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ABSTRACT Polar codes have been applied for physical downlink control channel in the 5th generation wire-
less communication system. Although successive cancellation flip (SCF) decoding algorithm can improve
decoding performance of polar codes, it has also led to the increasing in decoding latency and calculation
complexity. Candidate flipping positions set (CFPS) of traditional SCF decoding is consisted of indexes of
all information bits. However, some subchannels are reliable enough so that it is almost impossible to cause
decoding errors for these subchannels. In order to reduce decoding latency and calculation complexity of SCF
decoding algorithm, a new method of constructing the CFPS based on genetic algorithm (GA) is proposed
in this paper. What’s more, the paper fills a gap of applying GA for decoding of polar codes. In our proposed
method, indexes of all information bits are used as individuals of GA. Then through some genetic operations,
a vector that can indicate the reliability of all information bits is obtained. Based on the obtained vector, a new
CFPS is constructed. Simulation results show that SCF decoding algorithm based on CFPS constructed
by GA can achieve competitive decoding performance, while keeping lower calculation complexity and
decoding latency. Compared with SCF decoding algorithm based on critical set, the normalized decoding
latency of proposed SCF decoding algorithm can be reduced by 39% at 1.5dB when code length and code
rate are equal to 1024 and 0.5, respectively.

INDEX TERMS Candidate flipping positions set, genetic algorithm, polar codes, successive cancella-
tion flip.

I. INTRODUCTION
The past decade has seen the rapid development of wireless
communication in many aspects. However, compared with
wired communication, the channel characteristic of wireless
communication is more complex. Because of the channel
fading, channel noise and multiple path of wireless chan-
nel, decoding performance of wireless communication sys-
tem is deteriorated. Then channel encoding technology is
used in wireless communication to correct decoding error.
With the development of wireless communication, channel
encoding technology is also improved continuously. To be
specific, turbo codes are adopted by the 3th wireless com-
munication system. Then turbo codes and low density parity
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check (LDPC) codes are used for channel encoding in the 4th

wireless communication system. Whereas, in the 5th commu-
nication standard, LDPC codes are adopted for data channel
while polar codes are used in control channel [1], [2].

Polar codes, proposed by Arıkan in 2009, are the first error
correcting codes, provably reaching the Shannon theory limit
under successive cancellation (SC) decoding algorithm [3].
With the advantage of low encoding and decoding com-
plexity, low latency and good decoding performance, polar
codes have been applied in uplink/downlink control channel
of the 5G enhanced mobile broadband (eMBB) scenario. In
addition, polar codes have also been used to improve the
performance of physical downlink control channel (PDCCH)
detection, which is essential for multiple-input multiple-
output (MIMO)wireless communication system [4]. Besides,
with the characteristic that polarized subchannels tend to
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become either noiseless or completely noisy as code length
approaches infinite, polar codes can perform well in long
code lengthwhile it has performance loss in short code length.
In order to improve the decoding performance of polar codes
under finite code length, successive cancellation list (SCL)
decoding algorithm was proposed [5]. Unlike original SC
decoding algorithm, SCL decoding algorithm preserves mul-
tiple SC decoding paths until the end of decoding. However,
only one path with the smallest path metric (PM) value can
be used as output of decoding. What’s more, there is another
method in choosing the correct decoding path. By concate-
nating with cyclic redundancy check (CRC) codes, CRC-
aided SCL decoding algorithm was proposed [6]. In this
situation, only the path that passes CRC check can be selected
as the decoding output. CRC-aided SCL decoding algorithm
greatly improves decoding performance of polar codes so that
polar codes can provide competitive performance compared
with other codes, such as turbo codes and LDPC codes.
However, CRC-aided SCL decoding algorithm also causes
higher decoding latency and computational complexity due to
its decoding characteristic. In order to optimize SCL decod-
ing algorithm of polar codes, some improved SCL decod-
ing algorithms were proposed [7]–[12]. Generally, SC and
SCL algorithms both are serial decoding algorithms so that
error propagation will occur in their decoding process.

As mentioned above, SC decoding is a kind of serial
decoding algorithm. This means that it needs to use previous
decoded codewords to decode subsequent codewords. Then
if the previous codewords are incorrectly decoded, it is hard
to decode successfully because of error propagation. In addi-
tion, there are two kinds of error bits during the decoding
process [13]. These two types of error bits are as follows:

Type1: type1 refers to the first error bit in every segment
of codewords. All bits before these error bits are successfully
decoded.

Type2: type2 refers to these error bits caused by type1
and the appearance of type2 error bits is due to the error
propagation.

In order to correct type1 error bits, successive cancellation
flip (SCF) decoding algorithm was proposed [14]. In con-
trast to SC decoding, if the decoded codewords can’t pass
CRC check, the unfrozen bit with the least absolute value
of log-likelihood ratio (LLR) will be flipped and subsequent
bits of the flipping bit continue to be decoded by using
standard SC decoding. The above process will repeat until
decoded output passes CRC check or a predetermined maxi-
mum number of decoding attempts is reached. In a word, SCF
decoding can obtain better decoding performance compared
with SC decoding, which has lower complexity compared
with SCL decoding. However, the search scope for flipping
positions is the entire unfrozen set in SCF decoding [14],
causing higher decoding latency and calculation complexity.
What’s more, bigger search scope for flipping positions can
lead to the fact that SCF decoder can’t find all type1 errors
under limited attempts. In order to reduce decoding complex-
ity and improve decoding performance, critical set (CS) of

candidate flipping positions and its corresponding SCF
decoding algorithm were proposed in 2017 [15]. During
the proposed SCF decoding algorithm, CS is consisted of
the first unfrozen bit index of all rate-1 subblocks. Then the
search scope for flipping positions is equal to the size of
CS, which is smaller than the number of all information
bits. The constructed CS contain bit indexes where the first
error happens with high probability, and the proposed SCF
decoding algorithm based on CS can provide better decoding
performance and lower complexity compared with CRC-
aided SCL decoding algorithm at medium to high signal to
noise ratio (SNR). Similarly, the concept of medium-level bit-
channels (MBC) set was also proposed in 2019 [16]. Besides,
SCF decoding algorithm based on proposed MBC set has the
same decoding performance and calculation complexity with
that based on CS. However, the size of LLR value only repre-
sents the reliability of its corresponding information bit, but it
can’t indicate the probability of being type1 errors for every
information bit. In order to find type1 errors more efficiently,
a dynamic SCF decoding algorithm and its improved version
were proposed in 2018 and 2019, respectively [17], [18].
In dynamic SCF decoding algorithm, a new metric to choose
flipping positions is defined and the list of candidate flipping
bits can be dynamically updated. Dynamic SCF decoding
algorithm can reach the lower bound of decoding perfor-
mance for single bit SCF decoding algorithm, persevering
computation complexity closed to SC decoding algorithm.
Meanwhile, its computation complexity is further reduced
in the improved dynamic SCF decoding algorithm by using
an approximate scheme. Besides, there are also some other
methods to improve SCF decoding algorithms of polar codes,
such as setting thresholds [19], observing channel-induced
errors distribution [20] and partitioning [21]. In summary, it is
important to find type1 errors with lower latency and higher
accuracy for SCF decoding algorithm. Designing a SCF algo-
rithm with better decoding performance, lower complexity
and lower latency is of great significance to the development
of channel encoding technology.

In recent years, artificial intelligence (AI) technology is
fast becoming a key instrument in communication so that
more scholars of communication field begin to study how to
use AI technology to tackle with communication problems.
For instance, neural network has been applied for decoding
of polar codes [22]–[24]. Besides, the influence of various
network configurations on decoding performance of neu-
ral network decoder is investigated [25]. In order to obtain
good decoding performance, the train set of neural network
decoder of polar codes must include all kinds of codewords.
However, the problem of exponential explosion will appear
as code length increases. In order to solve the problem of
exponential explosion, a kind of partitioned neural network
SC decoder was proposed [26]. Whereas the neural network
decoder is essentially a classifier, which is limited to code
length of polar codes. In SCF decoding algorithm, the prob-
lem of finding the candidate flipping positions set (CFPS)
can be seen as a problem of finding the optimal solution.
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Meanwhile, genetic algorithm (GA) of AI technology is used
to search the optimal solution by imitating the natural evo-
lution process. Hence, an improved SCF decoding algorithm
of polar codes based on GA is proposed in this paper. It is
true that GA has emerging applications in polar codes so far.
However, previous studies have reported that GA is only used
in the encoding construction of polar codes. The application
of GA in decoding of polar codes has been a largely under
explored domain. For example, a new frame for constructing
polar codes based on GA was proposed in 2019 [27]. Simi-
larly, some researchers also proposed to use GA to construct
polar codes without any expert knowledge about channel cod-
ing and modulation [28]. Inspired by GA of AI technology,
a new method to construct CFPS based on GA is proposed
in this paper. Then a SCF decoding algorithm based on the
new constructed CFPS is further developed. Results show that
compared with other similar state-of-the-art SCF decoding
algorithms, the proposed SCF decoding based on GA can
achieve competitive decoding performance, while keeping
lower decoding latency and computation complexity.

The rest of the paper is organized as follows. In Section II,
we briefly review the knowledge of polar codes and some
principles of SCF decoding algorithms. The specific con-
struction process of CFPS based on GA is shown in
Section III. Then the constructed result of CFPS and its corre-
sponding SCF-GA decoding algorithm are described in detail
in Section IV. Simulation results and analyses are presented
in Section V. Section VI depicts some conclusions.

II. PRELIMINARIES
A. POLAR CODES
Polar codes are characterized by a three-tuple P(N, K, ξ ),
where N = 2n is code length, K is the number of informa-
tion bits and ξ is set of indices of K information bits. The
remaining N − K bits are named as frozen bits, which are
known by encoder and decoder. Then code rate R is defined
as R = K/N . We denote original data vector by U = uN1 ,
of length N , containing K information bits and N − K frozen
bits that are set to zero. Let X = xN1 represent the encoded
codewords and X is obtained by

X = UBNF⊗n

where BN is a permutation matrix and ‘⊗’ denotes Kronecker

product. The kernel F =
[
1 0
1 1

]
. The received vector is

Y = yN1 = (y1, y2, y3, · · · , yN ).

B. SC DECODING AND SCF DECODING
In SC decoding, each estimated bit ûi of bit ui depends on both
Y and the previous estimated ûi−11 . Each ûi can be calculated
by (1) [3]

ûi =

{
hi(yN1 , û

i−1
1 ) i ∈ ξ

ui i /∈ ξ
(1)

where h is hard decision function and it is described as

hi(yN1 , û
i−1
1 ) =

{
0 Li(yN1 , û

i−1
1 ) ≥ 0

1 Li(yN1 , û
i−1
1 ) < 0

(2)

where Li(yN1 , û
i−1
1 ) denotes LLR value of information bit ui

and it is defined as

Li(yN1 , û
i−1
1 ) = log

(
Pr(ui = 0|yN1 , û

i−1
1 )

Pr(ui = 1|yN1 , û
i−1
1 )

)
(3)

where LLR values of all information bits can be calculated
iteratively [1].

In standard SCF decoding, LLR values of all information
bits are sorted when original SC decoding fails to pass CRC
check, and the CFPS is consisted of indices of all information
bits at the moment. Then the bit whose index is in CFPS with
the smallest

∣∣∣Li(yN1 , ûi−11 )
∣∣∣ value is flipped and its subsequent

bits are decoded continually by standard SC decoding. The
process will continue until the maximum value of flipping
Tmax is reached or the decoding output passes CRC check.
The kind of SCF decoding can correct type1 error bits by a
certain number of flipping attempts. Then decoding perfor-
mance of SCF algorithm is better than that of SC algorithm
and its calculation complexity is the same with SC algorithm
at high SNR.

C. GA AND EXISTING CFPS
GA is a kind of search heuristic algorithm used to solve
optimization problem in the field of computer science. It is
also a kind of evolutionary algorithm [27]. The frame of
GA is shown in Fig. 1. In Fig. 1, the first step of GA is
initialization. During the process, every individual of popu-
lation corresponds to a candidate solution of the optimization
problem. Then every individual can be assigned to a fitness
evaluated by fitness function. In general, the higher fitness the
individual has, the easier it survives in next generation. When
the maximum number of iterations is not reached, population
can be continuously optimized by selection, crossover, and
mutation operations. During the selection operation, these
individuals that have higher fitness are selected as parents and
can be used to generate off-springs. In crossover operation,
new off-springs are generated by exchanging information of
their parents. Whereas mutation operation can produce new
individuals that don’t exist in original population, preserv-
ing diversity of population. Through the iterative process
in Fig. 1, GA can quickly converge to the optimal solution.
Therefore, GA is chosen to construct a new CFPS in this
paper.

The CFPS of standard SCF decoding is consisted of indices
of all information bits. However, in SCF decoding based
on CS [15] and MBC set [16], their CFPSs are CS and
MBC set, respectively. These two kinds of SCF decoding
algorithms have smaller search scope for candidate flipping
positions compared with standard SCF decoding algorithm.
The constructed process of CS is described in [15], [29].
Once the encoding construction of polar codes is determined,
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FIGURE 1. Flowchart of GA.

CS is also determined. What’s more, the first step of con-
structing CS is to establish a full binary tree representation
of polar codes and find all rate-1 nodes. Then CS can be
constructed by the first information bit of each rate-1 node.
MBC set is obtained by a search algorithm described explic-
itly in [16]. By Monte-Carlo simulation over additive white
Gaussian noise (AWGN) channel, MBC set can be obtained.

III. CFPS CONSTRUCTION PROCESS BASED ON GA
In this section, constructed CFPS in this paper fills a gap
of applying GA for decoding of polar codes. As mentioned
above, the quality of CFPS has a huge impact on decoding
performance and complexity of SCF decoding algorithm. For
example, good CFPS can make SCF decoder find type1 bit
errors as soon as possible under limited attempts. In the
following section, we discuss the specific constructed scheme
of CFPS based on GA.

A. POPULATION AND INITIALIZATION
In this work, each index of information bits is an individual
of population. These indices of all information bits form the

initial population of GA. Therefore, the size of population
is equal to K . Let P = {Pi} , i = 1, 2, · · · ,K , where P
denotes the whole population and Pi represents every indi-
vidual of population. The remaining N − K frozen bits are
known by encoder and decoder, so it doesn’t make any sense
to flip these bits. Therefore, only these indices of informa-
tion bits can be used to initialize population. What’s more,
the encoding method used in this work is binary encoding.
Every individual Pi can be represented by a binary vector.
For example, if Pi = 128, its corresponding binary vector
Vi = {1, 1, 1, 1, 1, 1, 1}.

B. FITNESS
The fitness of every individual in this work is mean value
of LLR distribution calculated by Gaussian approximation.
In Gaussian approximation over AWGN channel, LLR fol-
lows the Gaussian distribution with mean value m(i)

N and vari-
ance 2m(i)

N . Then mean value m(i)
N can be computed iteratively

by (4) [30]

m(2i−1)
2N = φ−1

{
1− [1− φ(m(i)

N )]2
}

m(2i)
2N = 2m(i)

N

m(1)
1 =

2y
σ 2 (4)

where σ 2 is noise variance of AWGN channel and y is
received information from channel. The function φ(x) is
defined as [30]

φ(x) =

exp(−0.4527x
0.86
+ 0.0218) 0 < x < 10√

π

x
exp(−

x
4
)(1−

10
7x

) x ≥ 10
(5)

The error probability Pe of every subchannel can be calcu-
lated by (6) [30]

Pe(i) =
∫ 0

−∞

1

2
√
πm(i)

N

. exp(
−(x − m(i)

N )2

4m(i)
N

)dx (6)

It is obvious in (6) that there is a negative correlation relation
between mean value m(i)

N and error probability Pe. Besides,
channel reliability can be reflected byPe. Generally, the chan-
nel with lower Pe is less prone to decoding errors. Therefore,
a vector M of length N can be determined by mean value of
LLR distribution. The vector M which is consisted of mean
values can also reflect reliability of sunchannel. Normally,
the channel with higher mean value m(i)

N is more reliable.
The pseudo algorithm of the fitness function is shown

in Algorithm 1. In Algorithm 1, a is a logical vector indi-
cating whether the decoding codewords ûN1 can pass CRC
check. SC(yN1 , ξ ) represents standard SC decoding process.
SCF(yN1 , ξ,P(i)) represents the SCF decoding process that
the information bit with index P(i) is flipped, and subse-
quent codewords of flipping bit are decoded by standard
SC decoding. After flipping the bit with index P(i), if the
decoded codewords pass CRC check, it means that there is
a type1 error in the bit with index P(i). Then the fitness
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of the individual P(i) is set to zero, otherwise its fitness is
set to its corresponding mean value. The major function of
fitness function is to obtain the fitness vector Fit of the whole
population P. In line 1 of Algorithm 1, the received vector yN1
and logical vector a are initialized. Then the received vector
yN1 is updated by message word that suffers modulation and
channel noise in line 3 of Algorithm 1. Standard SC decoding
is carried out in line 4 of Algorithm 1. CRC check for decoded
codewords is performed in line 5 and the check result is
assigned to logical vector a. If the value of a is equal to 1,
it means that the decoded codewords can’t pass CRC check.
Meanwhile, SCF decoding begins to work if and only if the
decoded codewords can’t pass CRC check. From line 7 to line
14 of Algorithm 1, every individual is assigned to a fitness.
When original SC decoding fails, decoded codewords can’t
pass CRC check. Nevertheless, when the flipping operation
SCF(yN1 , ξ,P(i)) is carried out and the decoded codewords
under SCF(yN1 , ξ,P(i)) pass CRC check, it means that a type1
error has happened in the individual with index P(i) and we
have found the position where the type1 error appears and
flipped it. Hence, fitness of the individual with index P(i)
is set to zero. In this situation, CRC check is assumed to be
correct all the time.

Algorithm 1 Fitness Function

Input: yN1 , ξ , mean values vectorM , population P
Output: fitness value vector Fit
1: Initialization: yN1 ← 0 ; a← 0
2: while a == 0 do
3: the received vector yN1 update
4: ûN1 ← SC(yN1 , ξ )
5: a = [CRC(ûN1 ) == failed]
6: end
7: for i = 1 to K do
8: ûN1 ← SCF(yN1 , ξ,P(i))
9: if CRC(ûN1 ) == success
10: Fit(i) = 0
11: else
12: Fit(i) = M (P(i))
13: end
14: end
15: Return Fit

C. SELECTION
The major function of selection operation is to select supe-
rior individuals from population to generate off-springs
and discard inferior individuals of population. There are
some selection strategies for GA, such as truncation selec-
tion, exponential ranking selection and tournament selec-
tion. Among these selection strategies, truncation selection
is the most common selection strategy, where the probability
of individual being selected is proportional to its fitness.
However, an individual whose fitness is zero may never
be selected in truncation selection. In contrast to trunca-
tion selection, every individual can be assigned a selected

probability in exponential ranking selection. Then, tourna-
ment selection has the advantage of low complexity and is not
easy to fall into local optimum compared with other selection
strategies. Therefore, the selection strategy of individuals
used in this paper is tournament selection. In tournament
selection strategy, a certain number of individuals from the
population are selected to compete in each generation, and
then the optimal individual is retained in new population. The
process will repeat until the size of new population is equal
to that of original population.

The pseudo algorithm of selection function is shown in
Algorithm 2. In Algorithm 2, Ps is the new population
obtained by selection operation. Besides, k is the number
of individuals selected to compete during each selection.
When value of k is too small, final decoding performance
will become worse and complexity will also increase. That
is because that population cannot converge to the optimal
solution when the number of competitive individuals is too
small during every iteration. However, when value of k is
too big, the population will quickly converge to a wrong
solution so that construction process of CFPS based on GA
can’t continued to proceed. Therefore, a proper k is important
to final decoding performance and complexity. Fit is the
fitness of all individuals. Pcompete is consisted of k individuals
selected randomly among the whole population, and Fs rep-
resents their fitness vector. In this work, the individual with
smaller fitness is retained in next generation. That is because
these individuals with lower fitness are more unreliable and
type1 errors are easier to happen in these individuals. Ps(i)
denotes the individual with the least fitness among k indi-
viduals selected in the i-th selection. The selection process
of competitive individuals is given in line 2. Then the spe-
cific competitive process is presented from line 3 to line 6.
Through the selection function, the new selected population
Ps can be obtained.

Algorithm 2 Selection Function
Input: fitness vector Fit , population P, k
Output: selected population Ps
1: for i = 1 to K do
2: Pcompete← selecting k individuals form P randomly
3: for j = 1 to k do
4: F (i)

s (1, j) = Fit(P(j)compete)
5: end
6: Ps(i)← the individual with least fitness in F (i)

s
7: end
8: Return Ps

D. CROSSOVER
The crossover operation of GA can help off-springs to inherit
good genes from their parents and global search can be
achieved by crossover operation. Common crossover meth-
ods include one-point crossover, two-point crossover and
multi-point crossover. In our work, one-point crossover is
used in crossover function.
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Algorithm 3 is the pseudo code of crossover function.
In Algorithm 3, pc denotes crossover rate, which is used to
determine whether crossover operation needs to be performed
in the selected parent individuals. Themajor function of func-
tion rand is to generate a random number whose range is from
0 to 1. Besides, the random number is assigned to flag1.When
flag1 is smaller than crossover rate pc, crossover operation
can be carried out. In crossover operation, selected parent
individuals can be transformed into binary vector by binary
encoding. Then one-point crossover operation is applied for
these two binary vectors, such as Vparent1 and Vparent2 in
Algorithm 3. The position of crossover node denoted by
flag2 is also determined randomly. What’s more, the major
function of function concat is to merge two different binary
vectors into one binary vector. When the binary vector Pchild
is obtained, it needs to be converted a decimal real number
by function decimal. The validity of new generated individ-
ual Pchild needs to be tested, because every individual for
polar codes must be index of information bits. Only these
child individuals that pass test can be adopted as effective
individuals.

Algorithm 3 Crossover Function
Input: ξ , selected population Ps, crossover rate pc
Output: crossed population Pc
1: Initialization: i← 1
2: while i < K + 1 do
3: flag1← rand()
4: if flag1≤ pc then
5: Pparent1,Pparent2← selecting parents randomly

form Ps
6: Vparent1,Vparent2← Encoding of Pparent1 and

Pparent2
7: L ← length of Vparent1 or Vparent2
8: flag2← an integer range in [1,L]
9: Pchild = concat([Vparent1]

flag2
1 , [Vparent2]Lflag2)

10: if (decimal(Pchild )+ 1) ∈ ξ then
11: Pc(i)← decimal(Pchild )+ 1
12: i← i+ 1
13: end if
14: else
15: Pc(i)← Ps(i)
16: i← i+ 1
17: end if
18: end
19: Return Pc

E. MUTATION
Similarly, the pseudo code of the mutation function is shown
in Algorithm 4. The mutation operation of GA can make
population maintain variety because new individuals that are
not existing in original population are generated by mutation
operation. The way of simple mutation is chosen for mutation
operation in our work. In Algorithm 4, pm is mutation rate.
When the random number flag1 produced by the function

FIGURE 2. Mutation operation for P(1024,512) polar codes.

rand is smaller than mutation rate pm, mutation operation of
its corresponding individual Pc(i) is carried out. Besides, the
mutation probability for each bit of binary vector Vm(i) is
equal. In line 3 of Algorithm 4, a random number flag1 whose
range is from 0 to 1 is generated. Then flag1 is used to deter-
mine whether to carry mutation operation on the individual
Pc(i). If flag1 is smaller than mutation rate pm, the individual
Pc(i) will be transformed into binary vector Vm(i) by binary
encoding in line 5 of Algorithm 4. In contrast to flag1, the ran-
dom number flag2 is used to determine whether to carry
mutation operation on each bit of binary vector Vm(i)(line
6-line 9). Because of the characteristic that binary vector is
consisted of 0 and 1, how to mutate is presented in line 10 of
Algorithm 4. With the limit that every individual must be
index of information bits, the validity of every new generated
individual needs to be tested (line 13-line 16). If flag1 is
greater than mutation rate pm, mutation operation will not be
performed (line 17-line 20). Then through the mutation func-
tion, new population Pm that has higher population diversity
is obtained.

The mutation operation for P(1024,512) polar codes is
shown in Fig. 2. Firstly, the selected individual index 514 is
transformed into binary vector 1000000001 by binary encod-
ing. The smallest binary number is 0 while the smallest index
for polar codes is 1. In order to ensure that every index can
correspond to a binary vector, the value of every index is
larger than the value of its corresponding binary vector. Sec-
ondly, when the value of random number flag1 generated
in Algorithm 4 is smaller than mutation rate pm, mutation
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operation is carried out on selected individual, otherwise
mutation operation is not executed. Finally, with the limit of
principles of polar codes, these new child indexes generated
by mutation must be indexes of information bits. Then these
child indexes that pass test are retained in next population.

Algorithm 4Mutation Function
Input: ξ,Pc, mutation rate pm
Output: mutated population Pm
1: Initialization: i← 1
2: while i < K + 1 do
3: flag1← rand
4: if flag1≤ pm then
5: V (i)

m ← Binary encoding of Pc(i)
6: L ← length of V (i)

m
7: for j = 1 to L do
8: flag2← rand()
9: if flag2≤ pm then
10: V (i)

m (1, j)← 1− V (i)
m (1, j)

11: end if
12: end for
13: if (decimal(V (i)

m )+ 1) ∈ ξ then
14: Pm(i)← decimal(V (i)

m )+ 1
15: i← i+ 1
16: end if
17: else
18: Pm(i)← Pc(i)
19: i← i+ 1
20: end if
21: end
22: Return Pm

IV. CONSTRUCTED CFPS AND CORRESPONDING SCF-GA
DECODING ALGORITHM
A. CONSTRUCTED CFPS
In this section, the constructed CFPS based on GA is pre-
sented. N = 1024 and R = 0.5 of polar codes are used.
Binary phase-shift keying (BPSK) modulation and AWGN
channel are used for training of GA. Gaussian approxima-
tion is used for performing channel estimation and obtaining
vector M. What’s more, polar codes are concatenated with
a CRC-16 with generator polynomial g(x) = x16 + x15 +
x2+ 1. In this regard, the effective code rate of polar codes is
R = (K − 16)/N . Some hyperparameters of GA are listed in
Table 1. Then the specific construction scheme is as follows:

Step 1: Performing channel encoding of polar codes
by Gaussian approximation and obtaining vector M . Then
initializing the population P by using indexes of all
information bits.

Step 2: Selection operation is performed and the selected
population Ps is obtained.
Step 3: Carrying out binary encoding on selected

population Ps, performing crossover and mutation opera-
tion subsequently. After suffering from mutation operation,

TABLE 1. Hyperparameters of genetic algorithm.

the individual with the lowest fitness is stored in a vector
named path.
Step 4: Repeating Step 2-3 until the maximum number

of iterations is reached. Then a vector path, length of the
maximum iteration times, is obtained.

Step 5: Counting the occurrence times of indexes of all
information bits in vector path and the CFPS is obtained,
which is consist of all indexes in vector path with non-zero
occurrence times.

When SNR is set to 1.5dB, 2dB and 2.5dB, the normalized
occurrence times of all indexes in constructed CFPS is shown
in Fig. 3. At the same time, these indexes with higher occur-
rence times are easier to suffer from type1 errors. It can be
seen in Fig. 3 that it is almost impossible to cause type1 errors
for these greater indexes. The situation can be attributed
to the polarization characteristics of polar codes. As code
length increases, polarization channels tend to become either
noiseless or completely noisy. Besides, the bigger indexes
of information bits are, the more reliable its corresponding
subchannels are. Therefore, these subchannels with greater
indexes are more reliable than that with smaller indexes.

FIGURE 3. Normalized occurrence times of all indexes for information
bits in vector path for P(1024,512) polar codes.

The size comparison among CFPS based on GA and
other state-of-the-art CFPSs for P(1024,512) polar codes is
shown in Table 2. In original SCF decoding, the search scope
of CFPS is indexes of all information bits. However, for
these SCF decoding schemes [14], [15], decoding latency

222578 VOLUME 8, 2020



X. Wang et al.: Improved SC Flip Decoding Algorithm of Polar Codes Based on GA

TABLE 2. Sizes of different CFPSs for p(1024,512) polar codes.

is determined by the size of search scope [16]. It is obvious
that the sizes of MBC, CS and CFPS-GA are smaller than the
number of all information bits. For example, when SNR is
2.5dB, compared with original SCF, sizes of MBC, CS and
CFPS-GA can be reduced to 7/25, 1/4, 1/5, respectively.

B. SCF-GA DECODING ALGORITHM
After obtaining new CFPS constructed by GA, its cor-
responding SCF-GA decoding algorithm is shown in
Algorithm 5. The decoding process of SCF-GA algorithm
is similar to that of original SCF algorithm, and the only
difference is the CFPS. As mentioned in Table 2, the size
of CFPS constructed by GA is smaller than that of original
SCF decoding, which means that type1 errors can be more
effectively found by SCF-GA decoding under limited flip-
ping attempts. The maximum number of flipping attempts is
denoted by Tmax in Algorithm 5.

Algorithm 5 SCF-GA Decoding Algorithm

Input: yN1 , ξ , constructed CFPS based on GA: CFPS-GA
Output: ûN1
1: Initialization: yN1 ← 0
2: the received vector yN1 update
3: (ûN1 ,Li(y

N
1 , û

i−1
1 ))← SC(yN1 , ξ )

4: if CRC(ûN1 ) == success
5: break;
6: else
7: I← sorting i ∈ CFPS-GA in an increasing order
8: of |Li(yN1 , û

i−1
1 )|

9: for j = 1 to Tmax do
10: ûN1 ← SCF(yN1 , ξ, I(j))
11: if CRC(ûN1 ) == success
12: break;
13: end if
14: end for
15: end if
16: Return ûN1

V. SIMULATION RESULTS
In this section, the decoding performance and complexity
of proposed SCF-GA decoding algorithm are evaluated by
simulation. The SNR for CFPS-GA is set to 2.5dB while
other hyperparameters about GA are set according to Table 1.
The number of individuals in each population is equal to the
number of all information bits. What’s more, polar codes of
length 1024 and 512 are chosen for simulation. Then other
hyperparameters (e.g., code rate, channel modulation) are

same with that of constructed process of CFPS based on GA.
At last, Tmax is set to 103 for polar codes of length 1024 and
it is 68 for polar codes of length 512.

Fig. 4 shows the frame error rate (FER) of proposed SCF-
GA decoding algorithm for P(1024,512) polar codes against
other decoding algorithms, where SCF-CS denotes the SCF
decoding algorithm based on CS [15]. CRC-SCL2 and CRC-
SCL4 represent CRC-aided SCL decoding algorithms with
list size of L = 2 and L = 4, respectively. SCO1 represents
the oracle-assisted SC decoding algorithm, whose decoding
performance can be regarded as the lower bound of single
bit SCF decoding. In SCO1 decoding algorithm, the first
type1 error that met by SC decoder can be directly corrected
because correct decoded codewords have been known by
the decoder. As shown in Fig. 4, the proposed SCF-GA
decoding algorithm has almost same FER performance with
SCO1 decoding algorithm at all observed SNR. Besides,
the FER performance of proposed SCF-GA decoding algo-
rithm is the same as that of original SCF and SCF-CS decod-
ing algorithms when SNR is less than 2dB. However, FER
performance of proposed SCF-GA decoding algorithm is
better than themwhen SNR ismore than 2dB. Compared with
original SCF and SCF-CS decoding algorithms, the proposed
SCF-GA decoding algorithm has a performance gain of about
0.1dB when FER is 10−3. It can be observed in Fig. 4 that
the proposed SCF-GA algorithm has better FER performance
compared with SCF-CS decoding algorithm at high SNR.
This is due to the fact that the size of CS gradually increases
with SNR. When SNR is set to 2.5dB, its corresponding size
of CS is 124 while the number of maximum flipping attempts
is set to 103. Therefore, there is a little performance loss for
SCF-CS decoding algorithm compared with SCO1 decoding
algorithm.

FIGURE 4. FER performance for P(1024,512) polar codes.

It can also be seen in Fig. 4 that FER performance of
the proposed SCF-GA decoding algorithm is better than
CRC-aided SCL decoding algorithm with L = 2 at high
SNR region, and exhibits nearly same FER performance
as CRC-aided SCL decoding algorithm with L = 2 at
low SNR region. However, FER performance of CRC-aided

VOLUME 8, 2020 222579



X. Wang et al.: Improved SC Flip Decoding Algorithm of Polar Codes Based on GA

SCL decoding algorithm with L = 4 is more excellent
than SCF-GA decoding algorithm at all SNR region. Effect
of the proposed SCF-GA decoding algorithm on bit error
rate (BER) for P(1024,512) polar codes is shown in Fig. 5.
As shown in Fig. 5, BER performance of proposed SCF-GA
decoding algorithm is better than SC and original SCF decod-
ing algorithms. When SNR is less than 2.2dB, BER perfor-
mance of SCF-GA decoding algorithm is slightly worse than
that of CRC-aided SCL decoding algorithm with L = 2,
while SCF-GA decoding algorithm outperforms CRC-aided
SCL decoding algorithm with L = 2 at high SNR region.
What’s more, BER performance of SCF-GA decoding algo-
rithm is close to that of SCO1 decoding algorithm. Then
with the increasing of SNR, the BER gap between SCF-GA
decoding algorithm and SCO1 decoding algorithm becomes
small gradually.

FIGURE 5. BER performance for P(1024,512) polar codes.

Furthermore, in order to verify the universality of the pro-
posed algorithm, Fig. 6 shows FER performance for polar
codes with code length N = 512 and R = 0.5. It can
be seen in Fig. 6 that the proposed SCF-GA and SCF-CS
decoding algorithms both can provide better decoding per-
formance compared with original SCF decoding when SNR
ismore than 1.5dB.What’s more, these two kinds of decoding
algorithms both can reach the decoding performance of SCO1
algorithm when SNR is less than 2.5dB. However, as the
increasing of SNR, there is performance loss for proposed
SCF-GA decoding algorithm. It is because the size of CFPS
for GA is 71 and that is 68 for CS, while the number of
maximum flipping times is 68. Hence the proposed SCF-GA
decoding algorithm may not find all of the type1 errors
under limited flipping attempts. When SNR is less than
1.5dB, SCF-GA decoding algorithm can provide same FER
performance with CRC-aided SCL decoding algorithm with
L = 2. However, SCF-GA decoding algorithm can obtain
FER performance gain at higher SNR region. For example,
compared with CRC-aided SCL decoding algorithm with
L = 2, SCF-GA decoding algorithm can have 0.3dB FER
performance gain with FER=10−3.

FIGURE 6. FER performance for P(512,256) polar codes.

BER performance of different decoding algorithms with
N = 512 is shown in Fig. 7. The proposed SCF-GA decoding
algorithm has about 0.2dB BER performance gain compared
with CRC-aided SCL decoding algorithm with L = 2 when
BER is 10−3. However, BER performance of CRC-aided
SCL decoding algorithm with L = 4 is better than SCF-GA
decoding algorithm at all SNR region. Then, BER perfor-
mance of SCF-GA decoding algorithm is better than that
of original SCF decoding algorithm. In addition, SCF-GA
decoding algorithm demonstrates about 0.1dB performance
gain over SCF-CS decoding algorithm when BER is 10−3.

FIGURE 7. BER performance for P(512,256) polar codes.

In Fig. 8 and Fig. 9, we compare the average normalized
complexity of proposed SCF-GA decoding algorithm and
other decoding algorithms. The average normalized complex-
ity is usually used to describe the computational complexity
of SCF decoding algorithm. Besides, the average normalized
complexity is normalized by standard SC decoding algo-
rithm. It can be observed that as SNR increases, the average
normalized complexity of SCF decoding algorithm quickly
decreases to the same level as SC decoding algorithm. This
is due to the fact that as SNR increases, the channel tends
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FIGURE 8. The average normalized complexity for P(1024,512) polar
codes.

FIGURE 9. The average normalized complexity for P(512,256) polar codes.

to become more reliable. However, the average normalized
complexity of CRC-aided SCL decoding algorithm is always
the same as its corresponding value of L, which is inde-
pendent of SNR. Therefore, in Fig. 8 and Fig. 9, proposed
SCF-GA decoding algorithm has higher average normalized
complexity compared with CRC-aided SCL decoding algo-
rithm with L=2 and L=4 at low SNR region for different
code lengths of polar codes. Nevertheless, as the increasing of
SNR, SCF-GA decoding algorithm is gradually revealing its
superiority in average normalized complexity compared with
CRC-aided SCL decoding algorithm with L=2 and L=4.
In addition, the average normalized complexity of SCF-GA
decoding algorithm is lower than that of SCF-CS and original
SCF decoding algorithms at low SNR. It means that SCF-GA
decoding algorithm based CFPS constructed by GA needs
fewer flipping attempts to pass CRC check, reducing com-
putational complexity of SCF-GA decoding algorithm.

In order to evaluate the decoding latency of proposed
SCF-GA decoding algorithm and other decoding algorithms,
we reveal the normalized decoding latency curves of different
SCF decoding algorithms in Fig. 10 and Fig. 11. The decod-
ing latency at each SNR is obtained by simulating 1 × 105

FIGURE 10. The normalized decoding latency for P(1024,512) polar codes.

FIGURE 11. The normalized decoding latency for P(512,256) polar codes.

frames. By measuring time of decoding the same number
of codewords, decoding latency of different algorithms can
be obtained in our work. In order to ensure the fairness of
comparison, simulation conditions are same for all compar-
ative decoding algorithms. Then, decoding latency at each
code length is normalized by the maximum value of decoding
latency of all comparative algorithms for every code length
of polar codes. Finally, normalized decoding latency of every
algorithm can be estimated after carrying out the normaliza-
tion operation. It can be observed in Fig. 10 and Fig. 11 that
original SCF decoding algorithm has the highest normalized
decoding latency among all comparative SCF decoding algo-
rithms. The reason is that the CFPS of original SCF decoding
algorithm is consisted of indexes of all information bits,
and all LLR values of information bits need to be sorted to
determine the first flipping position. However, it is less prone
to causing type1 errors for these greater indexes with higher
reliability in Fig. 3. Compared with SCF-CS decoding algo-
rithm, the proposed SCF-GA decoding algorithm has almost
same normalized decoding latency at high SNR domain while
the normalized decoding latency of proposed SCF-GA is
lower than that of SCF-CS decoding algorithm at low SNR.
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For example, when code length of polar codes is 1024 and
SNR is 1.5dB, the normalized decoding latency of proposed
SCF-GA decoding algorithm can be reduced by 39%.

In terms of CRC-aided SCL decoding algorithm, it can be
seen in Fig. 10 and Fig. 11 that normalized decoding latency
almost remains constant at observed SNR region. In contrast,
the normalized decoding latency of SCF algorithm is depen-
dent on SNR. With the increasing of SNR, channel tends to
become more reliable. Then SCF decoding algorithm needs
fewer flipping attempts to successfully decode, reducing nor-
malized decoding latency. The conclusion can be presented
in Fig. 10 and Fig. 11. For P(1024,512) polar codes, the nor-
malized decoding latency of SCF-GA algorithm is higher
than CRC-aided SCL with L=4 at low SNR region. How-
ever, when the code length is 512, the normalized decoding
latency of SCF-GA algorithm is lower than CRC-aided SCL
algorithmwith L=4 even though it is at low SNR region. This
is because the normalized decoding latency of SCF algorithm
is mainly determined by the size of CFPS [16]. When code
length is equal to 1024, SCF-GA decoding algorithm needs
more flipping attempts to accomplish decoding. Neverthe-
less, when code length is decreased to 512, the number of
flipping attempts is greatly reduced so that the normalized
decoding latency of CRC-aided SCL algorithm with L=4 is
much higher than SCF-GA algorithm. At last, the proposed
SCF-GA algorithm demonstrates lower normalized decod-
ing latency compared with CRC-aided SCL algorithm with
L=2 at high SNR region for both P(1024,512) polar codes
and P(512,256) polar codes, and proposed SCF-GA algo-
rithm also illustrates better decoding performance compared
with CRC-aided SCL algorithm with L=2 at high SNR
region.

TABLE 3. Normalized decoding time steps for p(1024,512) polar codes.

TABLE 4. Normalized decoding time steps for p(512,256) polar codes.

The comparisons of normalized time steps for different
code lengths of polar codes are shown in Table 3 and
Table 4, respectively. The time steps required for standard
SC decoder are 2N -1 while that required for SCL decoder
are 3N -2 [3], [6]. Then, time steps of different decoders are
normalized by that of SC decoder. It can be seen that SCF
decoders need more time steps compared with SCL decoder

at low SNR. This is because that more SC flipping attempts
are required for SCF decoders at low SNR. However, SCF
decoders need less time steps compared with SCL decoder
with the increasing of SNR. Furthermore, SCF decoder based
on CFPS constructed by GA needs the least time steps among
all competitive SCF decoders. Besides, decoding latency is
determined by the size of search scope for these SCF decod-
ing schemes [14], [15]. It can be seen in Table 2 that the
constructed CFPS based on GA has the smallest size of set
among all CFPS. Therefore, the SCF decoder based on CFPS
constructed by GA needs less time to search for flipping
positions.

VI. CONCLUSION
In this work, a newmethod to construct CFPS byGA has been
provided. During the construction process of CFPS based
on GA, these indexes of all information bits constitute the
initial population of GA. Through some genetic operators,
a new CFPS can be obtained. On this basis, the SCF decoding
algorithm based on constructed CFPS has been presented.
Simulation results show that the SCF decoding algorithm
based on new constructed CFPS can achieve competitive
decoding performance compared with some state-of-the-art
SCF decoding algorithms. Furthermore, the calculation com-
plexity and decoding latency of proposed SCF decoding is
lower than that of other SCF decoding algorithms at low
SNR. Besides, this work also provides a new insight into the
application of AI technology in decoding of polar codes.
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