
Chapter 22
Airborne LiDAR for Detection
and Characterization of Urban Objects
and Traffic Dynamics

Wei Yao and Jianwei Wu

Abstract In this chapter, we present an advancedmachine learning strategy to detect
objects and characterize traffic dynamics in complex urban areas by airborne LiDAR.
Both static and dynamical properties of large-scale urban areas can be characterized
in a highly automatic way. First, LiDAR point clouds are colorized by co-registration
with images if available. After that, all data points are grid-fitted into the raster format
in order to facilitate acquiring spatial context information per-pixel or per-point.
Then, various spatial-statistical and spectral features can be extracted using a cuboid
volumetric neighborhood. The most important features highlighted by the feature-
relevance assessment, such as LiDAR intensity, NDVI, and planarity or covariance-
based features, are selected to span the feature space for the AdaBoost classifier.
Classification results as labeled points or pixels are acquired based on pre-selected
training data for the objects of building, tree, vehicle, and natural ground. Based
on the urban classification results, traffic-related vehicle motion can further be indi-
cated and determined by analyzing and inverting the motion artifact model pertinent
to airborne LiDAR. The performance of the developed strategy towards detecting
various urban objects is extensively evaluated using both public ISPRS benchmarks
and peculiar experimental datasets, which were acquired across European and Cana-
dian downtown areas. Both semantic and geometric criteria are used to assess the
experimental results at both per-pixel and per-object levels. In the datasets of typical
city areas requiring co-registration of imagery and LiDAR point clouds a priori, the
AdaBoost classifier achieves a detection accuracy of up to 90% for buildings, up to
72% for trees, and up to 80% for natural ground, while a low and robust false-positive
rate is observed for all the test sites regardless of object class to be evaluated. Both
theoretical and simulated studies for performance analysis show that the velocity
estimation of fast-moving vehicles is promising and accurate, whereas slow-moving
ones are hard to distinguish and yet estimated with acceptable velocity accuracy.
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Moreover, the point density of ALS data tends to be related to system performance.
The velocity can be estimated with high accuracy for nearly all possible observa-
tion geometries except for those vehicles moving in or (quasi-)along the track. By
comparative performance analysis of the test sites, the performance and consistent
reliability of the developed strategy for the detection and characterization of urban
objects and traffic dynamics from airborne LiDAR data based on selected features
was validated and achieved.

22.1 Introduction

Urban scene classification and object detection are important topics in the field of
remote sensing. Recently, point cloud data generated by LiDAR sensors and multi-
spectral aerial imagery have become two important data sources for urban scene
analysis. While multispectral aerial imagery with fine resolution provides detailed
spectral texture information about the surface, point cloud data is more capable of
presenting the geometrical characteristics of objects.

LiDAR has become a common active surveying method to directly realize the
digital 3D representation of targets through a laser ranging, positioning, and orien-
tation system (POS). Based on different platforms, LiDAR technology can cover
terrestrial, mobile, airborne, and spaceborne applications. This chapter focuses on
airborne applications. Airborne LiDAR (ALS) has attracted plenty of research atten-
tion formore than twodecades. TheALS technique has beenwidely applied in diverse
fields such as forest mapping (Næsset and Gobakken 2008; Reitberger et al. 2008;
Zhao et al. 2018), coast monitoring (Earlie et al. 2015; Bazzichetto et al. 2016), smart
urban applications (Garnett and Adams 2018) and so on. As it can directly derive
accurate and highly detailed 3D surface information, and because more than one half
of the population resides in urban areas, ALS was able to achieve significant applica-
tions in urban areas such as urban modeling (Zhou and Neumann 2008; Lafarge and
Mallet 2012; Chen et al. 2019), land cover and land use classification (Azadbakht
et al. 2018; Balado et al. 2018; Wang et al. 2019), environment monitoring and tree
mapping (Liu et al. 2017; Degerickx et al. 2018; Lafortezza and Giannico 2019),
urban population estimation (Tomás et al. 2016), energy conservation (Jochem et al.
2009; Dawood et al. 2017) and so on. Urban modeling with ALS data includes the
3D reconstruction of buildings (Bonczak and Kontokosta 2019; Li et al. 2019), roads
(Chen and Lo 2009), bridges (Cheng et al. 2014), powerlines (Wang et al. 2017)
and so on. Very recently, ALS data are also helpful to improve accuracy for urban
mapping and land cover classification. Degerickx et al. (2019) applied ALS data
as an additional data source to enhance the performance of multiple endmember
spectral mixture analysis for urban land-cover classification using hyperspectral and
multispectral images, and found that implementing height distribution information
from ALS data as a basis for additional fraction constraints at the pixel level could
significantly reduce spectral confusion between spectrally similar, but structurally
different land-cover classes. Accurate and highly detailed height information from
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ALS data is also used to enhance urban mapping accuracy based on the 3D rational
polynomial coefficient model (Rizeei and Pradhan 2019).

Besides the above-mentioned applications, ALS can also be used to detect and
monitor dynamic objects. Compared to traditional optical imagery, airborne LiDAR
data are characterizedby involvingnot only rich spatial but also temporal information.
It is theoretically possible to extract vehicles from single-pass airborne LiDAR data,
to identify the vehicle motion, and to derive the vehicle’s velocity and direction
based on the motion artifacts effect. Thus, besides common applications of airborne
LiDAR, it should also be regarded as a demonstrator for traffic monitoring from the
air.

Urban scene analysis can be categorized by different object types, different data
sources, and also algorithms. During the past decades, more work referring to urban
scene analysis has concentrated on the classification or detection of specified objects.
Much marvelous research (Clode et al. 2007; Fauvel 2007; Sohn and Dowman 2007;
Yao and Stilla 2010; Guo et al. 2011; Xiao et al. 2012) has been done in extracting
objects like buildings and roads, while trees and vehicles are also interesting objects
for intelligent monitoring of natural resources and traffic in urban areas (Höfle and
Hollaus 2010; Yao et al. 2011). However, detection and modeling of diverse urban
objects may involve more complicated situations due to the various characteristics
and appearances of the objects. As ALS data became widely available for the task
of creating 3D city models, there was an increasing amount of research on devel-
oping automatic approaches to object detection from images and LiDAR data, which
showed the great potential of 3D target modeling and surface characterization in
urban areas (Schenk and Csatho 2007; Mastin et al. 2009). In this chapter, we focus
on analyzing airborne LiDAR data by the adaptive boosting (AdaBoost) classifica-
tion technique for urban object detection based on selected spatial and radiometric
features. In this chapter, we will develop and validate a robust classification strategy
for urban object detection through fusing LiDAR point clouds and imagery.

Asmentioned above,ALSdata have become an important source for object extrac-
tion and reconstruction for various applications such as urban and vegetation analysis.
However, traffic monitoring remains one of the few fields which are still not inten-
sively analyzed in the LiDAR community. There are several motivations driving us
to perform traffic analysis using airborne LiDAR in urban areas:

• The penetration ability of laser rays towards volume-scattering objects (e.g., trees)
can improve vehicle detection;

• The motion artifacts generated by the linear scanning mechanism of airborne
LiDAR can determine object motion;

• The explicit extraction of vehicles can refine the results of operations such asDTM
filtering and road detection where vehicles are regarded as stubborn disturbances.

The task of detecting moving vehicles with ALS has been addressed in several
scientific publications. The research most relevant to our work came from Toth
and Grejner-Brzezinska (2006). In this chapter, an airborne laser scanner coupled
with a digital frame camera was adopted to analyze transportation corridors and
acquire traffic flow information. However, the testing of this system was limited to a
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motorway; the same problem needs to be investigated in more challenging regions
using the system equipped solely with LiDAR. In the contribution from Yao et al.
(2010a), a context-guided approach based on gridded ALS data was used to delin-
eate single instances of vehicle objects and results demonstrated the feasibility of
extracting vehicles for motion analysis. A vehicle extraction method was presented,
running directly on LiDAR point clouds that integrate height, edge, and point shape
information in a segmentation step to improve the vehicle extraction through object-
based classification (Yao et al. 2011). Based on the extracted vehicles, Yao et al.
(2010b) proposed a complete procedure to distinguish vehicle motion states and to
estimate the velocity ofmoving vehicles by parameterizing, classifying, and inverting
shape deformation features. In contrast to applications monitoring military traffic,
civilian applications includemore constraints regarding the objects to be detected.We
can assume that vehicles are bound to roads on a known road network, which might
not be true in military applications. Such knowledge provides a priori information
for motion estimation.

This chapter concerns the detection of selected urban objects and the characteriza-
tion of traffic dynamics with ALS data. In Sect. 22.2, a robust and efficient supervised
learning method for detecting urban objects is proposed, and the analysis of urban
traffic dynamics is performed in Sect. 22.3. Section 22.4 presents the experiment and
results of detecting urban objects and their dynamics. Finally, conclusions are drawn
in Sect. 22.5.

22.2 Detection of Urban Objects with ALS
and Co-registered Imagery

22.2.1 General Strategy

Theworkflowof the entire strategy for detecting three urban object classes (buildings,
trees, and natural ground) with ALS data and co-registered images is depicted in
Fig. 22.1.

22.2.2 Feature Derivation

In this chapter, we combine point clouds and image data, while multispectral and
LiDAR intensity information is also available. In total 13 features are defined (Wei
et al. 2012).
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Fig. 22.1 Overview of the entire strategy

22.2.2.1 Basic Features

The so-called basic features contain the features that can be directly retrieved from
the point cloud and image data, respectively:

• R,G,B: The three color channels of the digital image. As two data sets are used for
experiments and one of them (named data set Vaihingen) provides color-infrared
images, features R, G, B stand for infrared, red, and green spectra, But in the other
data set (Toronto), the features R, G, and B are normal bands of Red, Green, and
Blue. To avoid confusion, we always use the symbols R, G, B to indicate the three
color channels of the image in order.

• NDVI: Normalized Difference Vegetation Index, defined as:

NDVI = (NIR − VIS)

(NIR + VIS)
(22.1)



372 W. Yao and J. Wu

NDVI can assess whether the target being observed contains green vegetation or
not. This feature is specified for data set Vaihingen because it provides color-
infrared imagery.

• Z: The vertical coordinate of each point in the LiDAR data, as the topography of
datasets used here, is assumed to be flat.

• I: Pulse intensity, which is provided by the LiDAR system for each point.

22.2.2.2 Spatial Context Features

Based on the basic features, we intend to extract more features. Therefore, a 3D
cuboid neighborhood is defined with the help of a 2D square with radius of 1.25 m in
horizontal dimension as shown in Fig. 22.2. All points located within the cell volume
will be counted as the neighbors; the value 1.25 m is chosen empirically.

• �Z: Height difference between the highest and lowest points within the cuboid
neighborhood.

• σ Z : standard deviation of height of points within the cuboid neighborhood.
• �I: Intensity difference between points having the highest and lowest intensities

within the cuboid neighborhood.
• σ I : Standard deviation of intensity of points within the cuboid neighborhood.
• E: Entropy, here being different from the normal entropy of images, we

measure the entropy using LiDAR intensities Ik of the points within the cuboid
neighborhood by Eq. 22.2 with K being the number of neighbors:

Fig. 22.2 The 3D cuboid
neighborhood used to
acquire spatial context
features
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E =
K∑

k=1

[
(−Ik) · logIk2

]
(22.2)

The following two features O and P are based on the three eigenvalues of the
covariancematrix from the xyz coordinates of pointswithin the cuboid neighborhood.
The three eigenvalues λ1, λ2, and λ3 are arranged in descending order, and they can
present the local tridimensional structure. This allows us to distinguish between a
linear, a planar, or a volumetric distribution of the points.

• O: Omnivariance, which indicates the distribution of points in the cuboid
neighborhood. It is defined as:

O = 3

√√√√
3∏

i=1

λi (22.3)

• P: Planarity, defined as:

P = (λ2 − λ3)/λ1 (22.4)

P has high value for roofs and ground, but low values for vegetation.

22.2.3 AdaBoost Classification

AdaBoost is an abbreviation for adaptive boosting (Freund andSchapire 1999),which
is an improved version of boosting.AdaBoost is an attractive and powerful supervised
learning algorithm of machine learning and it has been successfully applied in both
classification and regression cases. For classification cases, AdaBoost is adapted to
take full advantage of theweak learners and solves the problemof combining a bundle
of weak classifiers to create a strong classifier which is arbitrarily well correlated
with the true classification. It consists of iteratively learning weak classifiers with
respect to a distribution and adding them to a final strong classifier. Once a weak
learner is added, the data are reweighted according to the weak classifier’s accuracy;
misclassified samples gainweight and correctly classified samples reduceweight. No
other requirement is essential for the weak learners used in the AdaBoost except that
their classification accuracy is better than the random classification, which means
that the weak learners only need to achieve a classification accuracy better than 50%.
In this chapter, we use an open-source AdaBoost toolbox with one tree weak learner
CART (classification and regression tree), more details of which can be found in the
reference (Freund and Schapire 1999).

Like other supervised learning algorithms, AdaBoost contains two phases as well:
training and prediction. In the training phase, it repeatedly trains T weak classi-
fiers through T rounds. In this chapter we implemented the multiclass classification
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task through iterating corresponding binary classifiers, as shown in the following
pseudocode for the binary classification:

I nput-Training Data with m samples: (xi , yi ), yi ∈ Y = {−1, +1}, i ∈ [1,m];
I ni tiali ze:Wi

1 = 1

m
, hi1 = 0;

f or t = 1:T

train the t th weak classi f ier ht with weight vector of sample distribution Wt ;

choose εt =
m∑

i

W i
t ∗ I

(
hit (xi ) �= yi

)
;

αt = ln

(
1 − εt

εt

)
/2;

Zt =
m∑

i=1

Wi
t e

(−αt ht (xi )yi );

Wi
t+1 = Wi

t ∗ e(−αt ht (xi )yi )/Zt ; f or i = 1:m

end

end

The T weak classifiers are combined and output-weighted as follows:

H(x) = sgn

(
T∑

t=1

αtht

)
(22.5)

where the sgn function is defined as:

sgn(x) =
⎧
⎨

⎩

−1, x < 0
0, x = 0
1, x > 0

(22.6)

In the above, pseudocode (xi , yi ) represents the i th training sample with xi
standing for its feature vector and yi for its class type; m represents the amount
of training data; Wi

t is a weight for the i th training sample being selected to train
the t th classifier ht and Wt is a vector of Wi

t ; εt is the weighted prediction error
of ht ; αt is the weight coefficient for updating the sample distribution; the value
of I

(
hit (xi ) �= yi

)
is 1 if hit (xi ) �= yi , else it equals 0; Zt is a normalization factor.

At beginning, each sample is assigned an equal weight equal to Wi
1 = 1/m, which

means that each training sample is selected with the same probability to train h1.
In the t th training round, the AdaBoost algorithm updates Wi

t+1 as follows: training
samples correctly identified by classifier ht are weighted less while those incor-
rectly identified are weighted more. Then when training ht+1, the algorithm tends
to select samples wrongly classified by previous classifiers with higher probability.
After T rounds of training, T-weak classifiers are trained and finally combined into a



22 Airborne LiDAR for Detection and Characterization of Urban … 375

weighted classifier H(x) as the training phase’s output, which has better prediction
performance.

The prediction phase uses the combined classifier for classification. Compared
to boosting, AdaBoost two advantages for learning a more accurate classifier. First,
for each weak classifier’s training, boosting randomly chooses training samples,
while AdaBoost chooses samples misclassified in the previous training rounds with
greater probability. Thus, AdaBoost can better train the classifier. Second, AdaBoost
determines each sample’s classification label through weighting each classifier’s
output, which makes an accurate classifier contribute more to the final classification
result.

22.3 Detection of Urban Traffic Dynamics with ALS Data

In this section, we give a brief review of deriving the theory for detecting object
dynamics in ALS. We refer to the dimension perpendicular to the sensor heading
synonymously as across-track. The dimension along the sensor path will be denoted
by a along-track.

22.3.1 Artifacts Effect of Vehicle Motion in ALS Data

In order to assess the feasibility of extracting information on traffic dynamics from
airborne LiDAR sensors installed on the airborne platform, the main characteris-
tics of the sensor, including the data formation method, should be considered first.
In most airborne LiDAR scanning processes, exclusive of flash LiDAR which are
predominantly based on mechanical scanning, a rotating laser pointer rapidly scans
the Earth’s surface with continuous scan angles during flight. While the sensor is
moving it transmits laser pulses at constant intervals given by the pulse repetition
frequency (PRF) and receives the echoes. With respect to moving objects, the funda-
mental difference between scanning and the frame camera model is the presence of
motion artifacts in the scanner data. Due to short sampling time (camera exposure),
the imagery preserves the shape of moving objects; if the relative speed between
the sensor and the object is significant then increased motion blurring may occur. In
contrast, scanning will always produce motion artifacts, since the distance between
sensor and target is usually calculated based on the stationary-world assumption;
fast-moving objects violate this assumption and therefore image the target incor-
rectly depending on the relative motion between the sensor and the object. The
dependency can be seen by adding the temporal component into the range equation
of the LiDAR sensor. Here, it is assumed that the sampling rate is consistent among
all the vehicles independent of the scan angle. That is to say that all the vehicles are
scanned with enough points to represent their shape artifacts.
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Fig. 22.3 Moving objects undergo the scanning of airborne LiDAR. Copyright © 2010 IEEE,
reproduced by permission

In Fig. 22.3a the geometry of data acquisition is shown. The sensor is flying at a
certain altitude along the dotted arrow. An example of shape artifacts generated by
moving objects is also depicted in Fig. 22.3b, where the black dotted box indicates the
vehicle shape obtained in the scanning process of airborne LiDARwhile the original
vehicle is depicted as a rectangle nearby. It can be perceived that the moving vehicle
is imaged as a stretched parallelogram. Let θv be the intersection angle between the
moving directions of sensor and vehicle where θv ∈ [0◦, 360◦], vL and v the velocity
of aircraft and vehicle respectively, ls and lv the sensed and original lengths of the
vehicle, respectively; and θSA the shearing angle that accounts for the deformation
of the vehicle as a parallelogram. The analytic relations between shape artifacts and
object-movement parameters can be derived as:

ls = lv · vL
vL − v · cos(θv) = lv

1 − v
vL

· cos(θv) (22.7)

θSA = arctan

(
v · sin(θv)

vl − v · cos(θv)
)

+ 90◦ (22.8)

where θSA ∈ (0◦ 180◦) and is found as the left-bottom angle of the observed vehicle.
For the sake of full understanding of the appearance of moving objects in the

airborne LiDAR data, object motions are to be divided into the following different
components and investigated for their respective influences on the data artifacts
generated.

First, the target is assumed to move with constant velocity va following the along-
track direction, which leads to the stretching effect of the object shape depending on
the relative velocity between target and sensor as illustrated in Fig. 22.4.
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Fig. 22.4 Along-track object motion. Copyright © 2010 IEEE, reproduced by permission

The analytic relation between the object velocity in along-track direction va and
the observed stretched length ls thus can be summarized in Eq. 22.9. The relation
in Eq. 22.9 is further modified to Eq. 22.10 which explicitly connects va with the
variation in the aspect ratio of vehicle shape in a mathematical way, thereby making
motion detection and velocity estimation more feasible and reliable:

ls = lv
1 − va

vL

(22.9)

Ars = ls
wv

= Ar

1 − va
vL

(22.10)

where Ars is the sensed aspect ratio of the vehicle in ALS data while Ar is the
original aspect ratio of the vehicle and wv is the width of the vehicle.

Secondly, the target is assumed to move in the across-track direction with a
constant velocity vc. This results in a scanline-wise linear shift of laser footprints that
hit upon the target in the direction of movement when the sensor is sweeping over
so that the observed vehicle shape in ALS data is deformed (sheared) to a certain
extent as illustrated in Fig. 22.5.

Let vc be the across-track motion component of the object velocity. Since vc =
v · sin(θv), Eq. 22.8 can be rewritten as Eq. 22.11 for describing the analytic relation
between the object velocity vc and the observed shearing angle θSA through the sensor
velocity vL and the intersection angle θv:

θSA = arctan
(

1
vL /vc−cot(θv)

)
+ 90◦ where θv �= 0◦/180◦ ∧ vc �= 0

θSA = 90◦ where θv = 0/180◦ ∨ vc = 0
(22.11)
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Fig. 22.5 Across-track object motion. Copyright © 2010 IEEE, reproduced by permission

22.3.2 Detection of Moving Vehicles

All of the effects of moving objects described above can be exploited to not only
detect vehicles’ movement but also measure their velocity. Our scheme for vehicle
motion detection relies on a strategy consisting of two basic modules successively
executed: (1) vehicle extraction; and (2) determination of the motion state.

For vehicle extraction, we used a hybrid strategy (Fig. 22.6) that integrates a
3D segmentation-based classification method with a context-guided approach. For
a detailed analysis of vehicle detection, we refer the readers to Yao et al. (2010a,
2011).

To determine the motion state, a support vector machine (SVM) classification-
based method is adopted. A set of vehicle points can be geometrically described as
a spoke model with control parameters, whose configuration can be formulated as

Raw LiDAR data

Context-guided extraction 3-D segmentation based 
classification

Extracted vehicle points

Elevated road Potential vehicle points

Fig. 22.6 Workflow for vehicle extraction
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X =

⎛

⎜⎜⎝

U1

·
·
Uk

⎞

⎟⎟⎠,Ui =
(

θ i
SA

Ari

)
(22.12)

where k denotes the number of spokes in the model. It can be seen that the vehicle
shape variability can be represented as a two-dimensional feature space (if the number
of spokes k = 1). Thus, the similarity between vehicle instances of different motion
states needs to be measured by a nonlinear metric. The SVM has advantages in
nonlinear recognition problems and finds an optimal linear hyperplane in a higher
dimensional feature space that is nonlinear in the original input space. The trick of
using a kernel avoids direct evaluation in the feature space of higher dimension by
computing it through the kernel function with feature vectors in the input space.
The SVM classifier can be used here again to perform binary classification on those
vehicles which still remain after excluding the ones of uncertain state obtained by
the shape parameterization step. In addition, the classification framework for distin-
guishing 3D shape categories (Fletcher et al. 2003) can be adapted to the motion
classification schema based on exploiting the vehicle shape features.

22.3.3 Concept for Vehicle Velocity Estimation with ALS Data

The estimation of the velocity of detected moving vehicles can be done based on
all motion artifacts effects in a single pass of ALS data by inverting the motion
artifacts model to relate the velocity with other observed and known parameters.
Thus, different measurements and derivations might be used to estimate the velocity.
The estimation scheme can be initially divided into two main categories, depending
on whether the moving direction of vehicles is known or not:

First, given the intersection anglewhich can be further separated into the following
three situations using respective observations to estimate the velocity:

(a) The measure for shearing angle of the detected moving vehicles from their
original orthogonal shape of rectangles;

(b) The measure for the stretching effect of detected moving vehicles from their
original size; and

(c) The combination of the along-track and across-track velocity componentswhich
are estimated based on the above-mentioned effects, respectively.

Second, if the intersection angle is not given:

(a) The solution to a system of bivariate equations constructed by uniting the two
formulas.

The three methods in the first category assume that the moving directions of vehicles
are given beforehand, whereas the last one from the second category does not. To
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estimate the velocity, the first three methods either utilize the shape stretching or
shearing effect or combine them together when applicable. For the last case, the
moving direction of vehicles can be estimated along with the velocity by uniting
the variable of velocity with the variable of the intersection angle to build a system
of bivariate equations and solving it, thereby giving the motion estimation great
flexibility to deal with many arduous cases encountered in real-life scenarios. That
means that not only the quantity but also the direction of vehicles’ motion can be
derived. All possible approaches have their advantages and disadvantages and differ
in the accuracy of their results,which are to be analyzed and evaluated in the following
subsections, respectively.

22.3.3.1 Velocity Estimation Based on the Across-Track Deformation
Effect

The shearing angle ofmoving vehicles caused by the across-track deformation allows
for direct access to the velocity only if the moving direction is known a priori and
input as an observation. Still, information about the orientation of the road axis
relative to the vehicle motion is needed to derive the real velocity of vehicles. The
velocity estimate v of the vehicle based on the shearing effect of its shape is derived
by inverting Eq. 22.8 as

v = vL · tan(θSA − 90◦)
cos θv · tan(θSA − 90◦) + sin(θv)

(22.13)

The value of the intersection angle θv can be determined based on principal axis
measurements of vehicle points as the flight direction of the airborne LiDAR sensor
can always be assumed to be known thanks to sustained navigation systems. Given
Eq. 22.13 which shows that the accuracy of the velocity estimate based on the across-
track deformation effect σ c

v is a function of the quality of the moving vehicle’s
heading angle relative to the sensor flight path θv and the accuracy of the shearing
angle measurement θSA, the standard deviation of the velocity estimate is calculated
using the error propagation law (Wolf and Ghilani 1997) and derived as

σ c
v =

√(
∂v

∂θv

)2

σ 2
θv

+
(

∂v

∂θSA

)
σ 2

θSA

=

√√√√√√

(
vL ·tan(θSA−90◦)·(cos(θv)−tan(θSA−90◦)·sin(θv))

(sin(θv)+tan(θSA−90◦)·cos(θv))2
)2

σ 2
θv

+
(

2vL ·sin(θv)(tan(90◦−θSA)2+1)
cos(2θv)·tan(90◦−θSA)2−2 sin(2θv)·tan(90◦−θSA)−cos(2θv)+tan(90◦−θSA)2+1

)2
σ 2

θSA

(22.14)

with vL being the instantaneous flying velocity of the sensor system.
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22.3.3.2 Velocity Estimation Based on Along-Track Stretching Effect

Besides the above mentioned approach, the velocity of a moving vehicle can be
derived by measuring its along-track stretching effect from its original vehicle size.
The functional relation is given by:

v = (1 − Ar/Ars) · vL
cos(θv)

(22.15)

where Ars = ls/wv is the sensed aspect ratio of the moving vehicle, while Ar is
the original aspect ratio and assumed to be constant. The accuracy of the velocity
estimate based on the along-track stretching effect σ a

v is a function of the quality of
the aspect ratio measurement for detected moving vehicles and the accuracy of the
vehicle’s heading relative to the sensor flight path. σ a

v can be calculated by the error
propagation law as follows:

σ a
v =

√(
∂v

∂θv

)2

σ 2
θv

+
(

∂v

∂Ars

)2

σ 2
Ars

=
√(

−vL · sin(θv) · (Ar/Ars − 1)

cos(θv)
2

)2

σ 2
θv

+
(

Ar · vL
Ar2s · cos(θv)

)
σ 2
Ars (22.16)

22.3.3.3 Velocity Estimation Based on Combining Two Velocity
Components

Both estimation methods presented above might fail to give a reliable velocity esti-
mate if vehicles are moving in such a direction that generated deformation effects for
the vehicle shape are not dominated by either one of what the two moving compo-
nents account for (e.g., amoving vehiclewith intersection angle θv = 35° and velocity
v = 40 km/h). To fill this gap and enable a velocity estimate in an arbitrary traffic
environment, it is proposed to use both shape deformation effects for estimating
velocities. The functional dependence of the velocity estimate can be given by the
sum of squares of the two motion components, which are derived based on two the
shape deformation parameters Ars and θSA, respectively:

v =
√

(va)
2 + (vc)

2 (22.17)

where

⎧
⎨

⎩
va = vL ·

(
1 − Ar

Ars

)

vc = vL
cot(θSA−90◦)+cot(θv)

(22.18)
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and where va and vc are along and across-track motion components. The accuracy of
the velocity estimate based on combining the two components σ a+c

v is a function of
the quality of the along-track and across-track motion measurements for the detected
moving vehicle and σ a+c

v can be first calculated with respect to these two motion
components by the error propagation law as:

σ a+c
v =

√(
∂v

∂va

)2

∂2va +
(

∂v

∂vc

)2

∂2vc

=
√

v2a
v2a + v2c

σ 2
va + v2c

v2a + v2c
σ 2
vc (22.19)

where σva and σvc are the standard deviations of along- and across-track motion
derivations, respectively. They can be further decomposed into the accuracy with
respect to the three observations concerning the vehicle shape andmotion parameters
based on Eq. 22.18. Using the error propagation law, σva and σvc are inferred as:

σva = ∂va
∂Ars

σArs = Ar · vL
Ar2s

σArs (22.20)

σvc =
√(

∂vc
∂θv

)2
σ2
θv

+
(

∂v

∂θSA

)
σ2
θSA

=

√√√√√√√√

⎛

⎜⎝
vL ·

(
cot(θv)2 + 1

)

(
cot

(
90◦ − θSA

)
− cot(θv)

)2

⎞

⎟⎠

2

σ2
θv

+

⎛

⎜⎜⎝

vL ·
(
cot

(
90◦ − θSA

)2 + 1

)

(
cot

(
90◦ − θSA

)
− cot(θv)

)2

⎞

⎟⎟⎠

2

σ2
θSA

(22.21)

Finally, after substituting Eqs. 22.20 and 22.21 into Eq. 22.19, the error prop-
agation relation for the velocity estimate is based on combining the two velocity
components with respect to the three variables Ars, θSA, and θv is derived.

22.3.3.4 Joint Estimation of Vehicle Velocity and Direction by Solving
Simultaneous Equations

So far, all of the estimation methods are not able to give velocity estimates if they
are moving in an unknown direction or their moving detections cannot be accurately
determined in advance. To solve this problem, we propose to jointly consider veloc-
ities and the intersection angle θv as unknown parameters simultaneously, with the
variables describing the deformation effects caused by the motion components as
observations. Actually, two analytic formulas for the motion artifacts model can be
directly viewed as an equation system to which the velocity and the intersection
angle are formulated as a set of solutions. This system of bivariate equations relating
unknown parameters to observations is given by:
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{
θSA − 90

◦ = arctan
(

v·sin(θv)
vL−v·cos(θv)

)

1 − v
vL

· cos(θv) = Ar
Ars

(22.22)

The system is to be solved using the substitution method. First, transform the
second sub-equation of Eq. 22.22 into

v = vL
cos(θv)

·
(
1 − Ar

Ars

)
(22.23)

and substitute it into the first sub-equation of Eq. 22.22, which has been converted
into a more solution-friendly expression in advance:

tan(θSA − 90◦) · vL = v · (tan(θSA − 90◦) · cos(θv) + sin(θv)) (22.24)

After substitution, the expression of Eq. 22.24 can be rewritten as:

tan(θSA − 90◦) · vL = vL

(
1 − Ar

Ars

)
· tan(θSA − 90◦)

+ tan(θv) · vL ·
(
1 − Ar

Ars

)
(22.25)

Further, we transform to facilitate the solution and get:

tan(θv) =
tan

(
θSA − 90

◦) ·
[(

1 −
(
1 − Ar

Ars

))]

1 − Ar
Ars

= tan
(
θSA − 90

◦)
(

Ars
Ars − Ar

− 1

)

⇒ θv = arctan

[
tan

(
θSA − 90

◦) ·
(

Ars
Ars − Ar

− 1

)]
(22.26)

Finally, substitute the second sub-equation in Eq. 22.26 into Eq. 22.23 again and
the velocity estimate of the moving vehicle v can be derived as follows:

v = vL ·
(
1 − Ar

Ars

)
· sec

{
arctan

[
tan(θSA − 90◦) ·

(
Ars

Ars − Ar
− 1

)]}
(22.27)

It can be seen that the velocity of a moving vehicle can be directly estimated
based on the shape deformation parameters without the need to know the intersection
angle θv a priori. θv can be estimated as an intermediate variable solely based on two
shape deformation parameters Ars, and θSA and is independent of the sensor flight
velocity vL. For accuracy analysis, two accuracy measures can be estimated, namely
the moving direction and the velocity. The accuracies of the intersection angle σθv

and the velocity estimate σv can be derived as functions of the quality of the along-
track stretching and across-track shearing measures. Equivalently, σθv and σv can be
calculated with respect to the two deformation parameters by the error propagation
law as:
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σθv =
√(

δθv

δArs

)2

σ 2
Ars

+
(

δθv

δArθSA

)
σ 2

θSA

=

√√√√√

(
Ar ·tan(90◦−θSA)

Ar2·tan(90◦−θSA)2 · (Ar−Ars )
2

)2
σ 2
Ars

+ Ar ·(tan(90◦−θSA)2+1)+(Ar−Ars )

Ar2·tan(90◦−θSA)2+(Ar−Ars )
2 σ 2

θSA

(22.28)

σv =
√(

δv

δArs

)2

σ 2
Ars

+
(

δv

δθSA

)2

σ 2
θSA

=

√√√√√√√√√√√√

⎛
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σ 2
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+
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√

Ar2 tan(90◦−θSA)2+(Ar−Ars )2

(Ar−Ars )2

⎞

⎠
2

σ 2
θSA

(22.29)

The empirical error values for two observations σArs and σθSA was also assessed
to the same values as used in the preceding methods. The accuracies of intersection
angle σθv and velocity estimates σv based on the joint estimation of moving velocity
and direction are derived by inserting the empirical errors for the observations into
Eqs. 22.28 and 22.29. The error of intersection angle σθv is shown in Fig. 22.7a as
a function of vehicle velocity and relative angle between vehicle heading and the
sensor flying path; the relative error is indicated in Fig. 22.7b. The (relative) velocity
errors σv and σv/v are shown in Fig. 22.8 as a function of vehicle velocity v and
intersection angle θv. It can be seen from the plots that most of the vehicles on
road sections of urban areas could not allow for high accuracy of moving direction

Fig. 22.7 a Relative error of the intersection angle σθv/θv of intersection angles obtained based on
the joint estimation of velocity and heading as a function of target velocity v and the intersection
angle θv , σθv/θv is given in %; b Vehicle velocity v (given in km/h) as a function of σθv/θv and θv
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Fig. 22.8 a Relative velocity error σv/v of vehicle velocities obtained based on the joint estimation
of velocity and heading as a function of target velocity v and the intersection angle θv , σv/v is given
in %; b Vehicle velocity v (given in km/h) as a function of σv/v and θv .

estimation (σθv/θv < 25%) unless they move a little bit faster (>70 km/h). The high
accuracy of velocity estimates could be only guaranteed for vehicles that obviously
don’t travel in an across-track direction (θv < 75%). The overall accuracy of velocity
estimation derived in this way is slightly degraded compared to other solutions where
the moving direction is given beforehand.

22.4 Experiments and Results

22.4.1 Detection of Urban Objects with ALS Data Associated
with Aerial Imagery

22.4.1.1 Experimental Data for Urban Objects Detection

Two datasets were used in this chapter for an urban scene object detection test, which
both include aerial images and airborne LiDAR data. The first dataset (yellow areas
in Fig. 22.9) was captured over Vaihingen in Germany and is a subset of the data
used for the test of digital aerial cameras carried out by the German Association
of Photogrammetry and Remote Sensing (DGPF; Cramer 2010). The other dataset
covers an area of about 1.45 km2 in the central area of the City of Toronto in Canada
(red areas in Fig. 22.10).
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Fig. 22.9 Three test sites in Vaihingen: a Area 1; b Area 2; c Area 3

(a) (b) 

Fig. 22.10 Two test sites in Toronto: a Area 4; b Area 5

22.4.1.2 Experimental Design for Urban Objects Detection

The following steps are considered in this experiment:
Data preprocessing. For both datasets, the aerial images and airborne LiDAR

data were acquired at different times. Thus, they are co-registered by geometrical
back-projecting the point cloud into the image domain with available orientation
parameters. After that, all data points are grid-fitted into the raster format in order
to facilitate acquiring spatial context information per-pixel or point. We apply grid-
fitting using an interval of 0.5 m on the ground, ensuring that each resampled pixel
can be allocated at least with one LiDAR point.
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Feature selection. For Dataset 1, as color-infrared images, point cloud data
including intensity information are available. All 13 features (R, G, B, NDVI, Z,
I,ΔZ, σ Z , ΔI, σ I , E, O, and P) introduced in Sect. 2.2 are extracted and used for
the object detection test. For Dataset 2, there is no infrared band image and thus 12
features are used in the experiment only, without NDVI.

Training samples’ selection. Since training samples are essential and important
for supervised learning classification, it is necessary to adopt a suitable approach
to derive valid samples considering the characteristics of the used classifier. In
this chapter, AdaBoost using the one tree weak learner (CART) is adopted as the
final strong classifier (Freund and Schapire 1999), which chooses training samples
randomly to some extent. Therefore, for each test site, we first classify the whole test
area manually and then randomly choose 10% of the whole test area’s corresponding
labeled samples as input training samples for the AdaBoost classifier.

Classifier control and classification procedure. This chapter uses the binary
AdaBoost classifier to detect buildings, natural ground, and trees from the urban
scene. To do so, the binary AdaBoost classifier is iteratively generated and applied:
(1) the classifier for detecting building is generated by training the randomly chosen
building samples and non-building samples corresponding to 10% of the whole data
amount, and applied to classify the building from the urban scene; (2) 10%natural and
non-natural ground samples are randomly selected to train and generate the classifier
for natural ground detection, which is then used to separate the natural ground from
the complex urban scene; (3) tree detection proceeds by using the binary AdaBoost
classifier which is trained on the randomly selected 10% tree and non-tree samples.
To test and validate the methods, several areas are chosen for the object detection test
according to the actual urban scene. For the building detection, all the five test areas
(three in Vaihingen and two in downtown Toronto) are used, whereas Areas 1–4 are
used to test the detection of natural ground. And finally, Areas 1–3 in Dataset 1 are
used for the detection of trees. The implementation code of the AdaBoost classifier
used in this chapter was adapted from that published by Vezhnevets (2005).

Evaluation methods. The evaluation of object detection results is obtained from
the ISPRS Test Project on Urban Classification and 3D Building Reconstruction,
which conducts the evaluation based on the method described by Rutzinger et al.
(2009) and Rottensteiner et al. (2005). The software used for evaluation reads in
the reference and the object detection results, converts them into a label image, and
then carries out the evaluation as described by Rottensteiner et al. (2013). Since
the output of binary AdaBoost classifiers consists of samples labeled by class but
not segmented objects, the topological clarification for detected objects described
by Rutzinger et al. (2009) is applied to perform the object-based evaluation, which
was automatically implemented by the evaluation software. The evaluation output
consists of a text file containing the evaluation results and a few images that visu-
alize these results, which includemany accuracy indexes such as geometric accuracy,
pixel-based completeness, and correctness, object-based completeness, and correct-
ness, balanced completeness and correctness, etc., and themiddle evaluation includes
attributes like an evaluation on a per-object level as a function of the object area, etc.
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This chapter applies the binary AdaBoost classifier by fusing the image and
LiDAR features to detect buildings, natural ground, and trees in several different
complex urban scenes. The detection accuracies of buildings, natural ground, and
trees are presented in Tables 22.1, 22.2, and 22.3, respectively. In these tables pixel-
based evaluation accuracy (Compl area [%], Corr area [%], Pix-Quality [%]), object-
based evaluation accuracy (Compl obj [%], Corr obj [%], obj-Quality [%]), balanced
evaluation accuracy (Compl obj 50 [%], Corr obj 50 [%], obj-Quality 50 [%]), and
detected objects’ geometric accuracy (RMS [m]) are listed for evaluating the detec-
tion result of buildings in Areas 1–5, natural ground in Areas 1–4, and trees in Areas
1–3, respectively.

22.4.1.3 Results of Urban Objects Detection

As stated in Sect. 22.2, this chapter applies the binary AdaBoost classifier by fusing
the image and LiDAR features to detect buildings, natural ground, and trees in several
different complex urban scenes. The detection accuracy of buildings, natural ground,
and trees are presented in Table 22.1, Table 22.2, and Table 22.3 respectively. In
Tables 22.1, 22.2 and 22.3, pixel-based evaluation accuracy (Compl area [%],Corr
area [%], Pix-Quality [%]), object-based evaluation accuracy(Compl obj [%],Corr
obj [%], obj-Quality [%]), balanced evaluation accuracy (Compl obj 50 [%], Corr
obj 50 [%], obj-Quality 50 [%]) and detected objects’ geometric accuracy (RMS
[m]) are listed for evaluating the detection result of buildings in Areas 1–5, natural
ground in Areas 1–4, and trees in Areas 1–3, respectively.

Building detection result. It can be noticed from Table 22.1 that all the five
test sites obtain 85% or higher pixel-based completeness, while the object-based
completeness is lower due to the area of overlap of objects, especially for Test Sites
2 and 3 with object-based completeness of less than 80%.With regard to correctness,
the three test sites in Dataset 1 perform better than the two test sites in Dataset 2 with
respect to all evaluation aspects: evaluation methods of pixel-based, object-based,
and pixel-object balanced. Thus, it can conclude that the building detection ofDataset
1 is more robust than that of Dataset 2. Concerning the geometric aspect, Test Area 2
obtained the best geometric accuracy of RMS 0.9 m, followed by Area 3 with RMS
1.0 m, and Area 1 with RMS 1.2 m, while both test sites in Dataset 2 obtain the worst
geometric accuracy with RMS 1.6 m. Among the five test sites, Area 2 achieved
the best overall building detection accuracy completeness of 92.5%, correctness of
93.9%, detection quality of 87.2% using pixel-based evaluation, completeness of
100%, correctness of 100%, and detection quality of 100% based on evaluation
balanced between pixels and objects, correctness of 100% based on object-based
evaluation, and geometric accuracy of RMS 0.9 m. Due to the small number of
buildings, three false negatives on detected objects gave Test Site 2 lower complete-
ness than Test Sites 1, 4, and 5 based on object-based evaluation, even though there
are more false negatives.
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Natural Ground Detection Result. The results of Dataset 1 are better than those of
Dataset 2 on all indexes. Concerning the pixel-based evaluation result, the detection
completeness is lower than the correctness for all the test sites, while it is the same
for the object-based evaluation result except for Test Site 4. For this test site, the
object-based correctness is very low compared to the pixel-based correctness, which
shows that the natural ground of Test Site 4 is fragmented and cannot be detected
well at the object level. Regarding the geometric aspect, Areas 2 and 3 obtain the best
geometric accuracy of RMS 1.1 m, followed by Area 1 with RMS 1.3 m, while test
site 4 in Dataset 2 obtains the worst geometric accuracy with RMS 1.7 m. Among
the four test sites, Site 2 achieves the best overall natural ground detection accuracy
with completeness of 80.5%, correctness of 85.7%, detection quality of 71.0% based
on pixel-based evaluation, completeness of 83.3%, correctness of 100%, detection
quality of 83.3% based on a balanced evaluation of pixels and objects, and geometric
accuracy of RMS 1.1 m. Due to the larger number of small-sized natural ground
objects and fewer larger ones, Test Site 2 obtains lower detection accuracy using
object-based evaluation.

Tree-detection result. Only Dataset 1 was tested. From Table 22.3, it can be
noticed that the tree-detection accuracy is lower than 80%, being lower than that
of building detection in the same test site. Although the accuracy indexes obtained
based on both pixel-based and object-based evaluation are not so good, this is related
to the definition of trees in the reference data since the balanced accuracy is good.
On the geometric aspect, Area 3 obtains the best geometric accuracy of RMS 1.3 m,
followed by Area 1 and 2 with RMS 1.4 m. The geometric accuracy for tree detection
is worse than that of both buildings and natural ground, due to the more complex
shape of trees in 2D and 3D. Among the three test sites, Area 2 achieves the best
overall tree-detection accuracywith the completeness of 72.0%, correctness of 78.5%
based on pixel-based evaluation, completeness of 63.0%, correctness of 82.4% based
on object-based evaluation, completeness of 89.3%, and correctness of 98.6% using
the balanced evaluation of pixels and objects, and geometric accuracy of RMS 1.4 m.

The detection results presented above show that the proposed AdaBoost-based
strategy can detect objects very well in complex urban areas based on relevant
spatial and spectral features that have been obtained by combining point clouds
and image data. First, most detected objects only suffer from errors in boundary
regions, especially with respect to buildings in Test Sites 1–3, which means that the
proposed method can successfully separate desirable objects from the background
using the combined spatial-spectral features. Second, the trees and natural ground
can be discriminated efficiently in Dataset 1 in spite of similar spectral features,
which demonstrates that the method can take full use of the advantages of fusing
features and an ensemble classifier. Third, the detection achieves the best geometric
accuracy for buildings, with RMS 0.9 m, partly biased by data co-registration error,
which demonstrates the proposed high accuracy of the method. Fourth, larger-sized
objects achieve better detection completeness and correctness; for example, all the
buildingswith area larger than 87.5m2 are detected correctly for Test Sites 1–3, while
some smaller buildings are omitted due to being classified as false positives, which
justifies the reliability of the AdaBoost-based strategy for urban objects detection.
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22.4.2 Accuracy Prediction for Vehicle Velocity Estimation
Using ALS Aata

To demonstrate the quality of the velocity estimation for real-life scenarios and
to deliver quantitative guidance on the planning of LiDAR flight campaigns for
traffic analysis, real road networks in urban areas will be used in an experiment to
simulate the prediction of velocity and estimate its accuracy. This will be useful for
exploiting boundary conditions in applying the proposed strategy in real airborne
LiDAR campaigns for traffic analysis. Generally, it can be stated that this simulation
has been designed by considering the following points:

• Validate the feasibility and repeatability of velocity estimation results;
• Verify the velocity estimation scheme, which provides rational results with

sufficient accuracy in a wide range of datasets acquired over urban areas; and
• Demonstrate the potential of velocity-accuracy analysis to provide valuable

guidance on optimizing flight planning for traffic monitoring.

The accuracy of the estimated velocity σv is simulated for two road network
sections north of Munich which represent the most typical scenarios in urban areas.
In this area, several main roads and large express roads are situated and are highly
frequented during rush hours. For each test site, two general schemes are assumed to
exist, where the four different velocity estimators presented above are applied: First,
the moving direction of a vehicle relative to the sensor flight path is known (here the
moving direction is derived based on the road orientation); and second, the moving
direction of the vehicle relative to the sensor flight path is unknown.

As three methods within the first scheme complement each other concerning
performance, we finally combined the estimators depending on the relative orienta-
tion between the vehicle heading and the sensor flight path to get optimal results. For
every relative orientation the estimator that provides the best results is chosen. That
means that the maximum of estimated velocity accuracies is assumed to be selected
as the accuracy value for a velocity estimate at that road location. Parameters of real
flying using the Riegl LMSQ560 sensor have been used in this simulation and an
average speed of 120 km/h was assumed (concrete configurations can be found in
Table 22.4). The average velocity of moving vehicles on the roads is set to 60 km/h.

Table 22.4 Parameters of
typical airborne topographic
LiDAR

Flight height h 420 m

Pulse repetition rate PRR 110 kHz

Sensor velocity vL 120 km/h

Scan angle αs 60°

Point density PD 4 points/m2

Swath Sw 450 m

View mode Nadir

Scan pattern Parallel line
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The error measures for the shearing angle and intersection angle of moving vehicles
can be assessed empirically from shape parameterization: for our case, σArs = 0.4,
σθSA = 2°, and σθv = 2°. The orientation of the roads relative to the planned flying
path and the resulting σv values obtained by combining the estimators in the first
scheme are shown in Fig. 22.11a, c, while the resulting values of σv using second
scheme for the same sites are shown in Fig. 22.11b, d. σv is given in % of the
absolute velocity. With the algorithm described earlier, velocities can be estimated
with an accuracy better than 10% for about 80% of the investigated road networks.
Figure 22.12 indicates which estimator is chosen in which parts of the road network.
It shows that the across-track shearing-based estimator (Method 1) provides the best

        (a)                                                                                 (b) 

        (c)                                                                                (d) 

Sensor
heading 

Sensor
heading 

Fig. 22.11 Simulation of σv for two road networks north of Munich using the velocity estimation
schemes: a The estimation accuracy for the first road network in% of the absolute velocity using the
second scheme; b The estimation accuracy for the first road network in % of the absolute velocity
using the first scheme; c The estimation accuracy for the second road network in % of the absolute
velocity using the first scheme; d The estimation accuracy for the second road network in % of the
absolute velocity using the second scheme
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(a) (b)

Method I Method II Method III

Fig. 22.12 Indication of velocity estimation methods used for the two road networks under the first
scheme for velocity estimation (moving direction relative to sensor flight is known): a Indicating
which estimation method is chosen in which parts of the first road network; b Indicating which
estimation method is chosen in which parts of the second road network

results for large parts of the road network. The along-track stretching-based (Method
2) and combined (Method 3) estimators outperform the across-track shearing-based
approach only in areas where the road is extended roughly in the along-track direc-
tion (i.e., ∀ θv ≤ 25◦). For example, in the second test site (Fig. 22.12b), Dachauer
Street (in the bottom-left part) requires Method 3 to be used for velocity estimation,
whereas one part of Ackermann Street (curved, in the top-left part) requiresMethod 2
to be used. Moreover, in most parts of the road network, the accuracy of velocity esti-
mation using the first scheme is generally higher than that obtained using the second
scheme, especially when vehicles move along a direction that is close to across-track.
This is due to the fact that the joint estimation of velocity and moving direction angle
can incorporate additional error sources caused by the unknown moving direction of
vehicles relative to the sensor flight path, leading to an accumulative error for final
velocity estimates.

22.5 Summary

This chapter is concernedwith detecting urban objects and traffic dynamics fromALS
data. Urban object detection in complex scenes is still a challenging problem for the
communities of both photogrammetry and computer vision. Since LiDAR data and
image data are complementary for information extraction, relevant spatial-spectral
features extracted from ALS point clouds and image data can be jointly applied to
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detect urban objects like buildings, natural ground objects, and trees in complex urban
environments. To obtain good object detection results, an AdaBoost-based strategy
was presented in this chapter. It includes: First, co-registering LiDAR point clouds
with images by back-projection with available orientation parameters; Second, grid-
fitting of data points into the raster format to facilitate acquiring spatial context infor-
mation; Third, extracting various spatial-statistical and radiometric features using a
cuboid neighborhood; and Fourth, detecting objects including buildings, trees, and
natural ground by the trained AdaBoost classifier whose output consists of labeled
grids.

The performance of the developed strategy towards detecting buildings, natural
ground, and trees in urban areaswas comprehensively evaluated using the benchmark
datasets provided by ISPRSWGIII/4. Both semantic and geometric criteriawere used
to assess the experimental results. From the detection results, it can be concluded
that the AdaBoost-based classification strategy can detect urban objects reliably and
accurately, achieving the best detection accuracy for buildings with completeness of
92.5% and correctness of 93.9%, for natural ground with completeness of 80.5% and
correctness of 85.7%, and for tree detection with completeness of 72.5% and correct-
ness of 78.5% based on per-pixel evaluation. The quality indexes for the detection of
tree and natural ground, evaluated on per-object level, seem not to be as high as for
buildings. Nevertheless, the overall accuracy is high for such complex urban scenes,
as can be concluded from the balanced evaluation of pixels and objects. With further
research, the detection results might be refinedwith graph-based optimization, which
is expected to improve the detection accuracy by accounting for label smoothness
both locally and globally. Moreover, in order to further ensure the reliability of object
detection, we still need to refine the co-registration accuracy of multimodal data via
hierarchical feature matching and optimize alterable parameters through sensitivity
analysis.

For characterizing urban traffic dynamics, a method to identify vehicle movement
from airborne LiDAR data and to estimate respective velocities has been developed.
Besides a description of the developed methods, theoretical and simulation studies
for performance analysis were shown in detail. The detection and velocity estimation
of fast-moving vehicles seems to be promising and accurate, whereas slow-moving
vehicles are harder to distinguish from non-moving ones and it is harder to obtain
estimates with acceptable accuracy. Moreover, the point density of LiDAR datasets
tends to be directly proportional to the performance of motion detection. The esti-
mation of the velocity of detected vehicles can be done with high accuracy for nearly
all possible observation geometries except for those ones which are moving in the
(quasi-)along-track direction while sensors are sweeping over instantaneously.

Although the results shown in this chapter cannot directly be compared with
those of induction loops or bridge sensors, they show nonetheless great potential to
support trafficmonitoring applications. Thebig advantages ofALSdata are their large
coverage and certain penetrability through trees, and thus, the possibility to derive
traffic data throughout an extended road network that may be occluded by trees on the
roadsides. Evidently, this complements the accurate but sparsely sampled measure-
ments of fixedmounted sensors. A natural extension of the presented approachwould
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be an integration of the accurate, sparsely sampled traffic information with the less
accurate but area-wide data collected from space or air-borne sensors. Existing traffic
flow models would provide a framework to do this.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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