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A B S T R A C T   

The diffuse photosynthetically active radiation (PARdif) is highly related to the gross primary productivity (GPP) 
of vegetation and can enhance the photosynthetic rate of shaded leaves. The PARdif is mainly influenced by 
aerosols on clear sky days. To explore the impacts of the PARdif fraction and aerosol loading on the accuracy of 
GPP estimations, we evaluated and compared the sensitivity of one-leaf and two-leaf light use efficiency (LUE) 
models (MOD17 and TL-LUE models) to the PARdif fraction and aerosol optical depth (AOD) using satellite data 
and measurements at ChinaFLUX sites in China from 2003 to 2010. The estimated GPP from two models 
(GPP_MOD and GPP_TL) showed systematic underestimations when compared with the measured GPP at Chi-
naFLUX sites (GPP_FLUX). In addition, the underestimation of the GPP estimated by the two models was larger in 
months with high PARdif fractions than in months with low PARdif fractions at most sites. The TL-LUE model 
exhibited better performance than the MOD17 model with reduced underestimation and root-mean-square error 
(RMSE) values when the PARdif fraction was greater than 0.7 or 0.8. When the PARdif fraction was low, the TL- 
LUE model reduced the overestimation or increased the underestimations of GPP compared with the MOD17 
model depending on the site. Both MOD17 and TL-LUE exhibited higher underestimations of GPP at high AOD 
values than at low AOD values at most sites. The TL-LUE model exhibited an overall better performance than 
MOD17 under high AOD. The overestimation also occurred for low AOD, which was consistent with that for low 
PARdif fractions. Therefore, the two LUE models showed dynamic performance with variations in the PARdif 
fraction and AOD, which should be considered in the application and further improvement of GPP models.   

1. Introduction 

Terrestrial gross primary production (GPP), which represents the 
amount of carbon absorbed from the atmosphere and fixed by land 
vegetation, plays a vital role in the terrestrial carbon cycle (He et al. 
2013; Sun et al. 2019; Yan et al. 2017). The GPP is also important for the 
water cycles and energy balance throughout almost all ecosystem pro-
cesses (Sun et al. 2019; Tramontana et al. 2015; Yan et al. 2017). 
Therefore, accurate and reliable GPP estimations are necessary for un-
derstanding the carbon cycle and predicting plant production (Cheng 
et al. 2014; Yuan et al. 2014). 

The GPP estimation models can be generally categorized as process- 
based ecological models and remote sensing (RS)-based light use effi-
ciency (LUE) models (He et al. 2013). The LUE models driven by remote 

sensing data are more widely used for GPP retrievals on a large scale 
than ecological models because of the vast coverage and few required 
inputs (Zan et al. 2018). As a popular LUE model, the MOD17 model 
produces global GPP in near real time based on absorbed photosyn-
thetically active radiation (APAR) and LUE by incorporating environ-
mental stress factors, such as temperature and water vapor pressure 
deficit (Yuan et al. 2014). However, the MOD17 model is a one-leaf 
model, which assumes that the canopy acts as a large leaf and GPP 
has a linear relationship with incident photosynthetically active radia-
tion (PAR, 400–700 nm) (Zan et al. 2018). However, the exposure to 
PAR and LUE is different for sunlit and shaded leaves. Specifically, sunlit 
leaves can absorb both direct and diffuse PAR (PARdir and PARdif) and 
are easily saturated by light, which results in a low LUE under clear sky 
conditions, whereas shaded leaves absorb only diffuse PAR, which leads 
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to a relatively high LUE of shaded leaves under cloudy and aerosol-laden 
skies (Zhou et al. 2016). Considering the different abilities of PAR ab-
sorption and LUE of sunlit and shaded leaves, He et al. (2013) proposed a 
two-leaf light use efficiency model (TL-LUE) by calculating the LUE and 
GPP of sunlit and shaded leaves separately. This algorithm was proven 
to have better performance for GPP estimation than a one-leaf model. 

However, the accuracy of RS-based LUE models varies with climate 
factors, input data, parameters, and biome types (Chen et al. 2014; Liu 
et al. 2014; Turner et al. 2006; Yuan et al. 2014). Numerous sensitivity 
studies have been conducted to evaluate the impact of the aforemen-
tioned factors on GPP estimation. Turner et al. (2006) investigated 
Moderate Resolution Imaging Spectroradiometer (MODIS) GPP esti-
mates of different biome types and found overestimation for low pro-
ductivity area and underestimation for high productivity area. Yuan 
et al. (2014) found that seven RS-based LUE models exhibited under-
estimation under cloudy sky conditions and showed various perfor-
mances for different biome types. Xie et al. (2019) assessed the 
uncertainties in GPP estimations caused by different leaf area index 
(LAI) datasets. Sun et al. (2019) evaluated the sensitivity of GPP esti-
mations from 14 models to CO2 concentrations based on remote sensing 
data. A variety of studies have also investigated GPP model accuracy 
with respect to climate factors, including drought (Stocker et al. 2019; 
Wagle et al. 2014), sky clearness (He et al. 2013; Wang et al. 2015), 
temperature, precipitation and radiation (Sabetraftar et al. 2011; Sun 
et al. 2019). 

These studies emphasize the necessity to evaluate and understand 
the sensitivity of GPP estimation models to the influencing factors before 
designing and improving the models (Liu et al. 2014; Sun et al. 2019). 
The diffuse radiation fertilization effect of PARdif can enhance the 
photosynthesis of shaded leaves, which cannot be neglected in GPP 
estimation (Cohan et al. 2002; Rap et al. 2018). Given the total PAR, a 
larger PARdif fraction will lead to more diffuse PAR than direct PAR, 
which will consequently affect the GPP estimation. However, the 
sensitivity of a LUE model to the fraction of PARdif is still not compre-
hensively understood. The impact of various PARdif fraction levels on the 
GPP estimation accuracy is unclear. Additionally, as one of the main 
factors influencing PARdif on clear days (Dong et al. 2016), aerosols are 
believed to decrease PARdir and increase PARdif by scattering and ab-
sorption, which indirectly affect the photosynthesis and production of 
plants (Li et al. 2020). Substantial efforts have been made to explore the 
relationship between aerosols and plant production in various ecosys-
tems and regions using observed or simulated data (Cohan et al. 2002; 
Kumar and Kumar 2017; Strada et al. 2015). Nevertheless, studies 
related to the impact of aerosols on GPP estimation are still limited. 

To extend the understanding of the sensitivity of GPP estimations to 
the PARdif fraction and aerosols, this paper evaluates the responses of 
one-leaf and two-leaf models (MOD17 and TL-LUE) to the variations in 
the PARdif fraction (the ratio of PARdif in PARtotal) and aerosol loading by 
using MODIS data and flux tower observations of ChinaFLUX. In addi-
tion, to investigate the errors of the calculated changes in GPP with the 

Fig. 1. Spatial distribution of the eight ChinaFLUX sites including cropland site (YC), mixed forest (MF) site (CBS), evergreen needleleaf forest (ENF) site (QYZ), 
evergreen broadleaf forest (EBF) sites (DHS and XSBN), and grassland sites (HB, NMG and DX). 

Table 1 
Location and vegetation cover of the eight ChinaFLUX sites.  

Sites YC CBS QYZ DHS XSBN HB NMG DX 

Lat (◦) 36.83 42.40 26.741 23.173 21.928 37.610 43.326 30.469 
Lon (◦) 116.57 128.10 115.058 112.536 101.265 101.322 116.404 91.062 
Vegetation 

Type 
Croplands Mixed 

forests 
Evergreen needleleaf 
forests 

Evergreen broadleaf 
forests 

Evergreen broadleaf 
forests 

Grasslands Grasslands Grasslands  
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variations in the two factors, the accuracies of the two models are 
compared with the changes in the PARdif fraction and aerosol optical 
depth (AOD, a unitless measurement of aerosol loading) to assess the 
impacts of the PARdif fraction and AOD change on model performance. 

2. Data 

2.1. MODIS data 

The MOD15A2, MCD43A3, and MOD08_E3 products from 2003 to 
2010 were used in this study. All MODIS products were obtained from 
NASA Level-1 and the Atmosphere Archive & Distribution System 
Distributed Active Archive Center (DAAC) (https://ladsweb.modaps.eo 
sdis.nasa.gov/search/). The eight-day composite MOD15A2 product 
was used to obtain LAI and fraction of PAR absorbed by vegetation 
(fPAR) data at 500 m resolution. To remain consistent with the footprint 
of the flux tower, the LAI and fPAR values at each site were derived from 
the mean values of pixels located within 3 km from the center of the site 
(Zhou et al. 2016). The LAI and fPAR time series were filtered using 
quality flags (QA) in MOD15A2 products to exclude cloud contaminated 
pixels. The locally adjusted cubic-spline capping (LACC) method (Chen 
et al. 2006) was applied to reconstruct the fPAR and LAI time series by 
filling the masked values and smoothing abnormal values due to the 
residual effect of atmosphere and cloud contamination (Zan et al. 2018). 
The time series of fPAR and LAI during 2003–2010 before and after 
LACC smoothing are shown in Figure S1 and S2. The fPAR and LAI 
values affected by atmospheric corrections or other artifacts are 
replaced by the values calculated by the LACC method, which has been 
proven to be a quality control for LAI and fPAR time series (Chen et al. 
2006). 

The albedo data of the 500-m grid were derived from the MODIS 
daily black-sky albedo product (MCD43A3) and averaged over eight-day 
time intervals to remain consistent with the temporal resolution of the 
MOD15A2 data. The albedo at each site was also averaged based on the 
values of pixels located within 3 km from the center of the site. The 
albedo time series was also filtered by the QA field and smoothed by 
LACC. 

The MODIS C6 level-3 products (MOD08_E3) with 1◦ resolution were 
used to obtain the eight-day combined Deep Blue and Dark Target (DB/ 
DT) AOD data. The AOD at each site was the value of the pixel that 
overlapped the target site. Due to the cloud contamination and the 
presence of ground snow and ice, the AOD data were masked by quality 
flags. The LACC was used to fill the missing or contaminated values in 
the AOD time series. 

2.2. Flux data 

The flux measurements at eight sites across China, including the 
daily ecosystem respiration (RE), net ecosystem exchange (NEE), and 
meteorological data were downloaded from the ChinaFLUX database 
(http://rs.cern.ac.cn/index.jsp). The ChinaFLUX NEE data were 
measured directly by the eddy-flux technique, while the RE data at all 
sites were calculated using the Lloyd–Taylor equation (Lloyd and Taylor 
1994; Wang et al. 2015; Zhu et al. 2020) The eight sites include one 
cropland site (YC), three grassland sites (HB, NMG and DX), and four 
forest sites (CBS, QYZ, DHS and XSBN). The vegetation types and loca-
tions of these sites are shown in Table 1 and Fig. 1. The observation 
period spanned from January 2003 to December 2010. Since the GPP 
cannot be measured directly, the GPP at each site was derived from the 
difference in the observed RE and NEE (GPP = RE-NEE) (Liu et al. 2014; 
Strada et al. 2015). The GPP derived from the ChinaFLUX measurements 
(GPP_FLUX) was used to calibrate model parameters and validate the 
MOD17 and TL-LUE models. In addition, daily meteorological mea-
surements, including air temperature (Ta) and vapor pressure deficit 
(VPD), at the ChinaFLUX sites were also employed in the LUE model. To 
remain consistent with the temporal resolution of the MODIS eight-day 

products, the daily GPP_FLUX and meteorological measurements were 
averaged over an eight-day time interval. 

2.3. CERES data 

The daily PAR data at a 1◦ × 1◦ latitude–longitude grid, including the 
direct and diffuse composition (PARdir and PARdif), were derived from 
the Clouds and the Earth’s Radiant Energy System (CERES) SYN1deg 
edition 4.1 product, which were obtained from the project website 
(https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection. 
jsp). The total PAR (PARtotal) is composed of PARdir and PARdif. The 
CERES data were validated by daily PARdif and PARdir observations at 
six sites (Table S1) obtained from China Meteorological Data Service 
Center (CMDC, http://data.cma.cn/) during 2004–2010. As shown in 
Figure S3, the CERES PAR has a good agreement with observations from 
the CMDC with a slope around 0.9 and R2 larger than 0.8. The PARdir 
and PARdif RMSEs are 1.35 MJ m− 2 d− 1 and 0.98.35 MJ m− 2 d− 1, 
respectively. The daily PARdir and PARdif data were averaged to an 
eight-day temporal resolution corresponding to the MODIS products. 
The PAR at each site was the pixel value corresponding to the target site. 

3. Methodology 

3.1. MOD17 model 

The MOD17 model (Running et al. 2000) was developed from the 
radiation conversion efficiency theory of Monteith (1972) and calcu-
lated GPP as follows: 

GPP = εmax × g(Tamin) × f(VPD) × PARtotal × fPAR (1)  

where εmax is the maximum LUE, with the default value shown in 
Table 2;g(Tamin) and f(VPD) are the scalars of the minimum air tem-
perature and VPD, respectively, which vary from in the range of [0, 1] 
and downscale the εmax to the real LUE; PARtotal is the total incident PAR; 
and fPAR is the fraction of PAR absorbed by the whole canopy. The term 
PARtotal × fPAR represents the absorbed PAR for vegetation (APAR). The 
VPD and Tamin scalars in Eq. (1) are calculated as follows: 

f(VPD) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0VPD ≥ VPDmax

VPDmax − VPD
VPDmax − VPDmin

VPDmin < VPD < VPDmax

1VPD ≤ VPDmin

(2)  

g(Tamin) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0Tamin ≤ Taminmin

Tamin − Tamin min

Tamin max − Tamin min
Tamin min < Tamin < Tamin max

1Tamin ≥ Taminmax

(3)  

where VPD and Tamin are daily measurements of average VPD and 
minimum air temperature, respectively; VPDmax and VPDmin are daily 
average VPD for maximum (εmax) and minimum (0) LUE, respectively; 
Taminmin and Taminmax represents the daily minimum temperature for 

Table 2 
Parameters of the MOD17 model for different vegetation types.  

Vegetation Type ENF EBF MF Grasslands Croplands 

εmax(g CMJ− 1)  0.962 1.268 1.051 0.860 1.044 
Tamin min (◦C)  − 8 − 8 − 7 − 8 − 8 
Tamin max (◦C)  8.31 9.09 9.5 12.02 12.02 
VPDmin (kPa)  6.5 8 6.5 6.5 6.5 
VPDmax (kPa)  46 31 24 53 43 
Ω  0.6 0.8 0.7 0.9 0.9 

ENF is evergreen needleleaf forests; EBF is evergreen broadleaf forests; MF is 
mixed forests 
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Fig. 2. Seasonal variations in eight-day observed GPP (GPP_FLUX) and estimated GPP (GPP_MOD and GPP_LUE) from the MOD17 and TL-LUE models at the eight 
ChinaFLUX sites during 2001–2010. 

Table 3 
Calibrated model parameters of εmax, εsun, and εshfor eight ChinaFLUX sites.  

Sites YC CBS QYZ DHS XSBN HB NMG DX 

εmax(gCM J− 1)  1.661 1.007 0.821 0.591 0.961 0.747 0.632 0.176 
εsun(gCM J− 1)  1.336 0.931 0.758 0.336 0.551 0.646 0.587 0.105 
εsh(gCM J− 1)  2.420 1.341 1.023 0.861 1.682 1.081 1.140 0.293  

X. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102269

5

maximum and minimum LUE; VPDmax, VPDmin, Taminmin and Taminmax are 
parameters derived from Biome Properties Look-Up Table (BPLUT), and 
they vary with the vegetation types, as shown in Table 2 (Running et al. 
2015). 

3.2. TL-LUE model 

The TL-LUE model was developed based on the MOD17 and boreal 
ecosystem productivity simulator (BEPS) models by separating the 
canopy into sunlit and shaded leaf groups (He et al. 2013). The GPP is 
calculated as follows: 

GPP = (εmsu × APAPsu + εmsh × APAPsh) × f(VPD) × g(Tamin) (4)  

where εmsu and εmsh are the maximum LUE of sunlit and shaded leaves, 
respectively; and APAPsu and APAPsh are the absorbed PAR of the sunlit 

and shaded leaves, which are defined as: 

APAPsu = (1 − α) × [PARdir ×
cos(β)
cos(θ)

+
PARdif − PARdif ,u

LAI
+ C] × LAIsu (5)  

APAPsh = (1 − α) × [
PARdif − PARdif ,u

LAI
+ C] × LAIsh (6)  

where α is the albedo relative to vegetation cover; PARdir and PARdif are 
the direct and diffuse components of PAR, respectively; β is the mean 
leaf-sun angle and is set as 60◦ for a canopy with spherical leaf angle 
distribution (Chen et al. 1999); θ is the solar zenith; LAI is the total leaf 
area index of the canopy; PARdif − PARdif ,u

LAI depicts the PARdif per unit leaf area 
for the canopy; PARdif ,u is the diffuse radiation under the plant canopy; 
and C represents the contribution of multiple scattering of the PARtotal to 
the PARdif. LAIsu and LAIsh are the LAI of sunlit and shaded leaves, 

Fig. 3. Scatterplots between the estimated eight-day GPP (GPP_MOD and GPP_TL) using MOD17 and TL-LUE models and the measured GPP by ChinaFLUX 
(GPP_FLUX) in calibration years from 2003 to 2006. The blue dots GPP_MOD against GPP_FLUX while the red dots are GPP_TL against GPP_FLUX. The solid line is the 
regression line while the dashed line is the one–one line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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respectively. 

LAIsu = 2cos(θ)(1 − exp(− 0.5Ω
LAI

cos(θ)
)) (7)  

LAIsh = LAI − LAIsu (8)  

where Ω represents the clumping index depending on the spatial dis-
tribution of vegetation foliage (Table 2). A smaller Ω value indicates 
larger foliage clumping, allowing more radiation to penetrate through 
the canopy (Chen et al. 1999). 

The PARdif ,u and C in Eqs. (5) and (6) are computed following the 
study of Chen et al. (1999). 

PARdif ,u = PARdif exp(− 0.5ΩLAI/(0.537 + 0.025LAI)) (9)  

C = 0.07ΩPARdir(1.1 − 0.1LAI)exp(− cosθ) (10)  

3.3. Model calibration and validation 

To reduce the GPP estimation bias caused by the maximum LUE, the 
optimized values of parameters Ɛmax, Ɛsun and Ɛsh in the MOD17 and TL- 
LUE models were calibrated using linear least-square regression to 
minimize the root-mean-square error (RMSE) between the estimated 
and measured eight-day GPP at the ChinaFLUX sites during 2003–2006. 
The GPP measurements from ChinaFLUX from 2007 to 2010 were 
employed to validate the GPP estimations from the two models. A linear 
regression was performed between the estimated and measured GPP, 
and the coefficient of determination (R2) and RMSE were calculated to 
assess the performance of the two models in the calibration and vali-
dation procedures. 

4. Results and discussion 

4.1. Calibrated model parameters 

Table 3 lists the calibrated εmax from the MOD17 model and εsun and 
εsh from the TL-LUE model at the eight China-FLUX sites. These cali-
brated parameters vary substantially in space. Although the HB, NMG 
and DX sites are covered by the same vegetation type, their εmax, εsun and 
εsh values are different. This difference is because in addition to the 
vegetation cover, the forest canopy architecture, plant species and leaf 
element contents can also lead to the dynamic maximum LUE (Zhou 
et al. 2016). The calibrated εsun ranges from 0.167 (DX) to 1.318 (YC), 
while the calibrated εsh ranges from 0.191 (DX) to 2.445 (YC). The 

parameters at the YC cropland site are higher than those at other sites in 
forests or grasslands, which may be caused by artificial fertilization and 
high water use efficiencies (Zhou et al. 2016). The calibrated εsh is 
1.2–1.8 times larger than the calibrated εmax, while the calibrated εsun is 
7.1%-43.1% lower than the calibrated εmax, indicating that shaded 
leaves have higher LUE than sunlit leaves. 

4.2. Comparison of model performance 

As shown in Fig. 2, the seasonal variations in the estimated GPP from 
the MOD17 and TL_LUE models (GPP_MOD and GPP_TL) are consistent 
with the GPP_FLUX measured at eight sites. For most sites, GPP is 
highest from June to August, corresponding with the peak of plant 
growth. The crops at the YC site have two peaks of GPP in spring and 
summer, which corresponds to winter wheat and summer maize rota-
tions (He et al. 2013). 

Fig. 3 compares GPP_MOD and GPP_TL with GPP_FLUX at the eight 
ChinaFLUX sites for the calibration years (2003–2006). The perfor-
mances of the two models differ substantially at different sites. Both 
GPP_MOD and GPP_TL have good agreement with GPP_FLUX at the YC, 
CBS, QYZ, and HB sites with R2 > 0.7. The coefficient of determination 
(R2) for GPP_MOD ranges from 0.04 at XSBN to 0.82 at HB. The RMSE 
between GPP_MOD and GPP_FLUX is smallest at DX (3.987 gCm− 2(8 
d)− 1) and largest at YC (20.914 gCm− 2(8 d)− 1). The GPP_TL has better 
agreement with GPP_FLUX than GPP_MOD with higher R2 

(0.291–0.836) and smaller RMSE (3.874–20.154) values at all sites. 
GPP_TL has the best agreement with GPP_FLUX at HB, with an R2 of 
0.836. The enhancement of GPP_TL compared with GPP_MOD is most 
significant at XSBN, with R2 increasing from 0.04 to 0.291 and RMSE 
decreasing from 19.902 gCm− 2(8d)− 1 to 15.472 gCm− 2(8d)− 1 (Table 4). 

The eight-day composite GPP of the two models during 2007–2010 
are calculated using the optimized parameters and validated with 
GPP_FLUX at the eight sites (Fig. 4). During the validation years, GPP_TL 
outperforms GPP_MOD with a higher R2 and smaller RMSE. Both 
GPP_MOD and GPP_TL have the highest R2 values (0.958 and 0.964) at 
the HB site. The accuracy of GPP_TL exhibits the largest improvement at 
XSBN with the largest R2 increase and RMSE decrease compared with 
that of GPP_MOD in both calibration and validation years (Table 4). In 
both Fig. 3 and Fig. 4, the regression line of the estimated GPP and 
GPP_FLUX is generally below the one–one line for all sites, indicating 
that both the MOD17 and TL-LUE models underestimate GPP. The 
regression line of GPP_TL is closer to the one–one line than GPP_MOD, 
suggesting that the underestimation of GPP_TL is less than that of 

Table 4 
Comparison of R2 and RMSE of the GPP_MOD and GPP_TL for calibration and validation years.  

Site GPP_MOD GPP_TL Difference 

R2 RMSE (gCm− 2(8d)− 1) R2 RMSE (gCm− 2(8d)− 1) △R2 △RMSE (gCm− 2(8d)− 1)  

Calibration Years 
YC 0.725 20.914 0.748 20.154 0.023 − 0.760 
CBS 0.775 15.553 0.796 15.036 0.021 − 0.517 
QYZ 0.787 11.139 0.814 10.864 0.027 − 0.275 
DHS 0.591 7.218 0.622 6.522 0.031 − 0.696 
XSBN 0.040 19.902 0.291 15.472 0.251 − 4.430 
HB 0.822 8.060 0.836 7.793 0.014 − 0.267 
NMG 0.425 6.846 0.508 6.370 0.083 − 0.476 
DX 0.364 3.987 0.391 3.874 0.027 − 0.113  

Validation Years 
YC 0.843 22.54 0.839 22.225 0.004 − 0.315 
CBS 0.817 14.999 0.837 14.66 0.020 − 0.339 
QYZ 0.837 10.024 0.848 9.821 0.011 − 0.203 
DHS 0.521 8.027 0.556 7.426 0.035 − 0.601 
XSBN 0.025 18.525 0.336 13.684 0.311 − 4.841 
HB 0.958 10.971 0.964 10.809 0.006 − 0.162 
NMG 0.435 10.333 0.467 10.032 0.032 − 0.301 
DX 0.203 5.120 0.223 5.002 0.020 − 0.118 

△R2 equals R2 of GPP_TL minus that of GPP_MOD; RMSE is RMSE of GPP_TL minus that of GPP_MOD. 
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GPP_MOD, which is obvious at the YC, CBS, XSBN and NMG sites. 

4.3. Sensitivity of the estimated GPP to the PARdif fraction 

The sensitivity of the estimated GPP to the PARdif fraction was 
assessed by calculating the bias and RMSE between the estimated GPP 
and GPP_FLUX at different PARdif fraction ranges. Fig. 5 shows the trend 
of the bias between the estimated GPP (GPP_MOD and GPP_TL) and 
GPP_FLUX with varied PARdif fractions. The GPP_MOD is systematically 
underestimated compared with GPP_FLUX when the PARdif fraction is 
high, and the degree of underestimation increases as the PARdif fraction 
increases. The GPP_MOD is overestimated when the PARdif fraction is 
low at the YC, CBS, DHS, XSBN and DX sites. The GPP_TL generally 
shows a consistent trend with GPP_MOD but the underestimation de-
creases when the PARdif fraction is larger than 0.8 for most sites, indi-
cating that the TL-LUE model mitigates the sensitivity of the estimated 
GPP to the PARdif fraction. This result occurs because when the PARdif 

fraction increases, the APAR of shaded leaves increases. Furthermore, εsh 
has a larger value than both εmax and εsun; therefore, GPP_TL is larger 
than GPP_MOD and exhibits a smaller deviation from GPP_FLUX. The 
TL_LUE model also decreases the overestimation at low PARdif fractions 
(<0.6) at evergreen broadleaf forest sites (DHS and XSBN). However, 
the TL_LUE model leads to a larger underestimation than MOD17 for the 
cropland, grassland and evergreen needleleaf forest sites when the 
PARdif fraction is low. The reason for this finding is that the APAR of 
sunlit leaves dominates the whole canopy when the PARdif fraction is 
low. Additionally, εsun is lower than both εsh and εmax; thus, GPP_TL is 
lower than GPP_MOD. Therefore, GPP_TL exhibits less overestimation 
when GPP_MOD overestimates at low PARdif fraction and exhibits 
greater underestimation when GPP_MOD underestimates the values and 
PARdif fraction is low. 

As shown in Fig. 6, the RMSE of GPP_MOD and GPP_TL shows an 
upward trend as the PARdif fraction increases at the YC, CBS, QYZ, HB, 
and DX sites. The GPP_MOD and GPP_TL RMSE values are high at the 

Fig. 4. Scatterplots between the estimated eight-day GPP (GPP_MOD and GPP_TL) using the MOD17 and TL-LUE models and the measured GPP by ChinaFLUX 
(GPP_FLUX) in the validation years from 2007 to 2010. 
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Fig. 5. Averaged bias between the estimated GPP from two models (GPP_MOD and GPP_TL) using calibrated parameters and the measured GPP at ChinaFLUX sites 
during 2003–2010 with fraction of PARdif. (△GPP equals estimated GPP minus measured GPP). 
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DHS and NMG sites when PARdif is low, possibly due to large over-
estimation of the low PARdif fraction. A comparison of bias and the 
RMSE of GPP_MOD and GPP_TL shows that the TL_LUE model starts to 
outperform the MOD17 model when the PARdif fraction is above 0.7 or 
0.8 for most sites. For the evergreen needleleaf forest sites, the TL_LUE 
model also has better accuracy than the MOD17 model, with a small 
RMSE for the low PARdif fraction. However, for the other sites, GPP_TL 
has a larger RMSE than GPP_MOD for low PARdif (<0.7), which is a 
result of the greater underestimation of GPP_TL compared with 
GPP_MOD (Fig. 6). Both GPP_TL and GPP_MOD show the largest RMSE 
at the crop site (YC) when the PARdif fraction is high (>0.8). The DX site 
has the smallest RMSE for all PARdif fraction ranges, which is consistent 
with the result in Fig. 4. Relative to MOD17, TL_LUE shows the greatest 
improvement in terms of bias and RMSE at the XSBN site, which is 
covered by tropical rainforests. This is because the diffuse PAR is higher 

in tropical rainforests than in other biome types (Yan et al. 2017), which 
leads to a larger impact of the PARdif fraction on GPP estimation. 

To illustrate how the LUE varies with the PARdif fraction, the 
observed LUE (LUE = GPP_FLUX/PAR) and simulated LUE (LUE =
GPP_MOD/PAR and LUE = GPP_TL/PAR) in different PARdif fraction 
ranges were calculated (Fig. 7). The observed LUE generally shows a 
rising trend with the increasing PARdif fraction at all sites, implying the 
positive impact of PARdif on LUE. The simulated LUE by the TL_LUE 
model shows a similar pattern to the observed LUE while the LUE of the 
MOD17 model does not increase with the increase in the PARdif fraction 
at the evergreen broadleaf forest sites (DHS and XSBN). In general, the 
LUE of GPP_MOD is higher than that of GPP_TL at the low PARdif frac-
tion. Both the TL_LUE and MOD17 models tend to underestimate the 
LUE when the PARdif fraction is larger than 0.7. For the evergreen 
broadleaf forest sites, the two models have overestimation at low PARdif 

Fig. 6. RMSE between the estimated GPP from two models (GPP_MOD and GPP_TL) using calibrated parameters and the measured GPP at ChinaFLUX sites during 
2003–2010 with fraction of PARdif. 
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Fig. 7. Dependence of the observed and modelled light use efficiency (LUE) on the fraction of PARdif in validation years.  
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fraction (<0.6). In addition, the LUE overestimation of GPP_TL is lower 
than that of GPP_MOD at the low PARdif fraction. 

To explore the seasonal variations in the estimated GPP sensitivity to 
the PARdif fraction, the bias between the estimated and measured GPP is 
calculated in each month. As shown by the blue line in Fig. 8, the 
fraction of PARdif exhibits different seasonal variations at different sites. 
Specifically, the PARdif fraction reaches its peak in summer (June to 
August) at the YC, CBS, XSBN, and DX sites, while the PARdif fraction at 
QYZ and DHS has higher values in spring (March to May) than in other 
seasons. Although the trend of the PARdif fraction varies, both the 
MOD17 and TL_LUE models produce larger underestimations of GPP in 

the months with high PARdif fractions than in those with low PARdif 
fractions at most sites except YC. The estimated GPP in YC is also 
underestimated in April and May when the winter wheat reaches the 
growth peak with a high GPP value. For most sites, the GPP_TL has less 
underestimation than GPP_MOD in the months with high PARdif frac-
tions, which is most obvious at the forest sites (QYZ, CBS, DHS, and 
XSBN). 

4.4. The sensitivity of the estimated GPP to AOD 

Different sites exhibit various AOD levels, with the highest levels 

Fig. 8. Seasonal variation in the averaged bias between the estimated GPP (GPP_MOD and GPP_TL) and the measured GPP at China Flux sites and the averaged 
fraction of PARdif during 2003–2010. 
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observed in YC and lowest levels observed in DX. As shown in Fig. 9, the 
ChinaFLUX sites with different aerosol loadings and land covers have 
inconsistent GPP estimation errors. The YC site has the largest under-
estimation (larger than 10 gCm− 2(8d)− 1) for high AOD values. GPP 
overestimation occurs when AOD is low at the YC, CBS, DHS, XSBN, and 
DX sites, which coincides with the sites having overestimation of GPP 
when PARdif is low. Despite some fluctuations, the underestimation of 
GPP_MOD and GPP_TL becomes more obvious with the increase in AOD 
at most sites except XSBN and NMG. The underestimation of GPP_TL is 
smaller than that of GPP_MOD for large AOD values, which is obvious in 
YC, CBS, QYZ, DHS, and HB, indicating that the TL-LUE model has lower 
sensitivity to aerosols than MOD17 at these sites. The reduction in un-
derestimation of TL-LUE is smaller at the three grassland sites (HB, NMG 
and DX) than at the other sites because the AOD at the grassland sites is 
low (ranging from 0.1 to 0.4) and the aerosol impact on PARdif is small. 

The RMSE of the estimated GPP shows various tendencies with the 

increasing AOD (Fig. 10). The RMSE of the estimated GPP is relatively 
higher for high AOD values than for low AOD values at the YC, CBS, QYZ 
and HB sites, which exhibit persistent and increasing underestimation of 
GPP with the increase in AOD. However, the DHS and XSBN sites have 
larger RMSE values at low AOD values than that at high AOD values 
because of the overestimation at low AOD values. Generally, the RMSE 
of GPP_TL is smaller than that of GPP_MOD, especially for high AOD 
values. In XSBN, the RMSE of GPP_TL is much smaller than that of 
GPP_MOD when AOD is less than 0.8, which may be a result of the 
decrease in both overestimation and underestimation of GPP_TL. 

The simulated LUE values of GPP_MOD and GPP_TL exhibit a similar 
tendency to the observed LUE with the increase in AOD (Fig. 11). 
However, the simulated LUE is generally smaller than the observed LUE 
due to the underestimation of GPP at all sites except XSBN. The LUE of 
GPP_TL is closer to that of GPP_FLUX than GPP_MOD. 

The seasonal variation in the averaged bias between the estimated 

Fig. 9. Averaged bias between the estimated GPP from two models (MOD17 and TL-LUE) using calibrated parameters and the measured GPP at the ChinaFLUX sites 
from 2003 to 2010 with the AOD changes. (△GPP equals estimated GPP minus measured GPP). 
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GPP and the measured GPP Fig. 12 shows that large underestimation of 
GPP often occurs in the months with high AOD levels at most sites 
during the corresponding growth period of plants except at XSBN and 
DHS. Specifically, the underestimation of GPP at YC site is highest in 
April and August when AOD is high for winter wheat and summer maize, 
respectively. The growth period of mixed forests at CBS site spans from 
May to September. The underestimation at CBS reaches a peak in July 
when AOD is 0.31. The correlation between AOD seasonal variation and 
underestimation change is insignificant at DHS and XSBN, which are 
covered by subtropical evergreen broadleaf forest and tropical ever-
green broadleaf forest. The reason for this is that the PARdif variation is 
also influenced by water vapor change due to dry/wet seasonality in 
addition to aerosols. The two models show greater underestimation in 
months with high AOD than in months with low AOD at the evergreen 

needleleaf forest site (QYZ). For grassland sites (HB, NMG and DX), the 
underestimation exhibits obvious consistent tendency with AOD during 
the growing season of grass (May to September). 

5. Conclusions 

This study investigated the sensitivity of the MOD17 and TL_LUE 
models to the PARdif fraction and AOD. The GPP estimated by the two 
models (GPP_MOD and GPP_TL) were validated using the measured 
GPP_FLUX at eight ChinaFLUX sites. Although GPP_MOD and GPP_TL 
exhibited good agreement with GPP_FLUX, both showed systematic 
underestimation. Basically, the underestimation of GPP_MOD was larger 
than that of GPP_TL. The GPP_MOD and GPP_TL showed increasing 
underestimation with the increasing PARdif fraction. The TL-LUE model 

Fig. 10. RMSE between the estimated GPP from two models (MOD17 and TL-LUE) using calibrated parameters and the measured GPP at the ChinaFLUX sites from 
2003 to 2010 with the AOD changes. 
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performed better than the MOD17 model with reduced underestimation 
and decreased RMSE values when the PARdif fraction was larger than 0.7 
or 0.8. However, the TL-LUE model led to a greater underestimation and 
RMSE at low PARdif fractions. The seasonal variation in the estimated 
GPP sensitivity to the PARdif fraction showed that the underestimation 
of the estimated GPP from the two models is larger in months with high 
PARdif fractions than in those with low PARdif fractions at most sites. The 
underestimation of GPP is larger for high AOD values than for low AOD 
values at most sites. GPP_TL exhibited a smaller underestimation than 
GPP_MOD. The overestimation also occurred at low AOD values, which 
is consistent with that for low PARdif fractions. Therefore, the one-leaf 
and two-leaf LUE models showed different performances under 
different PARdif fractions and AOD conditions, which should be 
considered for the further improvements of GPP models. 

This study provides a guide for improvement of GPP estimation 

models. The relationship between LUE and PARdif should be explored 
and introduced in LUE models to resolve the underestimations of GPP. 
The LUE parameters (Ɛmax, Ɛsun and Ɛsh) may change with the PARdif 
fraction instead of being treated as constants that only depend on spe-
cies. In addition, the LUE model parameters should be evaluated on a 
season basis to improve the model performance. 
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