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Abstract

Each species is subject to various biotic and abiotic factors during growth. This paper
formulates a deterministic model with the consideration of various factors regulating population
growth such as age-dependent birth and death rates, spatial movements, seasonal variations,
intra-specific competition and time-varying maturation simultaneously. The model takes the
form of two coupled reaction-diffusion equations with time-dependent delays, which bring novel
challenges to the theoretical analysis. Then the model is analyzed when competition among
immatures is negligible, in which situation one equation for the adult population density is
decoupled. The well-posedness of the system is established and the basic reproduction number
R0 is defined and shown to determine the global attractivity of either the zero equilibrium (when
R0 ≤ 1) or a positive periodic solution (R0 > 1) by using the dynamical system approach on
an appropriate phase space. When the immature intra-specific competition is included and the
immature diffusion rate is negligible, the model is neither cooperative (where the comparison
principle holds) nor reducible to a single equation. In this case, the threshold dynamics about
the population extinction and uniform persistence are established by using the newly defined
basic reproduction number R̃0 as a threshold index. Furthermore, numerical simulations are
implemented on the population growth of two different species for two different cases to validate
the analytic results.

Keywords: age structure, diffusion, seasonal effects, periodic delay, intra-specific competition

1 Introduction

Various continuous or discrete mathematical models have been proposed to investigate population
dynamics for single species. Mathematical models allowing for more biotic and abiotic factors
tend to better describe the complex behavior of populations. Age structure and spatial dispersal
constitute the popular topics in recent progresses of population dynamics. For some species such as
insects and mammals, juveniles and adults have very distinct characteristics, which are embodied
in completely different developmental and reproductive rates. It would be natural to associate
with the effects of age structure by dividing the population into different stages. The well-known
McKendrick-Von Foerster model (or named as Sharp-Lotka-McKendrick model [1, 2]) is a classical
framework incorporating age-dependent factors in population growth. The investigation of the
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nonlinear modification and generalisation based on this classical framework has attracted increasing
attention in recent years. For rigorous theoretical analysis of age-structured models, interested
readers can refer to wonderful literatures [1, 2, 3, 4]. In the natural world, the environment that
organisms inhabit is heterogeneously distributed. Many physiological factors such as climates
and food resources may differ from place to place, which drive the organisms to keep drifting or
dispersing. Spatial effects affecting population dynamics and the structures of the communities
are of particular interest to scientists. Different kinds of models can be formulated to incorporate
spatial effects explicitly. The patchy framework [5, 6, 7] involving a system of ordinary or delay
differential equations describes the movement in a discontinuous spatial region consisting of multiple
patches. Alternatively, spatial effects can be treated as a continuum and described appropriately
by a reaction-diffusion model [8, 7], which is the main tool we are going to employ in this paper.

Different reaction diffusion models with age-structure and nonlocal terms have been derived and
investigated theoretically in the bounded or unbounded domain [6, 9, 10, 11]. For example, a stage
structured nonlocal reaction diffusion model was proposed in [12], where the threshold dynamics and
global attractivity of the positive steady state were investigated through the decoupled equation for
adult variable as the immature intra-specific competition was ignored. By generalizing the model in
[12] to a nonautonomous version, authors in [13] established the existence of the asymptotic speed
of spread in an unbounded domain and a threshold result on the global attractivity of either zero
or a positive periodic solution in a bounded domain. Authors in [11] studied the global dynamics
of a class of age-structured reaction diffusion models with a fixed temporal delay and a nonlocal
term in an unbounded domain.

In order to simplify the analysis, two significant factors regulating population growth were
ignored in these stage structured nonlocal reaction diffusion models. One factor is the immature
intra-specific competition, which enables these models to be reduced into only one equation for
mature variable. However, the intra-specific competition within one stage, especially the immature
stage, will generate a series of variations in successive stages and greatly influences the dynamics
of organisms with complex life cycles [14]. For example, the body size and longevity of adult
mosquitoes are to a large extent affected by the larval competition [15, 16]. The alteration of
susceptibility of adult mosquitoes to dengue virus may be induced by the competition among larval
mosquitoes [17]. The density-dependent acquired host resistance to ticks leads to the increased
deaths of feeding and developing ticks [18, 19, 20]. Models incorporating density dependent death
terms for immature individuals are more realistic to describe complex population dynamics of some
species experiencing intra-specific competition. In this study, we assume that immature (mature)
individuals only compete with all other individuals in the same stage and there is no competition
between immature and mature stages. This assumption is biologically reasonable since the intra-
specific competition within one stage rather than between stages can be commonly founded in
species such as some insects and amphibious animals, which immature and mature individuals live
in different environments and have quite different requirements for food or resources [21].

The other negligible factor is the time varying maturation period, which serves as a develop-
mental index measuring the developmental progression and addresses the timing of the transition
from the previous life stage [22]. In this paper, we assume the maturation duration for juveniles is
dependent on time, which is particular suitable for insects subject to climatic factors. For instance,
the maturation periods of mosquitoes [23] and ticks [24] greatly rely on the temperature, which
varies with time. Time-dependent maturation durations were considered in [25], where the authors
derived a size structured delay differential equation (DDE) model with state-dependent delays to
describe the population growth of a single species experiencing larval competition. To investigate
the population growth influenced by seasonality, authors in [26] also took into account intra-specific
competition and time varying development durations within each developmental stage of ticks and
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developed a stage-structured DDE model with periodic delays by building a link between time
dependent age thresholds and developmental durations. Based on a similar model, authors in [27]
provided a rigorous analysis involving the well posedness of the solution and threshold dynamics
for tick populations subject to seasonal effects.

For these aforementioned models involving time-varying maturation period, spatial movement
of individuals is not considered, which motivates us to formulate an age structured nonlocal re-
action diffusion growth model with consideration of immature intra-specific competition and time
dependent maturation duration simultaneously. In addition, it is well known that the annual trends
of population dynamics are greatly affected by the seasonal changes in rainfall, temperature and
accessible food or resources. This is particular true for some insect species such as ticks, the pri-
mary vector transmitting tick-borne diseases, the distribution and abundance of which are very
sensitive to the climate conditions as they need relatively high humidity and moderate tempera-
ture to survive during their prolonged nonparasitic stages [24]. Incorporating seasonal effects in
the model would be a sensible choice to better investigate the population dynamics, with all the
time-dependent parameter functions in our model being periodic with the same period T . The
main focus of this paper is to provide a rigorous and detailed theoretical analysis on a delayed
nonlocal reaction diffusion population model with age structure and time dependent delays from
the perspective of periodic dynamical systems.

In the next section, a closed system related to the densities of immatures I(t, x) and adults
M(t, x) is formulated by a system involving time-periodic delays due to the seasonal juvenile mat-
uration period, individual diffusion and immature intra-specific competition. The time-dependent
periodic delay in our model brings novel challenges to the theoretical analysis. Section 3 conducts
theoretical analysis on the model ignoring juvenile intra-specific competition, making the model
reducible to one equation for M(t, x), based on which, the well posedness of the system and the
existence of the global attractor are established. In addition, the basic reproduction number R0 is
formulated and the global stability of one equation in terms of R0 is obtained by employing the
theory of monotone and subhomogeneous semiflows. In section 4, we investigate the threshold dy-
namics for the obtained model under the consideration of immature intra-specific competition when
the immature individuals have limited dispersal ability. It is impossible to decouple the equation
for the matured population density M(t, x) from the model system as usual due to the existence
of the intra-specific juvenile competition. In order to validate the theoretical results involving the
threshold dynamics in terms of the basic reproduction number, numerical results are obtained by
performing simulations on two different species for two different cases respectively in section 5. A
discussion session in the final part concludes this paper.

2 Model formulation

We start with a well-accepted age-structured framework proposed in [3] and generalize it into the
following spatial model with periodic coefficients to study the interactive effects of the age structure
and spatial dispersal on population growth subject to seasonal effects:

( ∂∂t + ∂
∂a)ρ(t, a, x) = D(a) ∂2

∂x2
ρ(t, a, x)− µ

(
t, a,

∫∞
0 q(t, s)ρ(t, s, x)ds

)
ρ(t, a, x), (2.1)

where ρ(t, a, x) is the population density of one species at time t, age a (≥ 0) and location x in a
bounded spatial domain Ω with smooth boundary ∂Ω, D(a) (≥ 0) is the age-dependent diffusion
rate, µ

(
t, a,

∫∞
0 q(t, s)ρ(t, s, x)ds

)
(≥ 0) represents the per-capita death rate, which varies with the

time t, age a and a weighted population density with kernel q(t, a) (≥ 0).
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By choosing appropriate weight functions as in [27], the specific form of the per-capita death
rates µ

(
t, a,

∫∞
0 q(t, s)ρ(t, s, x)ds

)
for immature and mature stages are assumed to be:

µ

(
t, a,

∫ ∞
0

q(t, s)ρ(t, s, x)ds

)
=

 µI(t) + f(I(t, x)), t > −τ(0), 0 < a ≤ τ(t), x ∈ Ω,

µM (t) + g(M(t, x)), t > −τ(0), a > τ(t), x ∈ Ω.

In this formula, µI(t) and µM (t) are density-independent per capita death rates for immature
and mature individuals respectively, while f(·) and g(·) are density-dependent death rates, which
represent the intra-specific competition between individuals within the immature and mature stages
respectively.

Let τ(t) denote the juvenile maturation period at time t, that is, a newly matured individual at
time t is developed from an immature individual born at time t− τ(t). That is, the age threshold
classifying the population into immature and mature stages at time t is τ(t). In other words,
the chronological age at time t for adults should be greater than τ(t). Thus, the densities of
individuals within the immature stage I(t, x) and mature stage M(t, x) at time t and location x
can be represented as follows:

I(t, x) =
∫ τ(t)

0 ρ(t, a, x)da and M(t, x) =
∫∞
τ(t) ρ(t, a, x)da. (2.2)

Provided that the developmental proportion during juvenile stage at day t is σ(t), the immature
individuals attain maturity when the corresponding accumulative developmental proportion during
the interval [t− τ(t), t] is unity, that is ∫ t

t−τ(t)
σ(r)dr = 1.

By taking the derivative with respect to t, it follows that

1− τ ′(t) =
σ(t)

σ(t− τ(t))
.

This indicates 1 − τ ′(t) > 0, which guarantees that developmental processes proceed according to
the chronological order and never develop back to the previous stage.

Based on (2.1), the population model incorporating both seasonal effects and spatial movements
is presented as the following reaction diffusion equations with no flux boundary condition:

(
∂

∂t
+

∂

∂a
)ρ(t, a, x) = D1∆ρ(t, a, x)− (µI(t) + f(I(t, x)))ρ(t, a, x),

t > −τ(0), 0 < a ≤ τ(t), x ∈ Ω,

(
∂

∂t
+

∂

∂a
)ρ(t, a, x) = D2∆ρ(t, a, x)− (µM (t) + g(M(t, x)))ρ(t, a, x),

t > −τ(0), a > τ(t), x ∈ Ω,

ρ(t, 0, x) = b (t,M(t, x)) , t ≥ −τ(0), x ∈ Ω,

ρ(−τ(0), a, x) = φ(a, x), a ≥ 0, x ∈ Ω,

∂ρ(t, a, x)

∂n
= 0, t > −τ(0), x ∈ ∂Ω,

(2.3)

where ∆ is the laplacian operator, n is the outward normal vector on ∂Ω, D1 (> 0 or = 0)
and D2 (> 0) denote the diffusion coefficients for immature and mature individuals respectively,
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b (t,M(t, x)) is the birth rate, which is dependent on the density of matured individuals, φ(a, x) is
the initial distribution. Note that all above functions are non-negative. Due to the seasonal factors
regulating the population growth, we assume that τ(t), b(t,M), µI(t) and µM (t) are periodic in
time t with the same period T . Moreover, the inherent relationships between boundary and initial
condition must be satisfied in order to keep the system consistent, that is,

ρ(−τ(0), 0, x) = b (−τ(0),M(−τ(0), x)) = φ(0, x).

In addition, for the sake of clarity, we introduce the following notations:

τ̂ = max
t∈[0,T ]

{τ(t)}, τ = min
t∈[0,T ]

{τ(t)}. (2.4)

The basic assumptions for the coefficients are made as below, with the birth and death functions
illustrated in Figure 2.

(A1) The birth rate b(t,M) is Hölder continuous on R × R, periodic in time t with the period
T > 0, and increasing with respect to M ≥ 0. Moreover, b(t, 0) ≡ 0, b(t,M) > 0 when

M > 0, ∂b(t,0)
∂M = β(t) > 0 for all t ∈ R and b(t,M) ≤ β(t)M for all t ∈ R and M > 0, where

β(t) is a T -periodic continuous function. Furthermore, there exists a number M̃ ≥ 0 such

that for all H > M̃ , (1− τ ′(t))b(t− τ(t), H)− (µM (t) + g(H))H < 0.

(A2) All the per-capita death rates including natural death rates µI(t) and µM (t) and density
dependent death rates f(I) and g(M) are Hölder continuous. In particular, µI(t) and µM (t)
are positive functions and periodic in time t with the same period T > 0. Function g(M) is
non-decreasing with respect to M . In addition, f(0) = 0, g(0) = 0, f(I) ≥ 0 and g(M) > 0
when I > 0 and M > 0 respectively.

Birth rate

Death rate

M0

Figure 1: Model assumption for the birth rate b(t,M) and death function (µM (t) + g(M))M for
fixed time instant t.

By differentiating (2.2) with respect to time t and combining with (2.3), we obtain the following
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system:

∂I(t, x)

∂t

=

∫ τ(t)

0

∂ρ(t, a, x)

∂t
da+ τ ′(t)ρ(t, τ(t), x)

=

∫ τ(t)

0

(
−∂ρ(t, a, x)

∂a
+D1∆ρ(t, a, x)− (µI(t) + f(I(t, x)))ρ(t, a, x)

)
da+ τ ′(t)ρ(t, τ(t), x)

=D1∆I(t, x) + ρ(t, 0, x)− ρ(t, τ(t), x)− (µI(t) + f(I(t, x)))I(t, x) + τ ′(t)ρ(t, τ(t), x)

=D1∆I(t, x) + b(t,M(t, x))− (µI(t) + f(I(t, x)))I(t, x)− (1− τ ′(t))ρ(t, τ(t), x),

and

∂M(t, x)

∂t

=

∫ ∞
τ(t)

∂ρ(t, a, x)

∂t
da− τ ′(t)ρ(t, τ(t), x)

=

∫ ∞
τ(t)

(
−∂ρ(t, a, x)

∂a
+D2∆ρ(t, a, x)− (µM (t) + g(M(t, x)))ρ(t, a, x)

)
da− τ ′(t)ρ(t, τ(t), x)

=D2∆M(t, x) + ρ(t, τ(t), x)− ρ(t,∞, x)− (µM (t) + g(M(t, x)))M(t, x)− τ ′(t)ρ(t, τ(t), x)

=D2∆M(t, x) + (1− τ ′(t))ρ(t, τ(t), x)− (µM (t) + g(M(t, x)))M(t, x),

where the reasonable biological assumption guarantees that ρ(t,∞, x) is zero since no individual
can survive forever.

To get the closed form of the above system, we need to determine ρ(t, τ(t), x) by integrating
along characteristics. For any ξ ≥ −τ(0), let v(ξ, x) = ρ(t0 + ξ, a0 + ξ, x), where t0 and a0 are fixed.
Then, when 0 < a0 + ξ ≤ τ(t), we have,

∂

∂ξ
v(ξ, x) =

(
∂

∂t
+

∂

∂a

)
ρ(t0 + ξ, a0 + ξ, x)

= D1∆ρ(t0 + ξ, a0 + ξ, x)− (µI(t0 + ξ) + f(I(t0 + ξ, x))) ρ(t0 + ξ, a0 + ξ, x)

= D1∆v(ξ, x)− (µI(t0 + ξ) + f(I(t0 + ξ, x))) v(ξ, x),

v(−τ(0), x) = ρ(t0 − τ(0), a0 − τ(0), x).

(2.5)

Clearly, the expression of the solutions v(ξ, x) of (2.5) depends on coefficients D1 and f(I).
More precisely, the fundamental solution corresponding to the partial differential operator L :≡
[∂t −D1∆ − µI(t) − f(I(t, ·))] involves D1 and f(I). Especially, when D1 > 0 and f(I) > 0, it is
very challenging for us to show such fundamental solution (see [28]). At what follows, we study
the equation (2.5) in terms of D1 and f(I) with three cases: (I) D1 > 0, f(I) ≡ 0 for I > 0; (II)
D1 = 0, f(I) ≡ 0 for I > 0; (III) D1 = 0, f(I) > 0 for I > 0, and then we show the closed form
of the system on I and M. As a matter of fact, the fundamental solution based on (II) is a special
case of it involved with (I) due to f(I) ≡ 0. Hence, we mainly concern cases (I) and (III).

Case I: D1 > 0 and f(I) ≡ 0. For some species such as mammals [29] and raptor [30],
the juvenile individuals have the ability to disperse, which alleviates the intra-specific competition
within immature stages [31]. Consequently, the juvenile intra-specific competition can be ignored
when immature individuals can move or disperse efficiently, that is, f(I) ≡ 0 when D1 > 0. In
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view of (2.5), we have

v(ξ, x) =

∫
Ω

Γ(t0 + ξ, t0 − τ(0), x, y,D1)v(−τ(0), y)dy

=

∫
Ω

Γ (t0 + ξ, t0 − τ(0), x, y,D1) ρ(t0 − τ(0), a0 − τ(0), y)dy,

where Γ(t, s, x, y,D1) represents the fundamental solution corresponding to the partial differential
operator L :≡ [∂t − D1∆ − µI(t)] (see [28, Chapter 1]). For all t ≥ 0, let t0 = t + τ(0) − τ(t),
ξ = τ(t)− τ(0) and a0 = τ(0), then ξ ≥ −τ(0) and ξ + a0 = τ(t). In this case,

ρ(t, τ(t), x) = v(τ(t)− τ(0), x)

=

∫
Ω

Γ(t, t− τ(t), x, y,D1)ρ(t− τ(t), 0, y)dy,

=

∫
Ω

Γ (t, t− τ(t), x, y,D1) b(t− τ(t),M(t− τ(t), y))dy.

Therefore, the closed form of the system describing the population growth when t ≥ 0 can be
written as:

∂I(t, x)

∂t
=D1∆I(t, x) + b(t,M(t, x))− µI(t)I(t, x)

− (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t),M(t− τ(t), y))dy,

t > 0, x ∈ Ω,

∂M(t, x)

∂t
=D2∆M(t, x)− (µM (t) + g(M(t, x)))M(t, x)

+ (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t),M(t− τ(t), y))dy,

t > 0, x ∈ Ω,

∂I(t, x)

∂n
=
∂M(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω,

(2.6)

When D1 = 0 and f(I) ≡ 0, the fundamental solution operator Γ (t, t− τ(t), x, y,D1) is reduced
to

Γ (t, t− τ(t), x, y,D1) = e
∫ t
t−τ(t) µI(s)ds

,

and hence, we have the following system:

∂I(t, x)

∂t
=D1∆I(t, x) + b(t,M(t, x))− µI(t)I(t, x)

− (1− τ ′(t))e
∫ t
t−τ(t) µI(s)ds

b(t− τ(t),M(t− τ(t), y)), t > 0, x ∈ Ω,

∂M(t, x)

∂t
=D2∆M(t, x)− (µM (t) + g(M(t, x)))M(t, x)

+ (1− τ ′(t))e
∫ t
t−τ(t) µI(s)ds

b(t− τ(t),M(t− τ(t), y)), t > 0, x ∈ Ω,

∂I(t, x)

∂n
=
∂M(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω,

(2.7)

Case III: D1 = 0, f(I) > 0. For some species such as mosquitoes [32] or frogs [33], the
immature individuals are often restricted in a limited area due to inefficient dispersal ability, which
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would intensify the competition for food and resources among immature individuals. In this sce-
nario, the diffusion rate for immature individuals is negligible (i.e. D1 ≡ 0) while the immature
intra-specific competition is taken into consideration, that is, f(I) > 0 for I > 0. Then, the funda-
mental solution corresponding to the differential operator L = [∂t − µI(t) − f(I(t, ·))] is given by

exp
(∫ t

t−τ(t) (µI(s) + f(I(s, ·))) ds
)
. Similar to the former arguments, we obtain that

ρ(t, τ(t), x) = v(τ(t)− τ(0), x)

= exp

(∫ t

t−τ(t)
(µI(s) + f(I(s, ·))) ds

)
ρ(t− τ(t), 0, y),

= exp

(∫ t

t−τ(t)
(µI(s) + f(I(s, ·))) ds

)
b(t− τ(t),M(t− τ(t), y)).

Consequently, the closed form of the system describing the population growth when t ≥ 0 can be
written as:

∂I(t, x)

∂t
=b(t,M(t, x))− (µI(t) + f(I(t, x)))I(t, x)− (1− τ ′(t))

× exp

(
−
∫ t

t−τ(t)
(µI(s) + f(I(s, x)))ds

)
b(t− τ(t),M(t− τ(t), x)),

t > 0, x ∈ Ω,

∂M(t, x)

∂t
=D2∆M(t, x)− (µM (t) + g(M(t, x)))M(t, x) + (1− τ ′(t))

× exp

(
−
∫ t

t−τ(t)
(µI(s) + f(I(s, x)))ds

)
b(t− τ(t),M(t− τ(t), x)),

t > 0, x ∈ Ω,

∂I(t, x)

∂n
=
∂M(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω.

(2.8)

Notice that during derivation of the above system, it is not difficult to see that

ρ(t, a, x) = exp

(
−
∫ t

t−a
(µI(r) + f(I(r, x)))dr

)
b(t− a,M(t− a, x))

for t ≥ τ(t) ≥ a, while

I(t, x) =

∫ τ(t)

0
ρ(t, a, x)da

=

∫ τ(t)

0
exp

(
−
∫ t

t−a
(µI(r) + f(I(r, x)))dr

)
b(t− a,M(t− a, x))da

=

∫ t

t−τ(t)
exp

(
−
∫ t

s
(µI(r) + f(I(r, x)))dr

)
b(s,M(s, x))ds

for t ≥ τ(t) ≥ a. Letting t = 0 in the above equation for I, we obtain the following constraint:

I(0, x) =

∫ 0

−τ(0)
exp

(
−
∫ 0

s
(µI(r) + f(I(r, x)))dr

)
b(s,M(s, x))ds. (2.9)
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When the competition among immature individuals is non-negligible, that is, f(I) > 0 provided
I > 0, the model (2.8) consists of two coupled equations which is not reducible to a single equation.
The model structure of (2.8) is quite different from systems (2.6) and (2.7). Meanwhile, the lack of
the diffusion term for immature individuals (D1 ≡ 0) especially make the corresponding solution
maps no longer compact. A series of rigorous analysis including the well-posedness and threshold
dynamics in terms of the basic reproduction number will be conducted, which constitutes the main
focus of our paper. In the subsequent section, we will first investigate systems (2.6) and (2.7) where
the immature intra-specific competition is negligible.

3 Dynamics for the model without immature intra-specific com-
petition

In this section, we establish the global dynamics for (2.6) via the basic reproduction number. It is
easy to check that the system is reducible to one single equation for M(t, x). In fact, since the M
equation in (2.6) is independent of I, it suffices to study the decoupled system:

∂M(t, x)

∂t
= D2∆M(t, x)− (µM (t) + g(M(t, x)))M(t, x)

+ (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t),M(t− τ(t), y))dy,

t > 0, x ∈ Ω,

∂M(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω.

(3.1)

3.1 Global existence and uniqueness of solutions

Without loss of generality, we choose the initial timing as the global maximum point of τ(t) in
[0, T ], that is, τ(0) = maxt∈[0,T ]{τ(t)} = τ̂ , which is feasible with solution evolution. Let Y :=

C(Ω,R) be the Banach space of continuous functions with the supremum norm ‖ · ‖Y. Define
C = C([−τ(0), 0],Y). For any ψ ∈ C, define the norm ‖ψ‖ = maxθ∈[−τ(0),0] ‖ψ(θ)‖Y. Then, C is

a Banach space. Let Y+ := C(Ω,R+) and C+ = C([−τ(0), 0],Y+), then (Y,Y+) and (C, C+) are
both strongly ordered spaces. Given a function u(t) : [−τ(0), σ) → Y for σ > 0, define ut ∈ C by
ut(θ, x) = u(t+ θ, x), for all θ ∈ [−τ(0), 0], x ∈ Ω and t ∈ [0, σ).

Define the linear operator A by

D(A(t)) = {ψ ∈ C2(Ω) :
∂ψ

∂n
= 0 on ∂Ω},

A(t)ψ = D2∆ψ − µM (t)ψ, ∀ψ ∈ D(A(t)).

Define the nonlinear operator F : R× C+ → Y by

F(t, ψ) =− g(ψ(0, ·))ψ(0, ·) + (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), ·, y,D1) b(t− τ(t), ψ(−τ(t), y))dy,

for t ≥ 0 and ψ ∈ C+.
Then, system (3.1) can be reformulated as the following abstract functional differential equation:

∂M(t, ·)
∂t

= A(t)M(t, ·) + F(t,Mt), t > 0, x ∈ Ω,

M(θ, x) = ψ(θ, x), θ ∈ [−τ(0), 0], x ∈ Ω.
(3.2)
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Let W (t, s) be the evolution operator determined by the following linear reaction-diffusion equation
∂M(t,x)

∂t = D2∆M(t, x)− µM (t)M(t, x), t > 0, x ∈ Ω,

∂M(t,x)
∂n = 0, t > 0, x ∈ ∂Ω.

The equivalent integral form of system (3.2) is shown as follows:

M(t;ψ) = W (t, 0)ψ(0) +

∫ t

0
W (t, s)F(s,Ms)ds, t ≥ 0, ψ ∈ C+,

and the solution of which is a mild solution of (3.1).
Clearly, F(t, ·) is locally Lipschitz continuous on C+, and hence for any ψ ∈ C+, system (3.1)

admits a unique non-continuable mild solution M(t;ψ) such that Mt(ψ) ∈ C for all t in its maximal
interval of existence [0, σψ) for σψ > 0. Since W (t, s) is compact and analytic for t > s, t, s ∈ R,
M(t;ψ) is compact and a classical solution of (3.2) for t > τ̂ . In view of assumption (A1), it easily

follows that for any H ≥ M̃ , ΣH := {ψ ∈ C+ : 0 ≤ ψ ≤ H} is a positively invariant set for (3.2)
(see, e.g. [34] and [35]). Thus, for any ψ ∈ C+, M(t;ψ) globally exists on [0,∞). Recall that a
family of operators {Qt}t≥0 is a T -periodic semiflow on a metric space (Z, ρ) with the metric ρ,
provided that {Qt}t≥0 satisfies: (i) Q0(v) = v,∀v ∈ Z; (ii) Qt(QT (v)) = Qt+T (v), ∀t ≥ 0,∀v ∈ Z;
(iii) Qt(v) is continuous in (t, v) on [0,∞) × Z. Based on the T -periodicity of the coefficients in
(3.1), the equation (3.1) can define a periodic semiflow Ψt : C+ → C+ by

Ψt(ψ)(s, x) = M(t+ s, x;ψ), ∀s ∈ [−τ(0), 0], x ∈ Ω.

Consider the following time-periodic and delayed differential equation:{
v̇(t) = −(µM (t) + g(v(t)))v(t) + (1− τ ′(t))b(t− τ(t), v(t− τ(t)))

v(s) = ϕ(s) ∈ C([−τ(0), 0],R+), ∀s ∈ [−τ(0), 0].
(3.3)

Note that the function b(t, ·) is Lipschitz in any bounded subset of R+ as defined in Assumption
(A1). Consequently, for any ϕ ∈ C([−τ(0), 0],R+), the equation (3.3) admits a unique bounded
solution v(t;ϕ) with v(s;ϕ) = ϕ(s), ∀s ∈ [−τ(0), 0], which globally exists on [0,∞). In the following,
we state a comparison theorem associated with the solutions of equations (3.1) and (3.3).

Lemma 3.1. For any given ξ ∈ C+, let Ĥ(s) = max{ξ(s, x), x ∈ Ω}, ∀s ∈ [−τ(0), 0]. Let v(t; Ĥ)
be the solution of the following differential equation:{

v̇(t) = −(µM (t) + g(v(t)))v(t) + (1− τ ′(t))b(t− τ(t), v(t− τ(t))),

v(s) = Ĥ(s) ∈ C([−τ(0), 0],R+), ∀s ∈ [−τ(0), 0].

Then the solution M(t, x; ξ) of (3.1) with M0 = ξ satisfies M(t, x; ξ) ≤ v(t; Ĥ) for all (t, x) ∈
(0,∞)× Ω.

Proof. Let gα(t, u) = αu − (µM (t) + g(u))u, where α is a sufficiently large number that makes
gα(t, u) increasing with respect to all u ∈ [0, H]. Note that,

v̇(t) = −αv(t) + gα(t, v) + (1− τ ′(t))b(t− τ(t), v(t− τ(t))),

and
∂M(t, x)

∂t
=D2∆M(t, x)− αM(t, x) + gα(t,M(t, x))

+ (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t),M(t− τ(t), y))dy,
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Let Q(t) (t ≥ 0) be the strongly continuous semigroups generated by D2∆ and the Neumann
boundary condition. Thus,

v(t) = e−α(t−s)v(s) +

∫ t

s
e−α(t−r) [gα(r, v(r)) + (1− τ ′(r))b(r − τ(r), v(r − τ(r)))

]
dr

and

M(t, x) =e−α(t−s)Q(t− s)M(s, x) +

∫ t

s
e−α(t−r)Q(t− r)

[
gα(r,M(r)) + (1− τ ′(r))

∫
Ω

Γ0 (r, r − τ(r), x, y,D1) b(r − τ(r),M(r − τ(r), y))dy

]
(x)dr.

Set w(t, x) = M(t, x; ξ)− v(t; Ĥ) for any (t, x) ∈ [0, τ ]× Ω. Then, we have

w(t, x) ≤ e−α(t−s)Q(t− s)w(s, x) +

∫ t

s
e−α(t−r)Q(t− r)(gα(r,M(r))− gα(r, v(r)))(x)dr, (3.4)

for 0 ≤ s < t ≤ τ , where τ is defined as in (2.4). Let ŵ(t) = sup
x∈Ω

w(t, x) for t ∈ [−τ(0), τ ]. It

is obvious that ŵ(t) ≤ 0 for t ∈ [−τ(0), 0]. We first prove ŵ(t) ≤ 0 for any t ∈ (0, t̃], where
t̃ = min{τ , 1

ρ} with ρ > 0 being a constant determined later.

Suppose, by contradiction, that there exist a positive number δ and a t0 ∈ (0, t̃] such that
0 < ŵ(t0) < δ and ŵ(t0) ≥ ŵ(t) for t ∈ (0, t0]. By the definition of gα(t, u), there is a ρ > 0 such
that 0 ≤ ∂gα

∂u (t, u) ≤ ρ for t ≥ 0 and u ∈ [0, H]. Thus,

gα(t,M(r, x))− gα(t, v(r)) =
∂gα
∂u

(t, ζ(r, x))(M(r, x)− v(r))

≤∂gα
∂u

(t, ζ(r, x))ŵ(t0) ≤ ρŵ(t0),

for any r ∈ (0, t0] and x ∈ Ω, where ζ(r, x) is between u(r, x) and v(r). It then follows from (3.4)
that

ŵ(t0) ≤sup
x∈Ω

e−αt0Q(t0)w(0)(x) + sup
x∈Ω

∫ t0

0
e−α(t0−r)(gα(r,M(r))− gα(r, v(r)))(x)dr

≤e−αt0ŵ(0) + ρŵ(t0)

∫ t0

0
e−α(t0−r)dr

≤ρŵ(t0)

∫ t0

0
e−α(t0−r)dr

≤ρt0ŵ(t0)

<ŵ(t0),

which is a contradiction, and hence, ŵ(t) ≤ 0 for any t ∈ (0, t̃]. By repeating the above arguments
for finite times, we can prove that ŵ(t) ≤ 0 for any (t, x) ∈ [0, τ̂ ]× Ω. This means that

M(t, x) ≤ v(t) for (t, x) ∈ [0, τ̂ ]× Ω.
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Now we prove that M(t, x; ξ) ≤ v(t, Ĥ) holds for t ∈ (τ̂ ,∞). In this situation, M(t, x; ξ) is a
classical solution of (3.1). Let w(t, x) = M(t, x; ξ)− v(t; Ĥ). Then we have

∂

∂t
w(t, x)−D2∆w(t, x) + µM (t)w(t, x) + h(t, x)w(t, x)

=
∂

∂t
w(t, x)−D2∆w(t, x) + µM (t)w(t, x) + (g(M)M − g(v)v) ≤ 0, ∀x ∈ Ω,

∂

∂n
w(t, x) = 0, ∀x ∈ ∂Ω,

for t ∈ (τ̂ , τ̂ + τ), where h(t, x) = G′(M(t, x) + %[v(t) − M(t, x)]), % ∈ (0, 1), is bounded and
G(u) = g(u)u. Thus, the parabolic maximum principle implies that w(t, x) ≤ 0, and hence,
M(t, x; ξ) ≤ v(t; Ĥ) for any t ∈ (τ̂ , τ̂ + τ ]. Continuing this procedure on t ∈ [τ̂ + nτ, τ̂ + (n+ 1)τ ],
n = 1, . . . ,∞, respectively, we can obtain that M(t, x; ξ) ≤ v(t; Ĥ) holds for t ∈ (τ̂ ,∞).

Remark 3.2. Note that v(t, x) = v(t, Ĥ) for all x ∈ Ω also satisfies the reaction-diffusion equation
(3.1) and the comparison principle for reaction-diffusion systems with time delays [34] can also be
used to establish this result. Here we use a basic approach for reader’s interest.

On the basis of the above discussion and Lemma 3.1, we show the following results on the
existence of a global attractor of ΨT : C+ → C+.

Theorem 3.3. For each ψ ∈ C+, the equation (3.1) admits a unique solution M(t, x;ψ) on [0,∞)×
Ω with M0 = ψ. Moreover, equation (3.1) generates a T -periodic semiflow Ψt = Mt(·) : C+ → C+,
i.e. Ψt(ψ)(θ, x) = M(t+ θ, x;ψ), ∀ψ ∈ C+, t ≥ 0, θ ∈ [−τ(0), 0], x ∈ Ω, and ΨT : C+ → C+ has a
global compact attractor in C+.

Proof. Here we only prove the existence of a global attractor as the global existence of solutions was
argued earlier. To do that, we first show the solutions of (3.1) are eventually uniformly bounded.

Note that the equation (3.3) admits a unique bounded solution v(t;ϕ) with v(s;ϕ) = ϕ(s),
∀s ∈ [−τ(0), 0], which globally exists on [0,∞). Therefore, for any ϕ ∈ C([−τ(0), 0],R+), the
omega limit set ω(ϕ) of the positive orbit γ+(ϕ) = {vt(ϕ) : t ≥ 0} is nonempty, compact and
invariant. Let G := {ψ(s) : ψ ∈ ω(ϕ), s ∈ [−τ(0), 0]}. On the basis of the compactness of ω(ϕ),
it follows that G is compact. As a result, there exist s0 ∈ [−τ(0), 0] and ψ ∈ ω(ϕ) such that
ψ(s0) = max{G} := HG. For any t ∈ [0, τ̂ ], since t− τ(t) is increasing with respect to t, we have

−τ(0) = 0− τ(0) ≤ t− τ(t) ≤ τ̂ − τ(τ̂) while τ̂ − τ(τ̂) ≥ τ̂ − τ̂ = 0.

Hence there exists t0 ∈ [0, τ̂ ] such that t0 = τ(t0). By means of the invariance of ω(ϕ), there
exists ψ∗ ∈ ω(ϕ) such that vt0(ψ∗) = ψ, i.e. v(t0 + s;ψ∗) = ψ(s), ∀s ∈ [−τ(0), 0]. Without loss of

generality, we assume that ψ(0) = HG. Assume that HG > M̃ , it then follows from assumption
(A1) that

v̇(t0;ψ∗) ≤− (µM (t0) + g(v(t0;ψ∗)))v(t0;ψ∗) + (1− τ ′(t0))b(0, v(0;ψ∗))

≤− (µM (t0) + g(HG))HG + (1− τ ′(t0))b(0, HG) < 0.

Hence, there exists some s ∈ [−τ(0), 0) such that ψ(s) > ψ(0) = HG, a contradiction. Thus,

lim sup
t→∞

v(t;ϕ) ≤ M̃, ∀ϕ ∈ C([−τ(0), 0],R+).
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For any given φ ∈ C+, let φ̂(θ) := max{φ(θ, x) : x ∈ Ω}, ∀θ ∈ [−τ(0), 0]. Then, lim sup
t→∞

v(t; φ̂) ≤

M̃ . By Lemma 3.1, we have lim sup
t→∞

M(t, x;φ) ≤ lim sup
t→∞

v(t; φ̂) ≤ M̃ , ∀x ∈ Ω, which means

that Ψt : C+ → C+ is point dissipative. According to [36, Lemma 4.1] and [37, Section 3.5],
ΨT : C+ → C+ is κ-contraction and hence asymptotically smooth. Therefore, it follows from [37,
Theorem 1.1.2] that ΨT : C+ → C+ has a global compact attractor.

We further show that the periodic semiflow Ψt : C+ → C+ is strongly monotone and strictly
subhomogeneous in C+.

Lemma 3.4. For any φ and ψ in C+ with φ > ψ (that is, φ ≥ ψ but φ 6= ψ), the solutions u(t, x;φ)
and v(t, x;ψ) of system (3.1) with u(θ, x) = φ(θ, x) and v(θ, x) = ψ(θ, x), for all θ ∈ [−τ(0), 0] and
x ∈ Ω respectively, satisfy that u(t, x;φ) > v(t, x;ψ) for all t > τ̂ , and hence Ψt(φ) � Ψt(ψ) in C
for all t > 2τ̂ .

Proof. By a comparison argument on each interval [nτ(0), (n + 1)τ(0)], ∀n ∈ N as in the proof of
Lemma 3.1, it is not difficult to show that u(t, x;φ) ≥ v(t, x;ψ) for all t ≥ 0. Note that ut and vt
satisfy the following integral equation for all t ≥ 0:

M(t)(x) =e−αtQ(t)M(0)(x) +

∫ t

0
e−α(t−s)Q(t− s)

[
gα(s,M(s)) + (1− τ ′(s))∫

Ω
Γ0 (s, s− τ(s), x, y,D1) b(s− τ(s),M(s− τ(s), y))dy

]
(x)ds,

(3.5)

where gα(t, u) and Q(t) are defined as in the proof of Lemma 3.1. Then for any φ and ψ in C+

with φ > ψ, it follows from (3.5) and the strong positivity of Q(t), t > 0 that

w(t, x) := u(t, x;φ)− v(t, x;ψ) ≥ e−αtQ(t) (φ(0, ·)− ψ(0, ·)) > 0, t > 0

provided that φ(0, ·) 6≡ ψ(0, ·).
In the following, we show that for any φ and ψ in C+ with φ > ψ and φ(0, ·) = ψ(0, ·), there

exists t0 ∈ [0, τ̂ ] such that w(t0, ·) > 0. Suppose, by contradiction, that for a pair of initial values
φ, ψ ∈ C+ with φ > ψ and φ(0, ·) = ψ(0, ·), there holds w(t, ·) ≡ 0 for t ∈ [0, τ̂ ]. In view of (3.5),
we have that

0 = w(t)(x) =

∫ t

0
e−α(t−s)Q(t− s)

[
gα
(
s, u(s, ·;φ)

)
− gα

(
s, v(s, ·;ψ)

)]
(x)ds

+

∫ t

0
e−α(t−s)Q(t− s)(1− τ ′(s))

∫
Ω

Γ (s, s− τ(s), x, y,D1)[
b(s− τ(s), u(s− τ(s), y))− b(s− τ(s), v(s− τ(s), y))

]
(x)dyds

for t ∈ [0, τ̂ ]. Since e−α(t−s)Q(t− s) is strongly positive for t > s ≥ 0, and both gα(t, u) and b(t, u)
are increasing functions with respect to the variable u, we must have

b(s− τ(s), u(s− τ(s), y))− b(s− τ(s), v(s− τ(s), y)) ≡ 0

for any s ∈ [0, τ̂ ] and y ∈ Ω, which implies that u(s− τ(s), y) = v(s− τ(s), y) for any s ∈ [0, τ̂ ] and
y ∈ Ω. This contradicts to φ > ψ. Consequently, we have w(t0, ·) > 0 for some t0 ∈ [0, τ̂ ]. Applying
the strong positivity of e−α(t−s)Q(t− s) for t > s ≥ 0 and (3.5) again, for any t > t0, we see that

w(t, x) ≥ e−α(t−t0)Q(t− t0) (u(t0, ·, φ)− v(t0, ·, ψ)) = e−α(t−t0)Q(t− t0)w(t0, ·) > 0, t > t0.

Therefore, for any φ and ψ in C+ with φ > ψ, there holds u(t, x;φ) > v(t, x;ψ) for all t > τ̂ and
x ∈ Ω, which further implies that Ψt is strongly monotone whenever t > 2τ̂ .
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In order to show the periodic semiflow is strictly subhomogeneous, a further assumption about
the birth rate b(t,M) should be imposed:

(A3) The birth rate b(t,M) is strictly subhomogeneous in M in the sense that for any k ∈ (0, 1),
b(t, kM) > kb(t,M) for all M > 0 and t ≥ 0.

Based on this assumption, we can show Ψt is strictly subhomogeneous through the following lemma.

Lemma 3.5. For each t > 2τ̂ , Ψt : C+ → C+ is strictly subhomogeneous.

Proof. For any ψ ∈ C+ with ψ 6≡ 0, let u(t, x;ψ) be the solution of system (3.1) with u(θ, x) =
ψ(θ, x) for all θ ∈ [−τ(0), 0] and x ∈ Ω. For a fixed k ∈ (0, 1), by (A2) and (A3), we have

∂(ku(t, x))

∂t
=D2∆(ku(t, x))− (µM (t) + g(u(t, x)))(ku(t, x))

+ k(1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t), u(t− τ(t), y))dy

≤D2∆(ku(t, x))− µM (t)(ku(t, x))− g(ku(t, x))(ku(t, x))

+ (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1) b(t− τ(t), ku(t− τ(t), y))dy.

By a similar comparison argument to the proof of Lemma 3.1, it is not difficult to see from the
above inequality that ku(t, x;ψ) ≤ u(t, x; kψ) for t ≥ 0, where u(t, x; kψ) is the solution of (3.1)
with u(θ, x; kψ) = kψ(θ, x) for (θ, x) ∈ [−τ(0), 0]× Ω.

Let w(t, x) = u(t, x; kψ)−ku(t, x;ψ). Then w(θ, x) = 0 for (θ, x) ∈ [−τ(0), 0]×Ω and w(θ, x) ≥ 0
for (θ, x) ∈ [−τ(0),∞)× Ω. In the following, we show that w(t, x) > 0 for all t > τ̂ , x ∈ Ω. Let

P(t, u(t, x), u(t− τ(t), x))

=− g(u(t, x))u(t, x) + (1− τ ′(t))
∫

Ω
Γ(t, t− τ(t), x, y,D1)b(t− τ(t), u(t− τ(t), y))dy.

Then we have

∂w(t, x)

∂t

=
∂u(t, x; kψ)

∂t
− k∂u(t, x;ψ)

∂t
=D2∆u(t, x; kψ)− µM (t)u(t, x; kψ) + P(t, u(t, x; kψ), u(t− τ(t), x; kψ))

− k[D2∆u(t, x;ψ)− µM (t)u(t, x;ψ) + P(t, u(t, x;ψ), u(t− τ(t), x;ψ))]

=D2∆w(t, x)− µM (t)w(t, x)− g(u(t, x; kψ))u(t, x; kψ) + kg(ku(t, x;ψ))u(t, x;ψ)

+R(t, x) + (1− τ ′(t))
∫

Ω
Γ(t, t− τ(t), x, y,D1)

[
b(t− τ(t), u(t− τ(t), y; kψ))

− b(t− τ(t), ku(t− τ(t), y;ψ))
]
dy

≥D2∆w(t, x)− µM (t)w(t, x)− g(u(t, x; kψ))u(t, x; kψ) + kg(ku(t, x;ψ))u(t, x;ψ) +R(t, x)

where

R(t, x) = P(t, ku(t, x;ψ), ku(t− τ(t), x;ψ))− kP(t, u(t, x;ψ), u(t− τ(t), x;ψ)).

Note that

g(ku(t, x;ψ))(ku(t, x;ψ))− g(u(t, x; kψ))u(t, x; kψ)
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= −G′(ku(t, x;ψ) + %[u(t, x; kψ)− ku(t, x;ψ)])w(t, x), % ∈ (0, 1),

where G(ζ) = g(ζ)ζ, and G′(ζ) is bounded, that is, there exists a positive number l > 0 such that
−l ≤ G′(ζ) ≤ l. Consequently, we have

∂w(t, x)

∂t
≥ D2∆w(t, x)− µM (t)w(t, x)− lw(t, x) +R(t, x).

In view of the assumption (A3), we have R(t, x) > 0 for t > τ̂ and x ∈ Ω. Consider the following
equation 

∂w̌(t, x)

∂t
= D2∆w̌(t, x)− µM (t)w̌(t, x)− h(t, x)w̌(t, x) +R(t, x), t > 0,

w̌(0, x) = 0, x ∈ Ω,
(3.6)

which can be rewritten as

w̌(t, ·;ψ) =

∫ t

0
U(t, s)R(s, ·)ds, t ≥ 0,

where U(t, s), 0 ≤ s ≤ t is the evolution operator generated by
∂w̌(t, x)

∂t
= D2∆w̌(t, x)− µM (t)w̌(t, x)− h(t, x)w̌(t, x), t > 0,

∂w̌(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω.

Since R(t, x) > 0, ∀t > τ̂ , x ∈ Ω, we can conclude from the strong positivity of U(t, s), 0 ≤ s < t that
the solution of (3.6) satisfies w̌(t, x) > 0 for all t > τ̂ and x ∈ Ω. It then follows from the comparison
principle that w(t, x) ≥ w̌(t, x) > 0 for all t > τ̂ and x ∈ Ω. Therefore, u(t, x; kψ) > ku(t, x;ψ) for
all t > τ̂ , x ∈ Ω, and hence, Ψt(kψ) > kΨt(ψ) for all t > τ̂ , which implies that for each t > 2τ̂ , Ψt

is strictly subhomogeneous.

3.2 Basic reproduction number

Set the ordered Banach space consisting of all T -periodic continuous functions from R to Y as
CT (R,Y), where ‖φ‖CT (R,Y) := maxθ∈[0,T ] ‖φ‖Y for any φ ∈ CT (R,Y). The positive cone of
CT (R,Y) is defined as follows:

C+
T (R,Y) := {φ ∈ CT (R,Y) : φ(t)(x) ≥ 0, ∀t ∈ R, x ∈ Ω}.

The linearized system for (3.1) at the population extinction equilibrium M = 0 is shown as
follows: 

∂w(t, x)

∂t
=D2∆w(t, x)− µM (t)w(t, x)

+ (1− τ ′(t))
∫

Ω
Γ (t, t− τ(t), x, y,D1)β(t− τ(t))w(t− τ(t), y)dy,

t > 0, x ∈ Ω,

∂w(t, x)

∂n
=0, t > 0, x ∈ ∂Ω,

w(θ, x) =ϕ(θ, x), ϕ ∈ C, θ ∈ [−τ(0), 0], x ∈ Ω.

(3.7)
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Similar to the previous subsection, we know that (3.7) has a unique mild solution w(t, x;ϕ) with
w0(·, ·;ϕ) = ϕ and wt(·, ·;ϕ) ∈ C+ for all t ≥ 0. Moreover, w(t, x;ϕ) is a classical solution when
t > τ̂ , and wt(·, ·;ϕ) is strongly positive and compact on C+ for all t > 2τ̂ . Define P : C → C by
P (ϕ) = wT (ϕ) for all ϕ ∈ C, where wT (ϕ)(θ, x) = w(T + θ, x;ϕ) for all (θ, x) ∈ [−τ(0), 0]×Ω, and
wt is the solution map of (3.7). Thus, we have Pn0 = wn0T is compact and strongly positive, where
n0 := min{n ∈ N : nT > 2τ̂}. Let r(P ) be the spectral radius of P . By virtue of [38, Lemma 3.1]
that r(P ) is a simple eigenvalue of P having a strongly positive eigenvector ϕ̄, and the modulus of
any other eigenvalue is less than r(P ). Let w(t, x; ϕ̄) be the solution of (3.7) with w(s, x; ϕ̄) = ϕ̄(s, x)
for all s ∈ [−τ(0), 0], x ∈ Ω. By the strong positivity of ϕ̄, we have w(·, ·; ϕ̄) � 0. Inspired by [39,
Proposition 2.1], we can prove the following observation, which indicates the existence of a special
solution of system (3.7).

Lemma 3.6. There exists a positive T -periodic function v∗(t, x) such that eµtv∗(t, x) is a solution

of (3.7), where µ = ln r(P )
T .

Proof. Since ϕ̄ is the eigenvector of P , we have Pϕ̄ = r(P )ϕ̄. That is

w(s+ T, x; ϕ̄) = r(P )ϕ̄(s)(x), ∀s ∈ [−τ(0), 0].

Let µ = ln r(P )
T and v∗(t, x) = e−µtw(t, x; ϕ̄) for all t ≥ −τ(0), x ∈ Ω. Then r(P ) = eµT . By a

following simple calculation, we can see that v∗(t, x) is periodic. In fact, for all s ∈ [−τ(0), 0], we
have

w(s+ T, x; ϕ̄) = Pϕ̄(s)(x) = r(P )ϕ̄(s)(x).

Then, for all t ≥ 0,
w(t+ T, x; ϕ̄) = r(P )w(t, x; ϕ̄).

This indicates that

v∗(t+ T, x) = e−µ(t+T )w(t+ T, x; ϕ̄) = e−µte−µT r(P )w(t, x; ϕ̄) = e−µtw(t, x; ϕ̄) = v∗(t, x).

Thus, the equation (3.7) admits a positive solution e−µtv∗(t, x) with v∗(t, x) being periodic in t.

Let φ(s, x) = φ(s)(x) ∈ CT (R,Y+) be the initial distribution of adult individuals at time s ∈ R
and the spatial location x ∈ Ω. Define an operator C(t) : Y→ Y as follows:

(C(t)ϕ)(x) := (1− τ ′(t))
∫

Ω
Γ(t, t− τ(t), x, y,D1)β(t− τ(t))ϕ(y)dy, ∀ϕ ∈ Y.

Recall that W (t, s) is the evolution operator determined by the following linear reaction-diffusion
equation: 

∂w(t,x)
∂t = D2∆w(t, x)− µM (t)w(t, x), t > 0, x ∈ Ω,

∂w(t,x)
∂n = 0, t > 0, x ∈ ∂Ω.

Then, W (t − τ(t), s)φ(s)(x) represents the density distribution of the individuals who matured
into adults at previous time s (s < t − τ(t)) and survived to time t − τ(t) at location x. Hence,∫ t−τ(t)
−∞ W (t−τ(t), s)φ(s)(x)ds denotes the density distribution of the accumulative individuals who

16



matured into adults at all previous time s < t−τ(t) and survived to time t−τ(t) at location x. Thus,
the distribution of newborn individuals at location x and time t can be represented as follows:

(1− τ ′(t))
∫

Ω

Γ(t, t− τ(t), x, y,D1)β(t− τ(t))
(∫ t−τ(t)

−∞
W (t− τ(t), s)φ(s)(y)ds

)
dy

=(1− τ ′(t))
∫

Ω

Γ(t, t− τ(t), x, y,D1)β(t− τ(t))
(∫ ∞

τ(t)

W (t− τ(t), t− s)φ(t− s)(y)ds
)
dy

=

∫ ∞
τ(t)

(1− τ ′(t))
∫

Ω

Γ(t, t− τ(t), x, y,D1)β(t− τ(t))W (t− τ(t), t− s)φ(t− s)(y)dyds

=

∫ ∞
τ(t)

[
C(t)(W (t− τ(t), t− s)φ(t− s))

]
(x)ds

=

∫ ∞
0

[
H(t, s)φ(t− s)

]
(x)ds,

where H(t, s), t ∈ R, s ≥ 0 is defined as follows:

H(t, s) :=

{
C(t)W (t− τ(t), t− s), s > τ(t),
0, s ∈ [0, τ(t)].

Thus, the next generation operator L can be defined as

L(φ)(t) :=

∫ ∞
0

H(t, s)φ(t− s)ds, ∀t ∈ R, φ ∈ CT (R,Y).

It easily follows that L is a positive and bounded linear operator on CT (R,Y). The basic repro-
duction number can be defined as the spectral radius of L, that is,

R0 := r(L).

In the light of [36, Theorem 3.4] and [40, Remark 2.1] (see also [41, Theorem 3.7]), we obtain
the subsequent result, which implies that R0 serves as a threshold value for the stability of the zero
solution for system (3.7).

Lemma 3.7. R0 − 1 has the same sign as r(P )− 1.

3.3 Global dynamics

The main focus of this section is to show the global attractivity of the system (3.1) in terms of R0

by employing the theory of monotone and subhomogeneous semiflows [37, Section 2.3]. Since the
strong monotonicity and strict sub-homogeneity of the periodic semiflow Ψt has been proven (see
Lemmas 3.4 and 3.5), it is time to show the global stability of system (3.1) when R0 > 1 in C+.

Theorem 3.8. If R0 > 1, then system (3.1) admits a unique positive T -periodic solution M∗(t, x),
which is globally asymptotically stable in C+\{0}.

Proof. We can fix an integer n0 such that n0T > 2τ̂ , then Ψt can be regarded as an n0T -periodic
semiflow on C+. Furthermore, Ψn0T is a strongly monotone and strictly subhomogeneous map
on C+ as a consequence of Lemma 3.4 and 3.5. It follows from [37, Theorem 2.3.4] that system
(3.1) admits a unique positive n0T -periodic and globally asymptotically stable solution M∗(t, x)
when r(DΨn0T (0)) > 1. Note that r(DΨn0T (0)) = r(P (n0T )) = (r(P (T )))n0 . It then follows from

17



Lemma 3.7 that sign(R0− 1) = sign(r(DΨn0T (0))− 1). Hence, it suffices to show the existence of
the unique T -periodic positive solution M∗(t, x) when R0 > 1. This is true since

Ψn0
T (ΨTψ

∗) = ΨT (Ψn0
T ψ

∗) = ΨT (Ψn0Tψ
∗) = ΨT (ψ∗),

where ψ∗(s, ·) = M∗(s, ·) for all s ∈ [−τ(0), 0] guaranteeing that Ψn0Tψ
∗ = ψ∗. Therefore, the

uniqueness of the positive fixed point of Ψn0
T = Ψn0T implies that ΨTψ

∗ = ψ∗ holds, which indicates
that M∗(t, x) is a T -periodic solution of system (3.1).

By implying [37, Theorem 2.3.4] and a similar argument as in the previous proof, we can
establish the following result:

Theorem 3.9. If R0 ≤ 1, then the zero equilibrium 0 is globally attractive for all solutions of
system (3.1).

It can be easily checked that I(t, x) can be represented by the following equivalent integral form:

I(t, x) =

∫ t

t−τ(t)

∫
Ω

Γ(t, s, x, y,D1)b(s,M(s, y))dyds, t > 0, x ∈ Ω.

When R0 > 1, as a consequence of the global stability of M(t, x), we can obtain the property of
the solution for the other variable I(t, x) as well by using its integral form:

lim
t→∞

[
I(t, x)− I∗(t, x)

]
= 0,

where

I∗(t, x) =

∫ t

t−τ(t)

∫
Ω

Γ(t, s, x, y,D1)b(s,M∗(s, y))dyds

is a positive T -periodic function. The scenario whenR0 ≤ 1 can be discussed in a similar way. Thus,
the global attractivity of the full system (2.6) can be obtained and summarized in the following
theorem.

Theorem 3.10. If R0 > 1, then system (2.6) admits a unique positive T -periodic solution (I∗(t, x),
M∗(t, x)), which is globally attractive to all nontrivial solutions. If R0 ≤ 1, then the population
extinction equilibrium (0, 0) is globally attractive for all solutions.

Remark 3.11. The main analytic methodologies for the system (2.6) are also applicable to (2.7).
In fact, due to the absence of the intra-specific competition (f(I) ≡ 0), the I equation can be
decoupled from (2.7).

In the next section, we will establish the well-posedness and threshold dynamics for the model
when the intra-specific competition is included and the immature dispersal ability is negligible.

4 Dynamics under immature intra-specific competition

In this section, we devoted to dynamics for system (2.8) with the constraint (2.9), namely, intra-
specific competition is taken into account. As the beginning of this section, we introduce several
notations. Let X := C(Ω,R2) be the Banach space of continuous functions with the supremum norm
‖ · ‖X. Define E = C([−τ(0), 0],X). For any φ ∈ E , define the norm ‖φ‖ = maxθ∈[−τ(0),0] ‖φ(θ)‖X.

Then, E is a Banach space. Let X+ := C(Ω,R2
+) and E+ = C([−τ(0), 0],X+), then (X,X+) and
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(E , E+) are both strongly ordered spaces. Given a function u(t) : [−τ(0), σ)→ X for σ > 0, define
ut ∈ E by ut(θ, x) = u(t+ θ, x), for all θ ∈ [−τ(0), 0], x ∈ Ω and t ∈ [0, σ).

Define a linear operator A by

D(A) = {φ ∈ C2
(
Ω,R

)
:
∂φ

∂n
= 0 on ∂Ω},

Aφ = D2∆φ, ∀φ ∈ D(A).

Define a linear operator A =

(
0 0
0 A

)
with D(A) := C

(
Ω,R

)
×D(A) and

Aφ = (0,Aφ2) for φ := (φ1, φ2) ∈ D(A).

For t ≥ 0, define nonlinear operators F(t, ·) = (F1(t, ·),F2(t, ·)) : E+ → X by

F1(t, φ) =b(t, φ2(0, ·))− (µI(t) + f(φ1(0, ·)))φ1(0, ·)− (1− τ ′(t))

× exp

(
−
∫ t

t−τ(t)
(µI(s) + f(φ1(s, ·)))ds

)
b(t− τ(t), φ2(−τ(t), ·)),

F2(t, φ) =− (µM (t) + g(φ2(0, ·)))φ2(0, ·) + (1− τ ′(t)) exp

(
−
∫ t

t−τ(t)
(µI(s) + f(φ1(s, ·)))ds

)
× b(t− τ(t), φ2(−τ(t), ·)),

where φ = (φ1, φ2) ∈ E+. Then, system (2.8) can be reformulated as the following abstract
functional differential equations:{

∂u(t,·)
∂t = Au(t, ·) + F(t,ut), t > 0, x ∈ Ω,

u(θ, x) = φ(θ, x), θ ∈ [−τ(0), 0], x ∈ Ω.
(4.1)

Let W (t) be the analytic semigroup on C
(
Ω,R

)
with the infinitesimal generator A. Then, an

strongly continuous semigroup on X can be defined as U(t) :=

(
I 0
0 W (t)

)
, where I is the identical

operator on C
(
Ω,R

)
. Hence, the integral form of system (4.1) is shown as follows:

u(t, φ) = U(t)φ(0) +

∫ t

0
U(t− s)F(s,us)ds, t ≥ 0, φ ∈ E+,

and the solution of which is a mild solution of (4.1).
Clearly, F(t, ·) is locally Lipschitz continuous on E+, and hence for any φ ∈ E+, system (2.8)

admits a unique non-continuable mild solution u(t;φ) such that ut(φ) ∈ E for all t in its maximal
interval of existence [0, σφ) for σφ > 0 (see [34] and [35]).

It is obvious that the constraint (2.9) is equivalent to

φ1(0, x) =

∫ 0

−τ(0)
exp

(
−
∫ 0

s
(µI(r) + f(φ1(r, x)))dr

)
b(s, φ2(s, x))ds. (4.2)

Denote X as the set of all φ ∈ E+ such that (4.2) holds. It follows that X is a nonempty and closed
subset of E . Let u(t, φ)(x) = (I(t, x),M(t, x)) for φ ∈ X , and define

w(t, x) =

∫ t

t−τ(t)
exp

(
−
∫ t

s
(µI(r) + f(I(r, x)))dr

)
b(s,M(s, x))ds, ∀t ∈ [0, σφ).
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Thus,

∂w(t, x)

∂t
=b(t,M(t, x))− (µI(t) + f(I(t, x)))I(t, x)− (1− τ ′(t))

× exp

(
−
∫ t

t−τ(t)
(µI(s) + f(I(s, x)))ds

)
b(t− τ(t),M(t− τ(t), x)),

and hence,

∂(I(t, x)− w(t, x))

∂t
= −(µI(t) + f(I(t, x)))(I(t, x)− w(t, x)), ∀t ∈ [0, σφ).

Since I(0, ·) = w(0, ·) = φ1(0, ·), we have

I(t, ·)− w(t, ·) = V (t, 0)(I(0, ·)− w(0, ·)) = 0, ∀t ∈ [0, σφ),

which implies that for any φ ∈ X , the solution u(t, x, φ) satisfies

I(t, x) =

∫ t

t−τ(t)
exp

(
−
∫ t

s
(µI(r) + f(I(r, x)))dr

)
b(s,M(s, x))ds, ∀t ∈ [0, σφ).

Applying Corollary 5 of [34] (or Corollary 1.11 of [35, Chapter 8]) to M(t, x), we can get M(t, x) ≥ 0
for any t ∈ [0, σφ) and x ∈ Ω. The above integral equation on I indicates that I(t, x) is also
nonnegative, and hence, ut(φ) ∈ E+ for all t ∈ [0, σφ).

The following results asserts the existence of global solutions of system (2.8).

Theorem 4.1. Let (A1) and (A2) hold. For each φ ∈ X , the system (2.8) admits a unique
solution u(t, x;φ) on [0,∞) × Ω with u0 = φ. Moreover, system (2.8) generates a T -periodic
semiflow Φt = ut(·) : X → X , i.e. Φt(φ)(θ, x) = u(t + θ, x;φ), ∀φ ∈ X , t ≥ T , θ ∈ [−τ(0), 0],
x ∈ Ω.

Proof. For any φ ∈ X , let u(t, x;φ) = (I(t, x;φ),M(t, x;φ)) = (I(t, φ)(x),M(t, φ)(x)) be the
unique solution of (2.8) with (2.9) satisfying u0 = φ with the maximal interval of existence [0, σφ)
for σφ > 0. Note that

I(t, x;φ) ≥ 0, M(t, x;φ) ≥ 0, ∀t ∈ [0, σφ), x ∈ Ω.

Consider the following equation

∂M̂(t, x)

∂t
=D2∆M̂(t, x)− (µM (t) + g(M̂(t, x)))M̂(t, x) + (1− τ ′(t))

× exp

(
−
∫ t

t−τ(t)
µI(s)ds

)
b(t− τ(t), M̂(t− τ(t), x)), t > 0, x ∈ Ω,

∂M̂(t, x)

∂n
=0, t > 0, x ∈ ∂Ω,

M̂(θ, x) =φ2(θ, x), t ∈ [−τ(0), 0], x ∈ Ω.

Since f(I) > 0 for I > 0, then we haveM(t, x) ≤ M̂(t, x) for t ≥ 0 and x ∈ Ω by Proposition 3 of [34]

(or Theorem 1.10 of [35, Chapter 8]). Thus, for any H > M̃ , it follows from the proof of Theorem
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3.3 that M(t, x) satisfies 0 ≤ M(t, x) ≤ H for all t ≥ 0 and x ∈ Ω whenever 0 ≤ φ2(θ, x) ≤ H for
θ ∈ [−τ(0), 0] and x ∈ Ω. Moreover, by assumption (A1), we have

0 ≤ I(t, x) ≤
∫ t

t−τ(t)
b(s− τ(s),M(s− τ(s), x))ds

≤
∫ t

t−τ(t)
β(s− τ(s))M(s− τ(s), x)ds

≤ β̂τ̂H,

for t ∈ (0, σφ) and x ∈ Ω, where β̂ = maxt∈[0,T ] β(t). Hence,

Σ̃H := C([−τ(0), 0], [0, β̂τ̂H]× [0, H]),

is positively invariant for system (2.8). Since H can be chosen as large as we can, u(t;φ) globally
exists on [0,∞) for any φ ∈ X . Hence, (2.8) can define a semiflow Φt : X → X , t ≥ T by

Φt(φ)(s, x) = u(t+ s, x;φ), ∀s ∈ [−τ(0), 0], x ∈ Ω.

It easily follows from the periodicity of the variable coefficients that Φt is a T -period semiflow.

We remark that, due to the absence of diffusion for the first equation of system (2.8), the map
ΦT admits no compactness. Furthermore, since the immature intra-specific competition is taken
into account in (2.8), it is even hard to prove the weak compactness of ΦT . This gives rise to the
difficulty in obtaining the existence of the global attractor for ΦT .

4.1 Basic reproduction number

Based on assumption (A1), it is easy to check that system (2.8) has a population extinction equilib-
rium E0 = (0, 0). Linearizing system (2.8) at the extinction equilibrium E0, we obtain the following
linear system for adults:

∂v(t, x)

∂t
=D2∆v(t, x)− µM (t)v(t, x) + (1− τ ′(t))

× exp
(
−
∫ t

t−τ(t)
µI(s)ds

)
β(t− τ(t))v(t− τ(t), x),

t > 0, x ∈ Ω,

∂v(t, x)

∂n
=0, t > 0, x ∈ ∂Ω,

(4.3)

It easily follows that (4.3) has a unique mild solution v(t, x;ϕ) with v0(·, ·;ϕ) = ϕ and vt(·, ·;ϕ) ∈
C+ for all t ≥ 0, and when t > τ̂ , v(t, x;ϕ) is a classical solution and vt(·, ·;ϕ) is strongly positive
and compact on C+ for all t > 2τ̂ . Define P̃ : C → C by P̃ (ϕ) = vT (ϕ) for all ϕ ∈ C, where
vT (ϕ)(θ, x) = v(T +θ, x;ϕ) for all (θ, x) ∈ [−τ(0), 0]×Ω, and vt is the solution map of (4.3). Thus,
we have P̃n0 = vn0T is compact and strongly positive, where n0 := min{n ∈ N : nT > 2τ̂}. Let r(P̃ )
be the spectral radius of P̃ . In view of [38, Lemma 3.1] that r(P̃ ) is a simple eigenvalue of P̃ having
a strongly positive eigenvector ϕ̃, which means the modulus of any other eigenvalue is less than
r(P̃ ). Let v(t, x; ϕ̃) be the solution of (4.3) with v(s, x; ϕ̃) = ϕ̃(s, x) for all s ∈ [−τ(0), 0], x ∈ Ω.
The strong positivity of ϕ̃ implies that v(·, ·; ϕ̃)� 0. Thus, we can apply analogous arguments as
in Lemma 3.6 to prove the following observation, which indicates the existence of a special solution
of system (4.3).
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Lemma 4.2. There exists a positive T -periodic function ṽ(t, x) such that eµ̃tṽ(t, x) is a solution of

(4.3), where µ̃ = ln r(P̃ )
T .

Denote the initial distribution of adult individuals at time s ∈ R and the spatial location x ∈ Ω
by φ(s, x) = φ(s)(x) ∈ CT (R,Y+). Define an operator C̃(t) : Y→ Y as follows:

(C̃(t)ϕ)(x) := (1− τ ′(t)) exp
(
−
∫ t

t−τ(t)
µI(s)ds

)
β(t− τ(t))ϕ(x), ∀ϕ ∈ Y.

Recall the arguments in section 3.2, we know that
∫ t−τ(t)
−∞ W (t − τ(t), s)φ(s)(x)ds denotes the

density distribution of the accumulative individuals who matured into adults at all previous time
s < t − τ(t) and survived to time t − τ(t) at location x. Hence, the distribution of new-born
individuals at location x and time t can be represented as follows:

(1− τ ′(t)) exp
(
−
∫ t

t−τ(t)

µI(s)ds
)
β(t− τ(t))

(∫ t−τ(t)

−∞
W (t− τ(t), s)φ(s)(x)ds

)
=(1− τ ′(t)) exp

(
−
∫ t

t−τ(t)

µI(s)ds
)
β(t− τ(t))

(∫ ∞
τ(t)

W (t− τ(t), t− s)φ(t− s)(x)ds
)

=

∫ ∞
τ(t)

(1− τ ′(t)) exp
(
−
∫ t

t−τ(t)

µI(s)ds
)
β(t− τ(t))W (t− τ(t), t− s)φ(t− s)(x)ds

=

∫ ∞
τ(t)

[
C̃(t)(W (t− τ(t), t− s)φ(t− s))

]
(x)ds

=

∫ ∞
0

[
H̃(t, s)φ(t− s)

]
(x)ds,

where H̃(t, s), t ∈ R, s ≥ 0 is defined as follows:

H̃(t, s) :=

{
C̃(t)W (t− τ(t), t− s), s > τ(t),
0, s ∈ [0, τ(t)].

The next generation operator L̃ in this case can be defined as

L̃(φ)(t) :=

∫ ∞
0

H̃(t, s)φ(t− s)ds, ∀t ∈ R, φ ∈ CT (R,Y).

It can be easily shown that L̃ is a positive and bounded linear operator on CT (R,Y). We can define
the basic reproduction number as the spectral radius of L̃, that is,

R̃0 := r(L̃).

Based on [36, Theorem 3.4] and [40, Remark 2.1], we can also obtain the following similar result
as in the previous section, which indicates that R̃0 serves as a threshold value for the stability of
the zero solution for system (3.7).

Lemma 4.3. R̃0 − 1 has the same sign as r(P̃ )− 1.

In what follows, we establish the threshold dynamics of system (2.8) in terms of the basic
reproduction number R̃0. Let

W0 = {φ ∈ X : φ2(0, ·) 6≡ 0},

and
∂W0 = E+ \W0 = {φ ∈ X : φ2(0, ·) ≡ 0}.
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Theorem 4.4. Let (A1), (A2) and (A4) hold and u(t, x;φ) be the solution of (2.8) with u0 = φ ∈ X ,
then the following statements are valid:

(1) If R̃0 < 1, the population extinction equilibrium E0 = (0, 0) is globally attractive in X ;

(2) If R̃0 > 1, there exists an η > 0 such that for any φ ∈W0 guaranteeing that

lim sup
n→∞

‖u(nT, ·;φ)‖X ≥ η

holds uniformly for all x ∈ Ω.

Proof. (1) In the case of R̃0 < 1, we have µ̃ = ln r(P̃ )
T < 0. Note that the second equation of (2.8)

for M(t, x) is dominated by (4.3), that is, M(t, x) satisfies

∂M(t, x)

∂t
≤D2∆M(t, x)− µM (t)M(t, x)

+ (1− τ ′(t)) exp

(
−
∫ t

t−τ(t)
µI(s)ds

)
b(t− τ(t),M(t− τ(t), x)),

t > 0, x ∈ Ω,

∂M(t, x)

∂n
=0, t > 0, x ∈ ∂Ω.

(4.4)

It follows from Lemma 4.2 that there exists a positive T -periodic function ṽ(t, x) such that w(t, x) =
eµ̃tṽ(t, x) is a positive solution of (4.3). In view of the comparison principle for (4.4), we have

M(t, x) ≤ Kw(t, x) = Keµ̃tṽ(t, x),

with a constant K > 0 satisfying M0(θ, x) ≤ Keµ̃θv0(θ, x) for all θ ∈ [−τ(0), 0]. Thus, it follows
that

lim
t→∞

M(t, x) = 0, ∀x ∈ Ω.

Recall the integral form of I(t, x), we have

I(t, x) ≤
∫ t

t−τ(t)
β(s)M(s, y)dyds,

and therefore limt→∞ I(t, x) = 0 holds when R̃0 ≤ 1.

(2) In the case of R̃0 > 1, we have r(P̃ ) > 1, which results in µ̃ = ln r(P̃ )
T > 0. It can be easily

shown that the positivity of ui(t, x;φ) (i = 1, 2) holds for any φ ∈ W0, t > 0 and x ∈ Ω, which
implies that Φn

T (W0) ⊆W0 for any n ∈ N.

Define P̃ε : C → C as the Poincaré map of the following system with a small positive parameter
ε: 

∂v(t, x)

∂t
=D2∆v(t, x)− (µM (t) + ε)v(t, x) + (1− τ ′(t))

×
[
e
−

∫ t
t−τ(t) µI(s)ds

β(t− τ(t))− ε
]
v(t− τ(t), x), t > 0, x ∈ Ω,

∂v(t, x)

∂n
=0, t > 0, x ∈ ∂Ω,

v(θ, x) =ϕ(θ, x), ϕ ∈ C, θ ∈ [−τ(0), 0], x ∈ Ω.

(4.5)
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Then, P̃ε(ϕ) = vT (ϕ), where vT (ϕ)(θ, x) = v(T + θ, x;ϕ) for (θ, x) ∈ [−τ(0), 0] × Ω, and v(t, x;ϕ)
is the solution of (4.5) with v(θ, x) = ϕ(θ, x) for all θ ∈ [−τ(0), 0], x ∈ Ω. The continuity of
the spectral radius indicates that there exists a sufficiently small positive number ε1 such that the
spectral radius of P̃ε, r(P̃ε), satisfies r(P̃ε) > 1 for all ε ∈ [0, ε1]. Based on assumptions (A1) and
(A2), we may choose some η1 > 0 such that

e
−

∫ t
t−τ(t)(µI(s)+f(I(s,x)))ds

b(t,M(t, x)) ≥ (e
−

∫ t
t−τ(t) µI(s)ds

β(t)− ε)M(t, x),

and g(M) < g(η1) < ε1 hold for all I ≤ η1 and M ≤ η1. Moreover, according to the continuous
dependence of solutions on the initial value, there exists η0 ∈ (0, ε1) such that for any |φ(s, x)| <
η0, s ∈ [−τ(0), 0], x ∈ Ω,

|(I(t, x;φ),M(t, x;φ))| ≤ η1, ∀t ∈ [0, T ], x ∈ Ω.

Now we prove the persistence result by contradiction. Suppose that for some φ0 ∈ W0, there
exists a n1 ≥ 1 such that ‖ΦnT (φ0)‖X < η0 for all n ≥ n1. Hence, there exists a positive integer
n1, such that |ui(nT + θ, x;φ0)| < η0 for all n ≥ n1, i = 1, 2, θ ∈ [−τ(0), 0] and x ∈ Ω. Rewrite
t = nT + θ + t′ with t′ ∈ [0, T ) for every t > n1T. Then for φ0 ∈W0, we have

0 < ui(t, x;φ0) < η1, ∀t > n1T, x ∈ Ω, i = 1, 2. (4.6)

Then, M(t, x;φ0) satisfies

∂M(t, x)

∂t
≥D2∆M(t, x)− (µM (t) + ε1)M(t, x) + (1− τ ′(t))

×
[
e
−

∫ t
t−τ(t) µI(s)ds

β(t− τ(t))− ε1
]
M(t− τ(t), x), t > (n1 + 1)T, x ∈ Ω,

∂M(t, x)

∂n
=0, t > (n1 + 1)T, x ∈ ∂Ω.

(4.7)

Let ψ∗ be the positive eigenfunction of P̃ε1 corresponding to r(P̃ε1). For all t > τ̂ and x ∈ Ω, the
positivity of M(t, x;φ0) gives rise the existence of a constant ς > 0 such that

M((n1 + 1)T + θ, x;φ0) ≥ ςψ∗, ∀θ ∈ [−τ(0), 0], x ∈ Ω.

Then, based on the comparison principle for (4.7), we have

M(t, x;φ0) ≥ ςv(t− (n1 + 1)T, x;ψ∗) = ςr(P̃ε1)t−(n1+1)Tψ∗(0, x), ∀t ≥ (n1 + 1)T, x ∈ Ω,

where v(t, x;ψ∗) is a solution for (4.5) with v(θ, x) = ψ∗(θ, x) for all θ ∈ [−τ(0), 0] and x ∈ Ω.
Thus, it follows that

lim
t→∞

M(t, x;φ0) =∞,

a contradiction to (4.6). This completes the proof.

5 Numerical simulations

In this section, we attempt to validate the analytic results involving the global dynamics in terms
of the basic reproduction number numerically. For simplicity, we consider a bounded domain in
one dimension, that is, Ω ∈ R. Without loss of generality, we choose Ω as (0, 3). On account of the
seasonal effects, we take the period of time dependent functions as 12 months, i.e., T = 12. In this
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paper, we use modified cosine functions to approximate the seasonal effects on the time dependent
developmental duration, reproduction and death rate functions. The birth rate function is assumed
as the following:

b(t,M(t, x)) = B(t)M(t, x),

where the per-capita birth rate function B(t) is a positive and time periodic function with period
12. We assume the intra-specific competition for the immature mosquitoes and adult mosquitoes
assume the following linear density dependent functions:

f
(
I(t, x)

)
= dII(t, x) and g

(
M(t, x)

)
= dMM(t, x),

where the density dependent coefficients dI and dM are non-negative constants. In what follows,
we will perform numerical simulations on two different species for two cases.

5.1 Case I: D1 > 0 and f(I) ≡ 0

The European wild rabbit is a geographically widespread small mammal, the population of which
plays critical roles in ecological community [42]. The efficient dispersal ability of juvenile rabbits
may lead them to search for better quality of food and water resources, which may relieve the intra-
specific competition during the juvenile stage to a certain extent [31]. Consequently, the population
of the European wild rabbit is the appropriate simulating example for Case I.

The diffusion coefficients of the juveniles and adults are assumed as D1 = 0.01 km2 ·month−1

and D2 = 0.02 km2 ·month−1 respectively. The reproduction of the European wild rabbit is strongly
related to the seasonal effects, and the breeding seasons usually begins at the end of the winter
season and ends in the early autumn [43]. Therefore, we assume the per-capita birth rate function
is B(t) = 2 − 1.2 cos(2π(t + 1)/12) per adult per month. Since the developmental duration of the
juvenile rabbits ranges from 3 to 6 months [43], we assume the time periodic developmental duration
as τ(t) = 1.5

(
3+cos(2π(t−3)/12)

)
. The time dependent natural death rates for juveniles and adults

are approximated as µI(t) = c1

(
30 + 7 cos(2π(t− 3)/12)

)
and µM (t) = c2

(
50 + 9 cos(2π(t− 3)/12)

)
month−1, where c1 and c2 are positive constants. Besides, the density dependent coefficient for
adults is fixed as dM = 0.001 per adult per month. The European wild rabbits usually inhabit
in the rural areas because human activities in urban areas may cause the decline of their fitness
[44]. Motivated by [45], we consider the area around the two ends of Ω as the rural area and the
intermediate zone of Ω as the urban area.

In order to simulate the long term dynamics of system (2.6), it is imperative to numerically
compute the basic reproduction number R0. In this paper, we employ the method provided in
Remark 3.2 in [41] to calculate the numeric value of R0 for periodic abstract functional differential
systems. After fixing c1 = 0.01 and c2 = 0.001 for natural death rates µI(t) and µM (t), and
choosing two different initial conditions, some numeric figures are plotted to describe the long
term dynamical behavior of juvenile (shown in Fig. 2(a)) and adult (shown in Fig. 2(b)) rabbit
population respectively. Under above parameter values, we obtain R0 = 11.7578. These figures
indicate that solutions of system (2.6) with various positive initial conditions tend to keep persist
and stabilize at a positive, spacial homogeneous and periodic solution when R0 > 1. If we enlarge
the natural death rates µI(t) and µM (t) by setting c1 = 0.03 and c2 = 0.01, it then follows that
R0 = 0.0767. In this case, all the solutions of system (2.6) (shown in Figs. 2(c) and 2(d)) with
different initial conditions approach to zero when R0 = 0.0767 < 1. These numeric results shown
in Fig. 2 are consistent with the analytic results about the threshold dynamics in terms of R0 in
section 3.
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(a) (b)

(c) (d)

Figure 2: Long term dynamics of the European wild rabbit population under two different initial conditions when
the immature intra-specific competition is negligable. Dynamics for juvenile (a) and adult (b) population densities
during 6-year period when R0 = 11.7578 > 1. Dynamics for juvenile (c) and adult (d) population densities during
3-year period when R0 = 0.0767 < 1.
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5.2 Case III: D1 = 0 and f(I) > 0

Mosquitoes as the main agent can transmit a wide variety of mosquito borne diseases such as dengue
fever, malaria, West Nile fever, Zika fever, chikunguya and so on [46]. The investigation of mosquito
population growth is imperative for the sake of controlling mosquito-born diseases. Compared
to adult mosquitoes, the aquatic immature mosquitoes with ignorable dispersal ability are often
confined in limited habitats such as the little pool or small container, which may intensify the
intra-specific competition during the immature stage [32]. Indeed, one non-negligible phenomenon
in modelling mosquito population growth is larval competition, which often results in increased
larval deaths and lower developmental rate, and may further affects the situations of emerging
adults [47]. Thus, we choose Aedes aegypti mosquito population as the simulating example for
Case III.

Here, we fix the density dependent death coefficients for immature and adult individuals as
dI = 0.000001 per immature per month and dM = 0.000001 per adult per month respectively. The
adult diffusion coefficient is assumed as D2 = 0.0002 km2 · month−1. It is well known that the
population growth of Aedes aegypti is greatly influenced by the seasonal variations such as ambient
temperature and rainfall [48]. Thus, we approximate the time-periodic developmental duration by
τ(t) = 0.5

(
1 + 0.6 cos(2π(t− 2.5)/12)

)
month due to the fact that the developmental duration for

immature individuals ranges from 6 days to 24 days (i.e. 0.2 ∼ 0.8 month) [49]. By virtue of the
fitted time varying oviposition rate of mosquitoes in [50], the per capita birth rate is assumed as
B(t) = 8−1.2 cos(2π(t−2.5)/12) per adult per month. Based on the time varying immature death
rate fitted in [51] and the adult death rate fitted in [50], it is analogous to approximate the natural
mortality rates for immatures and adults by the following modified cosine functions respectively:
µI(t) = h1

(
30 + 7 cos(2π(t − 3)/12)

)
and µM (t) = h2

(
50 + 9 cos(2π(t − 3)/12)

)
month−1, where

h1 and h2 are positive constants. Aedes aegypti as the most prevalent mosquito species tends to
inhabit in urban and sub-urban area rather than the semi-rural area [52]. Consequently, we make
analogical assumptions of the bounded domain as the previous subsection, that is, the area around
the two ends of Ω is assumed as the semi-rural area and the middle zone of Ω as the urban and
sub-urban area.

By applying similar simulating procedures as the previous subsection, we obtain the numeric
plot (shown in Fig. 3) depicting the long term dynamic of solutions of system (2.8) in terms of
the basic reproduction number R̃0. We compute the basic reproduction number R̃0 = 0.7866
when h1 = 0.05 and h2 = 0.06 for the natural mortality rates of immature and mature individuals
respectively. Under this set of parameters, solutions with various initial conditions (shown in Figs.
3(a) and 3(b)) keep decreasing and approach to zero for a long time when R̃0 = 0.7866 < 1. Then,
we obtain R̃0 = 2.725 if we reduce the death rates by fixing h1 = 0.008 and h2 = 0.05. It then
follows from Figs. 3(c) and 3(d) that both immature and mature population are inclined to increase
and maintain at a stable positive, oscillating, and spacial homogeneous state respectively. These
numeric results shown in Fig. 3 may not only validate the theoretic results in section 4, but also
provide further implications of the existence of the positive periodic solution of system (2.8) when
R̃0 > 1, which is a challenging problem for further consideration.

6 Discussion

In this paper, an age-structured reaction-diffusion population model with the consideration of
seasonal effects, intra-specific competition and seasonal maturation duration based on a generalized
age-structured modeling framework was formulated. By applying the method of integration along
characteristics, the full system related to the population densities of juveniles I(t, x) and adults
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(a) (b)

(c) (d)

Figure 3: Long term behavior for the Aedes aegypti population with considering immature intra-specific competition
under two different initial conditions. Dynamics for juvenile (a) and adult (b) mosquito densities during 3-year period

when R̃0 = 0.7866. Dynamics for juvenile (c) and adult (d) mosquito densities during 6-year period when R̃0 = 2.725.

28



M(t, x) at time t and location x was obtained with two nonlocal periodic reaction diffusion equations
involving periodic delays and no flux boundary condition. The introduction of juvenile intra-specific
competition and periodic delays, making the system non-cooperative and irreducible, bring more
challenges to the theoretical analysis of our model. As a start, a simple case when the immature
competition can be ignored due to dispersal capability of immature individuals, reduces the model to
one equation for the density of matured individuals. For this single equation, the global existence,
uniqueness of the solution and the existence of a global attractor were first shown. Inspired by
the work [36, 40], the basic reproduction number R0 as the spectral radius of the next generation
operator was defined and the global attractivity of the single equation in terms ofR0 was established
by exploring the theory of monotone and subhomogeneous semiflows. When immature competition
exists, the analysis becomes somewhat tough as it is impossible to decouple two equations. In
this case, we assumed the immature diffusion rate is negligible, which is justified biologically as
follows: For some species such as mosquitoes and frogs experiencing the immature intra-specific
competition, their juveniles have to compete food and resources with conspecifics in a restricted area
due to inefficient mobility. Consequently, the new model consists of a delay differential equation
coupled with a delayed reaction diffusion equation with periodic delays. We obtained the global
existence, uniqueness of the solution. Moreover, the extinction and uniform persistence of the
population were proved in terms of the newly defined basic reproduction number R̃0. It should
be pointed out that the persistence stated in Theorem 4.4 is just “weak persistence” rather than
uniform persistence (see [37, Definitions 1.3.2 and 1.3.3]). Since the existence of global attractor
of ΦT is not obtained in Theorem 4.1, it is hard for us to prove the much stronger persistence by
uniform persistence theory (see [53, 37]). How to overcome the noncompactness of ΦT to get the
uniform persistence will be a challenging but meaningful problem.

It is worth mentioning that our model involves time-varying delays τ(t). An appropriate space
for theoretical analysis should be introduced to analyze it. In this paper, without loss of gen-
erality, the initial timing was chosen as the maximum point of τ(t) in [0, T ], that is, τ(0) =
maxt∈[0,T ]{τ(t)} = τ̂ , which is feasible by considering the evolution of solutions. If the initial timing
instant t0 = 0 does not satisfies τ(t0) = τ̂ , by applying similar arguments in [51, 27], we may need
to introduce two spaces. One is C([−τ̂ , 0],Y) to show the existence and uniqueness of the solution.
To verify the global attractivity of the positive periodic solution, the other space C([−τ(0), 0],Y)
is needed, on which we can show the solution semiflow is eventually strongly monotone and strictly
homogeneous. Besides that, we need to confirm that the solution can define a periodic semiflow on
the new space C([−τ(0), 0],Y) and the basic reproduction number can determine the stability of
the system on both phase spaces.

The modified cosine functions were employed to approximate the seasonal effects on the develop-
mental duration, the reproduction and mortality rates, which may be less accurate than estimating
these constant and periodic coefficients via fitting true weather conditions. Employing more pre-
cise parameterization method will be an interesting problem for future investigation. Moreover,
the diffusion coefficients in our model are assumed to be constant. In reality, the spatial dispersion
and diffusion are greatly influence by the seasonal variations in biotic or abiotic factors such as
resources and climate [36]. Organisms have a high mobility with warmer temperature and tend to
keep motionless for the sake of saving energy to survive in colder days. Due to the heterogeneity
of resource distribution in spatial scale, nonlinear diffusion or spatial dependent coefficients can
also be incorporated in the system. Incorporating these biological factors in model formulation and
analysing the resultant models would be good topics for further studies.
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