transit system without shared bikes. The work was later 

 
1 Models were also developed for optimizing shared-bike operations. Examples include the bike deployment 

problem at docking stations (Shu et al., 2013; Tang et al., 2018), the docking-station sizing problem (Freund et 

al., 2017), and the bike rebalancing problem (Pal and Zhang, 2017). They mainly focused on an isolated bike-

sharing system, and thus are not closely related to the topic of this paper. 
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extended to incorporate the option of completing a trip by bike only (Li et al., 2020). Nevertheless, 

these two studies are limited in that they only produced idealized, homogeneous network structures 70 

under uniform demand. They thus overlooked the modeling complexities that arise due to realistic, 

spatially heterogeneous demand patterns. Consequently, they failed to unveil how the optimal design 

varies with demand over space. Also, their models cannot be applied to design real-world systems. 

There are two classes of methods for addressing demand heterogeneity. The first class of 

methods relies on discrete models that use numerous parameters and variables to represent spatially 75 

heterogeneous demand and design features (e.g., Szeto and Wu, 2011; Nayeem et al., 2014). Due to the 

complexity of those models, they were often applied to solve problems of limited sizes. Metaheuristic 

methods (e.g., genetic algorithm) were commonly used to find solutions in a reasonable runtime. The 

second class of methods employs the so-called “continuum approximation (CA)” technique, in which 

the heterogeneous demand density and design variables (e.g., stop spacing or density) are represented 80 

by continuous functions of spatial coordinates (e.g., Wirasinghe and Ghoneim, 1981). Efficient solution 

algorithms and even closed-form solutions can be developed thanks to the parsimony of these CA 

models. However, the formulation and solution of these models are more challenging than analytical 

models developed under the uniform demand assumption (e.g., Daganzo, 2010; Gu et al., 2016; Wu et 

al., 2020). For example, CA models were often solved by exploiting the local decomposition property. 85 

With this property, the optimization problem can be decomposed by spatial coordinates into 

subproblems, each containing a handful of scalar decision variables only (Chen et al., 2015). 

Unfortunately, many transit network design problems do not exhibit the local decomposition property, 

especially for multimodal transit systems where patrons distribute themselves among different modes 

and routes.  90 

In light of the above, we propose a CA model to optimize the hybrid design of shared bikes and 

transit service in a corridor under heterogeneous demand. The design variables include the spatially 

varying densities of bike stations and transit stops and the transit service headway. We choose to model 

a corridor instead of a city-wide network because, to our best knowledge, the present mathematical 

tools for spatially heterogeneous transit network design are highly limited. Some previous CA models 95 

in this realm can only be applied to special demand patterns, e.g., rotationally symmetric demand that 

varies along radial lines only (Badia et al., 2014; Chen et al., 2015; Luo and Nie, 2019, 2020a). Others 

use special transit network layouts, e.g., grid-shaped networks where the line spacings were constrained 

by the power-of-two rule (Ouyang et al., 2014; Chen et al., 2018). The network structure used in the 

latter-cited works also requires some patrons to make unreasonably many (three or more) transfers in 100 

their journeys. On the other hand, CA methods for transit corridor design do not impose stringent 

restrictions on demand patterns or line layout (Wirasinghe and Ghoneim, 1981; Medina et al., 2013; 

Luo et al., 2020; Mei et al., 2021). Modeling a corridor instead of a city-wide network allows us to 

focus our efforts on tackling the challenges that arise due to the complicated interactions between the 
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transit and shared bikes. To our knowledge, these challenges have not been appropriately addressed in 105 

the literature under a heterogeneous operating environment. 

 To better understand the methodological challenges, note that patrons’ route options in a hybrid 

system include transit routes accessed by walking, transit routes accessed by biking, and bike-only 

routes. Patrons’ costs (mainly travel times) and some critical operating features (e.g., the patron flow 

on each mode, which dictates the numbers of transit vehicles or bikes needed) depend heavily on their 110 

route choices. On the other hand, a patron’s route choice hinges upon the route trip costs under a given 

design. Moreover, the probability of choosing a specific route depends on trip ODs and is also 

heterogeneous along the corridor. The latter adds a significant amount of complexity to the problem. 

To confront these challenges, we develop patrons’ route choices in two steps: Step 1 identifies the best 

access and egress modes to transit between cycling and walking using the “critical distance” concept 115 

borrowed from Wu et al. (2020); and Step 2 determines the choice of an arbitrary patron between the 

best transit-dominated route and the bike-only option by comparing their costs. Details of this novel 

route assignment model can be found in Sections 3.1 and 3.2. Cost models and the optimization 

formulation are furnished in Sections 3.3-3.5. 

Regarding the solution approach, although the original problem involving route choice is not 120 

decomposable, we find that the model can be decomposed by the space coordinate if route assignment 

is fixed. Furthermore, analytical properties regarding the optimal solution can be derived for the 

decomposed model. Built upon these properties, we develop a bi-level heuristic algorithm that 

optimizes the system design and determines route assignment separately and iteratively. Details of the 

solution approach can be found in Section 4. 125 

Our extensive numerical experiments unveil valuable insights into cause-and-effect relations 

between key operating factors and the optimal design. The practical applicability of our model is 

verified via a case study of a real-world bus corridor in Chengdu, China. Details are offered in Section 

5. Finally, Section 6 concludes the paper by summarizing its contributions and potential extensions. 

We start by presenting the modeling framework and key assumptions in the next section. 130 

 

2. Modeling framework 

For the convenience of readers, notations used in this paper are summarized in Appendix A. 

 

2.1. Layout 135 

Consider an idealized transit (bus or metro) corridor with a length of 𝐿 (km), as shown in Figure 1. The 

transit service is characterized by the service headway, ℎ (hour), and the stop density, 𝛿𝑡(𝑥) (stops/km), 

which varies with location 𝑥 ∈ [0, 𝐿]. Also deployed in the corridor are shared bikes, which dwell in 
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stations with or without docks.2 The density of these bike stations is denoted 𝛿𝑏(𝑥) (stations/km), 𝑥 ∈

[0, 𝐿]. To facilitate transfers between transit vehicles and shared bikes, we specify that each transit stop 140 

is coupled with a bike station, which implies 𝛿𝑏(𝑥) ≥ 𝛿𝑡(𝑥), 𝑥 ∈ [0, 𝐿]. 

Eastbound

Westbound

Route t
Route  tb

Route  btb

Route  bt

Route  b

Transit line Transit stop with a bike station Bike station

 
Figure 1. A transit corridor served by shared bikes. 

 

2.2. Major assumptions 145 

To facilitate the model formulation, we make the following assumptions, which were also commonly 

adopted in many previous CA studies (e.g., Murray, 2003; Estrada et al., 2011; Medina et al., 2013). 

Assumption 1. The distribution of transit demand is spatially continuous and slow-varying, 

and time-invariant during the study period. The hourly demand density, 𝜆(𝑥, 𝑦)  (trips/km2/h), is 

expressed as a function of trip origin and destination locations, 𝑥 and 𝑦 ∈ [0, 𝐿].3 Denote 𝛽 ∈ [0,1] as 150 

the fixed able-bodied patron ratio. For each OD pair (𝑥, 𝑦), 𝛽 ∙ 𝜆(𝑥, 𝑦) is the demand density of able-

bodied patrons, i.e., those who can ride bikes; (1 − 𝛽) ∙ 𝜆(𝑥, 𝑦) is the demand density of non-able-

bodied patrons who will always choose walking to access and egress transit. All patrons are identical 

regarding their social-economic characteristics. (For example, their value of time, VOT, is a constant.) 

Assumption 2. Transit stops and bike stations can be located at any point in the corridor. Fine-155 

tuning can be made to account for realistic location constraints, e.g., junctions and ramps (Estrada et 

al., 2011; Luo et al., 2020).  

Assumption 3. The bike-sharing system implements a distance-based fee regime (Wu et al., 

2020). The transit agency charges a flat fare for each trip. 

We consider five types of routes in the hybrid system, as illustrated in Figure 1, which are 160 

denoted by 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}. Route 𝑡 indicates that a patron walks to the nearest transit stop, takes 

transit to the closest stop to her destination, and walks to the destination. In route 𝑏, a patron finishes 

her trip by bike only. Routes 𝑡𝑏, 𝑏𝑡, and 𝑏𝑡𝑏 are intermodal routes where shared bikes serve as a feeder 

mode to the transit line. Particularly, routes 𝑡𝑏 and 𝑏𝑡 entail a shared bike to serve the last- and first-

mile trip segments, respectively, while route 𝑏𝑡𝑏 uses shared bikes at both ends of a trip. 165 

 
2 Bike docking stations are common in the U.S., Canada, and the Netherlands, while dock-less bike stations are 

popular in China. 
3 In practice, a surveyed OD matrix can be converted to a continuous demand density function via interpolation. 
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Assumption 4. Between the bike-only route 𝑏 and the route options involving transit, an able-

bodied patron always chooses the one with the minimum expected travel cost. Among transit route 

options, the able-bodied patron chooses the access/egress mode between walking and cycling by 

comparing their access/egress times to the nearest transit stop. The patron always walks to or from the 

closest bike station to pick up or return a shared bike. 170 

Assumption 5. Transit vehicles operate in a deterministic manner without considering random 

disturbances in their schedules. Transit patrons arrive at stops randomly without consulting the service 

schedule. 

 

3. Models 175 

We first present the route travel cost models in Section 3.1. Based on these models, the route demand 

assignment model is developed in Section 3.2. Sections 3.3 and 3.4 formulate models for patrons’ and 

agencies’ costs, respectively. The optimization problem is formulated in Section 3.5. For simplicity, 

Sections 3.1-3.4 present models for the eastbound travel direction only since models for the westbound 

direction are the same. The subscript indicating travel direction is omitted in these sections. 180 

 

3.1. Route travel costs  

We first introduce the following result regarding patrons’ access/egress mode choice, given that a 

transit-dominated route (i.e., not bike-only) is selected. 

Proposition 1. There exists a critical distance4, 𝑑𝑐𝑘(𝑥) ∈ (0,
1

2𝛿𝑡(𝑥)
]  for any 𝑥 ∈ [0, 𝐿], such 185 

that if an able-bodied patron’s access or egress distance, 𝑑, satisfies 𝑑 ≤ 𝑑𝑐𝑘(𝑥), she will choose to 

walk to or from the transit stop; otherwise, she will choose to ride a shared bike. Figure 2 illustrates the 

zones delineated by 𝑑𝑐𝑘(𝑥). 

 Proof of Proposition 1 and the derivation of 𝑑𝑐𝑘(𝑥) are relegated to Appendix B. 

Transit line Transit stop with a bike station Bike station

AaaaaAA AaaaaaA

Half transit stop spacing Half transit stop spacing

Walk-access/egress zone

Bike-access/egress 

zone

Bike-access/egress 

zone

 190 
Figure 2. Walk- and bike-access/egress zones. 

Following Proposition 1, the expected travel cost of route 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏} from point 𝑥 to 

point 𝑦, 𝑇𝐼(𝑥, 𝑦), is formulated by: 

𝑇𝑡(𝑥, 𝑦) = 𝜅𝑡(𝑥) + 𝜅𝑡(𝑦) +
ℎ

2
+ ∫

1

𝑉𝑡(𝑢)

𝑦

𝑥
𝑑𝑢 +

𝜑𝑡

𝜇
,      (1a) 

 
4 Similar concepts were also used in Wu et al. (2020) and Chen and Nie (2017). 
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𝑇𝑏(𝑥, 𝑦) = 𝜅𝑏(𝑥) + 𝜅𝑏(𝑦) + 𝑡𝑝𝑢 + 𝑡𝑑𝑜 +
|𝑥−𝑦|

𝑣𝑏
+

𝜑𝑘(𝑑𝑏(𝑥,𝑦))

𝜇
,     (1b) 195 

𝑇𝑏𝑡(𝑥, 𝑦) = 𝜅𝑏(𝑥) + 𝜅𝑡(𝑦) +
ℎ

2
+ ∫

1

𝑉𝑡(𝑢)

𝑦

𝑥
𝑑𝑢 + 𝑓(𝑥) + 𝑡𝑝𝑢 + 𝑡𝑑𝑜 +

𝜑𝑘(𝑑𝑎(𝑥))+𝜑𝑡

𝜇
+ 𝜉𝑏→𝑡 ,  (1c) 

𝑇𝑡𝑏(𝑥, 𝑦) = 𝜅𝑡(𝑥) + 𝜅𝑏(𝑦) +
ℎ

2
+ ∫

1

𝑉𝑡(𝑢)

𝑦

𝑥
𝑑𝑢 + 𝑓(𝑦) + 𝑡𝑝𝑢 + 𝑡𝑑𝑜 +

𝜑𝑘(𝑑𝑎(𝑦))+𝜑𝑡

𝜇
+ 𝜉𝑡→𝑏 ,  (1d) 

𝑇𝑏𝑡𝑏(𝑥, 𝑦) = 𝜅𝑏(𝑥) + 𝜅𝑏(𝑦) +
ℎ

2
+ ∫

1

𝑉𝑡(𝑢)

𝑦

𝑥
𝑑𝑢 + 𝑓(𝑥) + 𝑓(𝑦) + 2(𝑡𝑝𝑢 + 𝑡𝑑𝑜) +

𝜑𝑘(𝑑𝑎(𝑥))+𝜑𝑘(𝑑𝑎(𝑦))+𝜑𝑡

𝜇
+ 𝜉𝑏→𝑡 + 𝜉𝑡→𝑏 ,  

(1e) 

where each travel time function consists of five parts: (i) the walking times to and from transit stops or 

bike stations; (ii) the waiting delay for transit vehicles and the pick-up/drop-off time loss for bikes; (iii) 

the transit and bike riding times; (iv) the service fare and fees; and (v) the transfer penalties (if an 200 

intermodal route is taken). They are explained as follows:  

(i) The 𝜅𝑡(𝑢) and 𝜅𝑏(𝑢) (𝑢 = 𝑥 or 𝑦) in (1a-e) are the average walking time to/from the nearest 

transit stop and bike station, respectively. They are estimated by: 𝜅𝑡(𝑢) =
𝑑𝑐𝑘(𝑢)

2𝑣𝑤
 for able-bodied 

patrons and 
1

4𝑣𝑤𝛿𝑡(𝑢)
 for non-able-bodied ones; and 𝜅𝑏(𝑢) =

1

4𝑣𝑤𝛿𝑏(𝑢)
 , where 𝑣𝑤 (km/h) is the walking 

speed. 205 

(ii) The 
ℎ

2
 in (1a, 1c-e) is the average wait time for the next arriving transit vehicle, thanks to 

Assumption 5 in Section 2.2. The 𝑡𝑝𝑢  and 𝑡𝑑𝑜  (h) in (1b-e) are the lost times for picking up and 

returning a bike at a bike station, respectively.  

(iii) The riding distance by transit for route types 𝑡, 𝑏𝑡, 𝑡𝑏, and 𝑏𝑡𝑏, and by bike for route type 

𝑏, is approximated by |𝑥 − 𝑦|.5 Thus, ∫
1

𝑉𝑡(𝑢)

𝑦

𝑥
𝑑𝑢  and 

|𝑥−𝑦|

𝑣𝑏
 yield the transit riding time for transit-210 

dominated routes and the bike riding time for route type 𝑏, respectively, where 𝑉𝑡(𝑢) is the commercial 

transit speed at location 𝑢, and 𝑣𝑏 (km/h) the average bike riding speed. The 𝑉𝑡(𝑢) satisfies  
1

𝑉𝑡(𝑢)
=

1

𝑣𝑡
+ 𝜏𝑜𝛿𝑡(𝑢) + max (𝜏𝑏𝐵𝑡(𝑢), 𝜏𝑎𝐴𝑡(𝑢)) ℎ, where 𝑣𝑡 (km/h) is the transit cruise speed; 𝜏𝑜 (h) the fixed 

delay per stop due to vehicle acceleration, deceleration, and doors opening and closing; 𝜏𝑏 and 𝜏𝑎 (h) 

the delays per boarding and alighting patron, respectively; 6  and 𝐵𝑡(𝑢)  and 𝐴𝑡(𝑢)  the numbers of 215 

boarding and alighting patrons per km per hour in the vicinity of 𝑢. 

For route types 𝑏𝑡, 𝑡𝑏, and 𝑏𝑡𝑏, the access/egress travel time by bike should also be included. 

We denote 𝑓(𝑢) as the approximate average access or egress time by bike for an able-bodied patron 

 
5 Even under the heterogeneous demand, this approximation is good if the average trip length is much larger than 

the spacings between consecutive transit stops and bike stations. This is because a patron always walks to the 

nearest transit stop or bike station, which is located either upstream or downstream of her origin/destination with 

on average equal probabilities. The approximation error in our model is examined in Section 5.2. 
6 We assume that each transit vehicle operates two doors for boarding and alighting separately.  
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originated from or destined for 𝑢. We have 𝑓(𝑢) =
1

2
(

1

2𝛿𝑡(𝑢)
+ 𝑑𝑐𝑘(𝑢))

1

𝑣𝑏
, since 

1

2
(

1

2𝛿𝑡(𝑢)
+ 𝑑𝑐𝑘(𝑢)) 

is the approximate average bike-riding distance in each access/egress segment; see Figure 2.  220 

(iv) The 𝜑𝑡 ($) and 𝜑𝑘(𝑑) ($) denote the flat transit fare and the distance-based bike rental fee, 

where 𝑑 is the bike trip distance. Here we set 𝜑𝑘(𝑑) as a linear function of trip distance 𝑑:  

𝜑𝑘(𝑑) = 𝜑𝑘
1𝑑 + 𝜑𝑘

0,                                                    (2) 

where 𝜑𝑘
0 ($) and 𝜑𝑘

1 ($/km) are the fixed fee rate and the fee rate per km, respectively. For route type 

𝑏, the cycling distance is 𝑑𝑏(𝑥, 𝑦) = |𝑥 − 𝑦|; for access and egress segments by bike, the cycling 225 

distances are 𝑑𝑎(𝑥) and 𝑑𝑎(𝑦), respectively, where 𝑑𝑎(𝑢) =
1

2
(

1

2𝛿𝑡(𝑢)
+ 𝑑𝑐𝑘(𝑢)). The fare and fees 

are divided by the VOT, 𝜇 ($/h), to be converted into equivalents in hours. 

 (v) The 𝜉𝑏→𝑡 and 𝜉𝑡→𝑏 (h) are transfer penalties between bike and transit. 

 

3.2. Route assignment  230 

Following Assumptions 1 and 4 in Section 2.2, among the able-bodied demand, let 𝜆𝐼(𝑥, 𝑦) be the 

density of trips taking route 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏} from origin 𝑥 to destination 𝑦. The 𝜆𝐼(𝑥, 𝑦) can be 

estimated by the product of the total able-bodied demand density and the route choice probability, 

𝒫𝐼(𝑥, 𝑦), i.e.,  

𝜆𝐼(𝑥, 𝑦) = 𝛽𝜆(𝑥, 𝑦)𝒫𝐼(𝑥, 𝑦), 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}.      (3) 235 

We use a deterministic route choice model to develop 𝒫𝐼(𝑥, 𝑦) in two steps. Models following 

a similar logic but developed under the uniform demand pattern were also found in Fan et al. (2018) 

and Luo and Nie (2020b). In the first step, we ignore the bike-only route type 𝑏, and divide all the able-

bodied patrons into four classes according to the proximity of their ODs to transit stops. A specific route 

option among {𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏} will be selected as the best transit-dominated route in each class. To 240 

develop the probability that an arbitrary OD (𝑥, 𝑦) falls in each trip class, we define 𝐻(𝑢) ∈ [0,1] as 

the probability that location 𝑢 ∈ [0, 𝐿] falls in a walk-access/egress zone. From Proposition 1, we have 

𝐻(𝑢) =
2𝑑𝑐𝑘(𝑢)

1/𝛿𝑡(𝑢)
= 2𝑑𝑐𝑘(𝑢)𝛿𝑡(𝑢).7 Therefore, the probability that an able-bodied trip (𝑥, 𝑦) falls in the 

class where route 𝑡 is preferred over routes 𝑡𝑏, 𝑏𝑡, and 𝑏𝑡𝑏 is 𝐻(𝑥)𝐻(𝑦). Similarly, the probabilities 

that (𝑥, 𝑦) falls in classes where route 𝑏𝑡, 𝑡𝑏, and 𝑏𝑡𝑏 are respectively preferred over the other three 245 

options are: (1 − 𝐻(𝑥))𝐻(𝑦), 𝐻(𝑥)(1 − 𝐻(𝑦)), and (1 − 𝐻(𝑥))(1 − 𝐻(𝑦)). 

 
7  Note that these are approximations when the demand density varies spatially. Our slow-varying demand 

assumption (Assumption 1 in Section 2.2) ensures that the approximation errors would be small. This is later 

verified in Section 5.2. Similar approximations can also be found in previous studies, e.g., Newell (1971), 

Wirasinghe and Ghoneim (1981), Ouyang and Daganzo (2006), Ouyang et al. (2014), Luo and Nie (2020a), and 

Mei et al. (2021). 
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In the second step, we determine 𝒫𝐼(𝑥, 𝑦) for 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏} by comparing the travel 

costs of route option 𝑏 and an able-bodied patron’s best transit-dominated route for each of the four 

classes of patrons. Specifically, 

𝒫𝑡(𝑥, 𝑦) = 𝐻(𝑥)𝐻(𝑦)𝑄𝑡(𝑥, 𝑦),         (4a) 250 

𝒫𝑏𝑡(𝑥, 𝑦) = (1 − 𝐻(𝑥)) 𝐻(𝑦)𝑄𝑏𝑡(𝑥, 𝑦),        (4b) 

𝒫𝑡𝑏(𝑥, 𝑦) = 𝐻(𝑥)(1 − 𝐻(𝑦))𝑄𝑡𝑏(𝑥, 𝑦),        (4c) 

𝒫𝑏𝑡𝑏(𝑥, 𝑦) = (1 − 𝐻(𝑥))(1 − 𝐻(𝑦))𝑄𝑏𝑡𝑏(𝑥, 𝑦),       (4d) 

𝒫𝑏(𝑥, 𝑦) = 1 − ∑ 𝑃𝐼(𝑥, 𝑦)𝐼∈{𝑡,𝑏𝑡,𝑡𝑏,𝑏𝑡𝑏} ,        (4e) 

where 𝑄𝐼(𝑥, 𝑦) (𝐼 ∈ {𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}) is a binary variable indicating whether route 𝐼 has a lower travel 255 

cost than route 𝑏. It is expressed by: 

𝑄𝐼(𝑥, 𝑦) = {
1 𝑇𝑏(𝑥, 𝑦) > 𝑇𝐼(𝑥, 𝑦)

0 otherwise
, 𝐼 ∈ {𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏},      (5) 

where 𝑇𝑏(𝑥, 𝑦) and 𝑇𝐼(𝑥, 𝑦) (𝐼 ∈ {𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}) are defined in (1a-e).8 Finally, substituting (4a-e) into 

(3) yields 𝜆𝐼(𝑥, 𝑦). 

Note that the transit-dominated route trip times depend on the numbers of boarding and 260 

alighting patrons (see Section 3.1), which in turn depend on the result of (5). Thus, the entire assignment 

process must be conducted via iteration (see the details in Section 4.2). In what follows, we develop 

some aggregate demand functions, including the transit boarding and alighting patron numbers (see 

equations (8-9) below). These functions will also be used in the cost models and constraints presented 

in the following sections.  265 

First, the origin and destination density functions at location 𝑢 ∈ [0, 𝐿] for able-bodied patrons 

on route 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}, 𝑏𝐼(𝑢) and 𝑎𝐼(𝑢), are given by: 

𝑏𝐼(𝑢) = ∫ 𝜆𝐼(𝑢, 𝑦)𝑑𝑦
𝐿

𝑦=𝑢
, 𝑎𝐼(𝑢) = ∫ 𝜆𝐼(𝑥, 𝑢)𝑑𝑥

𝑢

𝑥=0
, 𝐼 ∈ {𝑡, 𝑏, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}, 𝑢 ∈ [0, 𝐿],     (6) 

These can be deemed the approximate boarding and alighting densities for transit and bike modes9 on 

respective routes. For example, 𝑏𝑏𝑡(𝑢) represents the bike boarding density of patrons on route 𝑏𝑡 and 270 

𝑎𝑏𝑡(𝑢) the transit alighting density on the same route. 

Similarly, the origin and destination densities for non-able-bodied patrons (who can only take 

route 𝑡), 𝑏̃𝑡(𝑢) and 𝑎̃𝑡(𝑢), are: 

𝑏̃𝑡(𝑢) = ∫ (1 − 𝛽)𝜆(𝑢, 𝑦) 𝑑𝑦
𝐿

𝑦=𝑢
, 𝑎̃𝑡(𝑢) = ∫ (1 − 𝛽)𝜆(𝑥, 𝑢) 𝑑𝑥

𝑢

𝑥=0
, 𝑢 ∈ [0, 𝐿].     (7) 

Consequently, the total transit boarding and alighting densities at any location 𝑥 ∈ [0, 𝐿], 𝐵𝑡(𝑥) 275 

and 𝐴𝑡(𝑥), and the total bike picking-up and dropping-off densities, 𝐵𝑏(𝑥) and 𝐴𝑏(𝑥), are given by: 

𝐵𝑡(𝑥) = 𝑏̃𝑡(𝑥) + 𝑏𝑡(𝑥) + 𝑏𝑡𝑏(𝑥) + 𝜆𝑏→𝑡(𝑥),         (8) 

 
8 Equation (5) can also be replaced by a stochastic route choice model, e.g., a logit model, to reflect the uncertainty 

in travelers’ preference and perception.  
9 For simplicity, we still use terms “boarding” and “alighting” for shared bikes. 
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𝐴𝑡(𝑥) = 𝑎̃𝑡(𝑥) + 𝑎𝑡(𝑥) + 𝑎𝑏𝑡(𝑥) + 𝜆𝑡→𝑏(𝑥),         (9) 

𝐵𝑏(𝑥) = 𝑏𝑏(𝑥) + 𝑏𝑏𝑡(𝑥) + 𝑏𝑏𝑡𝑏(𝑥) + 𝜆𝑡→𝑏(𝑥),       (10) 

𝐴𝑏(𝑥) = 𝑎𝑏(𝑥) + 𝑎𝑡𝑏(𝑥) + 𝑎𝑏𝑡𝑏(𝑥) + 𝜆𝑏→𝑡(𝑥),       (11) 280 

where 𝜆𝑏→𝑡(𝑥) and 𝜆𝑡→𝑏(𝑥) are the transfer demand densities from bike to transit and from transit to 

bike, respectively. They are approximated by 𝜆𝑡→𝑏(𝑥) = 𝑎𝑡𝑏(𝑥) + 𝑎𝑏𝑡𝑏(𝑥) (note that routes 𝑡𝑏 and 

𝑏𝑡𝑏 involve transfers from transit to bike that occur near the trip destinations) and  𝜆𝑏→𝑡(𝑥) = 𝑏𝑏𝑡(𝑥) +

𝑏𝑏𝑡𝑏(𝑥). 

Finally, the cross-sectional flows of bike and transit riders, 𝑜𝑏(𝑥) and 𝑜𝑡(𝑥) (patrons/h) at 285 

location 𝑥 ∈ [0, 𝐿], respectively, can be obtained by: 

𝑜𝑏(𝑥) = ∫ (𝐵𝑏(𝑢) − 𝐴𝑏(𝑢))𝑑𝑢
𝑥

𝑢=0
,        (12) 

𝑜𝑡(𝑥) = 𝑜(𝑥) − 𝑜𝑏(𝑥),          (13) 

where 𝑜(𝑥) = ∫ ∫ 𝜆(𝑢, 𝑦)𝑑𝑦𝑑𝑢
𝐿

𝑦=𝑥

𝑥

𝑢=0
 is the overall cross-sectional patron flow at 𝑥 ∈ [0, 𝐿]. 

 290 

3.3. Patrons’ costs 

Patrons’ costs can be classified into four categories: (i) the total time for accessing and egressing transit 

stops and bike stations, 𝐶𝑎,𝑡 and 𝐶𝑎,𝑏; (ii) the total wait time at transit stops, 𝐶𝑤,𝑡, and the total pick-up 

and drop-off lost times at bike stations, 𝐶𝑤,𝑏 ; (iii) the total riding times in transit vehicles and on 

bikes, 𝐶𝑣,𝑡 and 𝐶𝑣,𝑏, respectively (the latter only accounts for the riding time on route 𝑏 since the bike 295 

riding times for accessing/egressing transit stops were included in 𝐶𝑎,𝑡); and (iv) the total transfer 

penalty, 𝐶𝑓. Formulations of these cost items are given in (14a-17): 

𝐶𝑎,𝑡 = ∫ (
𝑑𝑐𝑘(𝑥)(𝑏𝑡(𝑥)+𝑏𝑡𝑏(𝑥)+𝑎𝑡(𝑥)+𝑎𝑏𝑡(𝑥))

2𝑣𝑤
+

𝑏̃𝑡(𝑥)+𝑎̃𝑡(𝑥)

4𝛿𝑡(𝑥)𝑣𝑤
+

1

2𝑣𝑏
(

1

2𝛿𝑡(𝑥)
+ 𝑑𝑐𝑘(𝑥)) (𝑏𝑏𝑡(𝑥) + 𝑏𝑏𝑡𝑏(𝑥) + λ𝑡→𝑏(𝑥)))

𝐿

𝑥=0
𝑑𝑥,  

(14a) 

𝐶𝑎,𝑏 = ∫
𝑏𝑏𝑡(𝑥)+𝑎𝑡𝑏(𝑥)+∑ (𝑏𝐼(𝑥)+𝑎𝐼(𝑥))𝐼∈{𝑏,𝑏𝑡𝑏}

4𝛿𝑏(𝑥)𝑣𝑤
𝑑𝑥

𝐿

𝑥=0
,                 (14b) 300 

𝐶𝑤,𝑡 = ∫ 𝐵𝑡(𝑥)
ℎ

2

𝐿

𝑥=0
𝑑𝑥,                    (15a) 

𝐶𝑤,𝑏 = ∫ (𝑡𝑝𝑢𝐵𝑏(𝑥) + 𝑡𝑑𝑜𝐴𝑏(𝑥))
𝐿

𝑥=0
𝑑𝑥,                 (15b) 

𝐶𝑣,𝑡 = ∫
𝑜𝑡(𝑥)

𝑉𝑡(𝑥)

𝐿

𝑥=0
𝑑𝑥,                    (16a) 

𝐶𝑣,𝑏 = ∫
∫ (𝑏𝑏(𝑢)−𝑎𝑏(𝑢))𝑑𝑢

𝑥

𝑢=0

𝑣𝑏

𝐿

𝑥=0
𝑑𝑥,                  (16b) 

𝐶𝑓 = 𝜉𝑡→𝑏 ∫ 𝜆𝑡→𝑏(𝑥)𝑑𝑥
𝐿

𝑥=0
+ 𝜉𝑏→𝑡 ∫ 𝜆𝑏→𝑡(𝑥)𝑑𝑥

𝐿

𝑥=0
.      (17)            305 

In (14a), the first term in the integrand is the average walking time to and from the closest transit stop 

for able-bodied patrons residing in the work-access/egress zones; see Figure 2. The second term is the 

average walking time for non-able-bodied patrons. The third term is the average bike-riding time to and 

from the closest transit stop. In (14b), the numerator of the integrand is the total bike demand density, 
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and 
1

4𝛿𝑏(𝑥)𝑣𝑤
 is the average access or egress time to or from the closest bike station by walking. Equation 310 

(15a) is self-evident by noting that 𝐵𝑡(𝑥) is the total transit boarding density and 
ℎ

2
 is the average wait 

time per patron. So is (15b) given the definitions of 𝐵𝑏(𝑥) and 𝐴𝑏(𝑥). Equations (16a) and (16b) are 

also easy to understand since the numerators in the integrands are cross-sectional flows of transit and 

bike riders (the latter only includes 𝑏-type trips), and the denominators are commercial speeds. Equation 

(17) is also self-explanatory. 315 

Therefore, the total patron cost in transit and bike-sharing systems, 𝐶𝑈, is given by 

𝐶𝑈 = 𝐶𝑎,𝑡 + 𝐶𝑎,𝑏 + 𝐶𝑤,𝑡 + 𝐶𝑤,𝑏 + 𝐶𝑣,𝑡 + 𝐶𝑣,𝑏 + 𝐶𝑓.      (18) 

 

3.4. Agency costs 

3.4.1. Transit agency costs 320 

The transit service operator bears three types of costs: (i) infrastructure cost (e.g., capital and 

maintenance costs), denoted by 𝐶𝑙,𝑡; (ii) distance-based operation cost (e.g., fuel cost), 𝐶𝑘,𝑡; and (iii) 

time-based operation cost, 𝐶ℎ,𝑡. They are estimated by (19-21), respectively. 

𝐶𝑙,𝑡 = 𝜋𝑙
𝑡𝐿 + 𝜋𝑠

𝑡 ∫ 𝛿𝑡(𝑥)𝑑𝑥
𝐿

0
,         (19) 

𝐶𝑘,𝑡 =
𝜋𝑘

𝑡 𝐿

ℎ
,           (20) 325 

𝐶ℎ,𝑡 =
𝜋ℎ

𝑡

ℎ
∫

1

𝑉𝑡(𝑥)
𝑑𝑥

𝐿

0
,          (21) 

where 𝜋𝑙
𝑡 ($/km/h) and 𝜋𝑠

𝑡 ($/stop/h) in (19) are the amortized hourly costs per km of transit line and 

per stop, respectively; and 𝜋𝑘
𝑡  ($/vehicle-km) and 𝜋ℎ

𝑡  ($/vehicle-h) in (20, 21) are the unit distance-

based and time-based operation costs, respectively.  

Thus, the total agency cost of transit service, 𝐶𝑡
𝑂, is obtained by 330 

𝐶𝑡
𝑂 = 𝐶𝑙,𝑡 + 𝐶𝑘,𝑡 + 𝐶ℎ,𝑡.          (22) 

 

3.4.2. Bike-sharing agency costs 

The bike-sharing service operator bears the following cost components: (i) the infrastructure cost of 

bike stations, 𝐶𝑠,𝑏;  (ii) the purchase cost of bike fleet and docks, 𝐶ℎ,𝑏; and (iii) the bike rebalancing 335 

cost for maintaining a spatial balance between the bike demand and supply, 𝐶𝑟,𝑏. The first two are 

formulated as follows: 

𝐶𝑠,𝑏 = 𝜋𝑠
𝑏 ∫ 𝛿𝑏(𝑥)𝑑𝑥

𝐿

0
,          (23) 

𝐶ℎ,𝑏 =
(𝜋𝑏

𝑏+𝜀𝜋𝑑
𝑏)

𝜌
∫ (

𝑜𝑏(𝑥)

𝑣𝑏
+ 𝑡𝑝𝑢𝐵𝑏(𝑥) + 𝑡𝑑𝑜𝐴𝑏(𝑥)) 𝑑𝑥

𝐿

0
,      (24) 

where 𝜋𝑠
𝑏 ($/station/h) denotes the amortized hourly cost of a bike station; 𝜋𝑏

𝑏 ($/bike) and 𝜋𝑑
𝑏 ($/dock) 340 

the unit costs of purchasing a bike and installing a dock, respectively; 𝜀 the ratio between the numbers 

of bikes and docks, which takes a value between 1.5 and 1.7 for real-world bike-sharing solutions (Tang 
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et al., 2011; Gleason and Miskimins, 2012; Gauthier et al., 2013; Yang et al., 2016; Wu et al., 2020); 

𝜌 ∈ (0,1] the utilization ratio of shared bikes, i.e., the average proportion of time when a bike is in use; 

and the integrand in (24) yields the total bike-hours occupied for riding, pick-ups, and drop-offs. This 345 

type of formulations was also adopted by previous bike-sharing system planning studies (e.g., Lin and 

Yang, 2011). Precise determination of bike-sharing fleet can be done in the tactical design stage 

considering the spatio-temporal dynamics of bike flows among bike stations (Shu et al., 2013). 

To estimate 𝐶𝑟,𝑏, we assume that: (i) the rebalancing cost is proportional to the total bike-

kms transported for the rebalancing purpose; and (ii) the rebalancing operation is performed once per 350 

hour. Following the idea in Nair and Miller-Hooks (2011), we propose a linear programming model 

to estimate 𝐶𝑟,𝑏. The details are relegated to Appendix C.  

Therefore, the total agency cost of bike-sharing service, 𝐶𝑏
𝑂, is given by  

𝐶𝑏
𝑂 = 𝐶𝑠,𝑏 + 𝐶ℎ,𝑏 + 𝐶𝑟,𝑏.         (25) 

 355 

3.5. Optimization problem 

We now formulate the joint optimal design problem that minimizes the overall generalized cost of the 

hybrid system as follows. The problem has two decision functions, 𝛿𝑡(𝑥) and 𝛿𝑏(𝑥), 𝑥 ∈ [0, 𝐿], and one 

scalar decision variable, ℎ.   

minimize
𝛿𝑡(𝑥),𝛿𝑏(𝑥),ℎ,𝑥∈[0,𝐿]

𝑍 = ∑ (𝐶𝑖
𝑈 +

1

𝜇
(𝐶𝑡,𝑖

𝑂 + 𝐶𝑏,𝑖
𝑂 ))𝑖∈{𝐸,𝑊}                 (26a) 360 

subject to:  

ℎ ≥ ℎmin,          (26b) 

ℎ𝑂𝑡 ≤ 𝐾𝑡,          (26c) 

𝛿𝑏(𝑥) ≥ 𝛿𝑡(𝑥), 𝑥 ∈ [0, 𝐿],        (26d) 

𝛿𝑡(𝑥), 𝛿𝑏(𝑥) ≥ 0, 𝑥 ∈ [0, 𝐿],        (26e) 365 

where 𝑍 is the total generalized cost measured by time. Note that both eastbound and westbound travel 

directions are considered in (26). This is done by appending a subscript 𝑖 ∈ {𝐸, 𝑊} to all the direction-

related variables in previous sections (e.g., cost components, boarding and lighting densities, and cross-

sectional flows) to indicate the travel direction. The 𝐶𝑖
𝑈, 𝐶𝑡,𝑖

𝑂 , and 𝐶𝑏,𝑖
𝑂  are obtained from (18, 22, 25), 

respectively, for each direction 𝑖 ∈ {𝐸, 𝑊}. Constraint (26b) specifies that the headway must be no less 370 

than a minimum threshold, ℎmin , to account for safety or road infrastructure capacity constraints. 

Constraint (26c) ensures that the transit system capacity is sufficient for carrying the patrons, meaning 

that no patron waiting at a stop will be left behind a vehicle. Here 𝑂𝑡 is the maximum cross-sectional 

transit patron flow, and 𝐾𝑡  is the vehicle capacity. The 𝑂𝑡  can be estimated by 𝑂𝑡 =

max
𝑥∈[0,𝐿],𝑖∈{𝐸,𝑊}

(𝑜𝑡,𝑖(𝑥)), where 𝑜𝑡,𝑖(𝑥) is obtained from (13) for each direction 𝑖 ∈ {𝐸, 𝑊}. Constraint 375 
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(26d) guarantees that the bike station density is no less than the transit stop density anywhere in the 

corridor. The last constraint specifies the boundaries of the decision functions. 

 

4. Solution Method 

Section 4.1 presents the analytical results derived from the first-order conditions of (26). Built upon 380 

these results, Section 4.2 describes a bi-level heuristic algorithm for solving (26). 

 

4.1. Analytical results 

For now, we assume the route assignment (see Section 3.2) is fixed. Under this condition, program (26) 

can be decomposed into subproblems, each containing a few scalar variables, ℎ, 𝛿𝑡(𝑥), and 𝛿𝑏(𝑥) for 385 

a specific 𝑥 ∈ [0, 𝐿]. We further show in Appendix D that (26a) is a convex function of ℎ, 𝛿𝑡(𝑥), and 

𝛿𝑏(𝑥) (for a specific 𝑥) when only one variable is considered and all others are fixed. Further note that 

constraints (26b-e) are all boundary constraints. Thus, the optimal solutions ℎ∗, 𝛿𝑡
∗(𝑥), and 𝛿𝑏

∗(𝑥) must 

satisfy the following equations derived from the first-order conditions of (26): 

ℎ∗ = mid (ℎmin, ℎ̃,
𝐾𝑡

𝑂𝑡
),          (27) 390 

𝛿𝑡
∗(𝑥) = √

∑ (
𝑏̃𝑡,𝑖(𝑥)+𝑎̃𝑡,𝑖(𝑥)

4𝑣𝑤
+

𝑏𝑏𝑡,𝑖(𝑥)+𝑏𝑏𝑡𝑏,𝑖(𝑥)+λ𝑡→𝑏,𝑖(𝑥)

4𝑣𝑏
)𝑖𝜖{𝐸,𝑊}

(∑ 𝑜𝑡,𝑖(𝑥)𝑖𝜖{𝐸,𝑊} +
2𝜋ℎ

𝑡

𝜇ℎ∗)𝜏𝑜+
𝜋𝑠

𝑡

𝜇

, 𝑥 ∈ [0, 𝐿],     (28) 

𝛿𝑏
∗(𝑥) = max (𝛿𝑏(𝑥), 𝛿𝑡

∗(𝑥)) , 𝑥 ∈ [0, 𝐿],       (29) 

ℎ̃ = √
2𝜋𝑘

𝑡 𝐿+2𝜋ℎ
𝑡 (

𝐿

𝑣𝑡
+∫ 𝜏𝑜𝛿𝑡

∗(𝑥)𝑑𝑥
𝐿

𝑥=0
)

𝜇 ∑ (∫
𝐵𝑡,𝑖(𝑥)

2

𝐿

𝑥=0
𝑑𝑥+∫ 𝑜𝑡,𝑖(𝑥) max(𝜏𝑏𝐵𝑡,𝑖(𝑥),𝜏𝑎𝐴𝑡,𝑖(𝑥))

𝐿

𝑥=0
𝑑𝑥)𝑖𝜖{𝐸,𝑊}

,      (30) 

𝛿𝑏(𝑥) = √
𝜇 ∑ (𝑏𝑏𝑡,𝑖(𝑥)+𝑎𝑡𝑏,𝑖(𝑥)+∑ (𝑏𝐼,𝑖(𝑥)+𝑎𝐼,𝑖(𝑥))𝐼∈{𝑏,𝑏𝑡𝑏} )𝑖𝜖{𝐸,𝑊}

4𝑣𝑤𝜋𝑠
𝑏 , 𝑥 ∈ [0, 𝐿],     (31) 

where function mid(∙) returns the middle value of the three arguments. Equations (28), (30) and (31) 395 

are derived by setting 
𝜕𝑍

𝜕𝛿𝑡(𝑥)
= 0, 

𝜕𝑍

𝜕ℎ
= 0, and 

𝜕𝑍

𝜕𝛿𝑏(𝑥)
= 0, respectively. 

The above analytical results can help construct an iterative heuristic algorithm for solving (26), 

which is presented in the next section. They also unveil useful insights into the causal relationship 

between the optimal design and key operating factors. For instance, (28) reveals that the optimal transit 

stop density is positively correlated with the boarding and alighting densities of transit (see the 400 

numerator of the RHS), and negatively correlated with the cross-sectional transit patron flow (see the 

denominator). Other studies on transit corridor design have reported similar findings like the above 

(e.g., Wirasinghe and Ghoneim, 1981; Mei et al., 2021). In addition, (31) indicates that the optimal bike 

station density is correlated with the boarding and alighting densities of shared bikes. 

 405 
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4.2. A bi-level solution algorithm 

Exploiting the optimality conditions (27-31), we propose a bi-level algorithm to solve (26a-e). The 

upper level determines the optimal design in terms of ℎ∗, 𝛿𝑡
∗(𝑥), 𝛿𝑏

∗(𝑥) (𝑥 ∈ [0, 𝐿]) given the route 

assignment. The lower level updates the route assignment given the new design. The two levels are 

iterated until convergence. Iterative algorithms of this fashion have been commonly used to solve bi-410 

level optimization problems (e.g., network designs) involving network traffic assignment. To our best 

knowledge, however, most of these algorithms (including ours) cannot guarantee global optimality. 

Detailed steps of the algorithm are described as follows: 

Initialization: Discretize the corridor space [0, 𝐿] into ℳ equal segments, and define 𝑿 as the 

set of segment midpoints, i.e., 𝑿 = {0.5∆𝑥, 1.5∆𝑥, … , (ℳ − 0.5)∆𝑥} , where ∆𝑥 =
𝐿

ℳ
. Without 415 

introducing a new notation, we still use 𝜆(𝑥, 𝑦) (𝑥, 𝑦 ∈ 𝑿) to represent the demand from the segment 

containing 𝑥 to the segment containing 𝑦. Equally assign the able-bodied demand to each route type, 

i.e., 𝜆𝐼(𝑥, 𝑦)(0) =
𝛽𝜆(𝑥,𝑦)

5
, ∀ 𝐼 ∈ {𝑏, 𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏}, 𝑥, 𝑦 ∈ 𝑿 . Randomly generate initial values of 

𝛿𝑏
(0)

(𝑿), 𝛿𝑡
(0)

(𝑿) > 0 as well as ℎ(0) satisfying constraints (26b-e). Set the number of iteration 𝑛 = 1. 

Upper level: Determining the optimal design 420 

Step U0: Let 𝛿̅
𝑏
(0)

(𝑿) = 𝛿𝑏
(𝑛−1)

(𝑿) and 𝛿̅
𝑡
(0)

(𝑿) = 𝛿𝑡
(𝑛−1)

(𝑿). Set the upper-level iteration 

number 𝑛 = 1. 

Step U1: Calculate headway ℎ̅(𝑛̅) by (27) and (30) using 𝛿̅
𝑡
(𝑛̅−1)(𝑿) and 𝛿̅

𝑏
(𝑛̅−1)(𝑿). (Integrals 

in the equation are approximated by summations of the integrand function values at each point in 𝑿.) 

Step U2: Calculate stop densities 𝛿̅
𝑡
(𝑛)(𝑿) by (28) using ℎ̅(𝑛̅). 425 

Step U3: Calculate the 𝛿̅
𝑏
(𝑛̅)

(𝑿) by (29) and (31). If 𝑛̅ ≥ 𝑁  or the following convergence 

criterion (32) is satisfied, let ℎ(𝑛) = ℎ̅(𝑛̅), 𝛿𝑡
(𝑛)(𝑿) = 𝛿̅

𝑡
(𝑛)(𝑿), and 𝛿𝑏

(𝑛)(𝑿) = 𝛿̅
𝑏
(𝑛)(𝑿), and then go to 

the lower level. Otherwise, let 𝑛 = 𝑛 + 1 and go to Step U1. 

|
ℎ̅(𝑛̅)−ℎ̅(𝑛̅−1)

ℎ̅(𝑛̅−1) | + ∑ |
𝛿̅𝑡

(𝑛)
(𝑥)−𝛿̅𝑡

(𝑛−1)
(𝑥)

𝛿̅𝑡
(𝑛−1)

(𝑥)
|𝑥∈𝑿 + ∑ |

𝛿̅𝑏
(𝑛)

(𝑥)−𝛿̅𝑏
(𝑛−1)

(𝑥)

𝛿̅𝑏
(𝑛−1)

(𝑥)
|𝑥∈𝑿 ≤ 𝛼,    (32) 

where 𝛼 and 𝑁 are predefined numbers. In this paper, we use 𝛼 = 10−3 and 𝑁 = 103. 430 

Lower level:  Route assignment 

Step L0: Let 𝜆̅𝐼(𝑥, 𝑦)(0) = 𝜆𝐼(𝑥, 𝑦)(𝑛−1) and set the lower-level iteration number 𝑛̿ = 1. 

Step L1: Reassign route demand as 𝜆̂𝐼(𝑥, 𝑦) using (3-5). 

Step L2: Update the route demand by applying the method of successive averages (MSA) 

(Sheffi, 1985), i.e., 𝜆̅𝐼(𝑥, 𝑦)(𝑛̿) = 𝜆̅𝐼(𝑥, 𝑦)(𝑛̿−1) +
𝜆̂𝐼(𝑥,𝑦)− 𝜆̅𝐼(𝑥,𝑦)(𝑛̿−1)

𝑛̿
. 435 

Step L3: Let 𝜆𝐼(𝑥, 𝑦)(𝑛) =  𝜆̅𝐼(𝑥, 𝑦)(𝑛̿)  if (33) is satisfied or 𝑛̿ ≥ 𝑁, compute the aggregate 

demand functions using (6-13) and go to the Convergence-check step. Otherwise, set  𝑛̿ =  𝑛̿ + 1 and 

go to Step L1. 
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max
𝑥,𝑦∈𝑿

|
𝜆𝐼(𝑥,𝑦)(𝑛̿)−𝜆𝐼(𝑥,𝑦)(𝑛̿−1)

𝜆𝐼(𝑥,𝑦)(𝑛̿−1) | ≤ 𝛼.         (33) 

Convergence check: Record the optimal solutions ℎ∗ = ℎ(𝑛) , 𝛿𝑡
∗(𝑿) = 𝛿𝑡

(𝑛)(𝑿) , 𝛿𝑏
∗(𝑿) =440 

𝛿𝑏
(𝑛)

(𝑿) if (34) is satisfied or 𝑛 ≥ 𝑁. Otherwise, set 𝑛 = 𝑛 + 1 and return to the upper level. 

|
ℎ(𝑛)−ℎ(𝑛−1)

ℎ(𝑛−1) | + ∑ |
𝛿𝑡

(𝑛)
(𝑿)−𝛿𝑡

(𝑛−1)
(𝑿)

𝛿𝑡
(𝑛−1)

(𝑿)
|𝑥∈𝑿 + ∑ |

𝛿𝑏
(𝑛)

(𝑿)−𝛿𝑏
(𝑛−1)

(𝑿)

𝛿𝑏
(𝑛−1)

(𝑿)
|𝑥∈𝑿 ≤ 𝛼.    (34) 

Solutions developed from the above algorithm cannot be directly applied to determine transit 

stop and bike station locations. We present a recipe to generate these exact locations in Appendix E.1. 

 445 

5. Numerical studies 

The set-up of numerical experiments is presented in Section 5.1. Section 5.2 examines the optimal 

hybrid system design and the accuracy of our CA model. Section 5.3 compares the performance of the 

hybrid design and the transit system design without shared bikes. Section 5.4 illustrates an application 

of our model for redesigning a real-world bus line in Chengdu, China. 450 

 

5.1. Experiment set-up 

Consider a hypothetical corridor with a length of 𝐿 = 20 km. For the demand function, we use a 

modified version of the spatially heterogeneous demand function proposed by Vaughan and Cousins 

(1977). It takes the following form: 455 

𝜆(𝑥, 𝑦|Λ, 𝜎𝑥
2, 𝜎𝑦

2) = Λ ∙ (𝑇𝑟𝒩(𝑥|0, 𝜎𝑥
2, 0, 𝐿)𝑇𝑟𝒩(𝑦|𝐿, 𝜎𝑦

2, 0, 𝐿) + 𝑇𝑟𝒩(𝑥|𝐿, 𝜎𝑥
2, 0, 𝐿)𝑇𝑟𝒩(𝑦|0, 𝜎𝑦

2, 0, 𝐿)), (35) 

where Λ (trips/h) denotes the total transit demand in each travel direction; 𝑇𝑟𝒩(∙) denotes the PDF of 

a truncated normal distribution with the four parameters being in turn the mean, variance, left and right 

bounds of the support; 𝜎𝑥
2 and 𝜎𝑦

2 are parameters indicating how varied the spatial distributions of trip 

origins and destinations are. We can interpret this demand function as the product of the total demand 460 

in the corridor ( 2Λ ) and the joint PDF of OD pair (𝑥, 𝑦) , i.e., 

1

2
(𝑇𝑟𝒩(𝑥|0, 𝜎𝑥

2, 0, 𝐿)𝑇𝑟𝒩(𝑦|𝐿, 𝜎𝑦
2, 0, 𝐿) + 𝑇𝑟𝒩(𝑥|𝐿, 𝜎𝑥

2, 0, 𝐿)𝑇𝑟𝒩(𝑦|0, 𝜎𝑦
2, 0, 𝐿)) . We choose this 

demand function due to two reasons. First, the function has only two parameters, 𝜎𝑥
2 and 𝜎𝑦

2, and is 

symmetric between the two travel directions. Second, the marginal PDFs of trip origins 

(
1

2
(𝑇𝑟𝒩(𝑥|0, 𝜎𝑥

2, 0, 𝐿) + 𝑇𝑟𝒩(𝑥|𝐿, 𝜎𝑥
2, 0, 𝐿)) ) and trip destinations (

1

2
(𝑇𝑟𝒩(𝑦|𝐿, 𝜎𝑦

2, 0, 𝐿) +465 

𝑇𝑟𝒩(𝑦|0, 𝜎𝑦
2, 0, 𝐿)))10 can be independently specified to cover a wide range of demand patterns. The 

parsimony and generality of this demand function allow us to derive general insights by looking into a 

large battery of numerical instances. 

 
10 These marginal PDFs can be obtained by integrating the joint PDF with respect to 𝑦 or 𝑥. 
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 In addition, parameters 𝜎𝑥
2 and 𝜎𝑦

2 can be viewed as proxies for demand heterogeneity. Note 

that a larger 𝜎𝑥
2 or 𝜎𝑦

2 indicates that the trip origins or destinations are more evenly distributed over the 470 

corridor (i.e., the PDF curve is flatter). Particularly, 𝜎𝑥 = 𝜎𝑦 = ∞ is the uniform demand case. For 

illustration, Figures 3a and b plot the origin and destination densities and the cross-sectional flows for 

𝜎𝑥 = 𝜎𝑦 = 10 km and 𝜎𝑥 = 𝜎𝑦 = 5 km, respectively. Comparison of the two figures manifests clearly 

that the demand is more heterogeneous with smaller values of 𝜎𝑥 and 𝜎𝑦. In this paper, we use 𝜎𝑥 , 𝜎𝑦 ∈

{∞, 10,5} km, and 
Λ

𝐿
∈ {100,150,200,250,300} trips/km/h. 475 

  

(a) Less-heterogeneous demand, 𝜎𝑥 = 𝜎𝑦 =

10 km  

(b) More-heterogeneous demand, 𝜎𝑥 =
𝜎𝑦 = 5 km 

Figure 3. Heterogeneous demand patterns (
𝚲

𝑳
= 𝟑𝟎𝟎 trips/km/h). 

In the following experiments, we consider two transit modes, i.e., bus and rail, and two 

alternative modes, i.e., shared bikes and electric scooters. By combination, we have four types of hybrid 

systems, i.e., bus-bike, rail-bike, bus-scooter, and rail-scooter. Parameter values regarding transit and 

alternative modes are summarized in Tables 1 and 2, respectively. They are all borrowed from previous 480 

studies (Daganzo, 2010; Sivakumaran et al., 2014; Chen et al., 2015; Gu et al., 2016; Bike to everything, 

2019; Wu et al., 2020). Note that 𝜋ℎ
𝑡 , 𝜋𝑠

𝑡, and 𝜋𝑙
𝑡 are assumed to be linear functions of the VOT 𝜇 to 

reflect the impacts of wage level on these cost rates. We specify that the average walking speed 𝑣𝑤 is 2 

km/h to account for the inconvenience of walking (Daganzo, 2010). The transit fare, 𝜑𝑡, takes $1/trip 

for bus and $2/trip for rail. The {𝜑𝑘
1 , 𝜑𝑘

0} are set to {5.59,1.12} × 10−2$ for bikes and {6.94,2.31} ×485 

10−2 $ for scooters in a high-wage city, and {0.88,0.18} × 10−2 $ for bikes and {1.14,0.38} ×

10−2$ for scooters in a low-wage city. These values were calculated using a model in Wu et al. (2020). 

Two VOTs, 𝜇 ∈ {5,25}  $/h, are used to represent low- and high-wage cities, respectively. The 

discretization parameter ℳ is set to 400, meaning that ∆𝑥 = 50 m. 

 490 

5.2. Optimal designs, accuracy of the CA model, and computation cost 

We develop the optimal CA solutions of the hybrid system for 90 bus-corridor instances with 
Λ

𝐿
∈

{100,150,200,250,300}  trips/km/h, 𝜎𝑥, 𝜎𝑦 ∈ {∞, 10,5}  km, and 𝜇 ∈ {5,25}  $/h. These instances 

reflect different combinations of demand levels and OD distributions in low- and high-wage cities.  
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Figure 4a illustrates the optimal bus stop spacing, 
1

𝛿𝑡
∗(𝑥)

, against 𝑥 ∈ [0, 𝐿] as the solid blue 495 

curve for the instance with 𝜎𝑥 = 𝜎𝑦 = 5 km, 
Λ

𝐿
= 300 trips/km/h, and 𝜇 = 5 $/h. The figure shows that 

the smallest stop spacings are observed at the corridor ends, while the largest occurs in the middle. This 

is because the total bus boarding and alighting density (the orange curve) reaches the highest at the 

corridor ends and the lowest in the middle. On the other hand, the cross-sectional patron flow exhibits 

the opposite trend (not shown). This verifies the finding revealed by (28); see Section 4.1. 500 

Table 1. Parameter values for bus and rail systems. 

Transit mode 𝑣𝑡  (km/h)  𝜏0 (s) 𝜏𝑏 , 𝜏𝑎 (s) ℎ𝑡
min (min) 𝐾𝑡 (patrons/veh) 

Bus 25 30 2 1.5 80 

Rail 60 45 0 2 2400 

 𝜋𝑘
𝑡  ($/vehicle-km) 𝜋ℎ

𝑡  ($/vehicle-h) 𝜋𝑠
𝑡 ($/station/h) 𝜋𝑙

𝑡 ($/station/h) 𝜉𝑡→𝑏 , 𝜉𝑏→𝑡 (s) 

Bus 0.59 2.66+3𝜇 0.42+0.014𝜇 6+0.2𝜇 30 

Rail 2.2 101+5𝜇 294+9.8𝜇 594+19.8𝜇 90 

Table 2. Parameter values for shared bike and electric scooter systems. 

Mode 𝑣𝑏  (km/h)  𝜀 𝑡𝑝𝑢, 𝑡𝑑𝑜 (s)  𝛽 𝜌 

Bike 12 1.6 30 0.8 0.3 

Scooter 20 1.6 30 0.8 0.3 

 𝜋𝑟
𝑏 ($/bike-km) 𝜋𝑠

𝑏 ($/station/h) 𝜋𝑏
𝑏 ($/bike/h) 𝜋𝑑

𝑏 ($/dock/h) 

              Cities 

Mode 

Low-wage  High-wage  Low-wage  High-wage  Low-wage  High-wage  Low-wage  High-wage  

Bike 1 2 0.52 1.06 0.024 0.14 0.0044 0.036 

Scooter 1 2 0.52 1.06 0.06 0.35 0.0044 0.036 

 

Figure 4b plots the optimal bike station spacing, 
1

𝛿𝑏
∗ (𝑥)

, also as the solid blue curve for the same 

instance. It shows that the bike station spacing follows a similar trend as the bus stop spacing, except 505 

that the former becomes slightly larger at the very ends of the corridor. The curve is again inversely 

correlated with the (bike) boarding and alighting density shown by the orange curve in Figure 4b. This 

correlation can be explained by (31). The increase of bike station spacings at the corridor ends is due to 

two reasons: (i) the access and egress mode share of biking is low at the corridor ends thanks to the 

small bus stop spacings; and (ii) the share of bike-only trips is also low at the corridor ends since patrons 510 

originating from or destined for corridor ends tend to prefer transit due to their longer trip distances. 

Finally, we see from Figure 4b that the optimal bike station spacings are small (in the range of 25-50m). 

This is mainly owing to the meager bike station installation cost.11 Further analysis regarding the 

impacts of bike-sharing cost rates is presented in Section 5.3.4. 

To examine the error brought by the continuum approximation technique, we also plot the exact 515 

bus stop and bike station spacings obtained using the recipe in Appendix E.1 as the dashed red curves 

in Figures 4a and b. Note how these curves closely match the solid blue curves. 

 
11 Such small spacings do exist in real practice. For example, the spacings between some dock-less shared-bike 

stations in Chengdu are below 20 m. Nevertheless, real-world bike station locations are subject to physical 

constraints, e.g., ramps and junctions. These constraints may affect the minimum bike station spacing in a city, 

but they are not considered in this paper. 
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Table 3 further summarizes the average percentage errors of various cost items between the CA 

solutions and the real design with exact bus stop and bike station locations for all 90 instances. Costs 

of the real design were calculated by the algorithm furnished in Appendix E.2. The table shows that the 520 

error in the generalized cost never exceeds 3%, and those in the itemized cost components never exceed 

4%. This manifests the accuracy of our CA approach, which has been reported many times in the 

literature (e.g., Chen and Nie, 2017; Daganzo, 2010; Estrada et al., 2011). 

 
(a) Bus stop spacing 

 
(b) Bike station spacings 

Figure 4. CA and exact spacings of bus stops and bike stations. 

We also examined the errors brought by the discretization method and the computational 525 

efficiency. We find that both the errors and the runtimes are within reasonable limits for a wide range 

of discretization parameter ℳ. Details are provided in Appendix F. 
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5.3. Parametric analysis 

We next evaluate the percentage cost saving of the hybrid system compared to the transit system 530 

accessed by walking only, (
𝑍𝑠−𝑍ℎ

𝑍𝑠
) × 100% (h/trip), where 𝑍ℎ and 𝑍𝑠 are the generalized costs of the 

optimal hybrid and transit-only systems, respectively. Impacts on the cost saving from the following 

key operating factors are presented: demand level and variation (Section 5.3.1), alternative mode to 

shared bikes (Section 5.3.2), able-bodied patron ratio (Section 5.3.3), transit fare, bike rental fee, and 

bike-sharing agency cost rates (Section 5.3.4). 535 

Table 3. Percentage cost errors of the CA solutions compared to the designs with exact bus stop 

and bike station locations. 

  Average error (%) Maximum error (%) 

Generalized system cost 1.62 2.62 

Patrons’ cost 1.72 2.85 

Access and egress time 1.13 1.48 

Wait time and bike pick-up/drop-off time 2.26 3.94 

In-vehicle travel time and bike riding time 0.58 0.67 

Transfer time 1.83 3.3 

Agencies’ cost 0.63 1.62 

Transit agency cost 0.65 1.95 

Bike-sharing agency cost 0.60 0.72 

 

5.3.1. Demand level and variation 

In this section, we consider 
Λ

𝐿
∈ {100,150,200,250,300} trips/km/h and 𝜎𝑥 = 𝜎𝑦 = 𝜎 ∈ {∞, 10,5} km.  540 

Figures 5 and 6 show the performance of bus-bike and rail-bike systems under the five demand levels 

and three spatial variation levels in a high-wage city (𝜇 = 25 $/h), respectively. Figure 5a shows that 

the cost saving of an optimal bus-bike system ranges in 12-16% and grows slowly as the demand level 

rises. Among the three spatial variation levels of demand, the highest percentage cost saving is achieved 

under the uniform demand case. This is partly because the uniform demand features a larger number of 545 

shorter trips that can be better served by bike only. 

The economies of scale (EOS) for the two systems under all the three spatial variation levels 

are illustrated in Figure 5b. For each system and spatial variation level, we specify that the generalized 

cost under the demand 
Λ

𝐿
= 100 trips/km/h is 100%, and then plot the percentage change in cost per trip 

as the demand grows. The declining trend of each curve manifests that the optimal system exhibits EOS, 550 

i.e., that the cost per trip decreases as demand grows. Comparison between these curves shows that the 

uniform-demand case (𝜎 = ∞) has the highest slope, meaning that its EOS is the strongest. On the other 

hand, the more heterogeneous demand case (𝜎 = 5 km) exhibits the weakest EOS, possibly because the 

trip ends are more spatially concentrated near the corridor ends. Further comparison between the dashed 
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(bus-only systems) and solid (bus-bike systems) curves unveils that adding shared bikes would result 555 

in a stronger EOS. This echoes the finding that the hybrid system becomes more advantageous as 

demand grows. Similar results were also found for low-wage cities but are omitted here for brevity. 

Results of rail-bike systems are also similar, as shown in Figures 6a and b. Comparison between 

Figures 5a and 6a shows that the rail-bike systems’ cost savings are greater than bus-bike systems. This 

is because shared bikes are better utilized in a rail-bike system due to the larger rail station spacings. 560 

Comparison between Figures 5b and 6b further reveals that the rail-bike systems exhibit stronger EOS, 

although adding shared bikes to a rail system has a lesser effect on the EOS. 

  

(a) Cost saving against a bus-only system (b) Percentage changes in the generalized cost   
Figure 5. Performance of bus-bike systems. 

   
(a) Cost saving against a rail-only system (b) Percentage changes in the generalized cost 

Figure 6. Performance of rail-bike systems. 

In addition, closer observation unveils that cost reductions may be achieved for both the patrons 565 

and the operating agencies. Figures 7a and b show that this is true for bus-bike systems under the 

uniform demand and for rail-bike systems under all the demand patterns. The reason is simple: by 

incorporating shared bikes as a faster access mode, the optimal transit stop spacings become larger. The 

resulting transit agency cost savings can cover the expense of shared bikes. The agency cost savings 

are greater for rail-bike systems because rail systems are more expensive. This finding is also consistent 570 

with a previous study (Wu et al., 2020). 
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5.3.2. Comparing shared electric scooters and shared bikes 

Electric scooters are often used instead of bicycles as an access/egress mode and an alternative to transit. 

Table 4 presents the percentage cost savings of four hybrid systems (bus-bike, bus-scooter, rail-bike, 575 

and rail-scooter) compared to the transit-only systems in a high-wage city. The tabulated values show 

that all hybrid systems achieve cost savings. The transit-scooter systems appear to perform moderately 

better than the transit-bike systems. 

  

(a) Bus-bike systems (b) Rail-bike systems 

Figure 7. Patron and agency cost savings. 

Table 4. Impacts of different travel modes (
𝚲

𝑳
= 𝟑𝟎𝟎 trips/km/h, 𝝁 = 𝟐𝟓 $/h). 580 

Hybrid 

systems 
Demand patterns 

Percentage  

cost saving  

Share of able-bodied patron 

trips using bikes/scooters 

bike/scooter-

only trips 

access/egress 

trips 

Bus-bike 

More-heterogeneous 

demand (σ=5) 
13.30% 1.81% 76.75% 

Less-heterogeneous 

demand (σ=10) 
15.14% 15.62% 63.16% 

Uniform demand (σ=∞) 15.83% 27.87% 50.97% 

Bus-scooter 

More-heterogeneous 

demand (σ=5) 
21.33% 78.26% 1.30% 

Less-heterogeneous 

demand (σ=10) 
23.07% 78.30% 1.29% 

Uniform demand (σ=∞) 25.50% 78.13% 1.39% 

Rail-bike 

More-heterogeneous 

demand (σ=5) 
21.32% 1.92% 76.52% 

Less-heterogeneous 

demand (σ=10) 
22.17% 14.7% 64.06% 

Uniform demand (σ=∞) 22.21% 25.26% 53.55% 

Rail-scooter 

More-heterogeneous 

demand (σ=5) 
21.29% 7.26% 71.42% 

Less-heterogeneous 

demand (σ=10) 
22.56% 33.51% 45.57% 

Uniform demand (σ=∞) 23.07% 48.68% 30.56% 

 

Interestingly, the roles played by scooters and bikes in the hybrid systems are very different. 

This can be seen from columns 4 and 5 of Table 4. Column 4 shows the share of bike/scooter-only trips 



22 

 

(i.e., type 𝑏 trips), and column 5 shows the share of transit trips accessed/egressed via bikes/scooters 

(i.e., type 𝑏𝑡, 𝑡𝑏, and 𝑏𝑡𝑏 trips), both among the trips made by able-bodied patrons. Specifically, shared 585 

bikes serve mainly as an access/egress mode to buses, while electric scooters are mostly used as an 

alternative to buses. This is due to the relatively high speed of scooters. For rail, however, both bikes 

and scooters mainly function as access/egress modes, owing to the high speed of rail transit and the 

large rail station spacings. The above findings confirm the observations in empirical studies (Ma et al., 

2015; Graehler Jr. et al., 2019). The tabulated values also unveil that as the demand becomes more 590 

heterogeneous (i.e., as 𝜎  increases), the share of direct trips served by bikes/scooters generally 

decreases while the share of access/egress trips increases. This finding is also as expected since a larger 

𝜎 renders more long trips that are better served by transit. 

 

5.3.3. Able-bodied patron ratio 595 

The able-bodied patron ratio varies across cities with different terrains, climates, and bike-friendly 

infrastructures. Figure 8 shows how the percentage cost saving of a bus-bike system increases with this 

ratio for 
Λ

𝐿
= 300 trips/km/h in a high-wage city. The curves show that benefits (although small) are 

achieved even when this ratio is as low as 10%. This is expected since as the able-bodied patron ratio 

diminishes, the optimal hybrid design will feature a smaller-scale bike-sharing service with a lower bike 600 

station density (subject to constraint (26d)) and fewer bikes and docks. In the extreme case where no 

patron uses bikes, the numbers of bikes and docks will reduce to zero, and the optimal design will be 

similar to a transit-only one.  Similar results were observed for other hybrid systems involving rail 

transit or scooters. 

 605 
Figure 8. Cost savings of bus-bike systems versus the able-bodied patron ratio. 
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5.3.4. Transit fare, bike rental fee, and bike-sharing agency cost rates 

Figure 9a plots the bus-bike system’s percentage cost saving against 𝜑𝑡 ∈ [0,2] $/trip for 
Λ

𝐿
= 300 

trips/km/h in a high-wage city. Curves in the figure show that the cost saving diminishes as bus fare 610 

increases since more patrons will be forced to choose cycling instead of buses. The uniform demand 

case exhibits the highest sensitivity to the bus fare. This is because the uniform demand pattern features 

more short trips, and those short trips are more sensitive to a high bus fare. 

Figure 9b illustrates the effect of bus fare on the optimal hybrid system design. For simplicity, 

the average bus stop spacing is plotted as a proxy of the optimal design against 𝜑𝑡 ∈ [0,10] $/trip for 615 

Λ

𝐿
= 300 trips/km/h in a high-wage city. The figure reveals that the optimal stop spacings decrease 

moderately as 𝜑𝑡 grows. This is because more able-bodied patrons are priced out of bus rides due to 

the high fare. The remaining bus patrons, consisting mainly of non-able-bodied patrons that must walk 

to access and egress bus stops, call for shorter stop spacings. The optimal bike station spacings exhibit 

a similar trend because the bike demand grows with 𝜑𝑡. The details are however skipped in the interest 620 

of brevity. Similar findings were also observed for rail-bike systems. 

The impacts of bike rental fee on the hybrid system’s cost saving and optimal design are 

presented in Figures 10a-d, again for bus-bike systems in a high-wage city with 
Λ

𝐿
= 300 trips/km/h. 

Figures 10a and b show that the cost saving is rather insensitive to 𝜑𝑘
0 and 𝜑𝑘

1 (note the very small 

ranges of vertical axes of these figures). The change of cost saving is visible only for the uniform 625 

demand case in Figure 10b and only when 𝜑𝑘
1 is small. Further analysis shows that the cost saving 

declines when 𝜑𝑘
0 > 1 $ or 𝜑𝑘

1 > 5 $/km, which is expected because higher bike rental fees will force 

most cyclists to choose walking or transit instead. Details of these results are omitted here because such 

fees are too high even for high-wage cities. Optimal bike station spacings are also insensitive to the 

bike fee rates, as shown in Figures 10c and d. The curves exhibit a modest increasing trend since 630 

growing bike fees will reduce the bike demand, rendering larger bike station spacings. Insensitivity to 

bike fee rates is also observed for transit stop spacings (again omitted for simplicity). 

  

(a) Cost saving versus fare (b) Bus stop spacings versus fare 

Figure 9. Impacts of fare on bus-bike systems. 
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We further examine the impacts of bike-sharing agency cost rates (i.e., 𝜋𝑟
𝑏, 𝜋𝑠

𝑏, 𝜋𝑏
𝑏, and 𝜋𝑑

𝑏) using 

the same numerical instances with 
Λ

𝐿
= 300 trips/km/h and 𝜇 = 25 $/h. The hybrid design’s percentage 635 

cost saving and the average bike station spacing are plotted in Figures 11a and b against an amplifying 

factor of the above cost rates, which takes values from 1 to 5. For parsimony, we assume all those cost 

rates are multiplied by the same amplifying factor. As expected, the advantage of the hybrid design 

declines as those cost rates rise. Fortunately, however, the declination is slight; see in Figure 11a that 

the hybrid design still renders a cost saving of over 10% if shared bikes are five times as expensive as 640 

the cost rates we used before. On the other hand, Figure 11b shows that the optimal bike station spacings 

increase rapidly with the cost rates. Transit design is again insensitive to the bike-sharing agency cost 

rates, and the results are yet again omitted for brevity. Similar findings have also been observed for 

hybrid systems with other modes, different demand patterns, and VOTs. 

  

(a) Cost saving versus fixed bike fee rate (b) Cost saving versus bike fee rate per km 

  

(c) Bike station spacings versus fixed bike fee rate (d) Bike station spacings versus bike fee rate per km 

Figure 10. Impacts of bike rental fees on bus-bike systems. 645 
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(a) Changes in cost saving (b) Changes in bike station spacings 

Figure 11. Impacts of bike-sharing agency cost rates on bus-bike systems. 

 

5.4. Real-world case study 

Lastly, we illustrate how the proposed model is applied to reoptimize Bus Line No. 1 in Chengdu, China. 

The 14.23-km long bus line currently contains 27 stops. We collected the actual stop-to-stop OD data 650 

on May 10th, 2016, and approximated it by a continuous function using a surface-fitting tool, Gridfit in 

Matlab. Figure 12 illustrates the fitted continuous demand function. A low VOT, 𝜇 =5 $/h, is used to 

represent the social wealth level in Chengdu. Other model parameters are the same as in Section 5.1. 

Note that no shared bike was available in Chengdu when the demand data was collected. Thus, we can 

reasonably assume that all bus patrons walk for access and egress in the “present-day scenario.” 655 

We compare the present-day scenario of the bus line and the following three alternatives: (i) 

where the bus stop locations and headway are optimized without considering shared bikes, termed the 

“Bus-only” scenario; (ii) where the bike-sharing system is jointly optimized with the bus line, termed 

the “Hybrid-design” scenario; and (iii) where the shared bikes are added to the current bus line with 

fixed stop locations, and only the bus headway and the bike station density are optimized, termed the 660 

“Adding-bikes” scenario. The last scenario is common when shared bikes are integrated with an existing 

rail line instead of a bus line. 

 
 

Figure 12. The approximate demand function for Bus Line No. 1 of Chengdu. 665 
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We first examine the optimal hybrid design. The optimal bus-stop and bike-station spacings 

from the CA solution are plotted as the dashed and solid curves in Figure 13. The exact bus stop 

locations are marked by the blue circles. The figure also plots the present bus stop spacing as the dotted 

curve and marks the stop locations as black squares for comparison. The curves show that the optimal 

bus stop spacings vary between 400 and 1200 m. They are significantly greater than the present ones in 670 

the middle part of the bus route, while they roughly match each other near the route ends. The optimal 

bike station spacings vary between 30 and 100 m. 

Table 5 summarizes the key design variables and cost components for the present-day scenario 

and the three alternatives. Note first that the optimal headways in all the three alternatives are lower 

than the present one, indicating that the present service frequency is too low. Second, the hybrid design 675 

produces a greater average stop spacing than both the present-day and Bus-only alternatives. This 

confirms that optimally integrating a shared-bike system would significantly increase transit stop 

spacings. In addition, the optimal hybrid design features a lower average bike station spacing than the 

Adding-bikes alternative since fewer patrons choose cycling in the latter alternative due to the fixed 

(and smaller) bus stop spacings.  680 

 
Figure 13. The optimal hybrid design of Bus Line No. 1. 

All the three alternatives attain cost savings compared to the present-day scenario. The optimal 

hybrid design produces the greatest cost saving of 23.8%. Happily, even the Adding-bikes scenario, 

where bus stop locations were not reoptimized, can attain a cost saving of 20.11%, which is 9% higher 685 

than the Bus-only alternative. Cost breakdown further shows that the optimal hybrid design and the 

Adding-bikes alternative produce lower costs for both patrons and agencies than the Bus-only scenario. 

This result confirms that jointly operating shared bikes with transit may benefit the transit agency. Thus, 

the hybrid design holds much promise in reality. 

Table 5. Comparison of different scenarios for the case study. 690 

Metrics Present-day Bus-only Hybrid-design Adding-bikes 

ℎ𝑡 (mins) 4 2.72 3.12 3.31 

Average bus stop spacing (km) 0.53 0.39 0.83 0.53 

Average bike station spacing (km) / / 0.05 0.07 
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Average generalized cost (mins/patron) 29.57 26.26 22.53 23.62 

Generalized cost saving (%) / 11.21 23.80 20.11 

Average patron cost (mins/patron) 27.31 22.84 19.41 20.54 

Average agency cost (mins/patron) 2.26 3.41 3.12 3.08 

 

6. Conclusions 

This paper proposes a CA model for optimally designing a hybrid mobility system consisting of shared-

bike (or shared-electric-scooter) and transit services in corridors. The proposed model considers that 

shared bikes can be used as both a substitute (in the bike-only routes) and a complement (i.e., feeders) 695 

to transit. Built upon patrons’ route choices, the model identifies the optimal transit service headway, 

transit stop spacings, and bike station spacings that minimize the total system cost. A bi-level solution 

algorithm was developed that exploits some analytical properties of the optimal solution derived from 

the parsimonious CA model. Numerical experiments verified the accuracies of the continuum 

approximations and the discretization method used in our solution approach. Practical use of our model 700 

was demonstrated via an application to a real bus line. To our best knowledge, this paper is the first that 

examines the joint optimization of shared-bike and transit services considering realistic route choices 

under spatially heterogeneous demand. 

The analytical properties derived from our CA model reveal insights regarding the optimal 

hybrid design, which were overlooked by previous studies that assumed a uniform demand pattern. For 705 

example, the transit stop spacing is positively correlated with the transit boarding and alighting densities 

everywhere in the corridor. A similar finding is also reported for the bike station spacing. 

 Our numerical experiments also unveiled new insights that have practical implications. First, 

optimally integrating a shared-bike service within a transit corridor can significantly reduce the 

generalized cost for most instances investigated. Greater cost savings are observed for rail corridors, 710 

higher demand levels, and higher proportions of shorter trips (i.e., the uniform demand case in our 

analysis); see Section 5.3.1. The cost saving is generally insensitive to key operating parameters, 

including the transit fare, bike rental fee, and bike-sharing agency cost rates; see Section 5.3.4. 

Furthermore, cost savings are attained even when shared bikes are added to an existing transit (e.g., rail) 

line whose stops cannot be relocated; see Section 5.4. These findings manifest the sizeable potential 715 

benefit for incorporating shared micro-mobility solutions (e.g., shared bikes and electric scooters) with 

transit systems. Moreover, cost savings are incurred by both the patrons and the operating agencies 

under certain operating conditions; see again Figure 7. This implies that operating a bike-sharing system 

can be profitable for the transit agency. 

On the other hand, the benefit of the hybrid design depends largely on the ratio of patrons who 720 

can and are willing to ride bicycles; see Section 5.3.3. This indicates the importance of bike-friendly 

facilities (e.g., bike lanes) and incentives (e.g., transit fare discounts for shared-bike riders) for the 

success of a hybrid system. 
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Lastly, we find that under various mode combinations and demand levels, both the shares of 

direct trips and feeder trips by bike (or scooter) can be significant; see Section 5.3.2. This confirms the 725 

necessity of modeling all the five route options in Section 3.2. 

Our model can be built upon to explore more realistic features of hybrid systems. For example, 

the deterministic route choice model presented in Section 3.2 can be replaced by a stochastic one 

incorporating patrons’ various preferences if the patron behavior data are available. Environmental 

impacts (e.g., greenhouse gas emission) can also be included in our objective function to examine how 730 

they would affect the optimal design (Sun, 2017). In addition, one may also consider the possibility that 

cyclists may take shortcuts while transit routes may have detours, and that the cyclists’ biking cost per 

km would be higher on roads with slopes (Ceder et al., 2015). Our model can be modified to incorporate 

these realistic factors, for example, by using a location-dependent cycling speed to account for the 

different distances and times traveled by bike between any two points in a corridor. Finally, the present 735 

study can also be extended to model hybrid network designs in a city. The transit network structure can 

take the special forms proposed by earlier studies (e.g., Chen et al., 2018; Badia, 2020) or more general 

forms currently under development. 
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Appendix A: Notations 

Table A1. Table of notations. 

Notation Descriptions Units 

Decision variables 

𝛿𝑡(𝑥) Transit stop density at location 𝑥 stops/km 

𝛿𝑏(𝑥) Bike station density at location 𝑥 stations/km 

ℎ Transit service headway h 

Other notations 

𝑎𝐼,𝑖(𝑥), 𝑎̃𝑡,𝑖(𝑥) Alighting densities of able-bodied patrons on route 𝐼, and of 

non-able-bodied patrons, at location 𝑥 in direction 𝑖 

trips/km/h 

𝐴𝑡,𝑖(𝑥), 𝐴𝑏,𝑖(𝑥) Transit alighting density and bike drop-off density at location 

𝑥 in direction 𝑖 

trips/km/h 

𝑏𝐼,𝑖(𝑥), 𝑏̃𝑡,𝑖(𝑥) Boarding densities of able-bodied patrons on route 𝐼, and of 

non-able-bodied patrons, at location 𝑥 in direction 𝑖 

trips/km/h 

𝐵𝑡,𝑖(𝑥), 𝐵𝑏,𝑖(𝑥) Transit boarding density and bike pick-up density at location 𝑥 

in direction 𝑖 

trips/km/h 

𝑑𝑐𝑘 Critical distance for determining the access/egress mode km 

𝑓(𝑥) Average bike-as-feeder riding time for a patron at location 𝑥 h 

ℎmin Minimum headway of transit service h 

𝐾𝑡 Transit vehicle capacity patrons/vehicle 

𝑂𝑡 Maximum cross-sectional flow in the transit line patrons/h 

𝑜𝑏(𝑥), 𝑜𝑡(𝑥) Cross-sectional flows of bike riders and transit patrons at 

location 𝑥 

patrons/h 

𝒫𝐼(𝑥, 𝑦) Choice probability of route 𝐼 for a trip from 𝑥 to 𝑦  

𝑇𝐼(𝑥, 𝑦) Travel time of route 𝐼 for a trip from 𝑥 to 𝑦  h 

𝑡𝑝𝑢, 𝑡𝑑𝑜 Pick-up and drop-off delays of a bike at a bike station h 

𝑉𝑡(𝑥) Commercial transit speed at location 𝑥 km/h 

𝑣𝑡 , 𝑣𝑏 , 𝑣𝑤  Cruising speed of transit vehicle, cycling speed, and walking 

speed 

km/h 

𝑍 Total generalized system cost h 

𝜆(𝑥, 𝑦) Travel demand density from 𝑥 to 𝑦 trips/km2/h 

𝜆𝐼(𝑥, 𝑦) Travel demand density of route 𝐼 from 𝑥 to 𝑦 trips/km2/h 

λ𝑏→𝑡(𝑥), λ𝑡→𝑏(𝑥) Transfer demand densities from bike to transit and from transit 

to bike at location 𝑥 

trips/km/h 

𝛽 Able-bodied patron ratio  

𝜇 Value of time $/h 

𝜏𝑜, 𝜏𝑏 , 𝜏𝑎 Fixed delay per transit stop, and delays per boarding and 

alighting patrons 

h 

𝜀 Ratio between the numbers of bikes and docks  

𝜌 Utilization ratio of shared bikes  

𝜑𝑡 , 𝜑𝑘(𝑑) Flat transit fare and the distance-based bike rental fee $ 

𝜉𝑏→𝑡 , 𝜉𝑡→𝑏 Transfer penalties from bike to transit and from transit to bike. h/transfer 

 

Appendix B: Proof of Proposition 1 and derivation of 𝒅𝒄𝒌(𝒙) 750 

Let 𝑀𝐴𝐶𝑏−𝑤 be the marginal cost of the hybrid system brought by a patron who switches from walking 

to cycling for accessing the nearest transit stop; it can be formulated as  

𝑀𝐴𝐶𝑏−𝑤 = (
𝑑

𝑣𝑏
+

𝜑𝑘(𝑑)

𝜇
+ 𝜅𝑏 + 𝑡𝑝𝑢 + 𝑡𝑑𝑜 + 𝜉𝑏→𝑡) −

𝑑

𝑣𝑤
                 (B1) 
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where 𝑑 denotes the access distance to the nearest transit stop; 𝜑𝑘(𝑑) the bike rental fee as a linear 

function of 𝑑 ; 𝜇  the VOT ($/h); 𝜅𝑏  the walking time to the nearest bike station, which can be 755 

approximated by 
1

4𝑣𝑤𝛿𝑏(𝑥)
 for location 𝑥 ∈ [0, 𝐿]; 𝑣𝑏 and 𝑣𝑤 the bike and walking speeds; 𝑡𝑝𝑢, 𝑡𝑑𝑜, and 

𝜉𝑏→𝑡 the times lost to bike pick-up, drop-off, and transfer from a bike station to the neighboring transit 

stop, respectively. 

Since 𝑀𝐴𝐶𝑏−𝑤  is a linear function of 𝑑 , a unique critical distance 𝑑𝑐𝑘(𝑥) =

min (𝑑|𝑀𝐴𝐶𝑏−𝑤(𝑑) = 0,
1

2𝛿𝑡(𝑥)
) can be found for any 𝑥 ∈ [0, 𝐿], such that: 760 

i) if 𝑑 < 𝑑𝑐𝑘(𝑥), then 𝑀𝐴𝐶𝑏−𝑤 > 0, and the patron will choose walking. 

ii) if 𝑑 > 𝑑𝑐𝑘(𝑥), then 𝑀𝐴𝐶𝑏−𝑤 < 0, and the patron will choose to ride a bike. 

iii) if 𝑑 = 𝑑𝑐𝑘(𝑥), then 𝑀𝐴𝐶𝑏−𝑤 = 0 , and the patron is indifferent between walking and 

cycling. 

The same result applies to the egress mode choice, except that 𝜉𝑏→𝑡 in (B1) is replaced by the 765 

transfer penalty from transit to bike, 𝜉𝑡→𝑏. 

 

Appendix C: Estimation of 𝑪𝒓,𝒃 

The rebalancing cost estimation problem is formulated as the following cost minimization problem: 

𝐶𝑟,𝑏 = minimize
𝑔(𝑥,𝑦)

𝜋𝑟
𝑏 ∫ ∫ |𝑥 − 𝑦|𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐿

0

𝐿

0
                (C1a) 770 

subject to: 

𝑁𝑏
+(𝑥) = ∫ 𝑔(𝑥, 𝑦)𝑑𝑦

𝐿

𝑦=0
, 𝑥 ∈ [0, 𝐿],                 (C1b) 

𝑁𝑏
−(𝑥) = ∫ 𝑔(𝑦, 𝑥)𝑑𝑦

𝐿

𝑦=0
, 𝑥 ∈ [0, 𝐿],                 (C1c) 

𝑔(𝑥, 𝑦) ≥ 0,                    (C1d) 

where 𝑔(𝑥, 𝑦) is the number of bikes redistributed from location 𝑥 to 𝑦 per hour; and 𝜋𝑟
𝑏 ($/bike-km) 775 

the unit transport cost per bike-km. Constraints (C1b-c) guarantee the bikes are balanced at any location 

𝑥, where 𝑁𝑏
+(𝑥) and 𝑁𝑏

−(𝑥) denote the local redundancy and shortage of bikes per hour of operations, 

respectively. They are given by: 

𝑁𝑏
+(𝑥) = max {∑ (𝐴𝑏,𝑖(𝑥) − 𝐵𝑏,𝑖(𝑥))𝑖∈{𝐸,𝑊} , 0};                 (C2) 

𝑁𝑏
−(𝑥) = max {∑ (𝐵𝑏,𝑖(𝑥) − 𝐴𝑏,𝑖(𝑥))𝑖∈{𝐸,𝑊} , 0}.                 (C3) 780 

To solve program (C1), we first discretize the corridor into ℳ equal segments and define 𝑿 as 

the set of ℳ midpoints of these segments (see Section 4.2 for a similar treatment). We discretize the 

decision function 𝑔(𝑥, 𝑦) and all the continuous spatial functions in (C1-C3) into values taken on 𝑿. 

Program (C1) then becomes a linear program with ℳ2 decision variables {𝑔(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑿}. We solve 

it using the “linprog” tool in MATLAB 2018a. 785 
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Appendix D: Proof of the convexity of (26a) concerning each decision variable 

individually 

We first prove the convexity of (26a) concerning ℎ only, assuming that 𝛿𝑏(𝑥) and 𝛿𝑡(𝑥) for all 𝑥 ∈

[0, 𝐿] are fixed. By reorganizing the terms involving ℎ, the objective function (26a) can be rewritten as: 790 

𝑍ℎ = 𝛾ℎ1ℎ + 𝛾ℎ2ℎ−1 + 𝛾ℎ3                                                          (D1) 

where 𝛾ℎ1, 𝛾ℎ2, and 𝛾ℎ3 are unrelated to ℎ, and 𝛾ℎ1, 𝛾ℎ2 > 0. Thus, 𝑍ℎ is a convex function of ℎ. Note 

that the unconstrained optimal solution of ℎ is ℎ̃ = 𝛾ℎ2
1/2

𝛾ℎ1
−1/2

. This leads to (30). 

Similarly, by fixing ℎ and 𝛿𝑏(𝑥) (∀𝑥 ∈ [0, 𝐿]), (26a) can be rewritten as: 

𝑍𝑡 = ∫ (𝛾𝑡1(𝑥)𝛿𝑡(𝑥) + 𝛾𝑡2(𝑥)𝛿𝑡
−1(𝑥))𝑑𝑥 + 𝛾𝑡3

𝐿

𝑥=0
                             (D2) 795 

where for any 𝑥 ∈ [0, 𝐿], 𝛾𝑡1(𝑥), 𝛾𝑡2(𝑥), and 𝛾𝑡3 are unrelated to 𝛿𝑡(𝑥), and 𝛾𝑡1(𝑥), 𝛾𝑡2(𝑥) > 0. Thus, 

𝑍𝑡 is a convex function of 𝛿𝑡(𝑥) for any 𝑥 ∈ [0, 𝐿]. Here the unconstrained optimal solution of 𝛿𝑡(𝑥) is 

𝛿𝑡
∗(𝑥) = 𝛾𝑡2

1

2 (𝑥)𝛾𝑡1

−
1

2(𝑥). This yields (28). 

The convexity concerning 𝛿𝑏(𝑥) and (31) can be derived similarly. 

 800 

Appendix E: Discretization recipe and cost models for real-world designs 

E.1. A recipe to derive the exact transit stop and bike station locations from a CA solution 

Step 1: Preparation. Fit the discrete optimal solutions, 𝛿𝑏
∗(𝑿)  and 𝛿𝑡

∗(𝑿) , to continuous 

functions 𝛿𝑏
∗(𝑥) and 𝛿𝑡

∗(𝑥) (𝑥 ∈ [0, 𝐿]) using, e.g., the spline curve fitting method. 

Step 2: Locating transit stops. Place one transit stop at every location 𝑥 where ∫
𝑑𝑢

𝛿𝑡
∗(𝑢)

𝑥

𝑢=0
−

1

2
 805 

yields an integer. Let 𝜴𝒕 = {𝑥𝑗
𝑡|𝑗 = 1,2, … , 𝑛𝑡} be the set of stop locations generated, where 𝑛𝑡 is the 

total number of transit stops, and 𝑥𝑗
𝑡  the location of 𝑗th transit stop satisfying 0 < 𝑥1

𝑡 < 𝑥2
𝑡 < ⋯ <

𝑥𝑛𝑡
𝑡 ≤ 𝐿.  

Step 3: Locating bike stations. Find the set of bike station locations, 𝜴𝒃 = {𝑥𝑘
𝑏|𝑘 = 1,2, … , 𝑛𝑏}, 

where 𝑛𝑏 is the total number of bike stations, and 𝑥𝑘
𝑏 the location of 𝑘th bike station satisfying 0 <810 

𝑥1
𝑏 < 𝑥2

𝑏 < ⋯ < 𝑥𝑛𝑏
𝑏 ≤ 𝐿 and ∫

𝑑𝑢

𝛿𝑏
∗ (𝑢)

𝑥𝑘
𝑏

𝑢=0
−

1

2
 being an integer. Match the closest bike station to each 

transit stop. 

 

E.2. Computing cost items for real-world designs with exact transit stop and bike station locations 

The following algorithm computes cost items for the eastbound direction. Those for the westbound 815 

direction can be similarly computed.   

Step 0. Preparation. 

Define the catchment zone of the 𝑚-th bike station (𝑚 = 1, … 𝑛𝑏) as the continuous segment 

bounded on the left by 𝑙𝑚
𝑏 =

𝑥𝑚−1
𝑏 +𝑥𝑚

𝑏

2
 and on the right by 𝑟𝑚

𝑏 = 𝑙𝑚+1
𝑏  ( 𝑥0

𝑏 = 0  and 𝑥𝑛𝑏+1
𝑏 = 𝐿 ). 
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Similarly, define the catchment zone of the 𝑗-th transit stop (𝑗 = 1, … , 𝑛𝑡) as bounded by 𝑙𝑗
𝑡 =

𝑥𝑗−1
𝑡 +𝑥𝑗

𝑡

2
 820 

and 𝑟𝑗
𝑡 = 𝑙𝑗+1

𝑡  (𝑥0
𝑡 = 0 and 𝑥𝑛𝑡+1

𝑡 = 𝐿). Here 𝑛𝑏  and 𝑛𝑡  are the numbers of bike stations and transit 

stops, respectively; and 𝑥𝑚
𝑏  and 𝑥𝑗

𝑡 are the locations of the 𝑘-th bike station and the 𝑗-th transit stop, 

respectively (see Appendix E.1). Determine the critical distance for each transit stop 𝑗, denoted 𝑑𝑐𝑘
𝑗

, 

using the method proposed in Appendix B. 

Step 1. OD matrix generation and route assignment. 825 

Step 1.1. Generate the station-to-station OD matrix: 𝜆𝑜,𝑑 = ∫ ∫ 𝜆(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑟𝑑

𝑏

𝑙𝑑
𝑏

𝑟𝑜
𝑏

𝑙𝑜
𝑏 , 1 ≤ 𝑜 <

𝑑 ≤ 𝑛𝑏. 

Step 1.2. For each OD pair (𝑜, 𝑑), check if 𝑥𝑜
𝑏 or 𝑥𝑑

𝑏 is within the walk-access zone of the 

nearest transit stop, whose number is denoted 𝑗𝑜 or 𝑗𝑑, by comparing the distance 𝑑𝑚
𝑗𝑚 = |𝑥𝑚

𝑏 − 𝑥𝑗𝑚

𝑡 | 

(𝑚 ∈ {𝑜, 𝑑}) with the critical distance 𝑑𝑐𝑘
𝑗𝑚 . Define indicator variables: 𝐻𝑚

𝑗𝑚 = 1 if 𝑑𝑚
𝑗𝑚 ≤ 𝑑𝑐𝑘

𝑗𝑚 , and  830 

𝐻𝑚
𝑗𝑚 = 0  otherwise for 𝑚 = 1,2, … , 𝑛𝑏 . Find the least-cost transit-dominated route among 

{𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏} for OD pair (𝑜, 𝑑) by examining 𝐻𝑜
𝑗𝑜  and 𝐻𝑑

𝑗𝑑. 

Step 1.3. Set an initial demand assignment between transit-dominated routes and the bike-only 

one. For each (𝑜, 𝑑), compute the trip time involving transit, 𝑇𝑜,𝑑
𝑡 , and the bike-only trip time, 𝑇𝑜,𝑑

𝑏 . 

Reassign the able-bodied demand of each OD pair to its least-cost route by MSA. 835 

Step 1.4. Repeat Step 1.3 until an equilibrium is reached. Under the equilibrium, derive the 

route-based OD matrices, {𝜆𝑜,𝑑
𝐼 }, where 𝜆𝑜,𝑑

𝐼  represents the demand of OD pair (𝑜, 𝑑) that choose route 

𝐼 ∈ {𝑡, 𝑏𝑡, 𝑡𝑏, 𝑏𝑡𝑏, 𝑏} . Record the boarding/alighting demand variables for each bike station 𝑚 ∈

{1,2, … , 𝑛𝑏} and each transit stop 𝑗 ∈ {1,2, … , 𝑛𝑡}, including {𝑏𝑚
𝐼 , 𝑎𝑚

𝐼 }, {𝐵𝑚,𝑏 , 𝐴𝑚,𝑏}, and {𝐵𝑗,𝑡 , 𝐴𝑗,𝑡}, 

using equations similar to (6-11). 840 

Step 2. System cost calculation. 

Step 2.1. Compute patrons’ cost items. 

(i) The total access and egress time to and from bike stations and transit stops is calculated by 

𝐶̃𝑎 = ∑ (∑ (𝑏𝑚
𝐼 𝐻𝑚

𝑗𝑚𝑑𝑚
𝑗𝑚

𝑣𝑤
)𝐼∈{𝑡,𝑡𝑏} + ∑ (𝑎𝑚

𝐼 𝐻𝑚
𝑗𝑚𝑑𝑚

𝑗𝑚

𝑣𝑤
)𝐼∈{𝑡,𝑏𝑡} )

𝑛𝑏
𝑚=1 + ∑ ((1 − 𝐻𝑚

𝑗𝑚) (∑ (𝑏𝑚
𝐼 𝑑𝑚

𝑗𝑚

𝑣𝑏
)𝐼∈{𝑏𝑡,𝑏𝑡𝑏} +

𝑛𝑏
𝑚=1

∑ (𝑎𝑚
𝐼 𝑑𝑚

𝑗𝑚

𝑣𝑏
)𝐼∈{𝑡𝑏,𝑏𝑡𝑏} )) + 𝑐̃𝑎, where the first term on the right-hand side (RHS) is the able-bodied patrons’ 845 

walking time to and from transit stops; the second term is the able-bodied patrons’ cycling time to and 

from transit stops; and the third term 𝑐̃𝑎 denotes the sum of the able-bodied patrons’ walking time to 

and from bike stations and the non-able-bodied ones’ walking time to and from transit stops. The last 

term does not depend on the route assignment and is given by 

𝑐̃𝑎 = 𝛽 ∑ (∫
(∫ 𝜆(𝑥,𝑢)𝑑𝑢

𝐿

𝑢=𝑥
+∫ 𝜆(𝑢,𝑥)𝑑𝑢

𝑥

𝑢=0
)𝑥

𝑣𝑤
𝑑𝑥

𝑟𝑚
𝑏

𝑙𝑚
𝑏 )

𝑛𝑏
𝑚=1 + (1 − 𝛽) ∑ (∫

(∫ 𝜆(𝑥,𝑢)𝑑𝑢
𝐿

𝑢=𝑥
+∫ 𝜆(𝑢,𝑥)𝑑𝑢

𝑥

𝑢=0
)𝑥

𝑣𝑤
𝑑𝑥

𝑟𝑗
𝑡

𝑙𝑗
𝑡 )

𝑛𝑡
𝑗=1 . 850 
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(ii) Wait time at transit stops and pick-up and drop-off delays at bike stations: 𝐶̃𝑤 =

ℎ

2
∑ 𝐵𝑗,𝑡

𝑛𝑡
𝑗=1 + ∑ (𝑡𝑝𝑢𝐵𝑚,𝑏 + 𝑡𝑑𝑜𝐴𝑚,𝑏)

𝑛𝑚
𝑚=1 , where 𝐵𝑗,𝑡, 𝐵𝑚,𝑏 and 𝐴𝑚,𝑏 are obtained in Step 1. 

(iii) Riding time in transit vehicles and on bikes: 𝐶̃𝑣 = ∑ 𝑜𝑗,𝑡 (
(𝑥𝑗+1

𝑡 −𝑥𝑗
𝑡)

𝑣𝑡
+ (𝜏0 + ℎ ∙

𝑛𝑡
𝑗=1

max(𝜏𝑏𝐵𝑗,𝑡, 𝜏𝑎𝐴𝑗,𝑡))) + ∑
𝑥𝑚+1

𝑏 −𝑥𝑚
𝑏

𝑣𝑏

𝑛𝑏
𝑚=1 ∑ (𝑏𝑢

𝑏 − 𝑎𝑢
𝑏)𝑚

𝑢=1 , where the cross-sectional transit flow at 

transit stop j is obtained by 𝑜𝑗,𝑡 = ∑ (𝐵𝑢,𝑡 − 𝐴𝑢,𝑡)
𝑗
𝑢=1 . 855 

(iv) Transfer time: 𝐶̃𝑓 = 𝜉 ∑ (1 − 𝐻𝑚
𝑗𝑚) (∑ 𝑎𝑚

𝐼
𝐼∈{𝑡𝑏,𝑏𝑡𝑏} + ∑ 𝑏𝑚

𝐼
𝐼∈{𝑏𝑡,𝑏𝑡𝑏} )

𝑛𝑏
𝑚=1 , where 𝑎𝑚

𝐼  and 

𝑏𝑚
𝐼  are obtained in Step 1. 

Step 2.2. Compute agency cost items. Calculate the transit and bike-sharing agency costs, 𝐶̃𝑡
𝑂 

and 𝐶̃𝑏
𝑂, using the model presented in Section 3.4. The calculation will use the following variables: 

(i) Transit line length: 𝐿 = (𝑥𝑛𝑡
𝑡 − 𝑥1

𝑡). Note that this may be shorter than the corridor length 860 

since the first and last transit stops are not necessarily located at the very ends of the corridor. 

(ii) Vehicle-hours traveled per operation hour: 
1

ℎ
∑ (

(𝑥𝑗+1
𝑡 −𝑥𝑗

𝑡)

𝑣𝑡
+ (𝜏0 + ℎ ∙

𝑛𝑡
𝑗=1

max(𝜏𝑏𝐵𝑗,𝑡, 𝜏𝑎𝐴𝑗,𝑡)))  for transit vehicles; and ∑ (
𝑜𝑚,𝑏

𝑣𝑏
+ 𝑡𝑝𝑢𝐵𝑚,𝑏 + 𝑡𝑑𝑜𝐴𝑚,𝑏)

𝑛𝑏
𝑚=1  for shared bikes, 

where the cross-sectional bike-riding flow is obtained by 𝑜𝑚,𝑏 = ∑ (𝐵𝑢,𝑏 − 𝐴𝑢,𝑏)𝑚
𝑢=1 .  

(iii) Re-estimate the bike rebalancing cost using the method proposed in Appendix C. 865 

Step 2.3. Calculate the generalized cost as 𝑍̃ = (𝐶̃𝑎 + 𝐶̃𝑤 + 𝐶̃𝑣 + 𝐶̃𝑓) +
1

𝜇
(𝐶̃𝑡

𝑂 + 𝐶̃𝑏
𝑂). 

 

Appendix F: Effects of ℳ on the solution quality and computation times 

Table F1. Solution quality and computation time for different 𝓜’s. 

ℳ 100 200 300 400 500 

Average percentage error of 

generalized cost against ℳ = 500 
0.69% 0.26% 0.11% 0.04% - 

Maximum percentage error of 

generalized cost against ℳ = 500 
0.88% 0.32% 0.17% 0.06% - 

Average CPU time (s) 9.1 31.4 73.3 152.7 232.8 

Maximum CPU time (s) 9.6 33.1 75.5 155.4 236.7 

 870 
The second and third rows of Table F1 summarize the average and maximum errors created by the 

discretization method. The errors were calculated by comparing the generalized costs of ℳ ∈

{100,200,300,400} (meaning that  ∆𝑥 ∈ {200,100,67,50,40} m) against that of ℳ = 500 (meaning 

that  ∆𝑥 = 40 m). Although we do not have the limiting cost value when ℳ → ∞, we believe that the 

case of ℳ = 500 is accurate enough to serve as a benchmark. The tabulated values were calculated for 875 
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the 90 numerical instances used in Section 5.2. They show that even using a large discretization interval 

of  ∆𝑥 = 200 m brings only a cost error of less than 1%. This result speaks to the accuracy of our 

method of discretization. 

The fourth and fifth rows of Table F1 present the average and maximum CPU times for the 90 

instances examined with each of the five values of ℳ . These results were obtained using Matlab 880 

R2018a on a PC with a Windows 10 64-bit OS, 16G RAM, and an Intel Xeon E5-2450 2.1GHz CPU. 

The values show that the runtimes increase rapidly with ℳ (as expected). However, even with a large 

value of ℳ = 500, a solution can be obtained within 4 minutes for all the instances tested. Our choice 

of ℳ = 400 in Section 5 reflects a good tradeoff between computational efficiency and solution 

quality.  885 
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