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a b s t r a c t 

Urban trees are beneficial to our environment and important to human inhabitants. However, they are exposed to 
natural and anthropogenic stressors, such as strong windstorms, extreme wind events and accidents; inducing tree 
falling which can cause personal damages, economic losses and infrastructural destructions. The current study 
is the first of its kind, presenting a tree monitoring system, and using smart sensing devices installed on more 
than 8000 trees in Hong Kong’s rural and urban landscapes. A description of the key components of the system, 
followed by big data analysis and three case studies of strong wind events over the past 2 years, are presented. 
A network of smart sensing devices was deployed to develop a large-scale, long-term, smart tree monitoring 
framework; to help identify potentially hazardous trees in urban areas, particularly during extreme weather 
events. The changes in tree tilt angle under natural wind loading were recorded. Patterns and responses of tree tilt 
angles were analyzed, with prediction using time series models based on the Seasonal Autoregressive Integrated 
Moving Average (SARIMA) and Extreme Gradient Boosting time series forecasting (xGBoost). The results showed 
the highest correlation for 1-hour forward forecasting, by applying xGBoost model on tree tilt data and weather 
observations (R 2 = 0.90). On the other hand, SARIMA model produced one-step-ahead prediction with correlation 
(R 2 ) ranging from 0.77 to 0.93, while lower correlation (R 2 ≤ 0.55) was observed for long term prediction 
(15 days) of the tree tilt angles. Finally, a dashboard and mobile applications of tree monitoring systems were 
developed, to transfer knowledge and engage the public in understanding associated hazards with tree failures 
in the urban area. 
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. Introduction 

Urban trees are important. They exhibit a wide range of ecosys-
em services that have long been unveiled and increasingly reported
 Fares et al., 2017 ; Grote et al., 2016 ; Nowak et al., 1996 ), which ben-
fit our environment and human inhabitants in multi-faceted dimen-
ions. These include reducing urban heat island effect, enhancing biodi-
erse habitat for wildlife, increasing the aesthetic value of the street
iew, and relieving mental distress ( Gómez-Baggethun et al., 2013 ).
et, trees growing in urban and surrounding areas are subject to con-
iderable environmental stress, requiring proper maintenance to avoid
otential hazards, no matter to life or property, in order to cultivate
 sustainable urban ecology. During strong windstorms and extreme
ind events, accidents relating to failures of urban trees cause personal
amages, economic loss and infrastructural destruction ( Lopes et al.,
009 ; Mortimer and Kane, 2004 ; Peltola, 2006 ). Therefore, continuous
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onitoring of the stability of urban trees is imperative in ensuring a
ustainable urban design. Numerous tilt sensors have been developed,
ttaching to tree trunks which continuously collect dynamic data, to
easure the tilt angle of root plate movement and wind-induced tree

ailures ( Ancelin et al., 2004 ; Gardiner et al., 2000 ; Hale et al., 2012 ;
ames et al., 2013a , 2013b ). A monitoring system based on analysis of
ynamic tree tilt movement data can help devise effective management
ractices, to reduce tree failures and associated risks in a cityscape dur-
ng extreme wind events ( Heinonen et al., 2009 ). 

To assess and predict tree falling, tree tilt monitoring in association
ith weather observation is mandatory. Apart from tree species, health
nd growing conditions ( Bartens et al., 2010 ; Cannon et al., 2015 ), the
ritical wind speed for tree failure varies with structural attributes of
 tree, such as diameter, age, height, inclination, size, canopy spread,
nd wood density ( Lopes et al., 2009 ). Trees with lesser diameter at
reast height (DBH) are more susceptible to strong winds. Thus, the
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t 2020 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.tfp.2020.100030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/tfp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tfp.2020.100030&domain=pdf
mailto:Ls.charles@polyu.edu.hk
https://doi.org/10.1016/j.tfp.2020.100030
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Abbas, C.Y.T. Kwok and K.K.W. Hui et al. Trees, Forests and People 2 (2020) 100030 

h  

w  

t  

fi  

i  

m  

u  

L  

D  

2  

L  

o  

t  

f
 

m  

t  

l  

w  

t  

o
 

w  

b  

S  

i  

u  

p  

t  

a  

i  

a
 

y  

S  

K  

K  

m  

w  

c  

t  

t  

r  

s  

f  

W  

k  

m  

t  

8  

S  

s  

s  

e  

t  

f  

a
 

m  

t  

(  

b  

b  

2  

o  

t  

Fig. 1. Tree mortalities after the typhoon Mangkhut hit Hong Kong on 16th 
September 2018. 
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eight / diameter ratio of a tree is a critical physical attribute associated
ith the risk of tree failure ( Petty and Swain, 1985 ). On the other hand,

rees behave like a vibrant system, and the tree anchorage holds soil
rmly so the root supports the tree trunk and foliage. Weak anchorage

n the root system may cause tree falling hazards. This can be detected by
easuring the turning momentum or capturing the tilting data of a tree,
sing a variety of accelerometers, inclinometers, sonic anemometers and
aser Doppler Interferometers ( Bartens et al., 2010 ; Cannon et al., 2015 ;
ahle et al., 2017 ; Eloy, 2011 ; Giambastiani et al., 2017 ; James et al.,
013a , 2013b , 2014 ; Moore et al., 2005 ; Moore and Maguire, 2005 ).
ong term data on tree tilt movements and their response to weather
bservations can provide important information for early detection of
ree mortality, which can be help mitigate associated risks with tree
ailure, and protect public life and property ( Pokorny, 2003 ). 

Hong Kong is well-known for its unique landscape features, where
ost trees are grown in an intense urban environment or along hilly

opography, amidst compact skyscraper buildings and crowded popu-
ation. An assemblage of collated tree information from extensive field
orks and rigorous assessments have been conducted to assemble a sys-

ematic tree inventory, with listings based on trees under the purview
f relevant government departments. 

Typhoons are significant meteorological phenomena with strong
ind speeds of 118.8 km/h or more ( Neumann and Elms, 1993 ); they
ring along heavy rains which in some cases, can induce flash-floods.
trong winds severely damage trees by uprooting, bole snagging, break-
ng of branches, and defoliating of leaves. In addition, tree failures in
rban areas can cause damages to the surrounding environment, such as
eople, buildings, and transportation infrastructure. The magnitude of
he damages is associated with prevailing wind direction, wind speed,
s well as the position and health of the affected trees. Therefore, it is
mportant to understand the consequences of high wind speed and their
ssociation with tree cover damages. 

On average, five to six tropical cyclones threaten Hong Kong every
ear, with a peak occurrence period during the months of August and
eptember. Over the last 75 years, 12 super-typhoons passed over Hong
ong. On 16th September 2018, super-typhoon Mangkhut hit Hong
ong with a maximum wind speed of 185 km/h; this was regarded as the
ost severe typhoon in Hong Kong ( HKO, 2020 ). More than 55,000 trees
ere uprooted due to the typhoon, and 7000 tons of wood waste were

ollected. Hong Kong also lost 11 out of its 500 historic and valuable
rees ( Fig. 1 ). On the other hand, 5,300 fallen trees were reported during
he typhoon Hato in 2017 and approximately 1000 trees failures were
ecorded during the typhoon Vincent in 2012. In 2019, five major wind
torms or tropical cyclones hit Hong Kong, viz., Tropical Depression Mun
rom 2nd to 4th July (maximum wind speed of 55 km/h), Tropical Storm

hipa from 30th July to 4th August (maximum sustained wind of 85
m/h), Severe Tropical Storm Bailu from 21st to 26th August (maxi-
um wind storm speed of 117 km/h), Tropical Storm Podul from 27th

o 30th August as a tropical depression with the maximum wind speed of
5 km/h near its centre, and Tropical Depression Kajiki from 1st to 4th
eptember, being the fifth tropical cyclone formed as a tropical depres-
ion, with the maximum wind speed of 55 km/h ( HKO, 2020 ). In this
tudy, tropical typhoons, cyclones and tropical depressions are consid-
red windstorms with different wind surges or wind speeds; the damage
o trees is associated with wind speed and direction of a storm. Aside
rom apparent impacts such as tree failures, these windstorms can also
ffect tree stability and result in weakening of root anchorage. 

The significance and value of a tree in an urban space are deter-
ined through its benefits to the society, and the risks associated with

ree failures due to extreme wind events, tree defects and health status
 Dwyer et al., 1991 ). Studies indicate in the coming decades, there will
e an expected increase in intensity by 2% to 11% and in frequency
y 6% to 34% for tropical cyclones ( Knutson et al., 2010 ; Virot et al.,
016 ). Therefore, it is important to model and monitor the response
f trees to windstorms, devise effective measures to stabilize trees in
he urban landscape, and avoid damages to human life and infrastruc-
ure. There is precedence from previous studies in investigating tree fail-
res and resistance to dynamic wind loading during windstorms and cy-
lones, and static pulling ( Giambastiani et al., 2017 ; Lopes et al., 2009 ;
eltola, 2006 ). 

This study aims to determine the thresholds and ranges of tree root-
late movement under natural, dynamic wind loading, by deploying
 large-scale network of smart sensing devices for long-term monitor-
ng of tree tilt angles. To the best of our knowledge, a comprehensive
IS-based system has not been developed to continuously monitor and
odel tree tilt movement in an urban landscape. The current study is

he first of its kind, presenting a platform of tree monitoring system, us-
ng smart sensing devices installed on more than 8000 trees in the City
f Hong Kong, with continuous monitoring and big data analyses capa-
ilities. To share the knowledge of building this system for the benefit
f the tree community with the intent that it can be replicable in other
eographies; a description of the key components of the system is dis-
ussed, followed by big data analysis, and three case studies of strong
ind events over the past 2 years. The investigation and analysis of the
ig data analysis framework are currently undergoing implementation
t full scale; when the project comes to fruition, additional learning will
e shared. 

. Material and methods 

.1. The system architecture of the smart sensing technology (SST) network

Customized sensors are designed to track the physical response of
rees under different wind loading conditions, by measuring rotational
ngles, tree displacements and tree tilt angles within a tilt accuracy of
.05°. These observations are recorded by integrating hardware compo-
ents including accelerometer (Roll ± 90°, Pitch ± 90°), vibration sen-
or, micro-controller, ON/OFF switch, battery (8500mAh (LoRaWAN)
 19,000mAh (NB-IoT)) and antenna ( Fig. 2 ). The dimensions of the
ensors are 125mm(L) x 67mm(W) x 40mm(H) for LoRaWAN and
32mm(L) x 67mm(W) x 50mm(H) for NB-IoT sensors. 

The emergence of the Internet of Things (IoT) paradigm is the key
n enabling seamless and massive interconnection of smart devices, ma-
hines or things over the Internet ( Fig. 3 ). Coupled with the Big Data
nfrastructure and using a machine learning approach, the smart intel-
igent layer is essential for smart resources to be able to process infor-
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Table 1 

Distribution of the LoRaWAN and BB-IoT coverage in Hong Kong. 

Type Network Setup Typical Range Max Power Consumption Signal Coverage in Hong Kong 

LoRaWAN Private / Public Network 5-10 km 0.025 W Urban Area & On Requested Basis 

NB-IoT Mobile Operator 10-15 km 0.2W (max) Same as Mobile Network Coverage 

Fig. 2. Sensor structure insights and installed sensor on a target tree. 
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ation ( Poza-Lujan et al., 2019 ). The ubiquitous framework of system
rchitecture can be summarized in three-folds: data acquisition, data cu-
ation and data presentation; where this architecture has been proven
o be able to make positive impacts and provide useful solutions for
andslide management ( Karunarathne et al., 2020 ). 

A new generation of wireless communication systems - LoRaWAN
nd NB-IoT - were adopted to provide pervasive connectivity between
he sensors and the database ( Table 1 ). Despite the applications for both
etworks are diverse, LoRaWAN is considered the best on the low-cost
pplications front, whereas NB-IoT is applicable to those with high qual-
ty of service and low latency ( Sinha et al., 2017 ). Our study has adopted
ual-mode networks, i.e. LoRaWAN and NB-IoT for the pilot scheme;
hese networks provide complementary resolution in solving the prob-
em of deteriorated network performance in some high-density terrains
n urban Hong Kong. 

The architectural framework at the level of data curation was de-
eloped with specialized technologies used for big data analytics and
achine learning approaches ( Fig. 3 ). The data processing backend not

nly handles streams of geographical data from individual trees within
he whole territory, but it also produces models for deeper insights on
he tree movement mechanism, and generates within a specific time-
rame, reliable predictions for forecasting future failure-related inci-
ents of a single, or clusters of trees. 

The development of daily monitoring platform is based on the func-
ional requirements provided by the tree managers working closely on
rban trees. The front-end of the system, i.e. the application dashboard,
an support users in obtaining quick review of tree conditions, and iden-
ifying high-risk-trees through dynamically data fetching, from data cu-
ation to the multi-model data presentation. This is done by overlaying
nteractive maps and azimuth-like data plots to exhibit relevant data fea-
ures, powered by a tailor-made dashboard to extract insights through
isualizing knowledge for the users, which is based on space-time envi-
onmental data and tilting data of trees ( Benita et al., 2020 ). 

.2. Selection of trees and sensor installation 

Tree height and DBH are the core factors in controlling tree uproot-
ng ( Giambastiani et al., 2017 ; Peltola et al., 2000 ). The stability of trees
s correlated with physical parameters, e.g. height, diameter at breast
eight (DBH), canopy size, root plate diameter and root depth; as well as
pecies, soil type and wind load ( Giambastiani et al., 2017 ). The pulling
est conducted by Peltola et al., (2000) suggested a significant correla-
ion between tree stability and factors including tree height, DBH, stem
eight, taper (i.e. ratio between height and DBH), root depth and crown

ize. They indicated that tapering trees, which have a lower height to
BH ratio, have a higher chance of stem breakage than uprooting. 

Therefore, in this study, tall trees (i.e. > 5 m) and trees with large
BH (i.e. > 200 mm), were selected. The sensors were installed at the

ower tree trunk of selected trees. Due to concerns of public safety,
igher priority was given to roadside trees with heavy vehicle or pedes-
rian traffic, as well as trees in public facilities, such as parks and prom-
nades. The sensors were installed in three location clusters; including
an Chai district, which is one of the most commercialized areas in
ong Kong; Kwun Tong Promenade, which is near the coastline with

elatively high wind speed; and Victoria Park, which is one of the largest
arks in Hong Kong ( Fig. 4 ). 
Fig. 3. An overview of the system architecture 
smart sensing technoology (SST) network archi- 
tecture. 
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Fig. 4. Map of the distribution of all targeted trees in Hong Kong and the selected trees in the three location clusters. 
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.3. Attributes associated with each target tree 

For each targeted tree, data on a range of attributes were stored
nder five major categories, viz., Tree, Sensor, Environment, Point-of-
nterest (POI), and Tree Trajectory (moving pathway visualized as an
zimuth). The physical characteristics, tree species, DBH, height, crown
pread, and tree health conditions such as root and trunk health sta-
us, were visually assessed by a certified arborist. Sensor EUI and serial
umbers corresponding to each individual tree were stored. The ‘Envi-
onment’ contains information about the surrounding environment, in-
luding air quality and wind speed, as well as demographic information
uch as population density in the district. The POI denotes the prox-
mity of an individual or cluster of trees to the nearest residential and
ommercial areas, and calculates the dynamic correlation which ana-
yzes the tree failure pattern in the urban landscape heterogeneity. The
azimuth visualization’ interpolates the tree moving trajectory in terms
f tilting angles and the movement direction, where the track record of
he movement pattern of a tree can be clearly illustrated. The tree tilt
easurements associated with physical attributes, species, geolocation,
ealth status, geographical association and environmental surrounding,
ere analyzed in the study. This helps unveil the underlying causes of

ree failures due to strong windstorms in Hong Kong. 

.4. Data collection and refinement – The Big Data 

Tree tilting angles were recorded regularly with a one-hour interval
n a normal day, and more frequent readings (5-minute interval) were
aken when the Hong Kong Observatory issued rainstorm or typhoon
ignals. The data packages with the information on collection time, roll
ngle and pitch angle, were transmitted from the sensors via the gate-
ay through either LoRaWAN or NB-IoT networks, depending on the
ommunication module used in the sensor. Then, the tree monitoring
ystem collected the data from the platform of networks, and recorded
he data in the tilt angle database for further analysis. Since the ini-
ial angle measurement varied because of the installation works and the
atural tree leaning, post-processing was conducted on the fly to initial-
ze the angle measurements. The trees were assumed to be stable after
he day of installation, and the reading of roll and pitch angles after
he first day of installation were considered to be the initial values. For
easurements taken after initialization, the current measurement was

ubtracted by the initial values as listed in Eqs. (1 ) and (2 ): 

𝑜𝑙 𝑙 = 𝑅𝑜𝑙 𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑅𝑜𝑙 𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (1)

here Roll is the corrected roll angle, Roll current is the instant roll angle
nd Roll initial is the initial roll angle at the time of sensor installation. 

 𝑖𝑡𝑐ℎ = 𝑃 𝑖𝑡𝑐 ℎ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃 𝑖𝑡𝑐 ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (2)

here Pitch is the corrected pitch angle, Pitch current is the instant pitch
ngle and Pitch initial is the initial pitch angle at the time of sensor instal-
ation. 

The roll and pitch angles present rotational angles along the x-axis
nd y-axis respectively; the resulting tilt angle can be calculated by ap-
lying the trigonometric formula ( Eq. (3 )) with an assumption of no
elf-rotating movement along the tree trunk at z-axis: 

 𝑖𝑙𝑡 = 

√ 

( tan ( 𝑅𝑜𝑙𝑙 ) ) 2 + ( tan ( 𝑃 𝑖𝑡𝑐ℎ ) ) 2 (3)

here Roll and Pitch are the corrected roll and pitch angles from Eq. (1 )
nd Eq. (2 ), respectively, and Tilt is the tilt angle of the tree. 

This study analyzed more than 2,000,000 tree tilt angle mea-
urements (with data collected from 31st May, 2019 to 30th June,
020) from the 230 SST sensors. The real-time data were continuously
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Fig. 5. An hourly forward-chaining method in xGBoost model performance 
evaluation. 
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ecorded and transfered to the system for big data analysis, to monitor
nd forecast the state of tree tilt condition. 

.5. Tree tilt analysis 

.5.1. Seasonal decomposition 

Seasonal decomposition aims to examine the trend, and seasonal or
eriodic patterns of a signal. In this study, the time series of the tilt an-
le from the trees were analyzed by applying an additive model with
easonal decomposition ( Eq. (4 )). Since the raw data were not corrected
t equally spaced points of frequencies, time series of tilt angles were
reprocessed to the regular sampling frequency, by resampling the time
eries and setting of the seasonal decomposition analysis. In the prepro-
essed time series, the tilt angle was resampled to 5 min intervals using
inear interpolation; the default length of the cycles was set to 1 day (24
) and the trend was extrapolated for forecasting. 

ignal ( t ) = AV ( t ) + Trend ( t ) + Seasonal ( t ) + Residual ( t ) (4)

here, Signal(t) is the input signal, AV(t) is the average value in the
ime series, Trend(t) is the increasing or decreasing value in the series,
easonal(t) is the repeating cycle in the time series, and Residual(t) is
he random variation in the time series. 

.5.2. Wavelet transform 

In the wavelet technique, a signal is transformed into multiple lower
esolution levels by applying a combination of scaling and controlling
actors of a single wavelet function ( Percival and Walden, 2000 ). The
avelet analysis filters out the high or low-frequency part of a signal,
y changing the resolution of the signal. For each wavelet transforma-
ion, half of the signal components with higher frequency are discarded
ccording to Nyquist’s rules, while the points of the filtered signal are
educed by half. For tilt angle analysis, the discrete wavelet transform
DWT) was used. The tilt angle was resampled to 5 min intervals us-
ng interpolation. If the original signal were sampled at 5 min intervals
nd the first Detail Coefficients generated from wavelet analysis were
emoved, then the signal components with a period of less than 10 min
ould be eliminated. 

.5.3. SARIMA (seasonal autoregressive integrated moving average) 

nalysis 

SARIMA is an advanced form of the general ARIMA model. It incor-
orates a seasonal component of time series in the data analysis. In this
art of the study, all tilt angle readings from the tilt sensors were resam-
led to 1-hour interval ( Eq. (5 )). The order of the hyperparameters was
imited from 0 to 2, while the number of time steps (m) was set to 24
one day). Two SARIMA models were adopted for the study - one step
head prediction (one hour ahead) model and long-term prediction (15
ays ahead) model. The one step ahead model aims to predict tree tilt
ngle for the next hour, to detect sudden and potential changes of trees,
uch as falling, sensor interference and malfunction. 

𝐴𝑅𝐼 𝑀 𝐴 ( 𝑝, 𝑑, 𝑞 ) ( 𝑃 , 𝐷, 𝑄 ) 𝑚 (5)

here, p, d, and q represent the three parameters of the general ARIMA.
 is the auto-regressive aspect representing past values; d is the inte-
rated part which controls the amount of time series differencing in the
odel; and q corresponds to moving average part in the model. To incor-
orate seasonal components, three additional components were added
o the basic ARIMA model: seasonal autoregression ( P ), seasonal differ-
ncing ( D ), and seasonal differencing ( Q ); with the number of time step
 m ). 

.5.4. xGBoost (Extreme Gradient Boosting) time series forecasting 

Extreme Gradient Boosting (xGBoost) is an optimized, supervised
achine learning technique based on the principle of gradient boosted
ecision tree algorithm (GBDT). It uses multiple decision trees and an
dditive training approach to solve classification or regression learning
roblems. The independent variables (features) are manually decided,
nd the quality of selected features is one of the key factors affecting the
erformance of the machine learning model. Three extra features were
reated for the xGBoost model, which comprised lag/backshift opera-
ion, exponential moving average, and weather observations. xGBoost
upports GPU (pipeline) computing to speed up the model training and
valuation process. The time series (tilt angle) were also resampled with
 1-hour interval before model training and evaluation. However, in xG-
oost model (refer to Fig. 5 ), an hourly forward chaining method in xG-
oost model was used for model performance evaluation, which means
he value of last tilt angle was predicted successively while all previous
ata were assigned into the training set, until the required length of the
esting set was generated. In this study, 3 different tilt angle forecasting
odels which predict the tilt angle after 1, 2 and 3 h, were created and

hen evaluated. To optimize the model performance for xGBoost, hyper-
arameters were fine-tuned as they largely affected model performance.
he key hyperparameters used for the xGBoost were ‘eta’: model learn-

ng rate (step size per each boost training), ‘max_depth’: maximum depth
f a tree, and ‘gamma’: minimum loss reduction required for making a
artition of a leaf node; subsample: ‘Ratio of the sample (rows)’ used for
odel training, and ‘colsample_bytree’: ratio of features (columns) used

or model training. For all models, the number of boosting round was
et to 400, while a GPU was used to speed up the training process. 

. Results and discussion 

.1. SARIMA model for tilt angle analysis 

Ten tree samples in the countryside (Tai Tong Country Park) and six
ree samples in the urban area (Kwun Tong and Wai Chai districts) were
elected for tree tilt angle analysis. For the one step ahead forecasting,
eather observations data from HKO were applied to the model as an

xogenous variable. Since ‘the distance between the countryside tree
amples and Shek Kong automatic weather station’, and ‘the distance
etween the urban tree samples and Kwun Tong, and Wai Chai auto-
atic weather stations’, are the shortest, temperature records in these
eather stations were extracted. The period of the training model was

rom 1st January, 2019 to 31st March, 2019 (3 months) and the testing
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Table 2 

Metrics of the tilt angle predictions using the SARIMA model. 

Tree_ID Best hyperparameters from grid search (p,d,q)(P, D, Q)m RMSE of the testing set data R square of the testing set data 

Countryside Trees (one step ahead) 

Tc1 (1,0,1)(1,1,0)24 0.088 0.815 

Tc2 (1,0,1)(0,1,1)24 0.063 0.934 

Tc3 (1,0,1)(0,1,1)24 0.078 0.926 

Tc4 (0,1,0)(0,1,1)24 0.074 0.881 

Tc5 (1,0,1)(0,1,1)24 0.043 0.899 

Tc6 (0,1,0)(0,1,1)24 0.136 0.868 

Tc7 (1,0,0)(0,1,1)24 0.098 0.865 

Tc8 (1,1,0)(0,1,1)24 0.033 0.861 

Tc9 (1,1,0)(0,1,1)24 0.035 0.911 

Tc10 (1,0,1)(0,1,1)24 0.062 0.895 

Urban Trees (one step ahead) 

Tu1 (1,1,0)(1,0,1)24 0.007 0.767 

Tu2 (1,1,0)(1,0,1)24 0.011 0.910 

Tu3 (1,1,0)(0,1,1)24 0.019 0.928 

Tu4 (0,1,1)(1,0,1)24 0.007 0.818 

Tu5 (1,1,1)(0,0,0)24 0.046 0.881 

Tu6 (1,1,1)(1,0,1)24 0.015 0.923 

Long Term Prediction (15 Days) countryside tree 

Tc1 (0,0,0)(0,1,1)24 0.164 0.363 

Tc2 (0,0,1)(0,1,1)24 0.163 0.555 

Tc3 (0,0,1)(0,1,1)24 0.192 0.548 

Tc4 (1,0,0)(0,1,1)24 0.17 0.383 

Tc5 (1,0,0)(0,1,1)24 0.108 0.354 

Tc6 (0,0,1)(0,1,1)24 0.333 0.211 

Tc7 (1,0,0)(0,1,1)24 0.193 0.477 

Tc8 (0,0,1)(0,1,1)24 0.073 0.34 

Tc9 (0,0,1)(0,1,1)24 0.095 0.341 

Tc10 (0,0,0)(0,1,1)24 0.156 0.338 
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Table 3 

Metrics of the tilt angle predictions using xGBoost model. 

Tree 
ID 

1-hour forecasting 2-hours forecasting 3-hours forecasting 

RMSE R 2 RMSE R 2 RMSE R 2 

with weather observations 

Tw1 0.093 0.865 0.109 0.816 0.114 0.800 

Tw2 0.060 0.897 0.085 0.798 0.101 0.714 

Tw3 0.035 0.802 0.044 0.689 0.051 0.585 

Tw4 0.132 0.766 0.151 0.694 0.153 0.686 

Tw5 0.095 0.816 0.104 0.781 0.115 0.735 

without weather observations 

T1 0.065 0.854 0.096 0.683 0.109 0.595 

T2 0.115 0.813 0.141 0.715 0.155 0.657 

T3 0.068 0.863 0.090 0.762 0.107 0.664 
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eriod was from 1st Aprril, 2019 to 24th April, 2019 (24 days). Table 2
epresents the results for one-step-ahead prediction models for the coun-
ryside and urban trees, as well as results for long term prediction (15
ays models). Time series plots of representative tree samples are given
n Fig. 6 . For the countryside trees, the R 

2 ranges from 0.815 to 0.934
hile the RMSE ranges from 0.033 to 0.136. The results of the models

or urban trees also show high correlations with R 

2 ranges from 0.767 to
.928, which are relatively lower than that of countryside trees. How-
ver, the results from the long-term prediction model do not show a
ery high correlation, with R 

2 ranging from 0.211 to 0.555 and RMSE
anging from 0.333 to 0.073. 

.2. xGBoost tilt prediction with weather observations 

Three to seven tree samples in the countryside (Tai Tong Country
ark) were selected for tree tilt angle analysis, using the xGBoost tilt
rediction models integrated with weather observations. Also, the fea-
ures generated by lag/backshift and exponential moving average (EMA)
ere applied to the model. The weather observations data were obtained

rom the Hong Kong Observatory (HKO). The automatic weather station
nstalled at Shek Kong was selected to extract the weather data, as the
hek Kong Station was nearest to the countryside tree samples in the Tai
ong Country Park. The training and testing period for the model was
rom 1st June, 2019 to 30th June, 2019 (1 month), and hourly forward-
haining was from 1st July, 2019 to 5th July, 2019 (5 days). Table 3 and
ig. 7 show the results for the xGBoost modelling. For the first hour fore-
asting, the highest R 

2 are 0.897 and 0.863, for models with weather
ata observation, and without weather data observations, respectively.
otably, the highest correlations for both models decrease from first-
our forecasting to the third-hour forecasting; the R 

2 decreases from
.897 to 0.800 for the models with weather data, and from 0.863 to
.664 for models without weather data. Similarly, the RMSE increases
radually from 1-hour to 3-hours forecasting. This indicates the shorter
he forecasting period, the higher the predicting power. 
. Implementation of the tree monitoring framework in extreme 

eather events 

During extreme weather events in Hong Kong, methods and analy-
is framework developed for this study were implemented to monitor
ree tilt angles. Two extreme weather events were studied in this paper,
o evaluate the effects of the wind and rain storms, on tree tilt angles
nd tree tilt directions. The events included tropical storm Wipha and
ropical depression Kajiki, both happened in 2019. 

.1. Tropical storm Wipha 

Wipha is a tropical storm which affected Hong Kong from 30th June,
019 to 2nd August, 2019, with closest distance of 310 km from Hong
ong. During the storm, the Hong Kong Observatory recorded a maxi-
um mean hourly wind speed of 88 km/h and gusts speed of 131 km/h

t the Tai Mo Shan weather station. The storm also led to heavy rainfall,
ith over 250 mm in the entire city and exceeding 350 mm in some
reas. The wind direction was mainly from the east (red background
olor in Fig. 8 ). During this period, the trees swayed in response to the
ind force applied to the trees; with continuous wind from the east,
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Fig. 6. Tilt angle prediction using SAMIRA 

model, (a) one step ahead for countryside tree, 
(b) one step ahead for the urban tree, (c) long 
term prediction for countryside tree. 
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force. 
he respective tilt angles kept increasing. During the event, most of the
ecorded tilt angles were within 0.6 degrees. Fig. 8 shows the tilt mea-
urements and the radar chart of a Senna siamea (syn. Cassia siamea) ,
ith a height of 14 m, canopy diameter of 7 m and DBH of 378 mm.
he tilt angles were mostly between 0 to 0.15 degrees before the storm
vent (i.e. the vertical lines indicating the tropical cyclone warning sig-
als), and they kept increasing during the storm period, reaching 0.35
egrees. The radar chart shows the trees that swayed in random direc-
ions before the typhoon (light red dots); and with a strong wind from
he east during typhoon, they swayed towards the west (dark red dots).
he results indicate the tree tilt angle would keep increasing if strong
inds were coming from the same direction for a relatively long period

e.g. two days); the tree would bounce back to the original position if
here were winds from opposite direction, or winds came at the same
irection but at lower wind speed. 
.2. Tropical depression Kajiki 

Tropical depression Kajiki influenced Hong Kong from 1st Septem-
er, 2019 to 3rd September, 2019, with the closest distance of 330 km
rom the south of Hong Kong. Tropical depression Kajiki was weaker
han the tropical storm Wipha, causing a maximum average wind speed
f 63 km/h and general rainfall of over 50 mm. The tree tilt angles
ere relatively small compared to that of Wipha. Most measurements

ell within the range of 0 to 0.2 degrees, being only one-third of Wipha’s.
ig. 9 shows the tilt angle measurements of a Delonix regia , with a height
f 12 m, canopy diameter of 12 m and DBH of 470 mm. The anal-
sis shows the variation of the tree tilt measurements; the change in
ilt directions were insignificant with small magnitude. The results sug-
est a tree would be stable when applied by a relatively weak wind
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Fig. 7. Tilt angle prediction using xGBoost 
model, (a) model with weather observations, 
(b) model without weather observations. 

Fig. 8. Graphs representing tree tilt angle and tilt direction during the tropical storm Wipha. 
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. A GIS-based platform for tree monitoring system 

An interactive, web-based tree tilting monitoring dashboard was de-
eloped; based on a Geographic Information Systems (GIS) platform, by
ncorporating the attributes, data and analysis which comprise the tree
onitoring system ( Fig. 10 ). With the tree coordinates, individual trees
ere displayed on the map and a user could identify respective tree lo-
ations. Different colors of tree icons, from green, yellow, orange to red,
resent different categories of tree tilt angles, whereby a green icon de-
otes normal trees with tilt angle smaller than one degree; a red icon
enotes abnormal trees with tilt angle greater than five degrees, with
thers being different colour levels at a 1-degree increments (refer to
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Fig. 9. Graphs reresenting tree tilt angle and tilt direction during the tropical depression Kajiki. 

Fig. 10. GIS-based dashboard for real-time monitoring of tree tilt angle. 
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ig. 10 ). A user can detect the trees with potential problems from the
ap interface, based on the colors of the tree icons and take appropriate

ctions. When a user clicks on a tree icon, the corresponding graphs of
ilting angle, trend of tilting angle, periodic pattern, the remainder of
ilting angle, wavelet analysis and prediction of tree tilting trend, are
lotted for visualization and analysis. 

Apart from the tilt angle data, the basic information of trees, sen-
or information, environmental factors, POIs and an azimuth graph, are
vailable, when the user clicks on the tree icon for further informa-
ion. The tree attributes collected in tree risk assessment exercise, for
xample, species, tree height, crown size and the DBH, are included

n the basic information for the identification of trees. SST informa- (
ion based on sensors installed on the trees, including device ID, sen-
or ID, sampling interval and the status of the sensor, provide gen-
ral information for the control of the SST device. ‘Environment’ tab
ists the big data, which include the static data of historical weather
ata, air quality and the information of nearby population, buildings
nd roads. Further big data analysis can be conducted by considering
hese parameters. The ‘POI’ tab shows the number of nearby facili-
ies, for evaluating the impact to the public if a tree failure were to
ccur. The ‘azimuth graph’ indicates the trajectory of a tree, which is
seful for understanding the tree movement direction, since a healthy
ree would bounce back to the original location after strong wind load
 Sellier and Fourcaud, 2009 ). 
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Real-time meteorological data are also available on the dash-
oard, extracted from the website of the Hong Kong Observatory.
he information covers the current weather warnings and signals,
nd district-specific information which include temperature, humid-
ty, rainfall and wind speed. These data can help users understand
he weather condition and the tilting response of trees. For further
etails, interested readers are encouraged to visit the study webpage
ttp://www.jcsmarttree.com/ and send a request to the corresponding
uthor for questions relating to data visualization information. 

Apart from the deployment of the real-time tree monitoring system,
 mobile application, “HKJC Smart Tree ” was developed, to transfer the
earnings of the study and the knowledge associated with the tree moni-
oring system. By making a menu of the target trees easier-to-navigate or
ore playful to interact with, the user experience of this application was
otentially enhanced. More significantly, the users can socialize with
heir peers and personalize the experience on the spatially designated
outes through the digital locative place, which drives the initiative to
earn ( Saker and Evans, 2020 ). The features and the instant visualization
n the mobile application are considered an opportunity in enhancing
he knowledge understanding and engagement with people who are con-
cious of tree management ( Delmas and Kohli, 2020 ; Hernandez et al.,
020 ). 

. Conclusion 

This study demonstrates the development and pilot implementation
f a large-scale, real-time monitoring system for measuring tree tilt angle
nder natural wind loading. A network of smart sensing devices was
eployed to develop the large-scale, smart tree monitoring framework
n identifying potentially hazardous trees in urban areas, particularly
uring extreme weather events. 

Patterns and responses of tree tilt angles were analyzed and pre-
icted, using time series models based on Seasonal Autoregressive inte-
rated moving average (SARIMA) and Extreme Gradient Boosting time
eries forecasting (xGBoost). Since the tree tilt angles are strongly influ-
nced by exogenous factors, e.g. wind speed from weather observations,
GBoost models with weather data outperformed those without weather
ata. Overall, the predictive power of the model decreases with increas-
ng forecasting period, and the best results were obtained for the one-
our prediction. The performance of xGBoost models is also significantly
ependent upon the computational capacity, which can be enhanced by
he use of GPU processing. 

The model developed for tree tilt forecasting can effectively be used
or detecting abnormal tilting of trees, by comparing the forecasted and
he observed tilt angles. The dashboard and mobile applications of tree
onitoring systems play a pivotal role in devising effective policies to

ransfer knowledge, and engage the public with the understanding of as-
ociated hazards with tree failures in urban areas. The system can help
elevant stakeholders take timely actions in minimizing associated risks
ith tree failures. Furthermore, the modelling paradigm could incor-
orate seasonal patterns of the tree tilting, using big data modelling in
ong Kong, which is scalable and applicable to other cities in the world.

This study focuses on monitoring and analysis of the risks of tree
prooting due to root-plate failure as an initial step. Future studies are
equired to examine the breakage of tree trunk and branch failures un-
er strong windstorm events. This will help enhance our understanding
o further reduce losses due to tree failures in a city. Aside from nat-
ral wind loading, human influences such as construction work could
lso influence the stability of urban trees, due to weaker root systems in
ropical or subtropical cities. In addition to the big data analysis frame-
ork developed and rigorous analyses performed, upon full-scale imple-
entation of the system, further studies and in-depth data analyses will

e conducted. Integration of relevant, physical attributes of trees with
ilt angle measurements, would help evaluate, monitor, and define the
hresholds for each species of trees to mitigate associated risks in tree
ailures. 
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