
Information Systems 96 (2021) 101681

a

b

o
s
a
t
j
p
w
u

t
F
t
s
t
w
c
t
d
r
t

t

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

ProDB: Amemory-secure database using hardware enclave and
practical oblivious RAM
Ziyang Han a, Haibo Hu a,b,∗

Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
Hong Kong Polytechnic University Shenzhen Research Institute, China

a r t i c l e i n f o

Article history:
Received 22 July 2020
Received in revised form 29 October 2020
Accepted 8 November 2020
Available online 10 November 2020
Recommended by Alysson Neves Bessani

Keywords:
Access pattern
Oblivious RAM
Secure database
Path ORAM
SaP ORAM
Hardware-based security

a b s t r a c t

One key challenge for data owners to host their databases in the cloud is data privacy. In this paper,
we first demonstrate that even with the most recent hardware-based security technology such as
Intel SGX, a hypervisor can still sniff key database operations running in its guest virtual machine
(VM) such as the frequency and type of SQL queries, by monitoring the access pattern of this VM’s
main and secondary memory. To ensure security against such access pattern monitoring attacks, we
then propose ProDB, a minimal adaptation of a conventional DBMS with both hardware enclave and
Oblivious RAM protocol. To enhance its performance for practical use, we also design a SQL-aware
Path ORAM protocol called SaP ORAM, which optimizes the classic Path ORAM protocol under practical
database workload. Through security analysis and extensive experimental results, we prove and show
ProDB achieves high security and throughput on commodity cloud hosting servers.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
c

1. Introduction

With the prosperity of cloud computing, more and more data
wners and service providers host their database management
ystems (DBMS) in virtual machines to drive web and mobile
pplications [1,2]. However, emerging cybersecurity attacks that
arget on cloud infrastructures become a major threat [3,4] and
eopardize the trust between data owners and cloud service
roviders. Conventional attack methods include injecting mal-
are into the VM image and hijacking the hypervisor [5,6] to gain
nauthorized access to data.
Recently, inference attacks [7–9] that exploit the access pat-

ern in disk I/O and memory page activities of VM have emerged.
or example, an attacker can find ‘‘hot’’ records by monitoring
he access frequency of memory addresses, or he can learn the
ketch of a B-tree index by mapping sequences of page accesses
o traversal paths in this tree. The access pattern statistics on
hich the inference attacks rely, such as memory address ac-
ess frequency, access mode (read/write/append), and disk I/O
hroughput over a period of time, are resistant to traditional
atabase encryption [9–12]. Furthermore, such attacks do not
equire full access to the disk and memory space, they are easy
o launch and difficult to detect.

To demonstrate the feasibility and consequences of such at-
acks, in a preliminary experiment, we deploy VMware vSphere,

∗ Corresponding author.
E-mail address: haibo.hu@polyu.edu.hk (H. Hu).
 u

ttps://doi.org/10.1016/j.is.2020.101681
306-4379/© 2020 The Authors. Published by Elsevier Ltd. This is an open access art
a leading hypervisor used by many cloud services, on a bare-
metal machine. We then install MySQL 5.6 database on one VM
and run interleavingly, among other workloads, 5 OLAP queries of
various types (SQL statements #1, 6, 15, 19, 20 of TPC-H [13]1),
each by 50 runs. We then use the integrated analytical tool
VMware vSphere ESXi vCenter to monitor the number of disk
reads, small-range disk seeks, medium-range disk seeks, and the
small-to-medium seek ratio on this VM.

Table 1 shows the average values over 50 runs. To further
evaluate the accuracy of such inference attacks, we use the 4 table
columns as features and the first 40 runs as training data to build
a naive Bayes classifier, and then use the rest 10 runs as testing
data to reidentify their query IDs. The accuracy of this attack is
around 84%, which is much higher than 20% by random guess.

To prevent such inference attacks, two cryptographic tools,
namely Private Information Retrieval (PIR [14]) and Oblivious
RAM (ORAM [15,16]) have been proposed. The latter has gained
increasing popularity as it is based on continual memory shuffle
instead of computationally hard problem as in PIR [14]. A critical
issue to adopt ORAM in the cloud database, however, is that
the untrusted VM can only serve as data storage (i.e., an ORAM
server), while most of the DBMS components, such as the query
processing engine, must be hosted in the data owner side (i.e., an
ORAM client). This will pose not only intensive computation on

1 These queries are randomly selected to be listed from the queries which
annot be easily distinguished from massive test results over all TPC-H queries
nder given attributes.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2020.101681
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2020.101681&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:haibo.hu@polyu.edu.hk
https://doi.org/10.1016/j.is.2020.101681
http://creativecommons.org/licenses/by/4.0/

Z. Han and H. Hu Information Systems 96 (2021) 101681

T
D

t
a
m
c
h
t
V
i
d
i
a
I
a
a
m
i
A
r
t
c
P

f

T
o
a

able 1
isk access patterns of TPC-H queries.
Query Read requests Small Medium S/M ratio

1 2813 53832 2371 22.89
6 2812 45579 10688 4.31
15 5638 91622 21016 4.40
19 2918 56046 2283 24.55
20 15460 235021 18627 12.67

the data owner, but also large volume of network traffic from and
to the VM, which negates the purpose of a cloud solution.

Fortunately, with the advances in hardware-based security, a
rusted execution environment (TEE), such as Intel SGX [17,18]
nd ARM TrustZone [19] becomes a mandatory component in
odern CPUs. It is an isolated environment where an application
an run its code and lock its sensitive data so that even the
ypervisor and operating system cannot access. This emerging
echnology enables us to push the ORAM client into the cloud
M so that the communication between ORAM client and server
ncurs memory access only. With this key idea, in this paper we
esign ProDB, a practical oblivious database that is immune to
nference attacks on disk and memory access. ProDB is a minimal
daptation of a conventional DBMS that partially runs on the
ntel SGX Enclave [17] and partially runs on the untrusted CPU
nd memory, bridged by an ORAM protocol. SGX is a TEE that is
vailable in all Intel CPUs since the Skylake microarchitecture. The
ain challenges are: (1) limited computing and memory capacity

n the SGX Enclave, which is also true for other TEEs, such as
RM TrustZone, and (2) I/O inefficiency due to the frequent block
e-encryption by ORAM. ProDB optimizes the resource alloca-
ion, block I/O, and ORAM access frequency to address these
hallenges. In particular, we propose SaP ORAM, a SQL-aware
ath ORAM protocol [20] that is optimized for database query

processing. It has the following two features.

• Probabilistic lazy persistence. SaP ORAM probabilistically
lowers the I/O consumption of those dirty blocks due to
ORAM re-encryption, by introducing modest randomness in
the lazy persistence process.
• SQL-aware ORAM path sharing. SaP ORAM organizes rel-

evant tables that are often jointly accessed into a single
ORAM instance. As such, multiple block accesses to these
tables can share the same path of a single ORAM access.
SaP ORAM optimizes this task by applying the maximum
weighted matching algorithm [21,22] on the history query-
table graph.

To summarize, our main contributions of this paper are as
ollows.

• We identify and resolve access pattern monitoring attacks
by hypervisors using a ‘‘hardware+software’’ (or more pre-
cisely ‘‘enclave+ORAM’’) solution ProDB, which optimizes
the allocation of limited hardware resources and the use of
ORAM.
• We propose SaP ORAM as the ORAM protocol that signifi-

cantly enhances end-to-end communication efficiency over
the classic Path ORAM by introducing probabilistic lazy per-
sistence and SQL-aware path sharing for a practical database
workload such as the TPC-H benchmark [13].
• We analyze the security of SaP ORAM on access patterns

rigorously and conduct extensive sets of experiments to
demonstrate the efficiency of ProDB.

he rest of the paper is organized as follows. Some preliminary
f two key concepts, namely, ORAM and hardware-based security
re introduced in Section 2. The system model and the design
2

Table 2
Notations and symbols.
Symbol Definition

Path ORAM parameters:
L Depth of tree (for Path ORAM and SaP ORAM)
Z Bucket size
B Block size

SaP ORAM evaluation metrics:
λ # of tables combined in a SaP ORAM instance
Rd # of retrieve rounds occur in query requests
ω Computational cost of processing a block on ORAM client
ψ Efficiency gain in one pair of table
Ψ Overall gain of all table pairs in database
Υ Intra-table skewness of table pairing plan
Φ Inter-table skewness of table pairing plan

Database parameters:
HKh (·) MAC function of incoming queries with hash key Kh
E(·),D(·) Encryption and decryption function of query requests
Ku Symmetric key for encrypting user requests
Ti Database table index
Ni # of blocks of table Ti
P Database page size
Ji,j # of joint accesses of table Ti and Tj in history
Si # of non-parallel accesses of table Ti in history

of ProDB are presented in Section 3. The SaP ORAM protocol is
shown in Section 4. Security analysis of SaP ORAM and ProDB
is given in Section 5, followed by the experimental results and
discussion in Section 6. Section 7 reviews related works in the
literature, and Section 8 concludes this paper.

2. Preliminaries

In this section, we introduce some fundamental concepts of
ORAM protocol and hardware-based security that are related to
our work.

2.1. Hardware-based trust computing

A trusted execution environment (TEE) is an isolated environ-
ment not accessible by the operating system where an application
can run its code and lock its sensitive data [23]. A TEE in Intel SGX
technology is called an ‘Enclave’, which is executed in processor
reserved memory (PRM). The sealed application code segments
and accessory data in the Enclave are encrypted and signed by
a key locked inside the Hardware Security Module (HSM). A
common use case of TEE is remote attestation to prove that the
launched program code is not altered and is run by a trusted
processor [24]. The attestation leverages Intel Enhanced Privacy
ID (EPID) for providing signature and can be verified only by Intel
Attestation Service. Despite of the advantages, this technology as
well as other TEE schemes show limitations in some respects.
Above all, common disk I/O and syscalls cannot apply to Enclaves
directly as they are not trusted [23].

2.2. Oblivious RAM

Oblivious RAM [15,20,25–29] is a privacy-preserving data re-
trieve protocol for a data owner to safely access a remote storage
in an untrusted environment while hiding her access pattern. It
uses random permutation, shuffle of memory cells, and symmet-
ric encryption on data to hide the original access sequence.

As our proposed SaP ORAM is based on Path ORAM [20],
we briefly introduce the latter in the following. Some related
notations are summarized in Table 2.

As shown in Fig. 1, in Path ORAM data blocks are lodged in
a tree structure. Each node on the tree is called a ‘bucket’ with
a fixed size of Z blocks. A ‘path’ refers to all the buckets from a

Z. Han and H. Hu Information Systems 96 (2021) 101681

ϵ

R
e
i
s
t
t

3

n
f
m
m
f
a
(
s
o

3

t
t
p
i
T
b
O
t
q
s
m

3

P
r

3

c

S
i
s
q

S
q
v
e
R
d
l
s
e

O
a
p

t

Fig. 1. ORAM path and stash.

leaf node to the root. At the client side, a position map stores the
mappings of block addresses to paths. Due to the randomness of
path mapping and the mechanism of path write-back (mentioned
later), after each ORAM access, some candidate blocks may fail to
be passed back to ORAM server. In Path ORAM, a client cache,
called stash, is set to lodge these overflowed blocks.

In each ORAM access, the client first lookups the position map
to find the path assigned to the target block, then notifies the
server to send that path and merges them into the stash. After
executing read or update operations, ORAM client re-maps the
target block randomly to another path and re-builds each node
on the path. The latter is achieved by traversing the stash to
find candidate blocks whose assigned path intersects with the
retrieved path at each levels of the tree (see Fig. 1). During this
process, if there are more than Z candidate blocks for a node,
the surplus ones have to remain in the stash. Otherwise if there
are not enough blocks in the stash, the path will be padded with
dummy blocks. As the last step, the client writes the path back to
server.

3. ProDB architecture

3.1. Overview

3.1.1. Security model
The threats of ProDB come from the hypervisor who has the

direct access to the memory space. If the host hypervisor is
compromised, data blocks are immediately exposed to adver-
saries. Even if the database is encrypted, the hypervisor can still
analyze the main memory access pattern left by various steps
in a SQL query processing, including query execution plan, index
and tabular data access. Such memory analysis can infer sensitive
information, such as the type and frequency of a query, and the
access frequency and order of various data blocks. To defend
from both data exposure and memory analysis threats, we define
a memory-secure DBMS as follows, which forms the security
foundation of ProDB.

Definition 1 (Memory-secure DBMS). Let Q⃗ denote a set of SQL
queries executed by a processing algorithm P and R denote their
results. In this process, P leaves access pattern ξ in the main
memory. A DBMS is memory-secure if and only if it satisfies
the following two conditions. (1) Q⃗ , P , and R are inaccessible
to any attack f that can access the main memory space. (2)
For any attack f that attempts to infer Q⃗ or R, learning ξ only
negligibly increases the success rate, or formally, prob(f (Q⃗)|ξ) =
 d

3

prob(f (Q⃗))+ ϵ1 and prob(f (R)|ξ) = prob(f (R))+ ϵ2, where ϵ1 and
2 are negligible.

emark 1. Notice that, the access pattern leakage cannot be
liminated in the whole site of memory space. Some less sensitive
nformation leakage, such as whether the two queries access the
ame database instance, are laid outside our scope of study. In
his work, we set the security boundary of pattern leakage under
he level of table data access and the semantic of SQL queries.

.1.2. System model
As shown in Fig. 2, we assume a database owner (e.g., a busi-

ess) hosts its database on a virtual machine (VM) in the cloud
or web or other applications. To satisfy the second condition in
emory-secure DBMS, we adopt an ORAM scheme to conceal the
emory access pattern ξ left by DBMS operations. To satisfy the

irst condition, we further assume a TEE (e.g., Intel SGX [17]) is
vailable in the VM so that query processing and ORAM clients
collectively called ProDB Core) can run in it while the ORAM
ervers run in the regular operating system (i.e., untrusted space)
f the same VM to interact with the external storage.

.1.3. Performance metric
As the ORAM cost is the predominant cost (w.r.t. CPU, I/O, and

ime) in ProDB, we focus on its performance. We use ω to denote
he cost for an ORAM client to retrieve one single block in the
ath from the ORAM server, which also includes the overhead
ncurred by TEE for public-key attestation and function calls.
herefore the cost of one ORAM round is LZω, where Z is the
ucket size and L is the depth of the tree. If there is only one
RAM server, then the overall ORAM cost for a given query is
he sum of costs for all ORAM rounds to access all blocks for this
uery, i.e., RdLZω, where Rd is the number of ORAM rounds. As
uch, the objective of ProDB is to minimize Rd while still satisfying
emory-secure DBMS.

.2. A two-tier design

As shown in Fig. 3,2 ProDB is composed of 2 tiers, namely the
roDB Core and ProDB Shield, which run inside and outside a TEE,
espectively.

.2.1. ProDB core
ProDB Core consists of the SQL Decryptor, Secure Query Pro-

essor, ORAM analyzer, and ORAM Clients.

QL Decryptor. When a SQL query arrives at the ProDB Core, it is
n an encrypted form. The SQL decryptor will decrypt it in the TEE
o that the untrusted hosting environment cannot learn about the
uery.

ecure Query Processor (SQP). SQP is the component to process
ueries in ProDB. It inherits those software modules from a con-
entional RDBMS, such as SQL parser, query optimizer, and query
xecuter. The only difference is the I/O access. In a conventional
DBMS, the query executer directly sends I/O instruction to load
ata blocks from the main memory or the disk. In ProDB, the SQP
oads data blocks from ORAM clients, which interact with ORAM
ervers outside TEE. The latter loads data blocks from storage
ngine if they are missing from the main memory.

RAM Analyzer (OA). ProDB leverages SaP ORAM to securely
ccess untrusted memory for data blocks without leaking access
attern. SaP ORAM, further discussed in Section 4, is a historical

2 To clarify, we do not depict those components in a conventional RDBMS
hat are not re-designed in ProDB, such as the concurrency control unit and
atabase logging.

Z. Han and H. Hu Information Systems 96 (2021) 101681

S
O
I
b
o
I
r

w
P

D
t
p
c

O

Fig. 2. System model.
Fig. 3. ProDB two-tier design: Core and shield.
w
r
h
c
Q
t
O
t
S
p
a

QL-aware ORAM protocol. That is, how tables are mapped to
RAM instances is determined by the historical SQL workload.
n a nutshell, tables that are frequently accessed together should
e allocated to the same ORAM instance so that a single round
f ORAM access can retrieve multiple blocks from these tables.
n the ORAM Analyzer, historical statistics on SQL queries are
etained for each table Ti as two pieces of meta-data. The first,
denoted by Ji,j, is the number of joint ORAM accesses with another
table Tj within the same batch of queries (e.g. transactions).
The second, denoted by Si, is the number of non-parallel ORAM
accesses on this table Ti. The ORAM Analyzer uses these meta-
data to find the optimal allocation of tables to ORAM instances
(more details in Section 4.2). Alongside the changes on meta-data,
ORAM Analyzer updates realtime allocation plan on-demand.

ORAM Clients During query execution, SQP accesses data blocks
in the untrusted environment through ORAM clients. There is
a one-to-one mapping between an ORAM client and an ORAM
server. Each ORAM server is initialized by its corresponding client.

3.2.2. ProDB shield
As shown in Fig. 3, ProDB Shield is the part of ProDB that

orks in the untrusted memory. It consists of the DBMS Main
rocess and ORAM Servers.

BMS Main Process. It serves as the entry point of queries and
he carrier of TEE program, i.e., the ProDB core. Besides these pur-
oses, to function as a DBMS, it includes other conventional DBMS
omponents such as storage engine and connection manager.

RAM Servers. An ORAM server instance is organized in a tree
structure (see Section 4) and can accommodate the data blocks
 i

4

of more than one table. As instructed by SQP, the corresponding
ORAM client sends read/write requests of data blocks to the
ORAM server, who then safely writes back updated data blocks
to disks through the storage engine under an ORAM-to-Disk
mechanism introduced in Section 4.1.

3.3. Overall ProDB work-flow

ProDB Core and ProDB Shield collaborate with each other
to provide memory-secure query operations. Fig. 4 shows the
main steps of query processing, among which inflow and outflow
instructions of TEE are transmitted through secure channel by
issuing secure function calls of TEE (e.g., ECALLs/OCALLs of Intel
SGX).

Algorithm 1 shows a detailed work-flow of processing a batch
of query requests T . As defined in Table 2, a secure query request
is encrypted by symmetric encryption E with key Ku, and a MAC
ith key Kh is appended to ensure data integrity. So the complete
equest is T = HKh (EKu (S)) ∥ EKu (S). After being validated on
ash value (line 3), SQL decryptor decrypts the SQL strings S
ontained in the workload (line 6), then forwards it to Secure
uery Processor (SQP, line 7). ORAM Analyzer exports SaP ORAM
able pairing plan (see Section 4.2) to guide the initialization of
RAM instances (line 8). We will give the construction steps of
he optimal table pairing plan in Algorithm 2. Subsequently, each
QL string s is parsed as s∗ and optimized to generate execution
lan qp (lines 10–11). Meanwhile, the historical query records
re updated. If the associated pages of qp do not exist in ORAM
nstances, SQP notifies storage engine to load them from disk

Z. Han and H. Hu Information Systems 96 (2021) 101681

(
i
t
(
d
h
i

o
s
t
t
d
a
P
c

4

t
P
a

Fig. 4. ProDB query process.
o
c

T
s
m
p
(
t
t
i

U
c
t
w
p
t
r

t
r
f
a
p
p
b
m
a
O
d
e
H
s
d
s
a
b

p

line 12). The query engine then executes the rest non-I/O tasks
n qp and wraps the plaintext result set res (line 13). When all
he queries are handled, SQP invokes ORAM-to-Disk Mechanism
see Section 4.1) to perform data persistence job and flush related
irty pages to disk storage (line 15). SQP finally re-encrypts and
ashes result set by EKu and HKh , and sends it back to the query
nitiator (line 16).

Algorithm 1 ProDB Query Process

Input: T = HKh (EKu (S))||EKu (S)
Output: Result set: Rs = HKh (EKu (res))||EKu (res)
1: Initiate return value: Rs← ∅
2: H ← HKh (EKu (S))), Q ← EKu (S)
3: if HKh (Q) != H then
4: Return
5: else
6: S = DKu (Q)
7: SQP Invoke: doQuery(S)
8: buildOram(OA_getPairing())
9: for each: SQL string s ∈ S do

10: s∗ = parse(s)
11: qp = opt(s∗) and OA_update(s∗)
12: Invoke oram.loadData(qp)
13: res← res

⋃
SQP_execQuery(qp, oram)

14: end for
15: SQP Invoke: persistence()
16: Return Rs = HKh (EKu (res))||EKu (res)
17: end if

3.4. Limitations of ProDB

In most database management systems, persistent data are
rganized and stored in certain file formats, such as heap files and
equential files. These files exploit the characteristics of a disk and
hus optimize the I/O performance. However, when ProDB loads
hese blocks, the original data organization in these files is lost
ue to the shuffling by the ORAM server. By design, ProDB cannot
ddress this issue for security purposes. Furthermore, currently
roDB does not consider those advanced DBMS features, such as
oncurrency control, rollback mechanism and database logging.

. SaP ORAM

In this section, we present the SaP ORAM protocol. It addresses
wo efficiency problems of Path ORAM when it is applied to
roDB, namely, in persistence and query-based multiple ORAM
ccesses. In what follows, we discuss them separately.
5

4.1. Probabilistic lazy persistence

In a conventional RDBMS, the storage engine constantly writes
modified dirty pages in the buffer back to disks. Since the Path
ORAM protocol needs to re-encrypt the whole path of blocks back
to the ORAM server, all these blocks are essentially modified as
shown in Fig. 5(a). This will significantly degrade the I/O perfor-
mance of ProDB. The probabilistic lazy persistence mechanism
f SaP ORAM addresses this problem by making the following two
hanges on the Path ORAM client.

agged position map. We add a new attribute ‘tag’ to the po-
ition map of the Path ORAM client. The bijective ‘address-path’
apping is thus expanded to a triple mapping as ‘tag-address-
ath’. ‘‘Tag’’ is used to identify the underlying storage medium
e.g., a YD file of MySQL-ISAM or a filegroup of SQL Server) for
he block. For new data blocks, a special tag empty is used. Since
his attribute is only used in the ORAM client that runs on a TEE,
t generates no security issues to ProDB.

pdate list. An Update List is maintained in each SaP ORAM
lient. It stores those blocks that are updated by SQL query rather
han by the ORAM re-encryption. When an ORAM client needs to
rite persistent media (e.g., after a transaction), the persistence
rocedure is invoked. For each block in the list, it uses the tag in
he position map to locate the storage medium for that block and
equests the storage engine to perform the write.

However, as shown in Fig. 5(b), if an ORAM client only sends
he real updated blocks for persistence, not those by the ORAM
e-encryption (i.e., not logically modified), an adversary can learn
rom storage engine about these blocks and infer the query. To
ddress this, we propose a probabilistic dirty-block-generation
rocedure to produce an expanded and obfuscated update list for
ersistence. As shown in Fig. 5(c), the procedure randomly adds
locks which are modified by re-encryption from the position
ap into the update list. Notice that, the ‘dummy updated blocks’
re randomly picked from all the pages that have been loaded into
RAM. Therefore, the obfuscation maintains independent with
istribution of real updates over pages. Obviously, the more re-
ncrypted blocks the more effective this obfuscation becomes.
owever, it is at the cost of degraded I/O performance. To model
uch cost, let H denote the number of real updated blocks and H ′
enote the number of re-encrypted blocks. As they are randomly
elected from an ORAM tree with depth L, the probability that
n adversary succeeds with a random guess of all real updated
locks is

rob = 2−(H+H
′). (1)
b

Z. Han and H. Hu Information Systems 96 (2021) 101681

I
T
o
O
t
a

U

c

Fig. 5. Probabilistic lazy persistence.
O

C

D

ψ

/O in the storage engine typically use pages rather than blocks.
o convert the above to pages, we let the page size P be a multiple
f the block size B. As such, the total number of pages in the
RAM tree is g = 2L·B·Z

P , where Z is the bucket size for ORAM
rees. Further, we assume the real updates and dummy updates
re both evenly distributed among all pages, thus we obtain gR =

g · (1− (g−1g)H) as the expected number of real dirty pages in the
pdated List and gD = g ·(1− (g−1g)H+H

′

) as the expected number
of dirty pages after adding H ′ dummy blocks. Then we derive the
probability of identifying the real dirty pages as

probp = 2g·(g−1g
(H+H′)

−1)
. (2)

The following illustrates a real-life example of this probability.

Example 1. In a practical setting of P = 16 kb = 4B, Z = 4,
L = 7, we aim to run data persistence under restrained overhead
generating≤ 1x, 2x number of dirty pages, i.e. gD ≤ 2gR, gD ≤
3gR. Under such constrains, we let H = 30, 40 to derive
orresponding maxH ′ = 66, 135 and maxH ′ = 102, 207
respectively for 1x and 2x additional cost. The probability that
an adversary knowing the distribution of updated blocks to dirty
pages succeeds with a random guess of the actual updated pages
suffices probp ≤ 2−48.4, ≤ 2−59.9 for 1x additional cost and
probp ≤ 2−75.4, ≤ 2−91.9 for 2x additional cost.

This shows that a moderate number of dummy blocks (e.g., the
same number as the real dirty blocks) is sufficient for a secure
obfuscation.

4.2. SQL-aware path sharing

Path ORAM and other enhanced tree-based ORAMs [30] still
incur high computational and I/O costs for a practical DBMS as
ProDB. While it is an active research field to design new ORAM
schemes that optimize the performance of single block access,
we take an orthogonal perspective by reducing the number of
ORAM rounds in the intra- and inter-query scale.

In this subsection, we propose SQL-aware path sharingwhose
key idea is to fetch more than one block from the tree path during
one ORAM round. The ORAM Analyzer keeps track of those blocks
that are frequently accessed together and places as many of them
in the same ORAM tree path as possible. Hosted in TEE, it collects
6

the access history of each table in the form Ni, Ji,j, Si, where Ni
is the number of blocks in table Ti, and Ji,j is the number of co-
occurrences of block accesses to table Ti and Tj in a batch of
queries, while Si is number of access times to table Ti counted
exclusively (as defined in 3.2.1). Based on this history, we merge
data blocks from λ tables into a single ORAM server and maintain
combined position map and stash of the tables for this ORAM
instance. Ideally, if the data blocks in the entire tree path are
needed by the query, the amortized ORAM cost can be reduced
by up to (λ− 1)ω.

For ease of presentation, in what follows we only study λ = 2,
i.e., each ORAM instance holds up to 2 tables A and B, each of
which account for s and t blocks, respectively. Let M and N (M ≥
N) be their numbers of block accesses in a query workload. If table
A and table B have their individual ORAM instances, the depths
of ORAM trees are approximated as log s

Z and log t
Z , respectively.

As such, the ORAM cost C using plain Path ORAM is:

C = Z(M log
s
Z
+ N log

t
Z
)ω (3)

Recall that ω is the unit cost to access one block and Z is the
bucket size. The security proof of this path sharing technique is
presented in Section 5.1.

If SaP ORAM is adopted instead, A and B are stored in one
ORAM instance. When a batch of SQL queries are executed, SaP
ORAM retrieve paths that contain multiple target blocks from
both A and B. Let K (M ≤ K ≤ M + N) denote the number of SaP
RAM access rounds. Then the ORAM cost C ′ using SaP ORAM is:

′
= ZK (log

s+ t
Z

)ω (4)

We then define efficiency gain ψ as the difference on ORAM
costs between SaP ORAM and plain Path ORAM for the query
workload, i.e., ψ = C − C ′.

efinition 2 (Efficiency Gain ψ).

= C − C ′ = Zω · log((
sM tN

ZM+N) · (
Z

s+ t
)
K

)

The following theorem depicts that to maximize ψ is equiva-
lent to minimize K .

Z. Han and H. Hu Information Systems 96 (2021) 101681

T

f

p
t
o

D
a
c
A

i
t
r

|

t
|

c
r
a

t
l
u
g

D∑
q
(
o

i
n
t

D
t

1
1
1
1
1
1
1
1
1
1
2
2

heorem 1 (K Negative Correlation). Given the number of tuples
s and t, bucket size Z and the number of access rounds M, N,
maximizing ψ is equivalent to minimizing K .

Proof. The key observation is that s + t > Z always holds for
Path ORAM and its variants, because a rather small Z (e.g., Z = 3,
4 or 5) is usually chosen [20]. As shown in Definition 2, given that
0 < Z

s+t < 1, the expression of ψ suffices monotone increasing
unction as K decreases. □

To minimize K , it is always expected that we can find a shared
ath in ORAM tree holding target blocks of both two tables, so
hat we can access them in one pass. Now we give the definition
f such a path as follows.

efinition 3 (Gaining Path). In processing a query with M block
ccesses to table A and N blocks accesses to table B, a tree path is
alled a gaining path if it contains at least 1 target block of table
and 1 target block of table B simultaneously.

Each gaining path reduces K by 1. The ORAM client looks up
the position map and picks a gaining path to retrieve if there
exists one. Otherwise, a non-gaining path is chosen, which only
reduces M or N by one. The following theorem shows that the
best efficiency gain can be achieved when M and N are the
closest.

Theorem 2. If the total size of two tables, M+N, is fixed, a smaller
intra-table skewness Υ = |M − N| will lead to a higher efficiency
gain ψ .

Proof. Let M∗ and N∗ be the remaining number of target blocks
not accessed yet. When the ORAM client picks a path to retrieve
for the next round, the probability that it can find a gaining path
is Pr = Min(M∗,N∗)·Max(M∗,N∗)·2Z

s+t . Since Min(M∗,N∗) ·Max(M∗,N∗) =
(M∗+N∗)2−(|M∗−N∗|)2

4 , and M∗ + N∗ is a constant value, Pr must
ncrease as |M∗ − N∗| decreases. To prove this, we show below
he relation between |M∗ − N∗| and Υ = |M − N|. After each
etrieval, the change on |M∗ − N∗| satisfies a stochastic walk as:

M∗ − N∗|′ =

⎧⎨⎩
|M∗ − N∗| + 1 with prob. 1−Pr

2
|M∗ − N∗| with prob. Pr
|M∗ − N∗| − 1 with prob. 1−Pr

2

The initial values are M∗0 = M and N∗0 = N , so the expecta-
ion of |M∗ − N∗| after a finite random walk is E(|M∗ − N∗|) =
M − N| = Υ . As such, we prove that a smaller |M − N| in-
reases the probability of finding a gaining path in each round of
etrieval. Therefore, the efficiency gain of the transaction ψ will
lso increase. □

Now we can generalize the above theorem to the whole set of
ables in a database. That is, we can pair up tables whose cumu-
ated block accesses in all historical queries are close (i.e. small Υ
nder fixed M+N). The objective is to achieve the highest overall
ain as defined below:

efinition 4 (Overall Gain). The overall efficiency gain Ψ =
x
i=1 ψi is the aggregated ORAM cost saving for whole batch of

ueries. Here ψi denotes the efficiency gain for ith table pair
there are x pairs in total). Essentially, Ψ is the expression of yield
n performance metric Rd · ω for given set of query requests.

Nonetheless, the above pairing scheme does not take M + N
nto account. We therefore propose to use a combined metric,
amely, the evaluation factor of two tables, to determine if two
ables are suitable for pairing.
7

efinition 5 (Evaluation Factor). The evaluation factor αij of two

ables i and j is calculated as αij =
Ji,j2

Si+Sj
. Here Si, Sj and Ji,j are

the statistics of the historical queries defined in Section 3.2.1.
Specifically, Si, Sj indicate the number of non-parallel accesses to
single table and Ji,j is the number of joint accesses to table Ti, Tj
within the same batch.

The higher the evaluation factor, the more gaining paths the
two tables can generate, and thus the more suitable to pair
them. However, the optimal table pairing plan (OTPP) needs to
enumerate all combinations of table pairs in a database. To effi-
ciently solve this problem, we make an analogy to the maximum
weighted matching problem in graph. If we use vertex set V to
denote tables and edge set E to denote joint access relations
two tables, then the OTPP problem is equivalent to finding the
maximum weighted matching on this graph

−→
G (V , E), where the

weight of edge (i, j) is the evaluation factor αij of two tables. Un-
fortunately, state-of-the-art solutions to the maximum weighted
matching problem in a general graph, such as [21] and [22], still
require quadratic complexity on |V |. In what follows, we propose
an efficient heuristic-based approximate algorithm to select a
suboptimal table pairing plan (STPP).

Algorithm 2 Suboptimal Table Pairing Plan (STPP)

Input: All evaluation factors: αij,∀i, j ∈ U
Input: Unpaired table set: SV
Output: Bi-table Pair set: sttp
1: sttp← ∅
2: Initialize vertices set with table set U : SV ← U
3: Sort αij in descending order
4: for each: αij from top do
5: if i and j ∈ SV then
6: if αij ̸= 0 then
7: Put pair i↔ j into sttp
8: else
9: Put mono-table pair i and j into sttp
0: end if
1: Remove i, j from SV
2: else
3: if i or j ∈ SV then
4: Put mono-table pair i or j into sttp
5: else
6: Continue.
7: end if
8: Remove i or j from SV
9: end if
0: end for
1: Return sttp

The entire STPP procedure is shown in Algorithm 2. The greedy
algorithm sorts the evaluation factors in descending order (line
3). It then traverses them in this order and repeatedly adds the
two vertices with the highest evaluation factor as a pair to sttp
(lines 4–7). The corresponding two tables are then removed from
the unpaired table set SV (line 11). At the end of an iteration,
all isolated tables (i.e. vertices) are regarded as mono-table pairs
each of which will be allocated an ORAM instance. (lines 9 and
14). The iteration terminates when SV becomes empty, and sttp
is returned (line 21).

We further evaluate how the difference on the amount of
database tables and the randomness of meta-data impact on
computational cost of STPP. We also study the relation between
STPP cost and the overall cost in processing a query workload.

(Both can be found in Section 6.4.)

Z. Han and H. Hu Information Systems 96 (2021) 101681

5

t
q
t
m
P
d
o
s
d

5

o
s
d
i
D
p
(

t

T
t

P
m
t
i
T
r
r
t
s

o

a
p

i
t

. Security analysis

The utilization of ORAM guarantees the memory access pat-
ern of a data block is indistinguishable from others. Therefore
ueries executed in memory disclose no discriminative informa-
ion to adversaries. Therefore, by introducing ORAM in untrusted
emory we make the second condition in security model hold for
roDB. In this section, we show that optimizations in SaP ORAM
o not compromise the security of ORAM. We first present a proof
n the security of path sharing in SaP ORAM. Then we perform a
ecurity analysis on using multiple ORAM instances for a single
atabase.

.1. Security of path sharing

Path sharing allows a SaP ORAM client to fetch more than
ne target block in a single ORAM access. We adopt the same
ecurity analysis as in Path ORAM [20] to prove that this feature
oes not weaken the security level, so that adopting SaP ORAM
n ProDB does not compromise the security model of secure-
BMS in Definition 1. Recall in Definition 1, the sequential access
attern with lengthm seen by the ORAM server is denoted by ξ =
pm, pm−1, . . . , p1), where pj is the path index in the ORAM tree
of depth L. The randomness in re-mapping the paths guarantees
all block accesses are statistically independent. Or formally, the
probability of distinguishing the access sequence of ξ from that of
another query is Pr(ξ)Path = (1

2L
)m. In what follows, we show the

hat SaP ORAM has the same or even lower collision probability.

heorem 3. In SaP ORAM, the path sharing mechanism ensures
hat ∀ξ , Pr(ξ)SaP ≤ Pr(ξ)Path always holds.

roof of sketch. Let λ denote the number of tables that are
erged into one ORAM instance and Lc denote the depth of

he combined ORAM tree. Recall that in SaP ORAM, we greed-
ly retrieve the path that can fetch most (≤ λ) target blocks.
he path selection is executed inside an enclave space after the
e-mapping step of previous retrieval round. As such, the path
etrieval maintains the same randomness as Path ORAM. That is,
he probability of distinguishing the access pattern ξ in SaP ORAM
atisfies Pr(ξ)SaP = (1

2Lc
)m. Further, due to the fixed bucket size

Z , Lc must be larger than that of any ORAM instance of a single
table to accommodate extra blocks, i.e. Lc ≥ L. Therefore, we can
guarantee that Pr(Si)SaP ≤ Pr(Si)Path.

5.2. Inter-table security

Intuitively, there should be only one ORAM instance that holds
all tables. However, this is infeasible in practice for the following
reasons. First, since a DBMS needs to accommodate data into dif-
ferent storage media and location (e.g., local disks, iSCSI, and NFS),
the single-ORAM-instance design cannot capture the difference in
their I/O characteristics. Second, the access frequency of various
tables are drastically different and single-ORAM-instance design
cannot optimize the I/O performance for ‘‘hot’’ tables. As such, we
adopt a multi-ORAM-instance design where each ORAM instance
accommodates a set of tables. However, as the mapping of tables
to these ORAM instances is not anonymous to ORAM servers,
the table-level access pattern may still leak sensitive information,
though in a coarser scale. In an extreme example, if each table is
mapped to one ORAM instance, an alternate access of two ORAM
servers can imply a nest-loop join between two tables.

SaP ORAM protocol partially alleviates this issue by the path
sharing feature. Since data blocks of multiple tables are retrieved
simultaneously through a single path access to an ORAM server,

their original access sequences to these tables can no longer be c

8

inferred. To illustrate this, we use the extreme example above.
Let Seq := ..., A1(A, pathi, addr1, op), A2(B, pathj, addr2, op), . . .
denote the original retrieval pattern on the two ORAM instances
of a net-loop join query on tables A and B. The pattern clearly
shows a distinct alternate access of tables A and B, which can be
inferred by an adversary as a nest-loop join with high confidence.
In SaP ORAM, since a batch of block accesses to tables A or B
can be achieved by a single ORAM access, such an alternate table
access pattern can no longer be observed. Furthermore, as shown
in Fig. 6, the same table access pattern can also originate from
a sequential scan of tables A and B. Therefore, the confidence of
the adversary to infer the query as a nest-loop join is significantly
lowered.

6. Experimental results

We implement a prototype ProDB (i.e., SaP ORAM on MySQL)
by refactoring those source codes with block access instructions
(such as ‘‘execute_sqlcom_select()’’) in MySQL. The ProDB core
(i.e., client side of SaP ORAM) is written in C++, compiled to a
DLL file, and called by MySQL main program ‘‘mysqld’’. In this sec-
tion, we evaluate the performance of both ProDB and SaP ORAM
through experiments. We first demonstrate the effectiveness of
SaP ORAM to hide memory access pattern. We then conduct a
comparative study on the efficiency of SaP ORAM and Path ORAM.
Finally, we show the overall performance of ProDB under various
real-life TPC-H query workloads.

6.1. Effectiveness of SaP ORAM for memory access pattern hiding

We demonstrate the result of memory access pattern hiding
against ‘‘curious’’ VM hypervisor and OS administrator for a set of
different type TPC-H (1 GB workload) SQL queries (Q4,Q17,Q21,
RF1,RF23). Maintaining the same settings as we applied in the
preliminary test shown in Section 1, we deploy vSphere ESXi
version 6.5 as hypervisor on host machine which has Intel i7
6700 CPU with 64 GB memory. Its VM runs a Win 10 Pro system
with 2 CPU cores, 16 GB memory, and MySQL 6.5 database.4 To
eliminate the impact of disk I/O on the query performance, we
enforce MySQL to cache all TPC-H query workload in the memory
by setting ‘‘innodb_buffer_pool_size’’ to 1 GB. We use hypervisor
tools and MySQL monitoring instructions to record the values of
3 memory activity features, namely, # of read/write requests to
MySQL process buffer and the peak working memory usage in
this VM. Tables 3 and 4 show the average feature values over
100 independent runs without and with SaP ORAM, respectively.
We can observe that the values in Table 3 are more diverse
and distinguishable, especially for SQL queries with updates (RF1,
RF2). We then launch side-channel inference attack by assuming
an adversary has access to the same statistics as in these two
tables and is monitoring the memory access of an unknown TPC-
H query. Specifically, the adversary uses 80 runs as training data
to build a naive-Bayes classifier5 on the 3 features, and then uses
20 runs as testing data to reidentify their query IDs in TPC-H. The
success rates of this attack for each query without and with SaP
ORAM are shown in Fig. 7. We observe that this inference attack
is very effective (65%+) without SaP ORAM. On the other hand,

3 Other TPC-H queries are excluded because they contain compound
perations, such as ‘group by’, which are beyond the current scope of ProDB.
4 Since Intel SGX can only be applied to VM guests through KVM patches [31]
t the time of writing, the set of experiments in this subsection runs on a
laintext database without affecting the result of access pattern hiding.
5 As the attributes of testing results of the same query are very approaching

n the stable simulation environment. To avoid overfitting problem, we limit
he trial runs in training data. Therefore, based on the features of some classic
lassifiers [32,33], we carefully select the naive-Bayes classifier for attacking.

Z. Han and H. Hu Information Systems 96 (2021) 101681

a

Fig. 6. Access pattern of inter-table queries.
Fig. 7. Success rates of inference attack — Direct access vs. via SaP ORAM.

Fig. 8. Amortized elapsed time — SaP ORAM vs. Path ORAM vs. Direct access.

SaP ORAM effectively restrains the adversary from performing
significantly better than a random guess, because it manages to
narrow down the difference between queries in terms of memory
reads, writes, and peak usage.

6.2. SaP ORAM performance

In this subsection, we evaluate the SaP ORAM performance
gainst Path ORAM in the presence of Intel SGX. The experiments
9

Table 3
Memory access patterns for TPC-H queries – Direct access.
Query Mem. reads (K) Mem. writes (K) Peak usage (MB)

Q4 248 < 1 247
Q17 719 < 1 260
Q21 1295 < 1 1007
RF1 68 34.52 159
RF2 101 30.66 159

Table 4
Memory access patterns for TPC-H queries – via SaP ORAM.
Query Mem. reads (K) Mem. writes (K) Peak usage (MB)

Q4 2780 2451 893
Q17 10,017 11,634 1012
Q21 15,363 14,268 1022
RF1 1057 824 897
RF2 2201 2172 997

are conducted on an Intel i7 6700HQ CPU with 16 GB RAM run-
ning Windows 10. We sequentially access a 4 kb data array using
executable Intel SGX Enclave code segments in three versions of
encrypted DLL files, namely, without ORAM, with Path ORAM, and
with SaP ORAM. The latter two DLL files implement adopt the
same ORAM parameter settings as L = 8, Z = 5 and B = 4 kb.

We execute the program using each DLL file for up to 1000
blocks of array data and measure the amortized elapsed time of
invoking the enclave to access a block (i.e., from the moment
when the program enters the enclave to the moment when the
return buffer from the enclave is received). The elapsed time
under each DLL file is plotted in Fig. 8. We observe that as more
blocks are accessed, SaP ORAM achieves a steady 30% perfor-
mance gain over Path ORAM mainly due to path sharing. On the
other hand, compared with no ORAM, SaP ORAM only introduces
about 100% overhead to the elapsed time when a large number
of blocks need to be accessed.

6.3. ProDB performance under TPC-H workload

This subsection includes the study on parameters of both path
sharing and probabilistic lazy persistence mechanism reflecting
on the ProDB query and persistence performance under various
real-life TPC-H workloads.

6.3.1. Path sharing
In this part, we evaluate the overall performance of ProDB

under TPC-H 1G dataset in terms of amortized query elapsed
time. Our experiments focus on two TPC-H queries, namely, Q12

Z. Han and H. Hu Information Systems 96 (2021) 101681

a
t
o
m
p
t
B
s
(

t
Υ

g

t
w
w
e

Fig. 9. Impact of parameters on path sharing performance.
b
t
i

nd Q14. Both are two-table join queries.6 For Q12, we designate
ables ‘‘orders’’ and ‘‘lineitem’’ as a pair and merge their blocks in
ne ORAM tree; for Q14, we pair tables ‘‘lineitem’’ and ‘‘part’’ and
erge their blocks in one ORAM tree. To focus on the memory
erformance rather than disk I/O, we pre-load all data in these
ables into memory. All rows in tables are fit in blocks (we set
= 4 kb) as full as possible. We arrange the blocks in ORAM tree
tructure for executing SaP ORAM accesses and in linear structure
Array) for direct non-ORAM accesses.

We study 2 key path sharing parameters that may impact on
he performance of ProDB. The first is the intra-table skewness
. As defined in Theorem 2, Υ directly impacts on the efficiency
ain ψ . In the experiment, we normalize Υ to [0, 2] and Υ = 1

means there is no distribution bias between the paired tables. The
second parameter is the inter-table skewness Φ which evaluates
the degree of similarity between the pre-generated pairing plan
and real query workload arrivals. Formally, the inter-table skew-
ness Φ is the ratio of the largest number of block accesses on a
pair of tables (A, B) to the total number of block accesses X . Recall
that M and N denote the number of accesses to table A and B,
respectively, so Φ = M+N

X .

6 Except for Q19, the other queries in TPC-H workload are not suitable
o evaluate the pure effect of SQL-aware path sharing as they are associated
ith either 1 or more than 2 tables. Q19 is less representative in evaluating
ith different intra- and inter-table skewness. Therefore it is only used in the
valuation STTP performance.
10
In the first experiment, we vary Υ by manipulating the scale of
locks in both tables. Fig. 9(a) and (b) plot the amortized elapsed
ime of Q12 and Q14, respectively. We observe that when there
s no distribution bias, i.e., Υ = 1, ProDB achieves the lowest
elapsed time. Nonetheless, even in the extreme cases where Υ =
0 or 2, the elapsed time is increased by at most 40% and is still
lower than Path ORAM. As such, we can conclude that ProDB is
robust with respect to Υ .

In the second experiment, we vary concentration ratio Φ by
adding random block accesses which are not related with the
paired tables of Q12 and Q14, while maintaining the same to-
tal number of block accesses and the true Υ . Fig. 9(c) and (d)
plot the amortized elapsed time for Q12 and Q14, respectively.
We observe that in both figures the elapsed time of SaP ORAM
decreases linearly as Φ grows. Note that in Fig. 9(d), SaP ORAM
is close to Path ORAM because the true Υ of Q14 approaches 0,
i.e., the number of blocks in table ‘‘lineitem’’ is much larger than
that in table ‘‘part’’.

6.3.2. Probabilistic lazy persistence
In this part, we study how the number of dummy updated

blocks added affects the number of generated dirty pages for
persistence. We run the experiment on prototype ProDB, as in-
troduced in Section 6. In prior, we configure Innodb parameters
as ‘‘UNIV_PAGE_SIZE = 16 kb’’, ‘‘UNIV_PAGE_SIZE_SHIFT = 14’’
and set ORAM block size B = 4 kb. In the experiment, we

Z. Han and H. Hu Information Systems 96 (2021) 101681

‘

t
p
w
s
i
O
n
o
P
a

c
h
T
t
S
w
f
t
a
m
c
o
p
W
e
d

l
t
Z
c
a
O
c
r
o
e
t
s
f
f

8

t
m
a
O
p
u
o
a
A
e
n
W
a

Fig. 10. # of dirty pages changing with # of dummy updates.

perform 3 SQL statements to update different requested rows7
in table ‘‘orders’’ on their column ‘‘o_orderstatus’’ with TPC-H
1G database. By varying the number of dummy updated blocks
(measured in the percentage of real updated blocks) in ProDB
core, we observe the number of modified (dirty) pages in Innodb
buffer pool. As shown in Fig. 10, the growth of dirty pages of
same query fluctuates around linearity along the increase of
dummy updated blocks when the weight of dummy updates is
small, while recedes to approximately sub-linear growth when
the weight becomes large.

6.4. Suboptimal table pairing plan

In this subsection, we evaluate the suboptimal table pairing
plan (STPP). In the first experiment, we vary the number of
tables from 1000 to 10 000 to evaluate its CPU running time
while randomizing the meta-data Si and Ji,j. Fig. 11(a) plots the
results. As each result is averaged by 200 trials, we also plot the
standard deviation in the secondary y-axis. We observe that the
CPU running time is almost proportional to the number of tables
even with the presence of random Si and Ji,j.

In the second experiment, we use real TPC-H query workload
to evaluate the time cost of STPP in the whole query processing.
Fig. 11(b) plots the STTP running time compared with the overall
query elapsed time in Q12, Q14 and Q19 of TPC-H under various
scales of TPC-H datasets (from 2G to 10G). We observe that STTP
consumes a fixed amount of CPU running time, and therefore the
higher the total query elapsed time, the lower the percentage of
STTP cost.

7. Related work

Optimizing ORAM for large-scale data. A rich body of lit-
erature has attempted to address the deficiencies of ORAM. TP
ORAM [26] and Path ORAM [20] achieve O(logN) client cost
measured by amortized number of blocks accessed per client op-
eration. Goodrich et al. [34] achieves O(log2 N) access bandwidth
overhead, and Circuit ORAM [29] further reaches ω(logN) band-
width blowup. More recently, many ORAM schemes trade server
computation cost for communication cost, such as Path PIR [35],
Ring ORAM [36,37] and Onion ORAM [27]. Among them, we re-
mark Bucket ORAM [28] with additive homomorphic encryption

7 The 3 SQL statements differ in their requesting monthly periods on column
‘o_orderdate’’ from 1994-07-01 to 1994-10-01.
11
for providing single roundtrip (i.e., one single client–server in-
teraction) with O(1) bandwidth blowup. Furthermore, we notice
hat some efforts have been made to optimize Path ORAM by im-
roving the efficiency of single path retrieval. As a representative
ork, PrORAM [38] operates directly at the block level by locating
hared blocks on same path and retrieving them as ‘‘super blocks’’
n one pass. From the perspective of SQL query processing, Sap
RAM achieves the similar goal without intervening the random-
ess of block position on ORAM tree, thus furthest preserves the
bfuscation of Path ORAM. On the other hand, although based on
ath ORAM, the SaP ORAM proposed in this paper can also be
dapted to other ORAM schemes for database workloads.
Hardware Enclave for database applications. With the in-

reasing availability of trusted hardware, some recent works
ave leveraged it for database applications. Bajaj et al. proposed
rustedDB [39], which uses IBM 4758 PCI [40] to implement
amper-proof query processing. CryptSQLite [41] encapsulates the
QLite engine in an Intel SGX enclave to achieve confidentiality
ith modest performance drop. More recent work, ObliDB [42],

urther enhances the performance of point query to 7−22x faster
han existing encryption-based oblivious database. StealthDB [43]
nd EnclaveDB [44] identify access pattern attacks in untrusted
emory/storage and propose cryptographic solutions using se-
ure hardware. They differ from our ProDB in security boundary,
ptimization of access pattern approaches, as well as high cou-
ling adaptations with hardware enclave, ORAM and disk storage.
e also survey into other works [45,46] that adopt hardware

nclaves for mitigating related database issues or implementing
atabase systems with specific usages.
Combining use of ORAM and Hardware Enclave. In paral-

el with this paper, other protocols [47–50] that combine the
wo cryptographic primitives in the design begin to emerge.
eroTrace [47] provides additional security against software side-
hannel attacks on SGX enclave, i.e., the oblivious position map
ccess using a novel assembly-level library in their proposed
RAM controller. Their contribution is stand alone and can be
omplementary to our work. Both Oblix [48] and ObliDB [49]
ealize the existence of access pattern leakage of the depth/size
f data structure applied in index search even with hardware
nclaves and further give more efficient solutions to this problem
han the naive worst-case padding. Pro-ORAM [50] improves the
ystem throughput by using multi-threading Melbourne Shuf-
le [51] with SGX enclaves while our work fully utilizes the
eatures of SQL queries.

. Conclusion

In this paper, we propose ProDB as a minimal adaptation
o a conventional database engine to practically improve the
utual trust between stakeholders in cloud databases. By lever-
ging hardware enclave, we propose SQL-aware Path ORAM (SaP
RAM) protocol to resolve access pattern attacks. It features
robabilistic lazy persistence and path sharing that exploit the
nique characteristics of database workloads. One key advantage
f ProDB is that it does not need extra resources from the enclave
nd can co-exist with other optimizations on the database engine.
s for future work, so far ProDB and SaP ORAM achieve high
fficiency but cannot perfectly support two key DBMS features,
amely the transaction management and concurrency processing.
e plan to address them and pave the way for ProDB to become
full-fledged memory-secure DBMS.

Z. Han and H. Hu Information Systems 96 (2021) 101681

D

c
t

A

d
G
1

R

Fig. 11. STPP running time.
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was supported by National Natural Science Foun-
ation of China (Grant No: U1636205, 61572413), the Research
rants Council, Hong Kong SAR, China (Grant No: 15238116,
5222118, 15218919, and C1008-16G).

eferences

[1] D.J. Abadi, Data management in the cloud: Limitations and opportunities,
IEEE Data Eng. Bull. 32 (1) (2009) 3–12.

[2] R. Prodan, S. Ostermann, A survey and taxonomy of infrastructure as a
service and web hosting cloud providers, in: Grid Computing, 2009 10th
IEEE/ACM International Conference on, IEEE, 2009, pp. 17–25.

[3] B.R. Kandukuri, A. Rakshit, et al., Cloud security issues, in: Services
Computing, 2009. SCC’09. IEEE International Conference on, IEEE, 2009,
pp. 517–520.

[4] F. Sabahi, Cloud computing security threats and responses, in: Commu-
nication Software and Networks (ICCSN), 2011 IEEE 3rd International
Conference on, IEEE, 2011, pp. 245–249.

[5] D. Perez-Botero, J. Szefer, R.B. Lee, Characterizing hypervisor vulnerabilities
in cloud computing servers, in: Proceedings of the 2013 International

Workshop on Security in Cloud Computing, ACM, 2013, pp. 3–10.

12
[6] N. Arya, M. Gidwani, S.K. Gupta, Hypervisor security-a major concern, Int.
J. Inf. Comput. Technol. 3 (6) (2013) 533–538.

[7] A. Arasu, K. Eguro, R. Kaushik, R. Ramamurthy., Querying encrypted data,
in: Proceedings of 2014 ACM SIGMOD Conference, 2014, pp. 1259–1261.

[8] M. Wernke, P. Skvortsov, F. Dürr, K. Rothermel, A classification of location
privacy attacks and approaches, Pers. Ubiquitous Comput. 18 (1) (2014)
163–175.

[9] M.S. Islam, M. Kuzu, M. Kantarcioglu, Inference attack against encrypted
range queries on outsourced databases, in: Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy, 2014, pp.
235–246.

[10] R. Ostrovsky, V. Shoup, Private information storage, in: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, ACM,
1997, pp. 294–303.

[11] C. Wang, N. Cao, K. Ren, W. Lou, Enabling secure and efficient ranked
keyword search over outsourced cloud data, IEEE Trans. Parallel Distrib.
Syst. 23 (8) (2012) 1467–1479.

[12] M.S. Islam, M. Kuzu, M. Kantarcioglu, Access pattern disclosure on search-
able encryption: ramification, attack and mitigation, in: Ndss, Vol. 20,
Citeseer, 2012, p. 12.

[13] tpc.org, Tpc benchmark h, http://www.tpc.org/tpch/.
[14] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, Private information re-

trieval, in: Foundations of Computer Science, 1995. Proceedings., 36th
Annual Symposium on, IEEE, 1995, pp. 41–50.

[15] O. Goldreich, Towards a theory of software protection and simulation by
oblivious rams, in: Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, ACM, 1987, pp. 182–194.

[16] R. Ostrovsky, Efficient computation on oblivious rams, in: Proceedings of
the Twenty-Second Annual ACM Symposium on Theory of Computing,
ACM, 1990, pp. 514–523.

[17] Intel, Intel(r) software guard extensions (intel(r) sgx),
http://software.intel.com/en-us/sgx.

http://refhub.elsevier.com/S0306-4379(20)30133-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb5
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb5
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb5
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb5
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb5
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb10
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb10
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb10
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb10
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb10
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb11
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb11
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb11
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb11
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb11
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb12
http://www.tpc.org/tpch/
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb15
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb15
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb15
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb15
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb15
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb16
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb16
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb16
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb16
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb16

Z. Han and H. Hu Information Systems 96 (2021) 101681

Z
E
i
a
d

D
i
P
i
p
p
r
o
M
p
i
B
R
o

[18] Intel.com, Intel(r) architecture instruction set extensions program-
ming reference, http://software.intel.com/sites/default/files/managed/48/
88/329298-002.pdf.

[19] ARM.com, ARM trustzone, https://www.arm.com/products/security-on-
arm/trustzone.

[20] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S. Devadas, Path
oram: an extremely simple oblivious ram protocol, in: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security,
ACM, 2013, pp. 299–310.

[21] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (3) (1965)
449–467.

[22] Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM
Comput. Surv. 18 (1) (1986) 23–38.

[23] V. Costan, S. Devadas, Intel sgx explained, IACR Cryptol. ePrint Arch. 2016
(2016) 86.

[24] J. Aumasson, L. Merino, Sgx secure enclaves in practice–security and crypto
review, in: Black Hat, 2016.

[25] E. Shi, T.-H.H. Chan, E. Stefanov, M. Li, Oblivious ram with o ((logn)
3) worst-case cost, in: International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Springer, 2011, pp.
197–214.

[26] E. Stefanov, E. Shi, D. Song, Towards practical oblivious ram, 2011, arXiv
preprint arXiv:1106.3652.

[27] S. Devadas, M. van Dijk, C.W. Fletcher, L. Ren, E. Shi, D. Wichs, Onion oram:
A constant bandwidth blowup oblivious ram, in: Theory of Cryptography
Conference, Springer, 2016, pp. 145–174.

[28] C.W. Fletcher, M. Naveed, L. Ren, E. Shi, E. Stefanov, Bucket oram: Single
online roundtrip, constant bandwidth oblivious ram, IACR Cryptol. ePrint
Arch. 2015 (2015) 1065.

[29] X. Wang, H. Chan, E. Shi, Circuit oram: On tightness of the goldreich-
ostrovsky lower bound, in: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2015, pp.
850–861.

[30] T. Moataz, T. Mayberry, E.-O. Blass, Constant communication oram with
small blocksize, in: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2015, pp. 862–873.

[31] Intel Corporation, Kvm sgx, 2017, https://github.com/intel/kvm-sgx.
[32] M. Stern, J. Beck, B.P. Woolf, Naive Bayes Classifiers for User Modeling,

Center for Knowledge Communication, Computer Science Department,
University of Massachusetts, 1999.

[33] S.A. Pattekari, A. Parveen, Prediction system for heart disease using Naïve
bayes, Int. J. Adv. Comput. Math. Sci. 3 (3) (2012) 290–294.

[34] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, R. Tamassia, Privacy-
preserving group data access via stateless oblivious ram simulation,
in: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2012, pp. 157–167.

[35] T. Mayberry, E.-O. Blass, A.H. Chan, Efficient private file retrieval by
combining oram and pir, in: NDSS, Citeseer, 2014.

[36] L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, S. Devadas,
Ring oram: Closing the gap between small and large client storage
oblivious ram., IACR Cryptol. ePrint Arch. 2014 (2014) 997.

[37] L. Ren, C.W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, S. Devadas,
Constants count: Practical improvements to oblivious ram., in: USENIX
Security Symposium, 2015, pp. 415–430.

[38] X. Yu, S.K. Haider, L. Ren, C. Fletcher, A. Kwon, M. van Dijk, S. Devadas,
Proram: dynamic prefetcher for oblivious ram, in: 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), IEEE,
2015, pp. 616–628.
13
[39] S. Bajaj, R. Sion, Trusteddb: A trusted hardware-based database with
privacy and data confidentiality, IEEE Trans. Knowl. Data Eng. 26 (3) (2014)
752–765.

[40] IBM, Ibm 4758 pci cryptographic coprocessor general information manual,
ftp://www6.software.ibm.com/software/cryptocards/4758gi.pdf.

[41] Y. Wang, L. Liu, C. Su, J. Ma, L. Wang, Y. Yang, Y. Shen, G. Li, T. Zhang,
X. Dong, Cryptsqlite: Protecting data confidentiality of sqlite with intel
sgx, in: Networking and Network Applications (NaNA), 2017 International
Conference on, IEEE, 2017, pp. 303–308.

[42] S. Eskandarian, M. Zaharia, An oblivious general-purpose SQL database for
the cloud, 2017, CoRR abs/1710.00458.

[43] A. Gribov, D. Vinayagamurthy, S. Gorbunov, Stealthdb: a scalable encrypted
database with full sql query support, 2017, arXiv preprint arXiv:1711.
02279.

[44] C. Priebe, K. Vaswani, M. Costa, EnclaveDB: A secure database using sgx,
in: EnclaveDB: A Secure Database using SGX, IEEE, p. 0.

[45] A. Ahmad, K. Kim, M.I. Sarfaraz, B. Lee, Obliviate: A data oblivious file
system for intel sgx, in: 25th Annual Network and Distributed System
Security Symposium, NDSS, 2018.

[46] H. Brekalo, R. Strackx, F. Piessens, Mitigating password database breaches
with intel sgx, in: SysTEX@ Middleware, 2016, p. 1.

[47] S. Sasy, S. Gorbunov, C.W. Fletcher, Zerotrace: Oblivious memory primitives
from intel sgx., IACR Cryptol. ePrint Arch. 2017 (2017) 549.

[48] P. Mishra, R. Poddar, J. Chen, A. Chiesa, R.A. Popa, Oblix: An efficient
oblivious search index, in: 2018 IEEE Symposium on Security and Privacy
(SP), IEEE, 2018, pp. 279–296.

[49] S. Eskandarian, M. Zaharia, Oblidb: Oblivious query processing using
hardware enclaves, 2017, arXiv preprint arXiv:1710.00458.

[50] S. Tople, Y. Jia, P. Saxena, Pro-oram: Practical read-only oblivious {RAM},
in: 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019), 2019, pp. 197–211.

[51] O. Ohrimenko, M.T. Goodrich, R. Tamassia, E. Upfal, The melbourne shuffle:
Improving oblivious storage in the cloud, in: International Colloquium on
Automata, Languages, and Programming, Springer, 2014, pp. 556–567.

iyang Han is a Ph.D. student in the Department of Electronic and Information
ngineering, Hong Kong Polytechnic University. His current research work
nclude privacy-aware computing, information hiding, hardware-based security
nd security issues on databases. He has engaged in security component
evelopment of many widely used applications.

r. Haibo Hu is an associate professor and the deputy program leader (INS)
n the Department of Electronic and Information Engineering, Hong Kong
olytechnic University. His research interests include cybersecurity, data privacy,
nternet of things, and machine learning. He has published over 80 research
apers in refereed journals, international conferences, and book chapters. As
rincipal investigator, he has received over 10 million HK dollars of external
esearch grants from Hong Kong and mainland China. He has served in the
rganizing committee of many international conferences, such as ACM GIS 2020,
DM 2019, DASFAA 2011, DaMEN 2011, 2013 and CloudDB 2011, and in the
rogram committee of dozens of international conferences and symposiums. He
s the recipient of a number of titles and awards, including IEEE MDM 2019
est Paper Award, WAIM Distinguished Young Lecturer, VLDB Distinguished
eviewer, ACM-HK Best Ph.D. Paper, Microsoft Imagine Cup, and GS1 Internet
f Things Award.

http://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb20
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb21
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb21
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb21
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb24
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb24
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb24
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb25
http://arxiv.org/abs/1106.3652
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb27
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb27
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb27
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb27
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb27
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb28
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb28
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb28
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb28
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb28
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb30
https://github.com/intel/kvm-sgx
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb38
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb39
http://www6.software.ibm.com/software/cryptocards/4758gi.pdf
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb41
http://arxiv.org/abs/1710.00458
http://arxiv.org/abs/1711.02279
http://arxiv.org/abs/1711.02279
http://arxiv.org/abs/1711.02279
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb48
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb48
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb48
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb48
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb48
http://arxiv.org/abs/1710.00458
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb50
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb50
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb50
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb50
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb50
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30133-2/sb51

	ProDB: A memory-secure database using hardware enclave and practical oblivious RAM
	Introduction
	Preliminaries
	Hardware-based trust computing
	Oblivious RAM

	ProDB architecture
	Overview
	Security model
	System model
	Performance metric

	A two-tier design
	ProDB core
	ProDB shield

	Overall ProDB work-flow
	Limitations of ProDB

	SaP ORAM
	Probabilistic lazy persistence
	SQL-aware path sharing

	Security analysis
	Security of path sharing
	Inter-table security

	Experimental results
	Effectiveness of SaP ORAM for memory access pattern hiding
	SaP ORAM performance
	ProDB performance under TPC-H workload
	Path sharing
	Probabilistic lazy persistence

	Suboptimal table pairing plan

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

