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A B S T R A C T

This study proposes an artificial intelligence approach to predict ground settlement during shield tunneling via
considering the interactions among multi-factors, e.g., geological conditions, construction parameters, con-
struction sequences, and grouting volume and timing. The artificial intelligence approach employs a hybrid
neural network model that incorporates a differential evolution algorithm into the artificial neural network
(ANN). The differential evolution algorithm is used to determine the optimized architecture and hyperpara-
meters of ANN. The adaptive moment estimation (Adam) method is then employed to facilitate the training
process of ANN. On the strength of Adam, the differential evolution algorithm is further enhanced to process a
large number of ANN candidates without consuming massive computing resources. The proposed hybrid model
is applied to a field case of ground settlements during shield tunneling in Guangzhou Metro Line No. 9.
Geological conditions and shield operation parameters are first characterized and quantified by a feature ex-
traction strategy, then input for the model. Results verifies the accuracy of prediction using the proposed hybrid
model. Moreover, shield operation parameters with high influence on ground settlement are identified through a
partial derivatives sensitivity analysis method, which can provide guidance for shield operation.

1. Introduction

Shield tunneling is widely used for underground tunnel construction
in various geological conditions such as soft deposits (Shen et al., 2009;
Wu et al., 2019), weak rocks (Ren et al., 2018b), and mixed grounds
with soft soils and rocks (Elbaz et al., 2018, 2020). Ground settlement
associated with the shield tunneling is a common issue (Peck, 1969;
Shen et al., 2010, 2016; Ren et al., 2018a,d), which may cause struc-
tural deformation and cracking, and potentially threaten the adjacent
facilities (Giardina et al., 2013; Fu et al., 2014; Camós and Molins,
2015; Soga et al., 2017). Therefore, an improved understanding of
ground response to tunnel excavation is essential for securing the
tunnel construction and building environment safety, particularly
considering an increasing demand for the underground transportation
construction due to fast urbanization in recent years (Mair, 2008;

Fargnoli et al., 2015). A key challenge is then to clarify and quantify the
nonlinear soil-shield interactions during excavation (Wongsaroj et al.,
2013; Tan and Lu, 2017, 2018).

Over the past 50 years, numerous approaches have been developed
to model the tunneling-induced ground settlements (Chai et al., 2018;
Wu et al., 2020a,c). The most widely used approaches in engineering
practice are empirical methods and numerical methods. Empirical
method was firstly proposed by Peck (1969) who advocated using in-
vert Gaussian distribution curve to predict tunneling-induced ground
settlements profile. Then, some modified empirical formulae have been
put forward (Mair et al., 1996; Vorster et al., 2005). Although empirical
methods are convenient, without considering the realistic incorporation
of all the relevant spatial-temporal interactions occurring during tun-
neling, their application situation is limited (Meschke, 2018). Numer-
ical methods can model the complex tunneling processes by
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incorporating constitutive models for rocks/soils, complex boundary
conditions and dynamic construction procedures (Lyu et al., 2020;
Ninić, 2015; Wu et al., 2020b). However, geological parameters re-
quired for model development and calibration are not readily available,
and uncertainties are inevitably embedded in model parameters. Thus,
it is difficult to implement the numerical model in many cases (Wang
et al., 2016; Atangana Njock et al., 2020; Gao et al., 2020; Lyu et al.,
2020). Except for the empirical and numerical methods, machine
learning methods have gradually emerged as promising approaches that
can predict ground settlements with limited knowledge of the under-
lying physical parameters and the intermediate physical processes
(Zhang et al., 2017; Ren et al., 2018d). Machine learning methods can
find regularities hidden in historical data and then apply them to pre-
dict future scenarios (Sahoo et al., 2017; Chen et al., 2019b; Zhang,
2019; Zhang et al., 2020). Many researchers have developed various
machine learning models for geotechnical engineering, such as artificial
neural network (ANN) (Kim et al., 2001; Suwansawat and Einstein,
2006; Santos and Celestino, 2008; Freitag et al., 2017; Chen et al.,
2019a), genetic algorithm (Yin et al., 2017), support vector machine
(Samui and Sitharam, 2008; Zhao and Yin, 2009), relevance vector
machine (Wang et al., 2016), adaptive neuro fuzzy based inference
system (Bouayad and Emeriault, 2017), decision tree (Dindarloo and
Siami-Irdemoosa, 2015), random forest (Zhang et al., 2019), etc.

ANN is the most popular model among the aforementioned models
due to its great potential in dealing with high nonlinear interactions
between input and objective parameters. Generally, optimal archi-
tecture of ANN varies for different issues in many cases. Thus, it is
necessary to make a sound design to fully explore the potential of ANN
models conducted for the prediction of tunneling-induced ground set-
tlements. Suwansawat and Einstein (2006) used trial-and-error way to
determine the best number of hidden layers and neurons. Whereas, Kim
et al. (2001) and Santos and Celestino (2008) determined the archi-
tecture of ANN directly. These studies only tested few or certain ANN
models, thereby potentially restricting their applicability. Besides, the
selection of input parameters is also significant to the establishment of
ANN models. Tunnel geometry, geological conditions and shield op-
eration parameters are often considered as the input parameters
(Suwansawat and Einstein, 2006; Wang et al., 2016). However, most
research works simply take account of the geological categories rather
than the physical properties for geomaterials. Such a simplification may
provide insufficient information on soil characteristics for ANN models.
Another key issue when forming ANN predictive models is how to as-
sess the relative importance of input parameters to the objective output
(Kemp et al., 2007; Paliwal and Kumar, 2011). Accurate knowledge of
relative importance would be useful in guiding shield steering and
monitoring. Common methods for identifying relative importance in
ANN contain connection weight method, perturb method, profile
method and partial derivatives method (Oña and Garrido, 2014). The
first method is only suitable for ANN with a single hidden layer while
the latter three can be competent for ANN with multiple hidden layers.

The objective of this study is to predict tunneling-induced ground
settlements by developing a novel ANN model enhanced by the dif-
ferential evolutionary algorithm. First, a hybrid neural network model
is developed to incorporate the differential evolutionary algorithm into
the ANN. The proposed hybrid model is then employed to predict the
ground settlements induced by shield tunneling. The relative im-
portance of input parameters (especially the shield operation para-
meters) to ground settlement is identified by using the proposed hybrid
model.

2. Brief review on ANN

Fig. 1 shows a typical ANN architecture, which consists of one input
layer, one output layer, and one or more hidden layers in between. Each
layer has several processing units, called neurons. In a fully connected
ANN, two neurons in the adjacent layers have a connection, by which

the input signals can flow from the input layer to the output layer to
generate processed data. The hidden layers are important because most
of mathematical adjustment operations are performed within them. As
shown in Fig. 1, the neurons arranged in these layers executes two vital
phases, namely (i) linear regression and (ii) activation, the aforemen-
tioned two phases can be written as
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in the lth layer, n is the number of neurons in the (l-1)th layer, m is the
number of neurons in the lth layer, andg () is the activation function. In
this paper, the tanh function ranged between (-1, 1) is used as the ac-
tivation function for all the layers.

Each neuron has different values of weights and biases that indicate
the influences of input data. The initial weights are crucial to the per-
formance of the ANN because of the multiplicative effect through
layers. Glorot and Bengio (2010) suggested using the following nor-
malized initialization method for the initial weights.
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whereU v v[ , ] is the uniform distribution in the interval (−v, v) and nl
is the number of the neurons in the lth layer.

Generally, the estimated values outputted through the network are
different from the target values. In the training of an ANN model, the
differences are usually called “loss” or “cost”. Given the proposed ANN
architecture, the log-cosh loss function is adopted, which can be ex-
pressed in the following form (Green, 1990).
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where M is the size of sample, yp and yp are the target value and the
predicted value for the pth example, respectively. This loss is similar to
the mean square error but is not easily subject to outliers. To prevent
overfitting, “L2 regularization” term is added to Eq. (4), then the
modified L bw( , ) becomes (Ng, 2004):
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where λ is a hyperparameter that determines the level of regularization.
This regularization strategy promotes generalizability of the neural
network by driving the weights closer to the origin. Subsequently, the
weights and biases can be updated as follows.
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where α is the learning rate that controls the magnitude of parameter
updates. By adjusting weights and biases in the opposite direction, the
loss L gradually decreases epoch by epoch.

3. Proposed approach: hybrid neural network model

3.1. Algorithm with adaptive learning rates

Learning rate is a crucial parameter in training neural networks
because of the significant influence on the model performance. On the
other hand, the learning rate has long been regarded as one of the most
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difficult hyperparameters to set (Goodfellow et al., 2016). Recently,
several methods have been proposed to adapt the learning rate auto-
matically throughout the course of learning. Kingma and Ba (2014)
proposed an adaptive learning rate optimization algorithm (the ‘Adam’)
that only demands first-order gradients with low memory requirement.
This method combines the advantages of AdaGrad method (Duchi et al.,
2011) and RMSProp method (Tieleman and Hinton, 2012), which is
regarded as being fairly robust to choose appropriate hyperparameters.
Considering the prediction of ground settlements induced by shield
tunneling using ANN requires a great deal of computing resources, this
study employs the ‘Adam’ algorithm to accelerate backward propaga-
tion. The implementation of the ‘Adam’ algorithm is presented in Ap-
pendix (see Algorithm 1). Detailed introduction about Adam can be
found in Kingma and Ba (2014).

3.2. Differential evolution approach

Since there are no clear theories available to refer (Suwansawat and
Einstein, 2006), the architecture and the inherent hyperparameters of
neural network in many research works are determined through trial-
and-error method. Nevertheless, this method is less effective and prone
to lead to suboptimal solutions. On the other hand, the design of a
neural network is actually a kind of optimization problem. In view of
this, this study employs differential evolution algorithm to determine
the best neural network architecture (including the number of hidden
layers and the number of neurons in a hidden layer) and hyperpara-
meters (including epoch size and regularization parameter). Note that
in this study, each hidden layer is set to have a same number of neu-
rons.

The differential evolution algorithm proposed by Storn and Price
(1997) is a simple yet powerful population-based optimizer over con-
tinuous space. The differential evolution algorithm has gradually
gained more attention and has been widely used in diverse fields. The
basic implementation of this algorithm is described as follows.

Initialize population. Differential evolution algorithm utilizes a
certain amount of D-dimensional parameter vectors, i.e., individuals

= =i N g Gx , 1, 2, ..., , 1, 2, ...,i g P, (7)

as a population for each generation g. NP is the population size and G is
the number of generations. The initial population should be uniformly
distributed in the entire search space as much as possible. Let
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minimum and maximum parameter bounds, respectively. Then the

initial population can be expressed as below.
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where xi
j
,0 is the j

th component of ith individual in the initial generation,
and rand (0, 1) represents a random value within the range (0, 1).

Mutation operation. Let vi g, be the mutant vector. The following
mutant vector generation strategy is selected to operate population
mutation.
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where “DE/rand/1” is a common mutant strategy used in differential
evolution algorithm, r1, r2and r3 N{1, 2, ..., }P are mutually exclusive
integers which are also different from i. F is a real and constant factor
[0, 2] for scaling the differential variation x x( )r2,g r3,g .
Crossover operation. In the basic version, differential evolution

algorithm uses the binomial (uniform) crossover. Let ui g, be the trail
vector which is given by
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where ui g
j
, is the j

th component of ui g, , CR is the crossover rate ( [0, 1])
that controls the fraction of individual component copied from the
mutant vector, jrand is a randomly selected integer in the range [1, D].

Selection operation. Let f denote the objective function acting on
parameters of an individual. The selection follows the Greedy policy:
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where +xi g, 1 is the individual vector at the next generation.
In order to build the neural network prediction model, four vari-

ables, namely the number of hidden layers Nh, the number of neurons in
a hidden layer Nn, epoch size Es and regularization parameter λ, are
denoted as the component of an individual x. Therefore, the aim of
employing the differential evolution algorithm is to find the optimal x
for the neural network.

3.3. Sensitivity analysis

To quantify the importance of the various input parameters on the
outputs within the neural network, the partial derivatives method
(Dimopoulos et al., 1995) is employed in this study. Gevrey et al.
(2003) compared seven different methods to determine the relative

.

Fig. 1. Schematic diagram of artificial neural network.
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importance of input parameters and concluded that the partial deri-
vatives method can produce the most stable results. The other ad-
vantage of this method is its ability in calculating relative importance of
a neural network with multiple hidden layers.

The partial derivatives method calculates the first-order derivatives
of the output parameter with respect to the input parameters and sums
the derivatives across all the hidden layers. According to Dimopoulos
et al. (1995), we have

= = =

=

= =

=

d w g z

w g z d

( )

( )

l
j z

x
i

m z
z

z
x

i

m

l
ji

l
i z

x

i

m

l
ji

l
i

l
i

1 1
1

1
1 1

l
j

k
l
j

l
i

l
i

k
l
i

k1

1 1

(12)

= =d z
x

wj
j

k

jk
1

1
1 (13)

= =s y
x

g z d( )k
k

L L
1 1

(14)

where dl
j and sk are the differential coefficients, and xk is the kth input

parameter. Then, the relative importance of the kth input parameter can
be defined as below.
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where M is the total number of observations.
The S (see equation (15)) provides a classification of the input

parameters according to their contribution to the output parameter in
an ANN model. The input parameter with the highest S value influences
the output parameter most. The key parameters for the shield tunneling
operation affecting the ground settlement significantly, can be identi-
fied by different S values.

3.4. Implementation of the hybrid model

The flowchart of the proposed evolutionary neural network model is
shown in Fig. 2. The steps for the implementation of the proposed hy-
brid model for the shield tunneling-induced ground settlements pre-
diction can be presented as follows.

Step 1: Analyzing geological conditions and collecting shield con-
struction data, identifying the factors that potentially affect ground
settlements and pre-processing the collected data (including parameter
quantization and initialization).

Step 2: Applying the differential evolution algorithm to generate
certain sets of neural network model parameters (Nh, Nn, Es, and λ) at
each iteration (“generation”).

Step 3: Building the neural network models based on the para-
meters from Step 2.

Step 4: Training the developed models and comparing the predicted
ground settlements with the measured ground settlements for each
model in the current generation of differential evolution algorithm.

Step 5: Judging whether the best model in the current generation
meets the desired loss or whether the generation reaches the set value.
If not, returning to Step 2 and continuing the evolution process until
the criterions are satisfied.

Step 6: Exporting the neural network with the best performance.

3.5. Application of the hybrid model

As shown in Fig. 3, the proposed hybrid model can be applied to a
stage-wise design for shield machine steering. In the early stage of
shield tunneling, owing to insufficient monitoring data available to
implement the hybrid model, the empirical methods, analytical
methods, and numerical methods can be adopted to provide initial
guidance for shield machine operation. In the normal construction

stage, the amount of monitoring data increases. Once the data is suf-
ficient, the hybrid model can be activated to assist the shield tunneling
operation. Meanwhile, the sensitivity analysis can be employed to
identify the most influential operation parameters for shield tunneling.
As the shield tunneling continues, new data will be generated con-
tinuously. These new data will enlarge the existing data set and con-
sequently enhance the predictive performance of the proposed hybrid
model.

4. Case study

4.1. Site and geological conditions

In this study, the relevant data during the construction of the tunnel
between Maanshan Park Station and Liantang Station (M-L) are col-
lected to evaluate the proposed approach. The M-L tunnel constitutes
the middle section of Guangzhou Metro Line No. 9. It is subdivided into
two main tunnel sections, i.e., the north tunnel section and the south

Fig. 2. Flowchart of the proposed hybrid model. The neurons in orange color
represent the input variables while the green neuron represents the output
variable, namely, the predicted ground settlement. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

K. Zhang, et al. Tunnelling and Underground Space Technology 106 (2020) 103594

4



Fig. 3. Stagewise design for shield machine steering.
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tunnel section. The twin tunnels (the north line and the south line) are
about 1.2 km in length, 6.0 m in outer diameter, and 5.4 m in inner
diameter. The tunnel alignment passes through heavily crowded areas
of Guangzhou city (Liu et al., 2018; Lyu et al., 2019; Ren et al., 2018c).
Two earth pressure balanced (EPB) TBMs were used to excavate the
tunnel with a buried depth varying from 7.0 to 10.0 m. The geological
profiles of the north and south tunnel subsections of M-L section are
shown in Fig. 4.

Geological investigations indicate that different soil layers are not
clearly stratified but often intersected, causing difficulties in estab-
lishing either an analytical or numerical model. For simplification, silty
clay, sand, residual soil and highly weathered limestone are classified as
the sand-clay soil in general in this study. Therefore, in the studied
section, soils and rocks are divided into 3 layers, including the backfill,
the sand-clay soil, and moderately weathered limestone. The tunnel
was excavated mostly within the sand-clay layer but with few parts in
the moderately weathered limestone. As shown in Fig. 4, karst caves
have been detected and they are largely distributed in this site, which
make the site difficult for tunnel construction. It has been widely ac-
knowledged that engineering problems such as water inflow and shield
head sinking occur with a high frequency when tunnels are excavated
in a karst region (Cui et al., 2015; Elbaz et al., 2018). Therefore, most of
these karst caves were treated by grouting cement to guarantee safe
construction. To obtain the real-time feedbacks of ground response (like
settlement) during the tunnel excavation, surface settlement markers
were installed with approximately 5 m intervals along the tunnel
alignment (see Fig. 4). By using these markers, the monitoring data
were collected and subsequently stored in a database for establishing
the prediction model.

4.2. Data analysis and pre-processing

The factors influencing ground settlements can be divided into three
categories in general: (i) tunnel geometry, (ii) geological conditions,
and (iii) operation parameters of shield machine. Given that the twin
tunnels have a constant diameter and are excavated by the same type of
EPB shield machine, the effects of tunnel geometry are neglected. Thus,
only geological conditions and shield operation parameters are con-
sidered in this example. Table 1 details all the parameters used as inputs
to design the neural networks and some geological parameters and
shield operation parameters in the EPB tunneling are visualized in

Fig. 5.
The geological conditions include groundwater level (GL), thickness

of backfill over tunnel crown (BCT), thickness of sand-soil over tunnel
crown (SCT), thickness of weathered rock over tunnel crown (RCT),
thickness of sand-soil under tunnel invert (SIT), thickness of rock under
tunnel invert (RIT), height of karst cave (KH) and distance between
karst cave and tunnel invert (KD). The soil thicknesses rather than
detailed soil properties are considered in this study because quite a few
indicators jointly characterize the soil that may result in complex
computation. However, for certain soil, the settlement is approximately
linear with the thickness of the soil as reflected in layer-wise summation
method. The shield tunneling operation parameters considered in this
study are selected based on previous research and on the particular site
observations. The selected operation parameters include total thrust (T)
to push the TBM during the excavation of each ring, cutter head torque
(CT), penetration rate (V), tail void grouting pressure (GP), grouting
volume (GV), face pressure (FP), tunneling deviation (TD), tail void
(TV), karst cave treatment scheme (KTS). The 17 parameters mentioned
above should be quantified in the hybrid model, and 16 of them can be
determined directly from the recorded data except KTS. In this study,
we set a dummy variable to represent KTS and stipulate that KTS = 1
represents karst cave with treatment, KTS = 0 represents karst cave
without treatment and KTS = 0.5 represents no karst caves detected.

Fig. 6 shows the excavation processes of the twin tunnels. The south
tunnel was excavated on November 16, 2013, about one month earlier
than the north tunnel. Then, the two tunnels were excavated almost
parallelly until May 3, 2014 when most of the cutting tools needed to be
changed in the south tunnel. Fig. 7 plots the variation of six shield
operation parameters in tunneling process of the south line. As can be
seen in Fig. 7, the total thrust is between 4MN and 16MN, with an
average value of 9.4MN. The variation of total thrust exhibits three
undulating stages, which is close to the undulation of stratum. The
cutter head torque varies in the range 1.0–3.0MN·m, with an average
value of 1.8MN·m. Since the first 100 rings are in the trial excavation
phase, the shield operator’s unfamiliarity with the ground condition
resulted in an obvious fluctuation of the torque. It can also be observed
that the harder the soils at the cutting face, the larger the required
torque of the cutter wheel. The variation of penetration rate is related to
the soil type at the cutting face. When tunneling happens in rock or
sand-rock formations, the penetration rate of shield machine is con-
trolled below 40 mm/min. Besides, the face pressure varies in the range
100–300 kPa. Basically, the greater the variation in soil type at the
cutting face, the greater the change in face pressure. Compared with
other parameters, the variation of grouting pressure and grouting vo-
lume is relatively small, and most of the time they are kept at a constant
value. From the above, it is seen that the complicated soil conditions in
the M−L tunnel section lead to significantly changing shield operation
parameters, implying that there is a strong interaction between the soils
and the shield in the M-L tunnel section.

In order to explore key information from the soil-shield interaction
for ground settlement prediction, 328 data samples are collected in this
studied site including 176 on the north line and 152 on the south line.
Among these samples, the maximum ground settlements above the
tunnel centerline (see Fig. 8) are considered for the establishment of the
proposed hybrid evolutionary model. Then, 270 data samples are ran-
domly selected as training set while the remaining 58 samples are used
as testing set. All the 17 input parameters mentioned before and the
output ground settlement value in the training and testing set are
normalized to the range of [−1, 1]. Normalization uses the maximum
and minimum values of the corresponding parameter in the whole data
set, as expressed below.

=x x min x
max x min x

2 ( )
( ) ( )

1i
i

(16)

where min(x) and max(x) are the minimum and maximum of a para-
meter, respectively. To evaluate the predicting capability of the

Table 1
List of parameters affecting the ground settlements.

Category Parameters Symbol

Shield operation parameters • Thrust (kN) T
• Cutter head torque (MN·m) CT
• Penetration rate (mm/min) V
• Tail void grouting pressure (kPa) GP
• Grouting volume (m3) GV
• Face pressure (kPa) FP
• Tunneling deviation (mm) TD
• Tail void (mm) TV
• Karst cave treatment scheme KTS

Geological conditions • Groundwater level (m) GL
• Thickness of backfill above tunnel
crown (m)

BCT

• Thickness of sand-soil above tunnel
crown (m)

SCT

• Thickness of weathered rock above
tunnel crown (m)

RCT

• Thickness of sand-soil under tunnel
invert (m)

SIT

• Thickness of rock under tunnel invert
(m)

RIT

• Karst cave height (m) KH
• Distance between karst cave and tunnel
invert (m)

KD
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proposed hybrid model, two evaluation criteria are employed in this
paper (see Table 2).

4.3. Optimized neural network prediction model

Regarding the model design, the values of parameters applied to the
differential evolution algorithm and the predefined range of parameters
for determining neural network are listed in Table 3. The loss L instead
of evaluation criteria is used as objective function to guide the algo-
rithm in the evolutionary process because log-cosh loss function is
smooth and less susceptible to outliers than evaluation criteria. Indeed,
the loss function and the mentioned criteria function are basically
consistent in reflecting the decreasing trend of the difference between
the predicted value and the measured value, ensuring the reliability of
the obtained prediction model.

After performing an optimization using the differential evolution
algorithm on the dataset, the neural network model with a high ability
of predicting ground settlements can be obtained. The optimized neural
network parameters are: the number of hidden layers Nh = 4, the
number of hidden neurons in each hidden layer Nn= 15, the epoch size
Es = 1500 and the regularization parameter λ = 0.104.

The loss value of testing set during evolution is presented in Fig. 9.

As shown in Fig. 9, the loss decreases rapidly with the generation in-
crease and reaches the minimum value after 45 generation, which de-
monstrates that the differential evolution algorithm is efficient for the
optimization of neural network architecture and hyperparameters. The
final optimized hybrid model has R2 = 94.56% and RMSE = 4.29 mm
for training data set and R2 = 91.23% and RMSE= 6.39 mm for testing
data set. To show the advantage of the proposed hybrid model, the
authors have tested shallow neural networks by setting the number of
hidden layers (Nh) as 1. The optimized shallow neural network para-
meters are: Nn = 18, Es = 1743 and λ = 0.0. The shallow model has
R2 = 86.47% and RMSE = 6.62 mm for training data set and
R2 = 85.89% and RMSE = 7.29 mm for testing data set, which in-
dicates that shallow neural networks has poorer performance than the
deep network model. Therefore, the potential of ANN may not be fully
realized by merely using shallow network.

The measured and predicted settlements using hybrid model are
presented in Fig. 10. The comparison shows a good agreement between
the predicted and measured settlements for both training and testing
sets. Most ground settlements are within 20 mm. The prediction yields
quite low error in this range. However, for large settlements, especially
when over 50 mm, the prediction accuracy is slightly lower. This poor
prediction is expected since there are not enough sample data in this
range (> 50 mm) for the network to learn. Moreover, noises embedded
in certain data can also cause error of prediction. Fig. 11 and Fig. 12
show the predicted settlement and its error in the training set and
testing set, respectively. It can be seen that the error for a majority of
points is smaller than the given deviation (i.e.,± 5 mm) from mea-
surements.

As mentioned previously, the feature extraction of soils is important
for the prediction performance of the model. For a comparison purpose,
we added an examination where soil category rather than soil thickness
around the tunnel are considered. The newly optimized neural network
parameters are: Nh = 2, Nn = 28, Es = 1994 and λ = 0.032, which
produce values of R2 = 95.28% (RMSE= 3.92 mm) for training set and
R2 = 86.95% (RMSE = 6.95 mm) for testing set. Although the indices
seem better on training set than that obtained using the model con-
sidering soil thickness, they tend to be poor on testing set. This big
discrepancy between the training error and testing error is largely due
to the fact that only considering the soil category cannot provide en-
ough information for neural network to learn.

Fig. 5. Schematic illustration of geological parameters and shield operation parameters in the EPB tunneling, modified after (Chen et al., 2019b).

Fig. 6. Twin tunneling progress.
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4.4. Relative contribution of the inputs

During the training process, neural network learns to take more
seriously the valuable inputs and ignore useless ones. The influence on
the weights and biases from the aforementioned process can be figured
out from the calculation of the neural network sensitivity to inputs.
Fig. 13 depicts the relative importance of the input parameters to the
ground settlement. The relative importance is calculated by the partial

derivatives method (see Eq. (15)). As shown in Fig. 13, among the
shield tunneling operation parameters, the most important input in this
case is the cutter face pressure, following with the tunneling deviation
and then the total shield thrust. The face pressure has the highest re-
lative importance on the ground settlement, which is consistent with
the research results in literature (Kasper and Meschke, 2006; Wang,
et al., 2016). Regarding an earth pressure balance shield driven tunnel,
the face pressure is usually the key controlling factor that is used to

Fig. 7. Variation of shield operation parameters in tunneling process of south line. (a) total thrust; (b) cutter head torque; (c) penetration rate; (d) grouting pressure;
(e) grouting volume; (f) face pressure (modified from Elbaz et al., 2018).
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balance the external ground and water pressure.
In addition, three most important geological conditions identified

by the model are the thickness of sand-soil above tunnel crown, the
thickness of weathered rock above tunnel crown, and the groundwater

Fig. 8. Maximum ground settlement of measured points above the two tunnel centerlines.

Table 2
Formula for the evaluation criteria.

Evaluation criteria Definition

Correlation coefficient
= =

= =
R p

M tp tp yp yp

p
M tp tp p

M yp yp

1 ( )( )

1 ( )2
1 ( )2

Root mean square error
= =RMSE p

M tp yp
M

1 ( )2

Note: tp and yk are target and network output for the pth output respectively. tp
and yp are the average of targets and network outputs respectively and M is the
total number of samples considered.

Table 3
Parameters used in the hybrid model.

Parameter Symbol Value

differential evolution
algorithm

Population size NP 40
Number of generations NG 100
Mutation rate F 0.5
Crossover rate CR 0.5

Neural network Number of hidden layers Nh [1, 6]
Number of neurons in a
hidden layer

Nn [10, 30]

Regularization parameter [0.0, 0.3]
Epoch size Es [1000,

3000]

Fig. 9. Loss value of testing data set during evolution.

Fig. 10. Predicted vs. measured settlements for training and testing datasets.

Fig. 11. Predicted settlement and its error in training set.
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level. The height of karst cave also has a considerable effect on the
ground settlement. Since most of the karst caves are treated, the
parameter KTS does not change much, resulting in a lower relative
importance. However, this does not imply that the treatment of karst
cave is not important.

Although the neural network approach can provide good predictive
capacity, the interpretability of this kind of model is limited when

compared with common linear regression (Yin et al., 2018a,b). It is
difficult to properly assess the relationships between parameters within
the model. Hence, the authors compute and plot the partial derivatives
of ground settlement to the input parameters by using the partial de-
rivatives method. The partial derivative plots (see Fig. 14) of the hybrid
model show some intuitive tendencies of ground settlement versus
input parameters at each observed point (i.e., sample data point). For
example, the settlement statistically tends to be negatively related to
the shield thrust, but positively related to the penetration rate. If the
amount of sample dataset is sufficient, the overall tendency of ground
settlement relative to each parameter would be more apparent. Con-
sequently, those previously ambiguous relationships could be shar-
pened by using the partial derivatives method when applying a neural
network-based model.

5. Conclusions

This study proposed a hybrid neural network model for predicting
shield tunneling-induced ground settlement. The effectiveness of the
proposed model were verified through a case study of shield tunneling
in Guangzhou Metro Line No. 9. Based on the analysis and discussion,
some conclusions can be drawn as below.

(1) Different from the previous trial-and-error method, the differential
evolution algorithm was incorporated into ANN framework to de-
termine the optimal neural network architecture and hyperpara-
meters. This algorithm can find a way to design the neural network
with the optimized performance. Additional parameters introduced
by differential evolution algorithm were also easy to be set up.

(2) The proposed hybrid model was facilitated by using the ‘Adam’
algorithm. This algorithm automatically adjusted learning rate and
ensured less computational time for network training. More im-
portantly, the ‘Adam’ algorithm allowed the model to perform a
large number of candidate neural networks.

(3) When applying the proposed model in the field case, geological
condition and shield operation parameters were used as inputs for
the model. For the geological condition inputs, thickness of soil
layer was chosen to represent soil profile and a dummy variable was
proposed to represent karst treatment. It is observed that this fea-
ture extraction strategy was able to convey enough geological in-
formation for the neural network to learn. Prediction results de-
monstrated that the proposed hybrid model can predict the
settlement well during shield tunneling in karst strata.

(4) The results of sensitivity analysis indicated that the face pressure,
tunneling deviation, and total shield thrust were the three most
important operation parameters affecting ground settlements.
These sensitive factors identified by the model enable engineers and
shield operators to reasonably manage shield operation.
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Appendix A

Algorithm 1: (The Adam algorithm for adapting the learning rate (Kingma and Ba, 2014).).

Require: Step size (Suggested value: 0.001)
Require: Small constant used for numerical stabilization. (Suggested value: 10-8)
Require: Exponential decay rates for moment estimates: 1, [0, 1]2 . (Suggested values: 0.9 and 0.999 respectively)
Require: Initial parameters . /* = w b( , ), w~ weights; b~ biases */
Require: Initialize 1st and 2nd moment vectors: =s 0, =r 0
Initialize time step =t 0
while stopping criterion not met do

+t t 1
Get gradients: g L ( )
Update biased first moment estimate: + gs s (1 )1 1
Update biased second moment estimate: + g gr r (1 )2 2

Compute bias-corrected first moment estimate: s s (1 )t
1

Compute bias-corrected second moment estimate: r r (1 )t
2

Update parameters: +s r^ ( ^ )
end while
Return
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