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Abstract

Over the last several years, semantic image segmentation based on deep neural networks has been greatly advanced. On
the other hand, single-instance segmentation still remains a challenging problem. In this paper, we introduce a framework
for segmenting instances of a common object class by multiple active contour evolution over semantic segmentation
maps of images obtained through fully convolutional networks. The contour evolution is cast as an energy minimization
problem, where the aggregate energy functional incorporates a data fit term, an explicit shape model, and accounts for
object overlap. Efficient solution neighborhood operators are proposed, enabling optimization through metaheuristics such
as simulated annealing. We instantiate the proposed framework in the context of segmenting individual fallen stems from
high-resolution aerial multispectral imagery, providing problem-specific energy potentials. We validated our approach on
3 real-world scenes of varying complexity, using 730 manually labeled polygon outlines as ground truth. The test plots
were situated in regions of the Bavarian Forest National Park, Germany, which sustained a heavy bark beetle infestation.
Evaluations were performed on both the polygon and line segment level, showing that the multi-contour segmentation can
achieve up to 0.93 precision and 0.82 recall. An improvement of up to 7 percentage points (pp) in recall and 6 in precision
compared to an iterative sample consensus line segment detection baseline was achieved. Despite the simplicity of the
applied shape parametrization, an explicit shape model incorporated into the energy function improved the results by up to
4 pp of recall. Finally, we show the importance of using a high-quality semantic segmentation method (e.g. U-net) as the
basis for individual stem detection, as the quality of the results degraded dramatically in our baseline experiment utilizing
a simpler method. Our method is a step towards increased accessibility of automatic fallen tree mapping in forests, due
to higher cost efficiency of aerial imagery acquisition compared to laser scanning. The precise fallen tree maps could be
further used as a basis for plant and animal habitat modeling, studies on carbon sequestration as well as soil quality in
forest ecosystems.
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1. Introduction

Forest ecosystems are the most species-rich ecosystems
on earth and play an essential role in providing ecosys-
tem services such as wood production, drinking water
supply, carbon sequestration, and biodiversity preserva-
tion (Watson et al., 2018). However, forests are under im-
mense pressure especially because of the unsustainable use
of their resources, conversion into other land use types,
and global change. Therefore, there is a strong need for
better management and conservation practises allowing a
sustainable use that can secure all the services. A crit-
ical precondition for sustainable forest management are
monitoring schemes that provide the necessary informa-
tion for preparing management plans. Besides growing
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stock, yield and tree species distribution, also deadwood
is an essential indicator of forest health as e.g. in temper-
ate forests, up to one-third of all species depend on it dur-
ing their life cycle (Müller and Bütler, 2010). Moreover, it
is not just the amount of deadwood that matters for the
conservation of biodiversity (Seibold and Thorn, 2018);
also its quality is decisive for the conservation of biodiver-
sity. Therefore, it is also important to determine the tree
species, the decay stage and if the dead wood is standing
or lying. Estimating the amount of both types of dead-
wood is not just decisive for the maintaining biodiversity,
but also for management of adverse effects of forest dis-
turbances such as wind throws and insect outbreaks. The
latter aspect is becoming increasingly important as the fre-
quency and severity of such disturbance events are contin-
uously on the rise due to global change (Seidl et al., 2017).
Such events can affect large tracks of forested land in a
short time span (e.g. windthrow). That makes it very dif-
ficult to accurately assess the amount of timber affected
by conventional field-based methods. Therefore, remote
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Figure 1: (a)-(b) sample images from the LSVRC dataset (Russakovsky et al., 2015). The data is geared towards high-resolution close-range photography
from handheld devices. (c) sample nadir-view color infrared image showing multiple intersecting fallen stems.

sensing techniques are a natural and cost-efficient alter-
native to field works. This demand for accurate informa-
tion on the distribution of coarse woody debris (CWD) in
forests, driven by the aforementioned factors, has sparked
research interest within the remote sensing community. In
recent years, a number of contributions have focused on
detection and classification of dead wood from laser scan-
ning data (Marchi et al., 2018). Delineating individual
fallen stems in both aerial (e.g. Polewski et al. (2015a))
and terrestrial (e.g. Polewski et al. (2017)) point clouds
was shown to be feasible.

While the 3D information inherent in laser scanning
point clouds provides a solid basis for fallen tree detec-
tion, obtaining high density laser scanning data may be
prohibitively expensive. Multispectral aerial imagery of-
fers a more accessible alternative. The near-infrared chan-
nel is particularly useful for this purpose, since dead and
diseased vegetation produces a distinct reflectance signa-
ture in this spectral band (Jensen, 2006). In case of fallen
tree stems, resolution at the level of decimeters or better
is crucial to the success of detection, because the width
of the target object can be as low as 30-40 cm, and as
such they could appear as only a single row of pixels
(or be altogether missing) within a lower-resolution im-
age. A number of studies considered the determination of
tree health (e.g. Safonova et al. (2019)) or direct detec-
tion of coarse woody debris (e.g. Freeman et al. (2016))
from high-resolution optical imagery. Currently, most ap-
proaches dealing with fallen trees focus on either analyzing
groupings of pixels without a one-to-one correspondence
to stems (e.g. Einzmann et al. (2017); Lopes Queiroz et al.
(2019)), or determining lines which represent the positions
and lengths of individual trees, disregarding their thick-
ness (Panagiotidis et al., 2019; Duan et al., 2017).

This paper considers the task of delineating single fallen
stems in the broader context of instance segmentation in
imagery. Our goal is to extract polygons representing
individual stems from difficult scenarios which contain
dozens of partially overlapping and intersecting objects
(see Fig. 1). While dense semantic segmentation of images
has been arguably all but solved using decoder-encoder
architectures like fully convolutional networks (e.g. Ron-
neberger et al. (2015)), extraction of individual object in-

stances still remains a challenge and an active area of
research within the neural network and computer vision
community (Arnab and Torr, 2017). One of the first end-
to-end pipelines for instance segmentation based on convo-
lutional neural networks (CNN) is due to Li et al. (2017).
However, this approach was later found to display system-
atic errors on overlapping instances and create spurious
edges (He et al., 2017). The Mask R-CNN method pro-
posed by He et al. (2017) represented a milestone in the
development of robust CNN-based instance segmentation
methods. It builds upon earlier work for region-of-interest
(ROI) classification and object detection by extracting fea-
tures from ROIs using CNNs (Ren et al., 2017). Specif-
ically, the system consists of (i) a region proposal net-
work, which determines potential regions in the image that
could represents objects of interest, and (ii) a dedicated
CNN which branches out into 3 types of output, predict-
ing, for each candidate region, the object class, the true
bounding box, as well as the binary object pixel mask.
The contributions of (He et al., 2017; Ren et al., 2017)
played a key role in establishing the two-network coarse-
to-fine region proposal/classification paradigm in instance
segmentation, which underlies state-of-the-art methods. It
should be noted that most of new method development has
been geared towards benchmarks and competitions pub-
lished by the computer vision community, such as the
Large Scale Visual Recognition Challenge (LSVRC) (Rus-
sakovsky et al., 2015). These datasets usually contain large
quantities of close-range images captured from handheld
devices, depicting clearly-visible ’common’ objects such
as household items, people, animals, etc. The emphasis is
put on the network’s ability to recognize a variety of ob-
ject classes (the LSVRC data contains 200 categories). In
contrast, remote sensing images, especially acquired in a
natural resource monitoring setting, usually contain many
possibly overlapping instances of the same object category,
like fallen trees in a bark beetle attack zone (Fig. 1) or a
cluster of tree crowns. Although the optical sensor hard-
ware is improving, the average resolution of aerial remote
sensing imagery is still significantly smaller than in case
of close-range photography, resulting in possibly blurred
object boundaries. This poses several challenges for the
state-of-the art instance segmentation paradigm described
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above. First, CNN-based approaches suffer from coarse-
ness of feature maps and limited information contained in
the candidate object regions of interest, which leads to de-
graded performance for small and multi-scale object lo-
calization (Zhao et al., 2018). This problem could be ex-
acerbated further by the low resolution and blurred ob-
ject boundaries in remote sensing images. Second, note
that within-category overlap is one of the core difficul-
ties of instance segmentation according to He et al. (2017).
Overlapping region proposals, containing candidate object
bounding boxes, are usually pruned using a discrete pro-
cess like non-maxima suppression, which means that if
the candidate generator produces a high ’objectness’ score
on an image region not centered on a real object (due to
blurred boundaries and heavy candidate overlap), the true
detections could be thrown away and never even make it
to the classification stage. In the context of fallen stem
segmentation, the overlap is potentially on a level which
would never be observed in a classical CV dataset. Fi-
nally, specifically for the case of fallen stems, detection
based on axis aligned bounding boxes has a key weak-
ness. Typically, imagery obtained in remote sensing flight
campaigns features a ground sampling distance of no less
than 10-15 cm. Therefore, fallen tree trunks would ap-
pear only several pixels wide and possibly hundreds of
pixels long. Assuming that the stems may be arbitrarily
oriented within the image, the tree’s axis-aligned bound-
ing box would be overwhelmingly populated with irrele-
vant pixels (except close to the main diagonal). This could
potentially also be a problem during training, since many
end-to-end networks designed for instance segmentation of
everyday objects with well-defined ’standard’ orientations
from close-range photography (including models from the
R-CNN family such as He et al. (2017); Ren et al. (2017))
are based on axis-aligned bounding box annotations as in-
put example labels. Once again, this could lead to the situ-
ation where most of the bounding box is occupied by irrel-
evant background pixels, making the neural network learn
random noise instead of the target class.

To alleviate some of these problems, we introduce a gen-
eral framework for segmenting sets of overlapping objects
of a single category into individual instances. Instead of at-
tempting to detect objects in axis-aligned bounding boxes,
we maintain shape parametrizations and associated rigid
transform parameters separately per instance, effectively
evolving multiple active contours (Cremers et al., 2007)
simultaneously. Our framework explicitly models object
overlap as well as prior shape information. Starting from
an initial random state and an upper bound on the num-
ber of objects in the scene, the optimization process elim-
inates redundant shapes by evolving them to empty con-
tours. The method operates on the probability maps pro-
duced by dense semantic segmentation, taking advantage
of object appearance prior information learned from train-
ing examples. We instantiate the framework specifically
for fallen tree stem detection, evolving rectangular shapes
according to the energy functional which combines a non-
parametric shape prior, a data fit term, and a collinearity

model. We propose a simulated annealing scheme with
stochastic sampling as the method of choice for evolving
the optimal shapes and their spatial orientations. The eval-
uated energy is defined on the space of polygons. The
target polygons are obtained by finding contours of 0.5-
superlevel sets of probability images from semantic seg-
mentation. This enables efficient computation of energy
changes from applying neighboring moves, because cal-
culating intersections between the rectangular shapes and
the target polygons can be carried out with log-linear time
complexity with respect to the number of edges in the poly-
gons (Žalik, 2000), as opposed to being a function of the
number of image pixels.

The rest of this paper is organized as follows. In Sec-
tion 2, we report related work regarding both the detection
of fallen trees from imagery and methodological aspects of
combining active contour methods with CNN based seg-
mentation. Section 3 introduces the general framework for
instance segmentation of images based on multi-contour
evolution on an abstract level, whereas in Section 4, the
framework is instantiated for detecting fallen trees; we pro-
vide details of the tailored solution neighborhood operator
for the stochastic optimization, the initialization strategy
as well as specific realizations of the shape prior and other
elements of the energy functional. In Section 5, experi-
mental evaluations of the proposed method are provided,
in comparison to a baseline operating on line level. Also
in this section we investigate the impact of using a CNN
for generating the appearance prior versus a simple base-
line derived from raw image channel intensities. The ex-
perimental results are discussed in Section 6, and the most
important conclusions are summarized in the final section.

2. Related work

To the best of our knowledge, this is the first contribu-
tion addressing the large scale detection of fallen stems
from aerial imagery on a polygon level, which provides
a comprehensive evaluation on over 700 reference poly-
gons. From an application standpoint, the two approaches
conceptually most similar to ours use the Hough transform
to fit lines representing individual stems in binarized im-
ages of target class posterior probabilities obtained on the
basis of hand-crafted textural features (Duan et al., 2017)
or spectral thresholding (Panagiotidis et al., 2019). Thiel
et al. (2020) performed generic line detection within RGB
orthomosaics derived from very-high resolution unmanned
aerial system-acquired imagery to find approximate fallen
stem shapes.Lopes Queiroz et al. (2019) used a generic
segmentation procedure on the spectral bands of the aerial
image combined with the normalized difference vegeta-
tion index (Tucker, 1979), and subsequently classified the
resulting clusters based on spectral/textural features aug-
mented with LiDAR derived information (canopy height
model). Einzmann et al. (2017) applied a similar approach,
using large-scale mean shift in the role of the segmentation
algorithm and augmenting the set of spectral bands with
linear transformations of raw bands, textural features and
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multiple vegetation indices. However, neither of these ap-
proaches restricts the generic image segmentation to fol-
low the shape or appearance of fallen stems, therefore in
case of multiple intersecting trees, individual stems would
not be delineated. We believe that a key advantage of our
proposed method versus generic segmentation approaches
is that the former has knowledge of the target object’s
shape, whereas the latter do not. Therefore, while it may
be possible to find parameters of generic methods that pro-
duce acceptable segmentations for any particular scene,
these parameters (e.g. bandwidths, number of clusters) and
not readily learnable from training data or easily transfer-
able between scenes. In contrast, our method is informed
on the dimensions of fallen stems as well as on the inter-
actions between them, allowing it to decompose the scene
into objects which plausibly look like fallen stems. On the
area level, Latifi et al. (2018) used synthetic RapidEye
images to assess the extent of damage in spruce stands re-
sulting from a bark beetle infestation. Regarding the use
of deep neural networks for detecting diseased and dead
trees, Safonova et al. (2019) applied a CNN to classify tree
vitality from patches of RGB aerial imagery. Ostovar et al.
(2019) used the Faster R-CNN (Ren et al., 2017) to de-
tect regions of close-range images containing tree stumps,
which were then classified with respect to their root and
butt-rot status.

On a more abstract level, our method could be inter-
preted as a way of integrating CNNs with (multiple) ac-
tive contour segmentation. Other ways of achieving this
were previously reported by several authors. In the con-
text of individual building segmentation from aerial im-
agery, Marcos et al. (2018) proposed an end-to-end train-
able framework utilizing CNNs for learning the geometric
prior parametrizations of an active contour model (ACM).
Inference from the ACM was integrated into the CNN
weight update schedule through computing a structured
loss on the predicted and ACM’s predicted output versus
ground truth polygons, and backpropagating the loss to
the CNN parameters. However, there is a fundamental
difference of the approach by Marcos et al. (2018) com-
pared to our method. The authors use a generic active con-
tour model parameterized by the polygon coordinates, and
learn to predict dense (per-pixel) magnitudes of polygon
curvature and length penalty terms. In particular, they do
not attempt to model the target object shape directly. Con-
versely, our method does not operate on explicit polygon
coordinates, but rather first tries to learn a compact rep-
resentation of the target object shape in terms of abstract
shape coefficients, and performs the contour evolution im-
plicitly in the coefficient space.

Our proposed approach borrows some ideas from the
work of Cremers and Rousson (2007), where the active
contour energy functional was designed to interact with
the input image indirectly through the intensity priors. The
authors also directly modeled the prior distribution of the
shape coefficients using a kernel density estimator. Our
energy formulation shares some similarities with the en-
ergy function utilized by Milan et al. (2014) for multi-

ple object tracking, which also included a data fit term,
pairwise interaction terms between tracked objects as well
as unary potentials encoding physical motion constraints
(analogous to proir information).

3. Multi-contour segmentation with priors

We consider the generic problem of fitting multiple in-
stances of a single object class from abstract ’images’. Al-
though all objects are by construction of the same class, a
reasonable amount of intra-class variation in shape as well
as appearance is allowed and expected. Usually, the image
space I will correspond to either the image plane R2 or 3D
Euclidean space R3, allowing to model e.g. 2D rasters or
(voxelized) 3D point clouds. However, any vector space is
viable where there is a meaningful concept of shape, rigid
transformations (isometries) and a way of measuring shape
overlap. Denoting an input image as I ∈ I sampled from
the image space, we assume that I contains an unknown
number M of object instances from the target class C. Our
goal is to retrieve approximations of the target objects with
respect to a pre-specified shape model Ps(ᾱ) and its asso-
ciated shape generator function fs(ᾱ), parameterized by a
vector of abstract shape coefficients ᾱ. The shape gener-
ator instantiates shapes in standard position (centroid at
the coordinate system origin, no rotations around axes).
This function may be as complex as a generative adver-
sarial network, where the shape coefficients represent the
randomly sampled noise input, or as simple as a rectan-
gle generator parameterized by a width and a height. Ad-
ditionally, each modeled shape is equipped with its own
set of position/orientation parameters θi which would typ-
ically include translations with respect to each coordinate
axis and appropriate rotations as required by the dimen-
sionality of I. We will denote the shape generated by fs for
coefficients ᾱ and rigidly transformed by θ as fs(ᾱ|θ).

In order to decouple shape and appearance (i.e. image
intensity) information, we introduce an explicit discrimi-
native prior Pi(C|I) on the image space I. This image inten-
sity prior transforms the original, possibly multi-channel I
into a new probability image Ip encoding the class prob-
abilities of C given the intensities. In practice, this can
be seen as the output of a semantic segmentation, like the
U-net (Ronneberger et al., 2015) in case of 2D raster im-
ages, or VoxNet (Maturana and Scherer, 2015) for vox-
elized 3D point clouds. By extracting contours of q−level
supersets of Ip (using e.g. the marching cubes algorithm
by Lorensen and Cline (1987)), we may obtain a partition
of I into regions corresponding to the target class, or ’fore-
ground’, versus ’background’ regions. The comparison
between shapes evolving according to the model Ps and
’foreground’ shapes present within the image now boils
down to the calculation of set intersections and differences.
Indeed, the shape model does not interact with the original
image I other than through the extracted level supersets
from Ip. We define the collection of connected regions in-
side the probability image Ip as S = {si ⊂ Ip, i = 1 . . . ns},
corresponding to the extracted level supersets. The el-
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ements of S form polytopes of appropriate dimension,
e.g. polygons in 2D and polyhedrons in 3D. Note that these
polytopes need not represent single instances of the target
objects. In highly complicated scenarios, we expect them
to consist of many intersecting and overlapping instances.

3.1. Energy function

Based on the definitions from the previous section, we
are now ready to introduce the energy function which
drives the evolution of the modeled shapes. Let M′ de-
note an initial overestimation of the true number of objects
M inside the input image. Then, each evolving shape is
described by its vector of shape coefficients ᾱi as well as
the location/orientation parameters θi. Collecting all mod-
els parameters into a vector Ω = (ωi = (ᾱi, θi))i=1...M′ , let
F(ωi) be an alias for fs(αi|θi). The aggregate energy of the
shape set is given by Eq. 1:

E(Θ|S ) = γdEd

⋃
s∈S

s,
⋃

i

F(ωi)

︸                      ︷︷                      ︸
data fit term

− γs

∑
i

log Ps(ᾱi)︸              ︷︷              ︸
shape probability term

+ γo

∑
j,k, j,k

Eo[F(ω j), F(ωk)]︸                           ︷︷                           ︸
pairwise overlap term

+
∑

u

τuEaux,u(Ω)︸             ︷︷             ︸
auxiliary potentials

(1)

An illustration of each energy term/potential’s role and
impact on the aggregate energy is given by Fig. 2.

3.1.1. Data fit potential
The role of the data fit term Ed(τ, φ) is to ensure that the

model shapes coincide well with the target class regions of
the image. It is a function of two sets: (i) the union τ of
all target class regions s ∈ S extracted from the probabil-
ity image Ip, and (ii) the union φ of all currently modeled
shapes obtained from ’decoding’ the elements of Ω with
the generator function fs and applying the respective rigid
transform. Ideally, the sets (i) and (ii) should coincide,
however in practice the differences τ \ φ as well as φ \ τ
are non-empty. The former corresponds the parts of re-
gions designated as ’target class’ that are not covered by
any model shape (false negatives). Symmetrically, φ\τ in-
dicates regions deemed as ’target class’ by the model, but
not intersecting with any elements s ∈ S , and thus lacking
evidence in the input image (false positives). The value
of τ \ φ impacts the specificity/recall of the segmentation,
whereas φ \ τ impacts the sensitivity/precision. We allow
an assignment of different weights to these two quantities,
reflecting the fact that the tradeoff between precision and
recall may be asymmetric for some applications:

Ed(τ, φ) = 2[(1 − πp)λ(τ \ φ) + πpλ(φ \ τ)] (2)

In the above, the term λ(·) can be thought of as analo-
gous to the Lebesgue measure on the Euclidean space of

the appropriate dimension, i.e. area in 2D, volume in 3D,
etc. The term related to the precision (false positives) is
weighted with 0 ≤ πp ≤ 1.

3.1.2. Shape probability potential
This term is directly derived from the prior shape model

Ps(ᾱ) as the sum of negative log-likelihoods of all model
shapes. It acts as a regularizer for the shape coefficients,
penalizing shapes which become too unlikely with respect
to the learned prior. Note that for some generator func-
tions, the shape coefficients ᾱ may already be distributed
uniformly by construction inside the (appropriately scaled)
unit hypercube, in which case the shape probability term
boils down to a constant and may be removed. For an ex-
ample, see e.g.(Polewski et al., 2020), where a generative
adversarial network with uniformly distributed latent vari-
ables was used as the shape model within the active con-
tour segmentation framework.

3.1.3. Overlap potential
Since our framework assumes that initial guess on the

number of shapes M′ is biased towards too high values,
we expect that part of the model shapes will become redun-
dant. To prevent duplicate coverage of the same image re-
gions by different model objects, and to allow the number
of active shapes to converge to the true number of objects
present within the image, we define an overlap potential
Eo which penalizes overlapping of model shapes. Acting
together with the data fit term Ed, it is designed to direct a
redundant shape towards evolving into an empty contour:
Eo will push a shape away from areas already occupied by
other model shapes, while Ed will ensure that the shape
does not occupy background regions of the input image.
Note that not all forms of overlap should be penalized. For
example, in our application of fallen tree segmentation, in-
tersections of tree stems that are not parallel to each other
are unlikely to be due to instance duplication, instead they
are the result of physical overlap and stacking. To model
this, we utilize an auxiliary term κ(o1, o2) ∈ [0; 1] which
quantifies the likelihood of model shapes o1, o2 belonging
to the same real-world object. The overlap potential is then
defined in a pairwise manner as:

Eo(o1, o2) = κ(o1, o2)λ(o1 ∩ o2) (3)

The potential Eo is evaluated over all pairs i, j ∈

1, 2, . . . ,M′ such that i < j, with each value contributing
to the total energy E(Θ) in equal proportion. Once again,
λ indicates the ’natural’ measure in the Euclidean space of
the appropriate dimension (area, volume etc.).

3.1.4. Auxiliary potentials
Our framework allows for application specific potentials

Eaux,u, each weighted by their own coefficient τu. In our
formulation, to maintain the highest flexibility, these po-
tentials are functions of the entire model parameter vector
Ω, which means they have access to both the shape coef-
ficients and the decoded/transformed model shapes. This
formulation admits unary, pairwise, or even higher order
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Figure 2: Illustration of the impact of the various terms on the aggregate energy function, which is a linear combination of the data fit, shape, and
overlap potentials. Left column: data fit potential ensures that a large percentage of high-probability target class areas are covered by the evolving
contours. Middle column: shape potential ensures that the evolved shapes are within the expected variability of the target objects’ shape distribution.
Right column: overlap term prevents covering the same parts of the image with different evolving contours.

potentials. In Section 4, an example of an auxiliary pair-
wise potential is shown, which is designed to discourage
collinearity between the modeled stems.

3.2. Relationship to active contour segmentation
The proposed framework can be viewed as one possible

generalization of the classic foreground-background active
contour raster image segmentation (Cremers et al., 2007)
to multiple object instances and more general images. The
statistical formulation by Cremers and Rousson (2007) as-
sumed that the evolving contour of a target class C region
has an abstract shape parametrization ᾱ, endowed with a
prior model Ps(ᾱ). The optimized energy functional repre-
sented a trade-off between the data fit term and probability
of the evolving shape. Denoting Hᾱ[x] as the indicator
function for image element x lying inside the shape, their
energy objective can be written as:

E′(ᾱ) = −

∫
(Hᾱ[x] log P(x|C)

+ (1 − Hᾱ[x]) log P(x|¬C))dx

− log Ps(ᾱ)

(4)

Here, the foreground and background regions have
their separate image intensity likelihoods P(x|C), P(x|¬C).
By assuming equal prior probabilities on the fore-
ground/background regions (P(C) = P(¬C)), based on the
Bayesian rule we can express the data fit potential in terms
of the target class posterior P(C|x), resulting in:

E′′(ᾱ) = −

∫
Hᾱ[x] log P(C|x)dx︸                       ︷︷                       ︸
data fit inside contour

−

∫
(1 − Hᾱ[x]) log[1 − P(C|x)])dx︸                                      ︷︷                                      ︸

data fit outside contour

− log Ps(ᾱ)
= E′(ᾱ) + D

(5)

The new energy function E′′ differs from E′ only by a
constant value D, therefore their extrema coincide (see
e.g. Polewski et al. (2015b)). Moreover, under certain as-
sumptions, the data fit terms inside and outside of the con-
tour are analogous to the quantities λ(τ\φ) and λ(φ\τ) from
our data fit potential (Eq.2). Specifically, recall that the tar-
get connected regions si ∈ S are high-probability q−level
supersets extracted from the probability image. We can
therefore view the posterior class probability inside and
outside these regions as respectively pin ≈ 1 − ε, pout ≈ ε,
where ε is a small positive constant. In this setting, the
intersection of all objects modeled by the current state Ω

with the set of target regions S will contribute λ(τ ∩ φ) ·
log(1 − ε) ≈ 0 to the data fit potential, since log(1 − ε)
tends to 0 with ε. On the other hand, the difference φ \ τ
will contribute λ(φ\τ) · log ε, which tends to −∞ as ε tends
to zero. By a similar argument, one can show that the data
fit term outside the contour from Eq. 5 is dominated by the
symmetrical expression λ(τ \ φ) · log ε. Setting πp to 0.5 in
our data fit potential (Eq. 2), we see that an instantiation of
our framework with a single modeled object is equivalent
to the original statistical active contour formulation with
probabilities quantized at 1 − ε, ε such that γd = − log ε.

3.3. Optimization

To optimize the total energy from Eq. 1, various stochas-
tic and combinatorial techniques are available based on the
choice of quantization or lack thereof for the model vari-
ables. If all shape and rigid transformation parameters are
continuous, Eq. 1 can be minimized using stochastic meth-
ods like simulated annealing (Kirkpatrick et al., 1983) or
a hybrid Monte Carlo-gradient based approach like basin
hopping (Wales and Doye, 1997; Li and Scheraga, 1987).
The latter is particularly useful in settings where the gra-
dients of all the energy function terms with respect to all
model variables may be computed analytically. Some-
times it may be reasonable to discretize the domain of
one or more variables, e.g. the shape translation parame-
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ters from θi could be expressed in pixels or voxels. In such
cases, generic metaheuristics for solving mixed combina-
torial/continuous problems are applicable, including meth-
ods from the class of evolutionary algorithms, specialized
versions of tabu search (e.g. (Siarry and Berthiau, 1997)),
and simulated annealing.

The aforementioned metaheuristics are based on explor-
ing the neighborhood of the current solution and making
local moves which alter a small part of it. This makes
it cumbersome and inefficient to apply these local-search
based methods to the minimization of our energy (Eq. 1),
since the data fit term requires a union of all of the evolv-
ing shapes φ =

⋃
i F(ωi), and an intersection of this union

with the high-probability object contours from the input
image τ =

⋃
s∈S s. Even if only one shape ωi is altered,

all of the aforementioned calculations need to be repeated
to re-evaluate the data fit potential Ed. To localize the ef-
fects of modifying individual shapes and make local search
steps more efficient, we propose the following approxima-
tion. First, observe that as τ does not depend on the model
variables, it can be precomputed once and reused in the
calculations. Moreover, we may express the intersection
φ ∩ τ as a union of intersections

⋃
i τ ∩ F(ωi). Applying

the inclusion-exclusion principle, we can write:

|φ ∩ τ| =
∑

i

|τ ∩ F(ωi)|︸            ︷︷            ︸
unary term

−
∑
i≤i< j

|τ ∩ F(ωi) ∩ F(ω j)|︸                         ︷︷                         ︸
pairwise term

+

M′∑
k=3

(−1)k+1(
∑

1≤i1<...<ik

|τ ∩ F(ωi1 ) ∩ . . . ∩ F(ωik )|)︸                                                        ︷︷                                                        ︸
residual

(6)

We choose to approximate |φ ∩ τ| by its underestimation
given by the first two terms (unary and pairwise) in the
inclusion-exclusion expansion (Eq. 6). This corresponds
to ignoring contributions from subsets where 3 or more of
the model shapes intersect. In practice, we believe this
approximation is sufficient, because the model explicitly
discourages overlap of multiple shapes through the over-
lap potential Eo. Moreover, by using an underestimation
of the true intersection area |φ∩τ|, the multi-shape overlap
is penalized even more due to the subtraction of the over-
lapping area in the pairwise term and not recovering it in
the (removed) residual. This leads the model away from
undesirable overlap. However, the main benefit is that the
influence of changing a single model shape i (by mutating
its shape coefficients or rigid transform parameters) is now
reduced to affecting one unary term |τ∩F(ωi)| and at most
M′ pairwise terms |τ ∩ F(ωi) ∩ F(ω j)|, j ∈ 1, . . . ,M′. The
pairs i, j which do not intersect can be filtered out using
simple bounding box criteria. Combined with caching the
values |τ ∩ F(ωi)|, |τ ∩ F(ωi) ∩ F(ω j)| for all model ob-
jects and their pairs, the term |τ \ φ| can be efficiently up-
dated based on the values of |τ∩φ|, |τ|, by using the identity
|A \ B| = |A| − |A ∩ B|. In a similar manner, the value of
φ may be approximated by caching and updating the first
and second-order terms of the inclusion-exclusion expan-

sion |F(ωi)|, |F(ωi)∩F(ω j)|, yielding |φ \τ|. Moreover, the
caching of the pairwise terms |F(ωi) ∩ F(ω j)| also enables
fast updates of the term Eo. Finally, the shape model Ps

is already in additive form, therefore altering ᾱi influences
only the log Ps(ᾱi). Care should be taken when instan-
tiating auxiliary potentials to ensure that they also allow
efficient partial updates, leading to applicability of local
solution perturbation based metaheuristics.

4. Application of our framework to the instance seg-
mentation of fallen trees

In this section, we instantiate the framework described
in the previous chapter, obtaining a method for detecting
individual fallen stems from aerial imagery. We consider
a 2D raster image with Nc channels as input. Ideally,
the image should include a near-infrared channel, which
is known to differentiate dead and living vegetation well.
The rest of this section explains the instantiation of various
components of the energy term, the strategy for exploring
the solution space using the neighborhood operator, as well
as an initialization scheme based on detecting lines using
the sample consensus method. An overview of the entire
processing pipeline is depicted in Fig. 3.

4.1. Fully convolutional networks

Fully convolutional networks (FCNs) are a class of con-
volutional artificial neural networks (CNNs) designed for
dense semantic segmentation of raster images. As op-
posed to classical CNNs that are used primarily for image
(sparse) classification (i.e. assigning a single label to an en-
tire image or patch), FCNs do not possess fully connected
layers, which makes them independent of the input image
size (Long et al., 2015). FCNs primarily consist of convo-
lutional/transposed convolutional filters as well as pooling
layers, organized into two symmetrical paths. The encoder
path downsamples the original image into meaningful fea-
tures by means of convolutional filters and pooling opera-
tions, whereas the upsampling path aims at decoding these
features into a full-sized output map using transposed con-
volution operations. The final, topmost upsampling layer
of the network is fed into a softmax operator, producing
per-class posterior probabilities at each pixel and enabling
end-to-end training with a logistic loss function. A clas-
sic FCN architecture which attained widespread use across
various applications (Akeret et al., 2017; Dong et al., 2017)
is the U-net (Ronneberger et al., 2015), where upsampling
layers are augmented with feature maps from the down-
sampling path at the corresponding resolution, to provide
more context information. The architecture of a classic
U-net is depicted in Fig. 4. It should be noted that due
to the handling of image borders in the convolution op-
eration, a decrease in image size occurs at each convo-
lutional filtering layer in both the downsampling and en-
coding branches. This results in the output network layer
having smaller dimensions than the original input image.
To process input images of arbitrary size, a tiling strategy
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Input: CIR
aerial
image

U-net semantic segmentation Fallen stem probabilities map

Labeled
training

data

SAC line initialization Connected comp. segmentationMulti-contour evolution

Output:
Polygons of
individual

stems

Shape model Collinearity model

Figure 3: Overview of the processing pipeline for delineating individual stem polygons using multiple active contour evolution. The input CIR image
undergoes semantic segmentation using the U-net, and the fallen stem probability map is partitioned into high-probability connected components. Next,
the model shape positions and dimensions are initialized based on sample consensus line segmentation. Finally, the model shape configuration is
optimized using simulated annealing, under consideration of the shape and collinearity models learned from labeled training data.

must therefore be employed, where input windows for sub-
sequent applications of the U-net overlap by the margin
derived from the difference between input and output layer
shapes (see Ronneberger et al. (2015) for details).

Crop & concatenate

3 F F

2F 2F 2F 2F 2F
2FF

FF F F 2

2F
4F 4F

D0 D0 - 2
D0 - 4

D1 = (D0 - 2) / 2 D1 - 2
D1 - 4

D2 = (D1 - 2) / 2 D2 - 2 D2 - 4

U1 = (D2 - 4) * 2

U1 - 2 U1 - 4

U0 = (U1 - 4) * 2
U0 - 2

U0 - 4

conv. 3x3 + ReLU

conv. 1x1

max. pool 2x2

transposed conv. 2x2

Figure 4: Architecture of a 3 layer U-net for binary classification of 3-
channel images. At level k, the layers undergo convolution with a series
of 3x3 filters, producing 2kF feature maps. The initial size D0 of the
input image is approximately halved at each downsampling layer, an ap-
proximately doubled in each upsampling layer (up to border removing
convolutions). The final layer is obtained by a 1x1 convolution with the
top-level upsampled feature layer, and is subsequently fed into the soft-
max operator to derive class posterior probabilities.

4.2. Image intensity prior
In the role of the image intensity prior Pi(C|I) for our

target class of fallen trees, we utilize the U-net deep neural
network 4.1 in a binary classification setting. The orig-
inal architecture is easily adaptable to the variable num-
ber of input channels Nc. The per-pixel posterior object
class probabilities conditioned on the image pixel inten-
sities (i.e. Pi(C|I)) are obtained directly from the seman-
tic segmentation. We subsequently apply the marching
squares algorithm (Lorensen and Cline, 1987) to derive
contours of q−level supersets of the probability image.

This results in a set of high-probability polygons, possibly
consisting of multiple fallen trees and non-class objects or
noise. Since the best known geometric algorithms used for
calculating polygon intersections have a worst-case com-
putational complexity proportional to the product of their
vertex counts in the general (non-convex) case (Nievergelt
and Preparata, 1982), we apply the contour simplification
algorithm by Douglas and Peucker (1973) (parameterized
by the max. simplification distance εd) to the polygons, re-
sulting in the final set S defined in Sec. 3.

4.3. Shape generator

As the shapes of fallen stems are well approximated by
rectangles, we utilize a simple shape generator fs(ᾱ) pa-
rameterized by two scalars α = [a, b], which produces a
rectangle with side lengths a, b centered at the origin of
the coordinate system, oriented parallel to its axes (i.e. in
standard position):

fs(a, b) = [(−
a
2

;−
b
2

), (
a
2

;−
b
2

), (
a
2

;
b
2

), (−
a
2

;
b
2

)]

fs(a, b; θ = [xc, yc, ρ]) = Rρ fs(a, b) + Txc,yc

(7)

The rigid transformation parameters θ consist of the cen-
ter position (xc, yc) translation T and an in-plane rotation R
by angle ρ.

4.4. Energy components

Here we provide details about component potentials of
the energy function (Eq. 1). Aside from the 3 standard
potentials defined in Section 3, we introduce an auxiliary
collinearity potential to help prevent the fragmentation of
object detections into multiple collinear parts.
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Figure 5: Sample kernel density estimator model of joint stem
length/width probability based on reference labeled polygons.

4.4.1. Data fit and overlap terms
We utilize the aforementioned (Sec. 3.3) second-order

inclusion-exclusion principle based formulation to approx-
imate the set difference cardinalities φ \ τ, τ \ φ by appro-
priate pairwise intersections. Since the model polygons
have a constant dimension of 4 vertices, the computation
of any pairwise intersection of model polygons i and j,
fs(αi|θi)∩ fs(α j|θ j) may be done in constant time, whereas
the computational complexity of intersecting any fs(αi|θi)
with a high-probability contour si ∈ S is linear in the num-
ber of vertices forming si (Nievergelt and Preparata, 1982).
Additionally, we modify the generic overlap potential Eo

(Eq. 3) to include a dependency on the angular difference
in orientations between the model shapes:

Eo(i, j) = e
−(ρi−ρ j )2

2σ2
o | fs(αi|θi) ∩ fs(α j|θ j)| (8)

This reflects the model’s capability to allow non-parallel,
crossing shapes to overlap without being penalized, as they
most likely do not correspond to the same object (fallen
stem).

4.4.2. Shape prior
We utilize a shape prior model in the form of a ker-

nel density estimator defined on the shape coefficients
ᾱ = [a, b], based on a set of training rectangle shapes
S T = {ᾱk}:

Ps(ᾱ) =
|H|−1/2

|S T |

n∑
k=1

K(H−1/2(ᾱ − ᾱk)) (9)

In the above, the bivariate Gaussian kernel is applied in
the role of K, whereas the bandwidth matrix H is deter-
mined via the plug-in selection method of Wand and Jones
(1994). A sample shape model derived from part of our
reference shapes is depicted in Fig. 5.

4.4.3. Collinearity prior (auxiliary potential)
While the overlap penalty will discourage the formation

of highly overlapping model shapes, there is still a pos-
sibility of segmenting a single tree stem as a sequence
of nearly-collinear parts (see Fig. 6). To mitigate this,

we introduce an auxiliary pairwise collinearity potential
Ec =

∑
i, j Ec(i, j), which penalizes highly collinear shapes

located in close proximity with each other. Here, we define
Ec(i, j) = log Peq( fs(αi|θi), fs(α j|θ j)) as the log-probability
Peq of the two shapes i, j belonging to the same stem.
In practice, we use the output of a probabilistic classifier
(e.g. logistic regression) acting on differential features de-
rived from the shapes’ locations (angular deviation of ori-
entations, mean average distance of central axes). This is
in analogy to the object similarity function applied to graph
cut segmentation of stem parts into individual fallen trees
defined in our prior work (Polewski et al., 2015a). How-
ever, the log-probability contributes positive values to the
energy for each detected collinear shape pair, thereby bi-
asing the model away from such states and encouraging a
merge operation of the interacting shapes.

(a)

(b)

Figure 6: (a) Color infrared image of forest scene with fallen stems. Two
long stems are marked with green outlines. (b) Sample detection result
for the two stems over posterior class probability image of same scene.
Due to occlusions, the stems are fragmented and discontinuous within
the probability map, which causes the energy function to prefer multiple
disconnected collinear fragments over a single polygon covering the full
length of the stem.

4.5. Initialization with sample consensus

We initialize our model with a set of line segments au-
tomatically detected using sample consensus (SAC) meth-
ods (Fischler and Bolles, 1981) within the binarized proba-
bility image Pi(C|I) obtained from semantic segmentation
(see Sec. 4.2). The inlier threshold for dsac SAC is set to
the maximum expected width of a fallen stem (expressed
in pixels). We only allow line segment hypotheses having a
minimal length lsac, again derived from the minimal length
of a tree stem we expect to find. This segment length
is measured as the length of the interval of inlier pixel
projections onto the respective model line. We also im-
pose a minimum number of inlier points nsac for valid hy-
potheses. The whole scene is processed iteratively, greed-
ily picking the highest-inlier hypothesis until there are no
valid hypotheses left. We expect to discover an overabun-
dance of line segment hypotheses, partially covering the
vast majority of true stem segments within the scene (see
Fig. 7). Each accepted SAC hypothesis becomes an ini-
tial model shape, with the length li0 and position ti

x,0, t
i
y,0 /

orientation ρi
0 inherited from the SAC line and a default
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assigned width. It is up to our energy formulation to elimi-
nate redundant model elements, determine true dimensions
of each object, and improve delineation of individual stem
boundaries.

Figure 7: Line segments discovered using an iterative sample consen-
sus (SAC) method. Although most target class pixels are covered by at
least one SAC line, the method usually overestimates the true number of
stems due to the variability of stem width distributions and the resulting
difficulty in defining a single inlier threshold appropriate for all cases.

4.6. Efficient evaluation of neighboring solutions
As our fallen tree detection pipeline is designed for pro-

cessing high-resolution nadir-view aerial imagery, it seems
reasonable to quantize some size and position parameters
at the ground sampling distance (GSD) of the input im-
age, i.e. the finest level of detail available within the im-
age. Given the elongated shape of our target objects (fallen
tree stems), this quantization can yield a significant reduc-
tion of some parameters’ domains. Specifically, assuming
a typical GSD of high-resolution aerial imagery of 5-10
cm, and the diameter of fallen stems bounded by 70 cm,
the width parameter of the generated rectangle would only
admit a small number (7-14) of possible values. For this
reason, we restrict the elements a, b of the shape coeffi-
cient vector ᾱ and to the integer domain, representing the
number of pixels at the original image resolution. The rect-
angle length and width a, b are additionally equipped with
their own lower/upper bounds [alo; ahi], [blo; bhi] based on
the image resolution and the expected maximum/minimum
stem dimensions. The lower bound blo of the width is
set to zero, which allows the model to ’disable’ a partic-
ular, redundant shape altogether and prevent it from con-
tributing to the energy function (through zero overlap with
any other polygons). Additionally, we impose restrictions
on the location of the centers ti

x, t
i
y for every shape i sep-

arately, based on the centers of their SAC line segment
initializations ti

x,0, t
i
y,0 (see previous section). The center

of the model shape ti
x, t

i
y must be located within a rectan-

gle of length li0 oriented according to the initial SAC an-
gle ρi

0 and having a width w0 which is a parameter of our
method (see Fig. 8). We introduce these constraints in or-
der to avoid drifting away from the initial SAC solutions
into poor regions of the solution space where no overlap of
model objects with high probability level-supersets of the
image would exist and hence loss of gradient would oc-
cur. The optimization method of choice, simulated anneal-
ing, is susceptible to this kind of behavior during the initial
phases of the minimization process, where the temperature
parameter remains high and even poor moves which dete-
riorate the solution quality continue to be accepted.

Figure 8: Probability image with detected initial sample consensus hy-
potheses (orange lines). Each line is surrounded by its center constraints
polygon (cyan boxes). The evolution of the model shape associated with
the given hypothesis line is constrained to maintain the center of the shape
within the corresponding box at all times.

4.6.1. Solution altering moves
Consider the state Ωk of the solution at iteration k of

the optimization process, consisting of all shape and rigid
transformation parameters concatenated into a single vec-
tor: Ωk = (ωk

i = (ᾱk
i , θ

k
i )) (see Sec. 3.1). To generate a new

candidate state Ωk+1 from Ωk, we designed the following
solution altering moves, acting on a random shape ωk

u:

i length/width: add/subtract a random integer bounded
by δl, δw respectively to the length/width of shape u

ii angle: add/subtract a random real number bounded by
δρ to the angle ρu related to shape u’s orientation

iii location (along axis): shift the center of shape u along
its current axis by a random number bounded by δt,ax

iv location (arbitrary): shift the center of shape u by an
arbitrary random 2D vector, the components of which
are bounded by δx, δy

v merge/absorb: for a collinear shape ωk
v, extend the

shape u by projecting the vertices of both shapes onto
the current axis of shape u and adjusting its length and
center point such that u contains all the projections.
Also, disable the contributions of shape v to the over-
all energy by setting its width to zero

The selection of the move to apply is based on a uniform
random choice, where the merge/absorb move is only con-
sidered if the probability Peq of two shapes belonging to
the same object is above a threshold value (see Sec. 4.4.3).
Moves (i)-(iv) are of a local nature in the sense that only
the model shape u changes. To calculate the new energy,
we only need to perform a series of constant-time rectan-
gle intersection computations between u and the remain-
ing shapes, as well as one or more intersection calcula-
tions between u and the high-probability object contours
s ∈ S , linear in the respective vertex counts. The values
of the remaining model shape and image contour intersec-
tions remain unchanged and can be cached as described in
Sec. 3.3. In case of move type (v), a similar technique can
be applied, because while technically two shapes are al-
tered, only the ’absorbing’ shape u needs to have its inter-
sections recalculated since shape v becomes an empty con-
tour whose intersection with an arbitrary polygon yields
the empty set.
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(a) (b)

Figure 9: (a) Training and validation regions (in green) chosen within the Bavarian Forest National Park (boundaries shown with dashed cyan line). The
coordinates and true north arrow are with respect to the coordinate reference system DHDN/3-degree Gauss-Krüger zone 4 (EPSG:31468). Background
is color infrared image with ground sampling distance of 10 cm. Region A was used exclusively for training, whereas region B was the basis for
validation. (b) a depiction of test area B1, containing a mixture of lying dead trees, standing dead trees, and living vegetation.

5. Experiments and results

In this chapter, we describe the source imagery, target
training and test areas, reference data, evaluation strate-
gies, and the details of our experimental setup used to eval-
uate the proposed dead tree delineation framework against
a baseline method. We also list the principal numerical
results.

5.1. Data acquisition

For validating our method, we utilized aerial imagery
from the Bavarian Forest National Park, situated in South-
Eastern Germany (49◦3′19′′ N, 13◦12′9′′ E). The Bavar-
ian Forest lies in the mountain mixed forests zone consist-
ing mostly of Norway spruce (Picea abies) and European
beech (Fagus sylvatica). From 1988 to 2010, a total of
5800 ha of the Norway spruce stands died off because of
a bark beetle (Ips typographus) infestation (Lausch et al.,
2013). Color infrared images were acquired in the leaf-on
state during a flight campaign carried out in June 2017 us-
ing a Leica DMC III high resolution digital aerial camera
with a nadir across track field of view of 77.3◦ (see Le-
ica (2017) for the product sheet). Multiple multispectral
color cameras were utilized to form composite images,
which had a resolution of 14592 x 25728 pixels with a vir-
tual pixel size of 3.9 µm on the CMOS sensor. The mean
above-ground flight height was ca. 2879 m, resulting in a
pixel resolution of 10 cm on the ground. The flight cam-
paign took place between 10:30 and 13:25, with the sun’s
position traversing the range 49◦-64◦-35◦. The images
contain 3 spectral bands: near infrared (spectral range 808-
882 nm), red (619-651 nm) and green (525-585 nm). All
digital CIR images were radiometrically corrected by us-
ing optimal camera calibration observations, transforma-
tion parameters and ground control points. The procedures
were conducted in the program system OrthoBox (Ortho-
vista, Orthomaster) of the company Trimble/INPHO.

(a)

(b)

Figure 10: (a) Sample color infrared (CIR) image containing fallen stems.
The ground sampling distance of 10 cm is sufficient to delineate each
individual stem with high precision (b).

5.2. Reference data
Two separate regions of the National Park were used in

this study (Fig. 9). We manually labeled individual stems
forming large groupings of fallen trees visible in the high-
resolution aerial imagery (Fig. 10). We only considered
stems with a minimal length of 2 m. In Region A, a total
of 213 single stem polygons were labeled. These poly-
gons formed the basis for training the semantic segmenta-
tion component (U-net, see Sec. 5.4.1). Additionally, we
used Region B, disjoint from Region A, to derive a total
of 730 fallen tree polygons distributed across 3 test areas
(Fig. 9). We took care to mark all visible fallen stems in
each respective area to enable a fair evaluation. The ar-
eas B1, B2, and B3 are ordered by an increasing, subjec-
tive degree of segmentation difficulty. The first test area
(B1) comprises 157 fallen stems and a number of stand-
ing dead trees in a state of advanced decay (Fig. 9b), dis-
tributed over an area of 140 x 70 m2. The fallen trees are
often Area B2 is slightly larger with dimensions of 140 x
70 m2, but contains significantly more stems with a count
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of 218. It contains some visually more challenging scenar-
ios of many stems intersecting at various angles. Finally,
area B3 (140 x 107 m2) is the most challenging among the
test plot, with 355 fallen stems and difficult scenarios of
many stems forming complex interactions. A particularly
dense region within area B3 is depicted in Fig. 12.

(a)

(b)

Figure 11: (a) an image patch for U-net training. left: original CIR image,
right: pixel mask showing target class (magenta) and non-class (blue) pix-
els. The black regions within the image do not contribute to the training
loss function, which enables the learning to focus more on the boundary
between the stem and its surroundings. (b) Per-pixel probability of be-
longing to a fallen stem, obtained from semantic segmentation with the
trained U-net.

5.3. Evaluation criteria

We utilize two classic measures, correctness (also
known as precision/specificity) and completeness (re-
call/sensitivity) to quantify the detection and segmentation
results. We instantiate these measures in two complemen-
tary settings: (i) polygon level and (ii) centerline level. In
both scenarios, correctness is conceptually defined as the
ratio of detected objects which may be linked to reference
stems, whereas completeness refers to the converse: the ra-
tio of reference stems which have a detected counterpart.
The exact matching criteria for the polygon versus the line
case are listed below.

5.3.1. Polygon level
This version of the evaluation criteria is used for com-

paring the polygons delineated by our method versus the
manually created reference polygons. To consider a de-
tected polygon d as matched, we require that there exist a
reference polygon r such that |d ∩ r|/|d| > 0.5, i.e. more
than half the area of d must be covered by the reference.
The matching criterion for a reference polygon r′ is the ex-
istence of one or more detected polygons d′1, . . . , d

′
Q such

that more than half of the area of r′ is covered by the set-
theoretic union of the detections, i.e. |r′ ∩ ∪id′i |/|r

′| > 0.5.
The measure is asymmetrical to account for the fact that
some fallen stems marked as whole within reference data
may be fragmented into multiple parts by shadows within

the image, thereby making detection with a single contigu-
ous polygon unlikely. Also, our reference stems are con-
structed in such a way that collinear polygons representing
the same physical objects do not occur, therefore it’s not
valid for a detected shape to be matched with more than
one reference object. We report the mean IoU values on
matched reference stems for relevant experiments.

Figure 12: Dense region within plot B3, where many stems are concen-
trated on a relatively small area.

5.3.2. Line level
Since the baseline method for comparison (i.e. sample

consensus line detection) does not produce polygons, we
introduce the line-based evaluation for the sake of fairness.
Similar to the polygon case, we perform pairwise compar-
isons between line segments extracted from the reference
and detected polygons. The segments for the reference
polygons are derived from the centerlines of their oriented
bounding boxes, whereas for the detected rectangles they
are simply the centerlines parallel to the longer rectangle
edge, clipped to lie within the shape. To determine a match
between two segments, we adapt the 3D matching criterion
from our prior work concerning detection of fallen stems in
point clouds (Polewski et al., 2015a) to the 2-dimensional
case. Let ~r, ~d denote, respectively, the reference and de-
tected line segments which are candidates for matching.
We consider ~r matched with ~d if and only if the following
3 criteria are met (see Fig. 13):

• the angular deviation between ~r, ~d is below 5◦

• the mean projected distance between ~r, ~d is below 35
cm, or half-width of the average stems we expect to
encounter

• the projection of ~r onto ~d must have a minimum
length of 60%·|~d|
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Collinearity coefficient

Polygon level Line level

Off Low Mod. High Off Low Mod. High

Precision/recall P R P R P R P R P R P R P R P R

Shape coefficient

Plot B1
Off .90 .81 .90 .80 .91 .82 .90 .80 .88 .76 .89 .74 .89 .76 .88 .75

Low .90 .81 .90 .82 - - - - .88 .75 .88 .77 - - - -

Mod. .90 .82 - - .91 .82 - - .89 .75 - - .88 .76 - -

High .90 .82 - - - - .89 .80 .87 .75 - - - - .86 .73

Plot B2
Off .91 .73 .93 .73 .92 .74 .92 .72 .87 .73 .88 .73 .88 .75 .87 .73

Low .92 .75 .92 .74 - - - - .87 .75 .87 .73 - - - -

Mod. .93 .75 - - .92 .75 - - .87 .74 - - .87 .74 - -

High .91 .77 - - - - .91 .76 .87 .74 .87 .73

Plot B3
Off .93 .76 .93 .77 .93 .78 .93 .78 .89 .77 .89 .78 .88 .79 .89 .78

Low .93 .77 .92 .78 - - - - .88 .76 .89 .78 - - - -

Mod. .93 .78 - - .91 .78 - - .88 .76 - - .88 .78 - -

High .93 .79 - - - - .93 .79 .87 .75 - - - - .87 .77

Table 1: Sensitivity analysis results for the influence of the shape and collinearity energy potentials onto the aggregate energy. Precision and re-
call of the detection are given for both the polygon- and line-level evaluation. Four levels of influence are investigated for each potential, where
’off’,’low’,’moderate’,’high’ correspond respectively to term coefficient values of 0, 0.1, 0.3, 0.5 within the aggregate energy. The energy term coefficient
configurations yielding the highest precision (correctness) are emphasized with bold font (recall value breaks ties).

Figure 13: Computing the average projection distance and cover between
two line segments ~d,~r. The average distance is taken over a discrete set
of projected points (orange distance markers). Dashed gray lines indicate
the region of d covered by the projection of r onto d.

5.4. Experimental setup and results

We performed a number of computational experiments
to determine both the absolute performance of the en-
tire processing pipeline, its relative performance versus a
sample consensus baseline, as well as the influence of its
components on the detection quality. To facilitate com-
putations and enable concurrent processing, each high-
probability polygon obtained from the U-net semantic seg-
mentation (Sec. 4.2) is considered independently. In all
experiments, the data fit coefficient γd was kept constant

at log ε, ε = 1e − 6. Moreover, the overlap potential Eo

is measured in the same units (i.e. polygon area) as the
data fit term, therefore we also set γo = γd to maintain the
same semantics of an area unit in both potentials. The set-
ting of ε assumes that the target class probability of pixels
outside and inside the selected image regions is respec-
tively 1e − 6, 1 − 1e − 6. In fact, all three of the quan-
tities Ed, Es, Eo may be interpreted as (log-)probabilities,
and we make use of this fact to define a simple potential
normalization scheme. This is to promote interpretabil-
ity of the energy coefficients γ, such that potentials having
similar coefficient values will also exert a similar influence
on the energy function. In particular, we divide each po-
tential by the cardinality of the set it was integrated over,
so that Ed is divided by the area of the currently processed
high-probability polygon s ∈ S , Es is normalized by the
number of evolving shapes M′, whereas the normalization
constant for Ec is the number of unordered pairs

(
M′
2

)
.

The simulated annealing was carried out with 16 random
restarts, picking the result with the best objective function
value. The number of inner iterations per temperature level
was 15000, and the cooling factor was set to 0.9. The min-
imum and maximum accepted stem length was 2 m and 30
m, respectively. Detected polygons with lengths outside
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this interval were discarded.
To gain a deeper insight into the experimental results,

we partitioned the set of reference trees per plot into two
categories, based on their overlap with other reference
polygons. Standalone objects not intersecting any other
stem were considered ’simple’, whereas stems belonging
to groupings of mutually overlapping polygons were cate-
gorized as ’complex’. The percentages of reference trees
classified as ’complex’ in the test areas B1, B2, and B3
were respectively 53%, 59%, and 69%.

5.4.1. Training the U-net
We utilized the manually marked stem polygons to train

an instance of the 3 layer U-net depicted in Fig. 4, with ad-
ditional dropout and batch normalization layers. The im-
plementation provided by Akeret et al. (2017) was adapted
to our data. The input image size D0 was 200 pixels, and
the number of features (convolutional filters) at top level
was set to F = 32. Since stems are elongated thin struc-
tures, usually the proportion of pixels occupied by them
is small compared to the background. Therefore, we only
used pixels lying within a small 4-pixel band around the
marked stem polygons in the role of negative class ex-
amples. This was to enhance the class balance and also
encourage the learning process to focus on learning the
boundaries between stems and their immediate surround-
ings instead of random background patterns (Fig. 11a).
The resulting class label distribution was imbalanced with
31% of pixels representing fallen stems. A sample result of
the probabilistic output obtained from semantic segmenta-
tion with the trained U-net is shown in Fig. 11b. We used
the Adam algorithm (Kingma and Ba, 2017) to perform
stochastic gradient optimization of a binary logistic objec-
tive until convergence. Standard metaparameters for the
Adam optimizer were assumed (α = 0.001, β1 = 0.9, β2 =

0.999). The dropout rate was 50 %, whereas the training
minibatch size was set to 15.

5.4.2. Sensitivity analysis for energy coefficients
In the first experiment, we varied the energy coef-

ficients γs, γc corresponding respectively to the shape
and collinearity energy terms Es, Ec (Secs. 4.4.2,4.4.3).
Thanks to the normalization scheme described above,
it suffices to investigate coefficient values of the or-
der of magnitude 1. We introduced 4 levels of coef-
ficient magnitude: (0, 0.1, 0.3, 0.5), corresponding to la-
bels of L =off,low,moderate,high. Performance metrics
were collected for the following combinations of (γs, γc):
{(off, off)} ∪ {{(off, x), (x, off), (x, x)} : x ∈ L}. For the
polygon-based evaluation, we recorded the correctness and
completeness as per Sec. 5.3.1 as well as the mean matched
intersection-over-union measure. In case of line-based
evaluation, the metrics saved were (i) the correctness and
(ii) a version of completeness which considers only ref-
erence stems which were covered by detected segments
(in the projection sense, see Fig. 13) to a degree of at
least 65%. The results are summarized in Table 1. Also,
Figs. 16-18 visualize the detection results of the best per-
forming parameter combinations for the 3 target areas. On

the polygon level, a correctness above 0.9 was reached
for all plots, with completeness values between 0.77 and
0.82. The highest attained intersection-over-union was
0.59, 0.55, and 0.58 respectively for plots B1, B2, B3. The
plot exhibiting the highest completeness was also the one
with the highest percentage of ’simple’ (single component)
reference trees. Adjusting the shape and collinearity term
coefficients yielded an improvement in precision/recall of
1/1, 2/4, and 0/3 percentage points (pp) respectively for
plots B1, B2, B3. Moreover, all results with the highest
attained correctness were associated with a ’moderate’ or
higher shape term coefficient. In contrast, varying coef-
ficients did not influence the line level evaluation much,
with precision/recall gains of 1/0, 1/2, and 0/1 pp. Overall,
relative to the polygon level, the line evaluation resulted in
slightly lower values for precision at 88-89 and complete-
ness of 75-78.

(a)

(b)

(c)

Figure 14: Detection completeness results for the 3 test plots - compar-
ison between the sample consensus baseline (SAC) and our multiple ac-
tive contour (MAC) method. The horizontal axis indicates the ratio of the
reference tree’s length which is covered by the projection of its matched
detected line. A point (p, q) on the plot is interpreted as q of all reference
trees having a valid match which covers at least p of their length.

5.4.3. Comparison to baseline (sample consensus)
The purpose of this experiment was to compare the line-

based detection quality to the sample consensus baseline.
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To this end, we executed the random sample consensus
(RANSAC) based line segment detection within the high-
probability components from U-net semantic segmenta-
tion (Sec. 4.5), and considered the SAC line segments as
the final detection result. To account for randomness and
to equalize the chances versus the compared-to method,
the SAC computations were repeated a number of times
equal to the size of checked coefficient combination set in
the first experiment, and the best result was noted. We
then picked the best-performing coefficient combination
per plot as per Table 1 and performed a more in-depth
comparison of our method and the SAC result using more
metrics. Notably, we analyzed completeness at different
thresholds of stem coverage as well as correctness of de-
tecting ’simple’ stems (which occupy their individual in-
put polygon, without intersecting other trees) versus ’com-
plex’ stems (which are part of a complex aggregate of
multiple overlapping objects). The curves showing detec-
tion completeness as a function of reference stem projected
coverage ratio are depicted in Fig. 14, whereas the remain-
ing metrics are given by Table 3. In terms of overall preci-
sion (correctness), our method attains a lead of 4 pp con-
sistently across the test plots. However, considering the
complexity of the reference stems, this difference is ex-
tended to 5-7 pp for complex stems and reduced to 0-3 pp
for simple (single component) stems. The detection com-
pleteness (recall) follows a similar trend, with our method
outperforming the baseline by up to 5 pp for simple and
up to 7 pp for complex stems. Note that the advantage of
our method becomes more clear at coverage levels beyond
60%, whereas for low coverage levels, both methods per-
form similarly.

5.4.4. Comparison to semantic segmentation baseline - lo-
gistic regression

This experiment involved replacing the high-quality se-
mantic segmentation probability map from the U-Net with
a basic logistic regression model trained only on the chan-
nel intensities. The same data was used for training both
models. No higher-level textural features were used in
order to determine the benefit of using a state-of-the-art
neural network for semantic segmentation. The pixel-level
classification accuracy and F1 score on a hold-out valida-
tion set for the U-Net were respectively 0.94 and 0.91. The
cross-validated overall accuracy and F1 score for the logis-
tic regression baseline attained values of 0.80 and 0.62. We
then applied the logistic regression model to the images
of the test area, obtaining maps of posterior class proba-
bilities. Polygons of high probability regions were subse-
quently extracted and our multi-contour segmentation was
executed. Although the per-pixel classification metrics for
the logistic regression were satisfactory, the object-level
(both line and polygon) performance appeared to break
down. The precision degraded to levels of 0.76-0.83, and
the recall experienced an even more extreme drop to levels
of 0.15-0.27. In Fig. 15, the semantic segmentation of the
same area by the LR baseline and by the U-Net is shown.
It can be seen that within the LR probability image, many

stems are missing or greatly ’thinned out’, i.e. represented
by only a sparse set of pixels.

5.5. Execution time

The training process of the U-net on an Nvidia GeForce
GTX 1080 Ti graphics card (with CUDA support) took
ca. 7.5 hours, after which time convergence of the learning
process was achieved. The prediction time of the U-net
on new data was measured in seconds and negligible com-
pared to the optimization time of the multi contour objec-
tive. This optimization was carried out on a desktop com-
puter equipped with 128 GB of RAM and an Intel XEON
E5-1680 v4 CPU running at a frequency of 3.4 GHz, con-
sisting of 8 cores. We used our own implementation of the
simulated annealing metaheuristic algorithm written in the
C++ programming language. The mean execution times
of the inference/optimization on the respective test areas
(averaged over different choices of the objective function
parameters γs, γc) are given in Table 2.

Plot B1 Plot B2 Plot B3

Mean exec. time [h] 3.95 6.68 13.46

Standard dev. [h] 0.17 0.42 0.46

Time per stem [s] 61 83 91

Table 2: Execution times of simulated annealing based optimization of
proposed multi active contour method on the 3 test areas. The shown
values correspond to the mean execution time, standard deviation, and
mean time for processing one stem per test area.

6. Discussion

Overall, our method was successful in providing a good
quality detection result for all 3 test plots of multi-level
scenario complexity, both in terms of agreement of the ex-
tracted and reference polygons (IoU between 0.55-0.59),
and the percentage of matched reference and detected
polygons (correctness of 0.91-0.93, completeness 0.78-
0.82). As expected, the shape prior turned out to be more
helpful in case of polygon level evaluation, because the
line level evaluation is less sensitive to changes in detected
polygon width and small changes in orientation. Despite
the simplicity of the utilized shape representation (rectan-
gles parameterized by width and length), the energy ben-
efited from an explicit shape model with a gain of up to
4 pp in completeness (while maintaining correctness). We
hypothesize that a more complex shape model could show
even higher gains. The test plot B1, which benefited the
least from the additional energy terms, also had the lowest
percentage of complex (intersecting) reference stems, con-
firming the intuition that the shape and collinearity priors
are mostly useful for the complex scenarios.

It is interesting to note that plot B1, which can be con-
sidered the ’easiest’, obtained the lowest precision score
among the 3 test plots on the polygon level. This can be
attributed to a relatively high number of standing dead tree
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Pr.(total) Pr.(simple) Pr.(complex) Rec.(total)

Plot B1
SAC .85 .82 .90 .70

MAC .89 .85 .97 .76

Plot B2
SAC .84 .89 .79 .73

MAC .88 .91 .84 .75

Plot B3
SAC .84 .88 .82 .74

MAC .88 .88 .87 .79

Table 3: Results of line-based evaluation - comparison between baseline sample consensus (SAC) and our multiple active contour (MAC) method.
Shown are the precision (Pr.) on the whole data, for ’simple’ and for ’complex’ reference stems, as well as the total recall (Rec.) at 0.65 coverage of
reference stems.

(a)

(b)

Figure 15: Comparison of posterior probabilities from semantic segmen-
tation by (a) logistic regression based on simple channel intensities and
(b) U-net. The LR baseline tends to thin out the stems, often reducing
them to sparse sets of pixels.

stems within this plot (see Fig. 16c). These stems appear
to be virtually indistinguishable from lying stems under the
semantic segmentation output of the U-Net. This is proba-
bly a consequence of the network not being trained to dis-
tinguish standing dead trees from fallen stems. It is not
clear whether this can be achieved solely based on monoc-
ular images without dense depth information. Aside from
standing dead trees, other sources of false negatives may

be linked to root plates as well as woody debris appear-
ing to possess a similar hue within the CIR images as our
target objects.

A number of misdetections (unmatched reference trees)
is once again associated with the posterior probability of
the semantic segmentation from the U-Net. As visible
on Figs. 16a, 17a, 18a, the missing stems are often frag-
mented into discontinuous chunks in the probability im-
age, caused mostly by shadows and occlusions from other
objects like shrubs or understory growth. Such discontinu-
ities prohibit the energy function from enclosing the dis-
joint stem parts in a single detected polygon. This is as-
sociated with our method’s inherent tendency to exploit
the connectivity structure of the high-probability pixels,
where each connected component is processed indepen-
dently. Due to computational tractability considerations,
for large scenes it is impractical to consider all connected
components within one, simultaneous optimization prob-
lem. However, there are several alternative possibilities
of alleviating this problem. First, explicitly adding ex-
amples of shadowed fallen stems to the U-Net’s training
set would help increase the continuity of the stems within
the probability image. Second, out energy formulation
could be altered to explicitly account for these discontin-
uous, collinear detections. Finally, a post-processing step
could be applied, where the detected polygons would be
clustered together based on mutual distance and collinear-
ity, for example using graph cut methods (Shi and Ma-
lik, 2000). In our setting, the collinearity potential from
Sec. 4.4.3 could be directly used in the role of the object
similarity function.

Comparison to the sample consensus baseline shows
that the line-based detection can be improved by applying
our energy function to the SAC candidates, both in terms
of completeness and correctness. Moreover, our method
yields higher gains for more complex scenarios of inter-
secting stems. In case of simple, single-component stems,
sample consensus line fitting usually delivers good results
and is difficult to significantly improve upon. Also, it ap-
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pears that SAC is often able to provide low-coverage par-
tial matching of the majority of stems present within the
test area, but falls short of the task of precisely delineat-
ing their extents. It is for higher stem length coverages
that our multiple active contour method, endowed with
prior knowledge about the size and spatial conformation
of fallen stems, is able to gain the most clear advantage.

Our results show the importance of using a high-quality
semantic segmentation method as a basis for the contour
evolution. We believe that the performance degradation
turned out to be so extreme because of the nature of the
classified objects. Indeed the fallen stems are usually rep-
resented by objects of only a few pixels of width, and
therefore the deformations caused by the lower-quality lo-
gistic regression semantic segmentation turned out to dis-
tort the appearance of stems in the probability image be-
yond recognition. It was nevertheless surprising that a
ca. 20% drop in pixel-level accuracy resulted in a nearly
60% degradation in object-level recall.

The relative execution times are consistent with our a
priori ordering of the three test areas with respect to their
difficulty. Indeed, the unit time required for processing
one stem in Plots B2 and B3 is respectively 33 % and 50
% larger compared to Plot B1 (see Table 2). The process-
ing time is dominated by solving the multiple active con-
tour evolution objective (via simulated annealing), with the
semantic segmentation with the U-net as well as the sam-
ple consensus-based line segmentation contributing only a
small fraction of time. In turn, the simulated annealing al-
gorithm’s computational complexity can be traced back to
the complexity of the move-making procedure, which is
directly proportional to the number evolving model shapes
as well as the number of points forming the connected
component’s polygon (see Sec. 4.4). Therefore, a sin-
gle connected component with a very complex boundary
(e.g. Fig. 12) can dominate the the processing time, es-
pecially if the initial sample consensus line segmentation
results in many model shapes to evolve. The current pro-
cessing times on a single machine are satisfactory for small
and medium-scale applications of areas which are densely
covered with fallen stems. However, in this study our pri-
mary focus was to attain high accuracy of the stem de-
lineation and not as much to optimize the throughput of
the computation. In particular, we did not conduct inves-
tigations into the minimal required random restarts of the
simulated annealing runs, the number of iterations of each
temperature, or the cooling schedule itself. We believe that
there is potential to reduce the current execution times by
at least tenfold once these meta-parameters are optimized.
This would bring the unit cost of processing a single stem
into the realm of several seconds, which would mean that
an area containing 10,000 fallen stems could be processed
within one day on a single machine.

We believe that our study showed the advantage of using
active contour evolution over generic line detection meth-
ods for the purpose of segmenting elongated structures
such as fallen tree stems in high-resolution aerial imagery.
To the best of our knowledge, it is the first study which

(i) was based on more than 700 objects, (ii) provided both
pixel-level as well as line-level detection metrics, and (iii)
dealt with extremely complex overlapping stem scenes.
The results show that a segmentation method which is in-
formed on the shape and appearance of the objects it is try-
ing to segment can improve performance especially in the
case of complex scenes. A further advantage of our pro-
posed method over off-the-shelf segmentation procedures
is that most of the crucial parameters can be learned from
training examples. However, it should be noted that our
study had several limitations that should be addressed in
future research. First, the presence of shadows and oc-
clusions can be detrimental to the formation of connected
components within the posterior probability image, lead-
ing to partition of the same physical object into multiple,
unrelated segmented objects. Moreover, the utilized rect-
angular representation of stems may be too simple in some
cases, especially in the context of applying the method to
more complex shapes aside from fallen stems. Also, our
input data lacked 3D information, which led to confusion
between fallen and standing trees in some cases. Finally,
the meta-parameters of the simulated annealing optimizer
were not tuned for efficiency of processing, which makes
the current version of our software not applicable to large
area processing. Nonetheless, we believe that the trainable
nature of the key parameters makes our approach applica-
ble to new, previously unseen areas given enough training
data, without the need for manual parameter tweaking.

Our results are very promising as we can count the num-
ber of fallen trees and determine the area covered by each
tree very accurately from aerial imagery. Therefore, the
proposed methodology will allow many applications in
forest and conservation management. After severe distur-
bances, our method allows a quick assessment of the num-
ber and distribution of fallen trees, which is necessary to
plan salvage logging activities to harvest the timber and to
prevent the spread of insects, such as the Norway spruce
bark beetle Ips typographus. In the next step, the delin-
eated polygons will be a basis for determining not only the
number of the fallen trees, but also the amount of wood.
This would make the information even more suitable for
forest management, since from this value the operation of
logging machinery and transportation can be planned ac-
curately. For conservation management, our method will
help to map the distribution and amount of deadwood in
the ecosystem. This will allow to determine the best areas
for conservation measures and to monitor the amount of
lying dead wood in a given area to fulfil minimum require-
ments for maintaining biodiversity (Müller and Bütler,
2010). Moreover, our method can also be used for re-
search projects that need accurate information about the
distribution of lying dead wood, such as long-term studies
on carbon sequestration, the spatial arrangement of forest
regeneration, or animal movement.
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7. Conclusions and outlook

This work introduced a framework for segmenting mul-
tiple objects of a common type from imagery using a col-
lection of evolving active contours, unified under an aggre-
gate energy functional encompassing various aspects of the
segmentation quality. In particular, along with the usual
data fit term, our energy favors high-probability shapes as
defined by an explicit shape model, and penalizes overlap
of adjacent contours. The proposed approach makes use
of state-of-the-art semantic segmentation methods (e.g. U-
net) to extract regions of the input image which are likely
to contain realizations of target class objects. We then in-
stantiated the framework in the context of fallen tree detec-
tion from high-resolution aerial color infrared imagery, by
providing concrete shape parametrizations, a kernel den-
sity estimator-based shape model, as well as additional,
domain-specific energy potentials. It was shown on 3 test
plots that our approach can achieve good segmentation
performance in terms of both polygon-based (intersection-
over-union) and line-based quality metrics. It was found
that using the proposed shape model improved the seg-
mentation completeness at polygon level by up to 4 pp.
As expected, the additional energy terms (collinearity and
shape model) were mostly useful for complex aggregates
of multiple overlapping stems, while their impact on iso-
lated stem detection was minimal.

Our investigation showed the critical importance of us-
ing a high-quality semantic segmentation method in case
of thin, elongated objects such as fallen stems. The poste-
rior probability map obtained from a simple baseline using
channel intensities resulted in a breakdown of segmenta-
tion completeness, with many stems under-represented and
fragmented in the probability image. The sufficient qual-
ity of the semantic segmentation is a precondition for the
successful application of our method. On the line level,
the proposed energy-based segmentation method was com-
pared to a sample consensus baseline. Although the energy
functional evolves polygons (contours), an improvement
in line-based metrics was also observed, with gains in both
precision and recall up to 6 pp.

Our method is a step towards automatically generating
maps of downed wood in forests from aerial imagery. This
information is of key importance in the success of environ-
mental studies of forest ecosystems regarding faunal and
floral biodiversity, soil quality, carbon sequestration, ani-
mal habitat modeling etc. Moreover, widespread accessi-
bility of aerial imaging in forest management and research
institutions makes our method applicable in practice for
obtaining moderate to large area coverage of downed wood
distribution given reasonable computational resources.

An issue to be addressed in future work is associated
with objects split by shadows or occlusions in the proba-
bility image, leading to fragmentations of stems into dis-
joint parts. For large scenes with hundreds or thousands of
objects, it would be computationally intractable to jointly
consider all high-probability image regions within one
optimization problem. Instead, a more feasible strategy
seems to perform merging of the detected polygons as a

post-processing step, e.g. using a graph-cut approach. An-
other natural direction for future work is the application of
our framework to more complex object classes and asso-
ciated, richer shape models. Also, instantiating the frame-
work in 3D using outputs from voxel-based deep semantic
segmentation networks could be an interesting next step.
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Figure 16: Results of fallen stem segmentation for plot B1 (polygon level). (a), (b) depict respectively the reference and detected polygons, with
semantic segmentation posterior probability as background. Red/green colors indicate a polygon mismatched/matched with a counterpart (above 50%
area overlap). (c) original false color CIR image with indicated mismatched reference (cyan) and detected (yellow) polygons.
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Figure 17: Results of fallen stem segmentation for plot B2 (polygon level). (a), (b) depict respectively the reference and detected polygons, with
semantic segmentation posterior probability as background. Red/green colors indicate a polygon mismatched/matched with a counterpart (above 50%
area overlap). (c) original false color CIR image with indicated mismatched reference (cyan) and detected (yellow) polygons.
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Figure 18: Results of fallen stem segmentation for plot B3 (polygon level). (a), (b) depict respectively the reference and detected polygons, with
semantic segmentation posterior probability as background. Red/green colors indicate a polygon mismatched/matched with a counterpart (above 50%
area overlap). (c) original false color CIR image with indicated mismatched reference (cyan) and detected (yellow) polygons.
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