
Chapter 23
Photogrammetry for 3D Mapping
in Urban Areas

Bo Wu

Abstract Photogrammetry is the technology for obtaining 3D geometric informa-
tion from photographs or images. This chapter describes the fundamental knowl-
edge and latest advances in photogrammetry for 3D mapping in urban areas. First,
the key fundamental techniques in photogrammetry for deriving 3D information
from imagery are presented. Then, the latest advances in photogrammetry for 3D
mapping in urban areas, including structure-from-motion (SfM), multi-view stereo
(MVS), and integrated 3D mapping from multiple-source data, are described and
discussed. Examples of using photogrammetry for 3D mapping and modeling in
urban applications are presented. Finally, concluding remarks and future outlooks
are addressed.

23.1 Introduction

Photogrammetry is the science and technology for obtaining reliable 3D geometric
and physical information about objects and the environment from photographic
images (ASPRS 1998). Practically, photogrammetry allows 3D measurements of
geometric information of objects (e.g., positions, orientations, shapes, and sizes)
from photographs.

Photogrammetry has a long history and can be dated back to the 1850s (Konecny
1985). In its earlier stage, the main purpose of photogrammetry was map generation
from aerial photographs. Since the 1960s, the emerging of satellite and close-range
imaging and measurements has facilitated the application of photogrammetry to
various areas, such as 3D mapping and modeling, industrial inspection, architecture,
robotics, civil engineering, and hazardmonitoring. Advances in photogrammetry had
been insignificant over the past 50 years until the recent decade. The latest advances
from the photogrammetry and computer vision communities, such as aerial oblique
photogrammetry, structure-from-motion (SfM) and multi-view stereo (MVS), and
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integrated 3Dmapping, have facilitated the development of photogrammetry towards
a more automatic solution for 3D mapping and modeling, with better quality, even
for challenging cases such as in urban areas.

This chapter first describes the key fundamental knowledge for obtaining 3D
information from images through photogrammetry. Then, the latest advances in
photogrammetry for 3Dmapping in urban areas, including SfM,MVS, and integrated
3D mapping from multiple-source data, are described and discussed. Examples of
using photogrammetry for 3Dmapping andmodeling inHongKong and other typical
urban areas are presented. Finally, summary remarks are given and future outlooks
are discussed.

23.2 Fundamentals of Photogrammetry

The following describes the fundamental techniques for obtaining 3D information
from images via photogrammetry, including image orientation, bundle adjustment,
and image matching.

23.2.1 Image Orientation

Image orientation is the procedure of recovering the positional and orientation infor-
mation of the optical ray when the image is collected. Image orientation includes
two consecutive steps: interior orientation (IO) and exterior orientation (EO).

IO defines the transformation from the pixel coordinatesmeasured on the image to
the image-space coordinates referring to the focal plane. Taking a traditional aerial
image as an example, typically, there are four to eight fiducial marks distributed
in the corners and along the edges of the image. Their pixel coordinates can be
directly measured on the image. Also, the coordinates of these fiducial marks in the
image-space coordinate system are usually known. They can be used to determine
the principal point (x0, y0) in the image-space coordinate system. They can also
be used to derive a 2D transformation model between the image-space coordinates
and the image measurements, and then the 2D transformation model can be used
to transform any other pixel coordinates measured on the image to the image-space
coordinates.

The coordinates of the principal point (x0, y0) and the principal distance (or focal
length) f are the intrinsic parameters of the camera. The camera intrinsic param-
eters normally do not change. However, there are usually distortions existing on
images, such as lens distortions, different pixel spacing, and stretching or shrinkage
of the images. They have to be calibrated before using the images for 3D mapping.
Errors in these parameters will lead to errors in the IO process and the subsequent
3D measurement. These parameters and distortions can be calibrated using a partic-
ular control field with calibration targets precisely measured by a total station or
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differential GPS. They can also be computed during the 3D mapping task through
self-calibration approaches (Wu 2017).

EO defines the transformation from the image-space coordinates to the 3D
object space coordinates, which can be formulated using the following co-linearity
equations (Wang 1998):

x − x0 = − f
m11(X − XS) + m12(Y − YS) + m13(Z − ZS)

m31(X − XS) + m32(Y − YS) + m33(Z − ZS)

y − y0 = − f
m21(X − XS) + m22(Y − YS) + m23(Z − ZS)

m31(X − XS) + m32(Y − YS) + m33(Z − ZS)
(23.1)

The co-linearity equations connect a point (x, y) on the image and its corresponding
position (X, Y, Z) in the 3D object space. (XS , YS , ZS) represent the coordinates of
the camera perspective center in the object space when the image is taken. mij are
the components of a rotation matrix, which is derived from three rotation angles (ϕ,
ω, κ) of the camera frame referring to the object space. These six parameters—three
positions (XS , YS , ZS) and three rotation angles (ϕ, ω, κ)—are called EO parameters.

Each set of co-linearity equations represents a straight line that links an image
point, the camera perspective center, and a 3D point in the object space. To determine
the object point’s 3D position, at least two straight lines are necessary to form an
intersection. In other words, a pair of corresponding points measured on a stereo pair
of images will be necessary to compute their corresponding 3D position in the object
space. This process is called space intersection.

The EO parameters of each image can be measured by sensors (e.g., GPS and
IMU)mounted on the same platform as the camera when it takes the image so that 3D
measurements can be achieved by using at least two images together with their EO
parameters. However, direct measurement of the EO parameters by the sensors will
usually have errors and sometimes no direct measurement of the EO parameters will
be provided. Therefore, in photogrammetry, the EO parameters are usually derived or
improved in one of three ways: space resection, relative orientation (RO) followed by
absolute orientation (AO), or simultaneous orientation through bundle adjustment.

Space resection is based on the above co-linearity equations. If three control points
(their coordinates in the image-space and object space are known) are available, they
offer six observations based on the co-linearity equations and provide a unique solu-
tion to the six EO parameters. Normally, more control points are used to calculate the
EO parameters through the least-squares adjustment for improved accuracy. Usually,
space resection is used to determine the EO parameters of a single image. For an
image block, other methods are used as they require fewer control points.

RO is used to determine the internal relationship between two images. RO is able
to generate a scale-free 3D model of the imaged scene within an arbitrary coordinate
system. Before the 3Dmodel obtained from RO can be used for actual measurement,
it must be scaled, rotated, and translated to the actual coordinate system in object
space. This is the procedure of AO. AO uses 3D transformations (e.g., 3D conformal
transformation) to convert the model coordinates obtained by RO into real object
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coordinates. The RO and AO can be performed on a single stereo pair or on large
image blocks.

23.2.2 Bundle Adjustment

Bundle adjustment (BA) is an alternativemethod to the aboveROandAOprocedures.
Based on the principles of the co-linearity equations, an optical ray can be defined
that starts from the image point, passes through the perspective center of the camera,
and finally reaches the 3D point in the object space. This produces an observation
based on the co-linearity equations. Giving some tie points matched on a stereo pair
of images ormultiple images, a bundle of optical rays determined by the tie points can
link the images together, and subsequently link the image-space to the object space.
In the ideal situation, the optical rays from the tie points on different images should
exactly intersect at the same object point. However, this will usually not be true in
the reality due to uncertainties and errors of different levels in the image orientation
parameters. Therefore, BA is used to improve the image orientation parameters,
from which the bundle of optical rays can intersect at the 3D point in the object
space correctly.

BA is based on the least-squares principle. Usually, four types of observation
equations can be formulated in a BA system, as listed in the following.

Av + B� = f

vx − I� = fx
Acvc + C�c = fc
Aapvap + D�ap = fap (23.2)

The first observation equation is for the image measurements (tie points matched
on the images), which is based on the co-linearity equations that connect the image
measurements with their 3D coordinates. � is the vector of the unknown EO param-
eters. A is the matrix of observation coefficients. B is the matrix of parameter coeffi-
cients. v is the vector of residuals. The secondobservation equation is for the unknown
EO parameters and the 3D object coordinates of the tie points to be calculated. The
third observation equation is for constraints of the parameters. For instance, a stereo
camera system with a fixed camera base can provide a constraint that the distance
between the three positional EO parameters of the left image and those of the right
image should equal to the length of the camera base. The fourth observation equation
is for self-calibration, of which the additional parameters (e.g., principal distance,
lens distortions) can be solved simultaneously in the BA system.

Based on the observation equations and provided with a small number of 3D
control points and a large number of tie points matched on the images, BA is able to
compute the unknown parameters and the 3D object coordinates of tie points simulta-
neously. BA is actually the simultaneous process of space resection and intersection
as described previously. In the BA system, different weights can be assigned to
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different types of observations based on their a priori precision or practical analysis,
so that the contributions of different observations can be controlled. For example,
observations with higher precision (less uncertainty) will be assigned with higher
weights, so that they will contribute more and be adjusted less in the BA system.
Observations with less knowledge (large uncertainties) will be assigned with lower
weights so that they will contribute less and be adjusted more. BA is fully rigorous
through corrections for systematic errors and provides abundant statistical informa-
tion. The residuals of all parameters can be calculated and they can be used to evaluate
the performance of BA.

23.2.3 Image Matching

Image matching is for identifying image correspondences in two or more images
with overlapping coverages. The corresponding points on images represent the same
point in the object space. They usually have similar appearances on different images.
Generally, image matching is based on finding the similarities in grey levels of small
local patches on images or matching an image patch with an image template. Image
matching may be implemented on a pixel-by-pixel basis, known as dense matching,
or by matching individual point or pattern features, which is called feature matching.

In the photogrammetry and computer vision communities, much research has
been done regarding image matching. A straightforward image matching method is
the normalized cross-correlation (NCC) matching (Lhuillier and Quan 2002). NCC
directly examines the level of similarity between two small image patches or local
windows by calculating their cross-correlation score in terms of the grey levels. A
significant development about feature point matching is the scale-invariant feature
transform (SIFT) method (Lowe 2004) in the computer vision community. SIFT first
detects feature points based on the local extrema in the scale space that are invariant
to scale changes and distortions, and then matches the feature points according to the
descriptors constructed based on their gradients in local regions. However, SIFT only
provides sparse feature matching results. Semiglobal matching (SGM; Hirschmuller
2008) is another important development in dense image matching. SGM combines
global and local methods for pixel-wise matching through optimization of an energy
function. SGM is able to produce dense matching results; however, the global opti-
mization strategy used in SGMmay lead to an over-smoothing problem in 3D surface
reconstruction.

Wu et al. (2011, 2012) presented a hierarchical image matching method, named
self-adaptive triangulation-constrained matching (SATM). SATM includes a feature
matching step followed by a dense matching step. It uses triangulations to constrain
thematching of feature points and edges, of which the triangulations are dynamically
updated along with the matching process by inserting the newly matched points and
edges into the triangulations.Densematching is conducted during the densification of
the triangulations. In the matching propagation process, the most distinctive features
are always successfully matched first; therefore, the densification of triangulations
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self-adapts to the textural pattern on the image, and provides robust constraints for
reliable feature matching and dense matching. Ye and Wu (2018) further extended
the SATM algorithm by incorporating image segmentation into the image matching
framework to solve the surface discontinuity problem for dense and reliablematching
of images in urban areas. Figure 23.1 shows an example of the matching results using
SATM and SGM for a stereo pair of aerial images for generating a digital surface
model (DSM) in an urban area. As can be seen from the DSMs generated by SATM
(Fig. 23.1b) and SGM (Fig. 23.1c), the former performs better than the latter in terms
of feature preservation and recovery of building boundaries.

(a) A pair of aerial images with the matched results using SATM marked in red

(b) The generated DSM from SATM (c) The generated DSM from SGM

Fig. 23.1 An example of the image matching algorithms SATM and SGM for DSM generation in
urban areas
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23.3 Advances in Photogrammetry for 3D Mapping
in Urban Areas

Traditional photogrammetry has limited use for 3D mapping and modeling in urban
areas (Qiao et al. 2010; Ye and Wu 2018). This is mainly due to the fact that tradi-
tional photogrammetry usually captures near-nadir images by cameras mounted on
aircraft, and image matching in urban areas is particularly challenging. Most tradi-
tional photogrammetry systems require tremendous human labor to process images
in urban areas, especially in metropolitan regions with tall buildings that are densely
located. With the development of hardware and software in data acquisition and
image processing in recent years, the image quality, automation degree, efficiency,
and accuracy of photogrammetry have been boosted extensively in the past decade
(Rupnik et al. 2015). The state-of-the-art oblique photogrammetry systems collect
aerial oblique images in urban areas with high redundancy (e.g., with every ground
point visible in over five ormore images), which significantly improves the automatic
image matching in urban areas and also provides information on building façades.
Off-the-shelf solutions for 3D city modeling from aerial oblique images include two
key steps: structure from motion (SfM) (Gerke et al. 2016) and multi-view stereo
(MVS) (Galliani et al. 2015).

23.3.1 Structure from Motion and Multi-view Stereo

In the SfM method, feature points are used to obtain tie points between overlapped
views of images automatically. For structured aerial images that are captured with
designed flight plans, the connectivity between different images could be estimated
accordingly. However, if the images are unordered, trying out all the possible image
pairs is exhaustive for large datasets. Hence, image retrieval algorithms based on
vocabulary trees (Gálvez-López and Tardos 2012) are used to find the putative image
pairs that are similar and may have overlaps. After that, the initial orientation param-
eters are estimated and then refined by BA. BA approaches are typically divided
into three categories in SfM, namely sequential, hierarchical, and global adjustment
(Schonberger and Frahm 2016). Sequential adjustment methods start from aminimal
image cluster (such as two or three well-connected images) and incrementally add
new images to the existing clusters. The computation cost of this approach increases
with each increment in reconstruction. Hence, a divide-and-conquer strategy can be
adopted to reduce computation cost, which performs the BA hierarchically (Snavely
et al. 2008). The scene graph is divided into several clusters first, and then these
clusters are reconstructed individually. After that, these clusters are merged by a
transformation with 7 degrees of freedom (DoF). Global methods normally estimate
relative orientations of all the images at the same time, and estimate global rotation
and translation separately (Toldo et al. 2015). However, it might be difficult for global
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optimization algorithms to achieve convergence, requiring good initial estimations
and robust outlier detection and removal.

The resulting image orientation parameters and the scene graph of SfM serve as
the foundation for the MVS (Schonberger and Frahm 2016). However, the sparse
point clouds obtained by BA do not contain any solid geometry about the scene.
Hence, MVS algorithms are employed to turn oriented 2D images into dense 3D
point clouds using multiple images (Musialski et al. 2013). An example of the
widely adopted MVS algorithm in the photogrammetry community is the patch-
based multi-view stereo (PMVS) invented by Furukawa and Ponce (2010). In this
method, corresponding points in multiple images are used to construct an initial
set of patches to represent the scene, and the patches are repeatedly expanded to
improve their density through enforcing photometric consistency and global visi-
bility constraints to improve reconstruction accuracy. Based on the oriented images
and the corresponding dense point clouds, a 3D mesh model of the surface can be
reconstructed and textured using algorithms such as the Poisson reconstruction algo-
rithm (Waechter et al. 2014), which produces watertight surfaces from oriented point
clouds. Figure 23.2 is an example of automatically generated 3D models in Central
Hong Kong using aerial oblique images based on SfM and MVS.

23.3.2 Integrated 3D Mapping from Multiple-Source Data

Apart from the above advances in oblique photogrammetry, there is a trend of
integrating multiple-source images and laser-scanning data collected from different
remote sensing platforms—for example, satellite, aircraft, unmanned aerial vehicle
(UAV), and mobile mapping systems (MMS)—for better 3D mapping and modeling
in urban areas (Wu et al. 2015, 2018).

Images and laser-scanning point clouds collected by different types of remote
sensing platforms are widely used for 3D mapping and modeling. However, the 3D
mapping results derived from different sensors and platforms usually show incon-
sistencies in the same area. Wu et al. (2015) presented an integrated 3D mapping
model for the integrated processing of satellite imagery and airborne LiDAR data.
In this model, the EO parameters of images, tie points matched in the overlapping
images, and selected LiDAR points are used as inputs for a combined adjustment,
and local constraints, including a vertical constraint and a horizontal constraint, are
applied to ensure the consistency between these two types of data. After the inte-
grated processing, the inconsistencies between the two types of data are reduced and
the geometric accuracies of the mapping results are improved.

The integrated 3Dmapping model was further extended for integrated processing
of images and laser scanning point clouds collected from UAV and MMS platforms
(Wu et al. 2018). Aerial oblique photogrammetry offers promising solutions for
3D mapping and modeling in urban areas. However, in metropolitan areas such
as Hong Kong, where high-rise buildings are densely distributed, there are usually
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(a) Aerial oblique images collected in Central, Hong Kong

(b) Automatically generated 3D models from the aerial oblique images

Fig. 23.2 SfM and MVS for automatic 3D modeling from aerial oblique images

geometric defects in the 3D models generated from aerial oblique imagery, and
the textures on building façades are usually blurred. These problems are related
to the common occlusion situations and large camera tilt angles of aerial oblique
imagery. Meanwhile, MMS can collect ground images and laser scanning point
clouds on the ground, which provides a dataset complementary to the aerial data.
The integrated processing of images and laser scanning data collected fromUAV and
MMS platforms offers promising opportunities to optimize 3D modeling in urban
areas. The integrated 3D mapping of aerial and ground datasets includes three main
steps: (1) automatic feature matching between the aerial and ground images to link
these two types of data; (2) combined adjustment of aerial and ground data to remove
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their geometric inconsistencies; and (3) optimal selection of aerial and ground data
for the best textural quality and minimum occlusions. Figure 23.3 shows an example
of the integrated 3D mapping from UAV and MMS images collected in Kowloon
Bay, Hong Kong. Figure 23.3 indicates that the integration of aerial and ground data

(a) 3D models from UAV images

(b) 3D models from integrated processing of UAV and MMS images

Fig. 23.3 Integrated 3D mapping of UAV and MMS images in Kowloon Bay, Hong Kong
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shows a promising solution for generating 3D city models of the best geometry and
quality. With the MMS data, the geometry and quality of the 3D mesh models at the
street level are significantly improved, compared with those from aerial images only.

23.4 Summary

Photogrammetry is themost robust, efficient, economical, and flexiblemethod for 3D
mapping andmodeling, regardless of the challenges ahead. Photogrammetry has been
and will continue to be the representative and influential technology for obtaining
3D information. The latest advances in photogrammetry such as SfM, MVS, and
integrated 3Dmapping, offer great potential for optimized and enhanced 3Dmapping
and modeling in urban areas at both city scale and street level. Photogrammetry can
be used as the primary technology to create the 3D spatial-data infrastructure for
a digital city, which can be widely used to support applications in, for example,
urban planning and design, urban management, urban environmental studies, and
the development of smart cities.
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