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Abstract Kurdyka- Lojasiewicz (KL) exponent plays an important role in
estimating the convergence rate of many contemporary first-order methods. In
particular, a KL exponent of 1

2 for a suitable potential function is related to
local linear convergence. Nevertheless, KL exponent is in general extremely hard
to estimate. In this paper, we show under mild assumptions that KL exponent
is preserved via inf-projection. Inf-projection is a fundamental operation that is
ubiquitous when reformulating optimization problems via the lift-and-project
approach. By studying its operation on KL exponent, we show that the KL
exponent is 1

2 for several important convex optimization models, including
some semidefinite-programming-representable functions and some functions
that involve C2-cone reducible structures, under conditions such as strict
complementarity. Our results are applicable to concrete optimization models
such as group fused Lasso and overlapping group Lasso. In addition, for
nonconvex models, we show that the KL exponent of many difference-of-convex
functions can be derived from that of their natural majorant functions, and
the KL exponent of the Bregman envelope of a function is the same as that
of the function itself. Finally, we estimate the KL exponent of the sum of the
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1 Introduction

Many problems in machine learning, signal processing and data analysis involve
large-scale nonsmooth nonconvex optimization problems. These problems are
typically solved using first-order methods, which are noted for their scalability
and ease of implementation. Commonly used first-order methods include the
proximal gradient method and its variants, and splitting methods such as
Douglas-Rachford splitting method and its variants; see the recent exposi-
tions [17,42] and references therein for more detail. In the general nonconvex
nonsmooth setting, convergence properties of the sequences generated by these
algorithms are typically analyzed by assuming a certain potential function to
have the so-called Kurdyka- Lojasiewicz (KL) property.

The KL property originates from the seminal  Lojasiewicz inequality that
bounds the function value deviation of a real-analytic function in terms of its
gradient; see [38]. This inequality was extended to the case of C1 subanalytic
functions by Kurdyka in [31] using the notion of desingularizing function. An
important breakthrough was made in [12,13], where the  Lojasiewicz inequality
was further generalized to nonsmooth cases by using tools of modern variational
analysis and semialgebraic geometry. This generalization significantly broadened
the applicability of the aforementioned KL inequality to nonconvex settings,
and it allowed us to perform convergence rate analysis for various important
algorithms in nonsmooth optimization and subgradient dynamical systems.

The KL property1 is satisfied by a large class of functions such as proper
closed semi-algebraic functions; see, for example, [5]. It has been the main
workhorse for establishing convergence of sequences generated by various first-
order methods, especially in nonconvex settings [4–6,15]. Moreover, when it
comes to estimating local convergence rate, the so-called KL exponent plays a
key role; see, for example, [4, Theorem 2], [27, Theorem 3.4] and [33, Theorem 3].
Roughly speaking, an exponent of α ∈ (0, 1

2 ] of a suitable potential function
corresponds to a linear convergence rate, while an exponent of α ∈ ( 1

2 , 1)
corresponds to a sublinear convergence rate. However, as noted in [40, Page 63,
Section 2.1], explicit estimation of KL exponent for a given function is difficult
in general. Nevertheless, due to its significance in convergence rate analysis, KL
exponent computation has become an important research topic in recent years
and some positive results have been obtained. For instance, we now know the
KL exponent of the maximum of finitely many polynomials [32, Theorem 3.3]

1 See Definition 2.1 for the precise definition.
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and the KL exponent of a class of quadratic optimization problems with matrix
variables satisfying orthogonality constraints [37]. In addition, it has been shown
that the KL exponent is closely related to several existing and widely-studied
error bound concepts such as the Hölder growth condition and the first-order
error bound mentioned in [14,41,53];2 see for example, [14, Theorem 5], [22,
Theorem 3.7], [22, Proposition 3.8], [23, Corollary 3.6] and [34, Theorem 4.1].
Taking advantage of these connections, we now also know that convex models
that satisfy the second-order growth condition have KL exponent 1

2 , so do
models that satisfy the first-order error bound condition together with a mild
assumption on the separation of stationary values; see the recent work [18,34,60]
for concrete examples. This sets the stage for developing calculus rules for
KL exponent in [34] to deduce the KL exponent of a function from functions
with known KL exponents. For example, it was shown in [34, Corollary 3.1]
that under mild conditions, if fi is a KL function with exponent αi ∈ [0, 1),
1 ≤ i ≤ m, then the KL exponent of min1≤i≤m fi is given by max1≤i≤m αi.
This was then used in [34, Section 5.2] for showing that the least squares loss
with smoothly clipped absolute deviation (SCAD) [25] or minimax concave
penalty (MCP) regularization [59] has KL exponent 1

2 .

In this paper, we will further explore this line of research and study how
KL exponent behaves under the inf-projection operation: this is a significant
generalization of the operation of taking the minimum of finitely many functions.
Precisely, let X and Y be two finite dimensional Hilbert spaces and let F :
X× Y→ R ∪ {∞} be a proper closed function,3 we call the function f(x) :=
infy∈Y F (x, y) for x ∈ X an inf-projection of F . The name comes from the
fact that the strict epigraph of f , defined as {(x, r) ∈ X × R : f(x) < r},
is equal to the projection of the strict epigraph of F onto X × R. Functions
represented in terms of inf-projections arise naturally in sensitivity analysis as
value functions; see, for example, [16, Chapter 3.2]. Inf-projection also appears
when representing functions as optimal values of linear programming problems,
or more generally, semidefinite programming (SDP) problems; see [29] for
semidefinite-programming-representable (SDP-representable) functions. It is
known that inf-projection preserves nice properties of F such as convexity [46,
Proposition 2.22(a)]. In this paper, we show that, under mild assumptions,
the KL exponent is also preserved under inf-projection. Based on this result
and the ubiquity of inf-projection, we are then able to study KL exponents
of various important convex and nonconvex models that were out of reach in
previous studies. These include convex models such as a large class of SDP-
representable functions, and some functions with C2-cone reducible structures,
as well as nonconvex models such as difference-of-convex functions and Bregman
envelopes. These models are discussed in details in Section 3.1 with the general
strategy for deducing their KL exponents outlined.

2 This type of first-order error bound is sometimes called the Luo-Tseng error bound;
see [34,58].

3 We refer the readers to Section 2 for relevant definitions.
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The rest of the paper is organized as follows. We present necessary notation
and preliminary materials in Section 2. The KL exponent under inf-projection
is studied in Section 3, and we outline how the results can be applied to
deducing KL exponents of some optimization models in Section 3.1. Section 4
is devoted to deriving KL exponents for various structured convex models, and
in Section 5, we study KL exponents for several nonconvex models. Finally,
some concluding remarks are given in Section 6.

2 Notation and preliminaries

In this paper, we use X and Y to denote two finite dimensional Hilbert spaces.
We use 〈·, ·〉 to denote the inner product of the underlying Hilbert space and
use ‖ · ‖ to denote the associated norm. Moreover, for a linear map A : X→ Y,
we use A∗ to denote its adjoint. Next, we let R denote the set of real numbers
and let Rn denote the set of n-tuples of real numbers. We also let Rm×n denote
the set of all m× n matrices. The (trace) inner product of two matrices A and
B ∈ Rm×n is defined as 〈A,B〉 := tr(ATB), where tr denotes the trace of a
square matrix. The Fröbenius norm of a matrix A ∈ Rm×n is denoted by ‖A‖F ,
which is defined as ‖A‖F :=

√
tr(ATA). Finally, the space of n× n symmetric

matrices is denoted by Sn, the cone of n× n positive semidefinite matrices is
denoted by Sn+, and we write X � 0 (resp., X � 0) to mean X ∈ Sn+ (resp.,
X ∈ intSn+, where intSn+ is the interior of Sn+).

For a set D ⊆ X, we denote the distance from an x ∈ X to D as dist(x,D) :=
infy∈D ‖x − y‖. The closure (resp., interior) of D is denoted by clD (resp.,
intD), and we use B(x, r) to denote the closed ball centered at x ∈ X with
radius r > 0, i.e., B(x, r) := {u ∈ X : ‖u− x‖ ≤ r}. For a convex set C ⊆ X,
we denote its relative interior by riC, and use C◦ to denote its polar, which is
defined as

C◦ := {z ∈ X : 〈x, z〉 ≤ 1 for all x ∈ C}.
Finally, the indicator function of a nonempty set D ⊆ X is denoted by δD,
which equals zero in D and is infinity otherwise. We use σD to denote its
support function, which is defined as σD(x) := supz∈D〈x, z〉 for x ∈ X.

For a mapping Θ : X→ Y that is continuously differentiable on X, we use
DΘ(x) to denote the derivative mapping of Θ at x ∈ X: this is the linear map
defined by

[DΘ(x)]h := lim
t→0

Θ(x+ th)−Θ(x)

t
for all h ∈ X.

We denote the adjoint of the derivative mapping by ∇Θ(x). This latter mapping
is referred to as the gradient mapping of Θ at x. Then, following [47, Defi-
nition 3.1], we say that a closed set D ⊆ X is C2-cone reducible at w̄ ∈ D
if there exist a closed convex pointed cone K ⊆ Y, ρ > 0 and a mapping
Θ : X→ Y that maps w̄ to 0 and is twice continuously differentiable in B(w̄, ρ)
with DΘ(w̄) being onto, such that

D ∩B(w̄, ρ) = {w : Θ(w) ∈ K} ∩B(w̄, ρ).
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We say that the set D is C2-cone reducible if, for all w̄ ∈ D, D is C2-cone
reducible at w̄. It is known that convex polyhedral sets, the positive semidefinite
cone and the second-order cone are all C2-cone reducible; see, for example,
the discussion following [47, Definition 3.1]. Finally, following the discussion
right after [18, Definition 6], we say that an extended-real-valued function
is C2-cone reducible if its epigraph is a C2-cone reducible set, where the
epigraph of an extended-real-valued function f : X → [−∞,∞] is defined as
epi f := {(x, t) ∈ X× R : f(x) ≤ t}.

An extended-real-valued function f : X→ [−∞,∞] is said to be proper if
its domain dom f := {x ∈ X : f(x) <∞} 6= ∅ and it is never −∞. A proper
function is closed if it is lower semicontinuous. For a proper function f , its
regular subdifferential at x ∈ dom f is defined in [46, Definition 8.3] by

∂̂f(x) :=

{
ζ ∈ X : lim inf

z→x,z 6=x

f(z)− f(x)− 〈ζ, z − x〉
‖z − x‖

≥ 0

}
.

The subdifferential of f at x ∈ dom f (which is also called the limiting subdif-
ferential) is defined in [46, Definition 8.3] by

∂f(x) :=
{
ζ ∈ X : ∃xk f→ x, ζk → ζ with ζk ∈ ∂̂f(xk) for each k

}
;

here, xk
f→ x means both xk → x and f(xk) → f(x). Moreover, we set

∂f(x) = ∂̂f(x) = ∅ for x /∈ dom f by convention, and write dom ∂f := {x ∈
X : ∂f(x) 6= ∅}. It is known in [46, Exercise 8.8] that ∂f(x) = {∇f(x)}
if f is continuously differentiable at x. Moreover, when f is proper convex,
the limiting subdifferential reduces to the classical subdifferential in convex
analysis; see [46, Proposition 8.12]. Finally, for a nonempty closed set D, we
define its normal cone at an x ∈ D by ND(x) := ∂δD(x). If D is in addition
convex, we define its tangent cone at x ∈ D by TD(x) := [ND(x)]◦.

For a proper convex function f , its Fenchel conjugate is

f∗(u) := sup
x
{〈u, x〉 − f(x)} ;

moreover, it is known that the following equivalence holds (see [45, Theo-
rem 23.5]):

u ∈ ∂f(x) ⇐⇒ f(x) + f∗(u) = 〈x, u〉 ⇐⇒ f(x) + f∗(u) ≤ 〈x, u〉. (2.1)

For a proper closed convex function f , its asymptotic (or recession) function f∞

is defined by f∞(d) := lim inft→∞,d′→d
f(td′)
t ; see [7, Theorem 2.5.1]. Finally,

for a proper function f , we say that it is level-bounded if, for each α ∈ R, the
set {x : f(x) ≤ α} is bounded.

For a proper function F : X×Y→ R ∪ {∞}, following [46, definition 1.16],
we say that F is level-bounded in y locally uniformly in x if for each x̄ ∈ X
and α ∈ R there is a neighborhood V of x̄ such that the set {(x, y) ∈ X× Y :
x ∈ V and F (x, y) ≤ α} is bounded. When a function F is level-bounded in y
locally uniformly in x, its inf-projection f(x) := infy F (x, y) has the following
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properties, which can be found in [46]. We include the proof for the convenience
of the readers.

Lemma 2.1 Let F : X×Y→ R∪ {∞} be a proper closed function and define
f(x) := infy∈Y F (x, y) and Y (x) := Arg miny∈Y F (x, y) for x ∈ X. Suppose F
is level-bounded in y locally uniformly in x. Then the following statements hold:

(i) The function f is proper and closed, and the set Y (x) is nonempty and
compact for any x ∈ dom ∂f .

(ii) For any x ∈ dom ∂f , it holds that

∂f(x) ⊆
⋃

y∈Y (x)

{ξ ∈ X : (ξ, 0) ∈ ∂F (x, y)}. (2.2)

(iii) For any x̄ ∈ dom ∂f , it holds that

lim sup

dom ∂f3x f→x̄

Y (x) ⊆ Y (x̄); (2.3)

(iv) For any x̄ ∈ dom ∂f and any ν > 0, there exists ε > 0 such that

dist(y, Y (x̄)) ≤ ν

2

whenever y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and |f(x)− f(x̄)| < ε.

Proof Since F is proper, closed and level-bounded in y locally uniformly in x,
we have from [46, Theorem 1.17] that f is proper and closed, and Y (x) is a
nonempty compact set whenever x ∈ dom ∂f . Applying [46, Theorem 10.13],
we conclude that (2.2) holds for any x ∈ dom ∂f .

We now prove (iii) and (iv) respectively. For (iii), fix any x̄ ∈ dom ∂f and
any y∗ satisfying y∗ ∈ lim sup

dom ∂f3x f→x̄
Y (x) and recall from [46, Section 5B]

that lim sup
dom ∂f3x f→x̄

Y (x) is defined as

{
y : ∃xk f→ x̄, yk → y with yk ∈ Y (xk) and xk ∈ dom ∂f for each k

}
.

So, there exist xk
f→ x̄ with xk ∈ dom ∂f and yk → y∗ such that yk ∈ Y (xk)

for all k. Then we have

F (x̄, y∗)
(a)

≤ lim inf
k

F (xk, yk)
(b)
= lim inf

k
f(xk)

(c)
= f(x̄),

where (a) is due to the closedness of F , (b) holds because yk ∈ Y (xk), and (c)

holds because xk
f→ x̄. The above relation implies that y∗ ∈ Y (x̄). This proves

(2.3).
Finally, for (iv), fix any x̄ ∈ dom ∂f and any ν > 0. Since F is level-bounded

in y locally uniformly in x, there exist ε̃ > 0 and a bounded set D so that
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whenever x ∈ B(x̄, ε̃) ∩ dom ∂f , we have {y : F (x, y) ≤ f(x̄) + 1} ⊆ D. Thus,
for any x satisfying x ∈ B(x̄, ε̃) ∩ dom ∂f and f(x) < f(x̄) + 1, we obtain

Y (x) = {y : F (x, y) ≤ f(x)} ⊆ {y : F (x, y) ≤ f(x̄) + 1} ⊆ D. (2.4)

Since (2.3) holds, by picking η > 0 so that D ⊆ B(0, η) and following the proof
of [46, Proposition 5.12(a)], we see that for this η, there exists ε ∈ (0,min{ε̃, 1})
such that

Y (x) = Y (x) ∩D ⊆ Y (x) ∩B(0, η) ⊆ Y (x̄) +B(0, ν/2),

whenever x ∈ B(x̄, ε) ∩ dom ∂f and |f(x)− f(x̄)| < ε, where the first equality
follows from (2.4) and the facts that ε < ε̃ and ε < 1. This further implies that

dist(y, Y (x̄)) ≤ ν

2
.

for any y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and |f(x)− f(x̄)| < ε. ut

We next recall the Kurdyka- Lojasiewicz (KL) property and the notion of
KL exponent; see [4–6,31,34,38]. This property has been used extensively in
analyzing convergence of first-order methods; see, for example, [4–6,15,56].

Definition 2.1 (Kurdyka- Lojasiewicz property and exponent) We say
that a proper closed function h : X→ R∪{∞} satisfies the Kurdyka- Lojasiewicz
(KL) property at x̂ ∈ dom ∂h if there are a ∈ (0,∞], a neighborhood V of x̂
and a continuous concave function ϕ : [0, a)→ [0,∞) with ϕ(0) = 0 such that

(i) ϕ is continuously differentiable on (0, a) with ϕ′ > 0 on (0, a);
(ii) For any x ∈ V with h(x̂) < h(x) < h(x̂) + a, it holds that

ϕ′(h(x)− h(x̂))dist(0, ∂h(x)) ≥ 1. (2.5)

If h satisfies the KL property at x̂ ∈ dom ∂h and the ϕ(s) in (2.5) can be
chosen as c̄ s1−α for some c̄ > 0 and α ∈ [0, 1), then we say that h satisfies the
KL property at x̂ with exponent α.

A proper closed function h satisfying the KL property at every point in
dom ∂h is said to be a KL function, and a proper closed function h satisfying
the KL property with exponent α ∈ [0, 1) at every point in dom ∂h is said to
be a KL function with exponent α.

KL functions is a broad class of functions which arise naturally in many
applications. For instance, it is known that proper closed semi-algebraic func-
tions are KL functions with exponent α ∈ [0, 1); see, for example, [5]. KL
property is a key ingredient in many contemporary convergence analysis for
first-order methods, and the KL exponent plays an important role in identify-
ing local convergence rate; see, for example, [4, Theorem 2], [27, Theorem 3.4]
and [33, Theorem 3]. In this paper, we will study how the KL exponent behaves
under inf-projection, and use the rules developed to compute the KL exponents
of various functions and to derive new calculus rules for KL exponent.

Before ending this section, we present two auxiliary lemmas. The first lemma
concerns the uniformized KL property. It is a specialization of [15, Lemma 6]
and explicitly involves the KL exponent.
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Lemma 2.2 (Uniformized KL property with exponent) Suppose that
h : X→ R∪ {∞} is a proper closed function and let Ω be a nonempty compact
set with Ω ⊆ dom ∂h. If h takes a constant value on Ω and satisfies the KL
property at each point of Ω with exponent α, then there exist ε, a, c > 0 such
that

dist (0, ∂h(x)) ≥ c (h(x)− h(x̄))
α

for any x̄ ∈ Ω and any x satisfying h(x̄) < h(x) < h(x̄) + a and dist(x,Ω) < ε.

Proof Replace the ϕi(t) in the proof of [15, Lemma 6] by cit
1−α for some ci > 0.

The desired conclusion can then be proved analogously as in [15, Lemma 6]. ut

The next lemma is a direct consequence of results in [50]; see [50, Theo-
rem 3.3] and the discussion following [50, Eq. (1.4)] concerning the degree of
singularity for semidefinite feasibility system.

Lemma 2.3 (Error bound for standard SDP problems under strict
complementarity) Let C ∈ Sd, A : Sd → Rm be a linear map, b ∈ Range (A)
and define the function G : Sd → R ∪ {∞} by

G(X) := 〈C,X〉+ δL(X),

where L = A−1{b} ∩ Sd+. Suppose that A−1{b} ∩ intSd+ 6= ∅ and there exists
X̄ ∈ L satisfying 0 ∈ ri ∂G(X̄). Then for any bounded neighborhood U of X̄,
there exists c > 0 such that for any X ∈ U ∩ L,

dist(X,Arg minG) ≤ c
(
G(X)−G(X̄)

) 1
2 .

Proof Observe that

0 ∈ ri ∂G(X̄)
(a)
= C + riNL(X̄)

(b)
= C + ri

(
NA−1{b}(X̄) +NSd+(X̄)

)
(c)
= C + riNA−1{b}(X̄) + riNSd+(X̄),

(2.6)

where (a) follows from [46, Exercise 8.8], (b) follows from [45, Theorem 23.8] and
the assumption A−1{b} ∩ intSd+ 6= ∅, and (c) follows from [45, Corollary 6.6.2].
Since NA−1{b}(X̄) = Range (A∗), we deduce further from (2.6) the existence
of ȳ satisfying

A∗ȳ − C ∈ riNSd+(X̄). (2.7)

Next, since 0 ∈ ∂G(X̄), we have that X̄ ∈ Arg minG and thus

Arg minG = {W : AW = b} ∩ {W : 〈C,W 〉 = inf G} ∩ Sd+ 6= ∅.

This together with (2.7) implies that the singularity degree of the semidef-
inite feasibility system

(
{W : AW = b} ∩ {W : 〈C,W 〉 = inf G} ,Sd+

)
is one.
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Combining this with [24, Theorem 2.3], we conclude that for any bounded
neighborhood U of X̄, there exists c1 > 0 such that for any X ∈ U ∩ L,

dist(X,Arg minG) ≤ c1
√

dist (X, {W : AW = b} ∩ {W : 〈C,W 〉 = inf G })

≤ c (〈C,X〉 − inf G)
1
2 = c

(
G(X)−G(X̄)

) 1
2 ,

where the second inequality holds for some c > 0 thanks to the Hoffman error
bound [26, Lemma 3.2.3]. This completes the proof. ut

Remark 2.1 In the above lemma, the Slater’s condition A−1{b} ∩ intSd+ 6= ∅
together with the relative interior (ri) condition 0 ∈ ri ∂G(X̄) implies that (2.7)
holds. The condition (2.7) is widely used in the SDP literature and is often
referred to as the strict complementarity condition; see [43, 48, 52] for detailed
discussions. In particular, it is known that if strict complementarity condition
(2.7) holds , then the singular degree of the associated semidefinite feasibility
system is one (see [39, Proposition 7] or the discussion following [50, Eq. (1.4)]).

As we shall see in Section 4, this strict complementarity condition is crucial
for deriving a KL exponent of 1

2 for some SDP representable functions.

3 KL exponent via inf-projection

In this section, we study how the KL exponent behaves under inf-projection.
Specifically, given a proper closed function F : X× Y→ R ∪ {∞} with known
KL exponent, we would like to deduce the KL exponent of infy∈Y F (·, y) under
suitable assumptions.

Theorem 3.1 (KL exponent via inf-projection) Let F : X×Y→ R∪{∞}
be a proper closed function and define f(x) := infy∈Y F (x, y) and Y (x) :=
Arg miny∈Y F (x, y) for x ∈ X. Suppose that the function F is level-bounded in
y locally uniformly in x. Let α ∈ [0, 1) and x̄ ∈ dom ∂f .4 Suppose in addition
the following conditions hold:

(i) It holds that ∂F (x̄, ȳ) 6= ∅ for all ȳ ∈ Y (x̄).
(ii) The function F satisfies the KL property with exponent α at every point

in {x̄} × Y (x̄).

Then f satisfies the KL property at x̄ with exponent α.

Proof Using the nonemptiness and compactness of Y (x̄) given by Lemma 2.1(i),
and the facts that F (x, y) ≡ f(x̄) on Ω := {x̄}×Y (x̄)⊆ dom ∂F and F satisfies
the KL property with exponent α at every point in Ω, we deduce from Lemma
2.2 that there exist ν, a, c > 0 such that

dist (0, ∂F (x, y)) ≥ c (F (x, y)− f(x̄))
α

(3.1)

4 Here, f is a proper closed function, thanks to Lemma 2.1(i).
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for any (x, y) satisfying

f(x̄) < F (x, y) < f(x̄) + a and dist((x, y), Ω) < ν. (3.2)

By decreasing a if necessary, without loss of generality, we may assume a ∈
(0, 1).

Next, using Lemma 2.1(iv), we see that there exists ε ∈ (0,min{ν/2, a})
such that

dist(y, Y (x̄)) ≤ ν

2

whenever y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and f(x̄) < f(x) < f(x̄) + ε.
Hence, for any x ∈ B(x̄, ε) ∩ dom ∂f with f(x̄) < f(x) < f(x̄) + ε and any
y ∈ Y (x), we have

dist((x, y), Ω) ≤ ‖x− x̄‖+ dist(y, Y (x̄)) ≤ ε+
ν

2
< ν,

where the last inequality follows from the choice of ε. The above relation
together with the fact that ε < a shows that the relation (3.2) holds for any
such x and any y ∈ Y (x). Thus, using (3.1) we conclude that for any such x
and any y ∈ Y (x),

dist(0, ∂f(x)) = dist

(
0,

[
∂f(x)

0

])
≥ inf
y∈Y (x)

dist (0, ∂F (x, y))

≥ inf
y∈Y (x)

c (F (x, y)− f(x̄))
α

= c (f(x)− f(x̄))
α
,

where the first inequality follows from (2.2) and the last equality follows from
the definition of Y (x). This completes the proof. ut

Theorem 3.1 can be viewed as a generalization of [34, Theorem 3.1], which
studies the KL exponent of the minimum of finitely many proper closed
functions with known KL exponents. Indeed, let fi, 1 ≤ i ≤ m, be proper
closed functions. If we let Y = R and define F : X× R→ R ∪ {∞} by

F (x, y) =

{
fy(x) if y = 1, 2, . . . ,m,

∞ otherwise,
(3.3)

then it is not hard to see that this F is a proper closed function, and
infy∈R F (x, y) = min1≤i≤m fi(x) for all x ∈ X. Moreover, one can check directly
from the definition that

∂F (x, y) =

{
∂fy(x)× R if y = 1, 2, . . . ,m,

∅ otherwise.
(3.4)

Thus, we have the following immediate corollary of Theorem 3.1, which is a
slight generalization of [34, Theorem 3.1] by dropping the continuity assumption
on min1≤i≤m fi.
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Corollary 3.1 (KL exponent for minimum of finitely many functions)
Let fi, 1 ≤ i ≤ m, be proper closed functions, and define f := min1≤i≤m fi.
Let x̄ ∈ dom ∂f ∩

⋂
i∈I(x̄) dom ∂fi, where I(x̄) := {i : fi(x̄) = f(x̄)}. Suppose

that for each i ∈ I(x̄), the function fi satisfies the KL property at x̄ with
exponent αi ∈ [0, 1). Then f satisfies the KL property at x̄ with exponent
α = max{αi : i ∈ I(x̄)}.

Proof Define F as in (3.3). Then F is proper and closed, and f(x) = infy∈R F (x, y).
Moreover, I(x) = Y (x) := Arg miny∈R F (x, y). It is clear that this F is level-
bounded in y locally uniformly in x. Moreover, in view of (3.4) and the
assumption that x̄ ∈

⋂
i∈I(x̄) dom ∂fi, we see that ∂F (x̄, ȳ) 6= ∅ whenever

ȳ ∈ Y (x̄). Finally, it is routine to show that F satisfies the KL property with
exponent αi at (x̄, i) for i ∈ I(x̄). Thus, F satisfies the KL property with
exponent α = max{αi : i ∈ I(x̄)} on {x̄} × I(x̄). The desired conclusion now
follows from Theorem 3.1. ut

The next corollary can be proved similarly as [34, Corollary 3.1] by using
Corollary 3.1 in place of [34, Theorem 3.1].

Corollary 3.2 Let fi, 1 ≤ i ≤ m, be proper closed functions with dom fi =
dom ∂fi for all i, and define f := min1≤i≤m fi. Suppose that for each i, the
function fi is a KL function with exponent αi ∈ [0, 1). Then f is a KL function
with exponent α = max{αi : 1 ≤ i ≤ m}.

Finally, we show in the next corollary that one can relax some conditions
of Theorem 3.1 when F is in addition convex.

Corollary 3.3 (KL exponent via inf-projections under convexity) Let
F : X× Y→ R ∪ {∞} be a proper closed convex function and define f(x) :=
infy∈Y F (x, y) and Y (x) := Arg miny∈Y F (x, y) for x ∈ X. Suppose there exists
ū such that f(ū) ∈ R and Y (ū) is nonempty and compact. Then the following
statements hold:

(i) The function f is proper and closed, and Y (x) is nonempty and compact
for any x ∈ dom ∂f .

(ii) It holds that ∂F (x, y) 6= ∅ for all x ∈ dom ∂f and y ∈ Y (x).
(iii) If x̄ ∈ dom ∂f , α ∈ [0, 1) and the function F satisfies the KL property

with exponent α at every point in {x̄} × Y (x̄), then f satisfies the KL
property at x̄ with exponent α.

Proof For (i), we first show that F is level-bounded in y locally uniformly
in x. Suppose to the contrary that there exist x0 ∈ X and β ∈ R so that
C := {(x, y) : x ∈ B(x0, 1) and F (x, y) ≤ β} is unbounded. Then there exists
{(xk, yk)} ⊂ C with ‖yk‖ → ∞. By passing to a subsequence if necessary, we

may assume limk→∞
yk

‖yk‖ = d for some d with ‖d‖ = 1. Since F (xk, yk) ≤ β

and {xk} ⊂ B(x0, 1) is bounded, we have

F∞(0, d) ≤ lim inf
k→∞

F (xk, yk)

‖(xk, yk)‖
≤ lim inf

k→∞

β

‖(xk, yk)‖
= 0,
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where F∞ is the asymptotic function of F and the first inequality follows from [7,
Theorem 2.5.1]. This together with the convexity of F and [7, Proposition 2.5.2]
shows that

F (x, y + td) ≤ F (x, y) for all t > 0 and for all (x, y) ∈ domF.

Since Y (ū) 6= ∅ and f(ū) ∈ R, we have {ū} × Y (ū) ⊆ domF . Hence, we can
take v̄ ∈ Y (ū) and set x = ū and y = v̄ in the above display to conclude that
F (ū, v̄+ td) ≤ F (ū, v̄) for all t > 0. This further implies that v̄+ td ∈ Y (ū) for
all t > 0, which contradicts the compactness of Y (ū). Thus, for any x0 ∈ X
and β ∈ R, the set {(x, y) : x ∈ B(x0, 1) and F (x, y) ≤ β} is bounded. Using
Lemma 2.1(i), we see that (i) holds.

Next, we prove (ii). To this end, fix any u ∈ dom ∂f and v ∈ Y (u). Note
that the function f is convex as inf-projection of the convex function F ; see [46,
Proposition 2.22(a)]. Now, for the proper convex function f , we have from
the definition that f∗(w) = supx{〈w, x〉 − f(x)} = supx,y{〈w, x〉 − F (x, y)} =
F ∗(w, 0) for any w ∈ X. Taking a w̄ ∈ ∂f(u) and using (2.1), we see further
that for any v ∈ Y (u),

F (u, v) + F ∗(w̄, 0) = f(u) + f∗(w̄) = 〈u, w̄〉,

where the equality F (u, v) = f(u) holds because v ∈ Y (u). In view of (2.1),
the above relation further implies that (w̄, 0) ∈ ∂F (u, v). This proves (ii).

Now, suppose in addition that x̄ ∈ dom ∂f , α ∈ [0, 1) and the function F
satisfies the KL property with exponent α at every point in {x̄}× Y (x̄). Recall
that we have shown that F is level-bounded in y locally uniformly in x in
the proof of item (i) and we have {x̄} × Y (x̄) ⊆ dom ∂F from item (ii). The
conclusion (iii) now follows by applying Theorem 3.1. ut

Remark 3.1 In addition to the inf-projection, another closely related operation,
which appears frequently in optimization, would be taking the supremum over
a family of functions. However, we would like to point out that, as opposed to
the inf-projection, the supremum operation may not preserve KL exponents.
For example, consider F : R2 → R defined by F = max{f1, f2} with f1(x) = x2

1

and f2(x) = (x1 + 1)2 + x2
2 − 1. Clearly, f1 and f2 are both quadratic and are

KL functions with exponent 1
2 . On the other hand, it was shown in [30, Page

1617] that F has an optimal solution at (0, 0) and the KL exponent of F at
(0, 0) is 3

4 and cannot be 1
2 . It would be of interest to see, under what additional

conditions, the supremum operation can preserve the KL exponents. This could
be one interesting future research direction.

3.1 Optimization models that can be written as inf-projections

Inf-projection is ubiquitous in optimization. In this section, we present some
commonly encountered models that can be written as inf-projections. This in-
cludes a large class of semidefinite-programming-representable (SDP-representable)
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functions, rank constrained least squares problems, and Bregman envelopes.
These are important convex and nonconvex models whose explicit KL expo-
nents were out of reach in previous studies. In Sections 4 and 5, we will study
their KL exponents based on their inf-projection representations, Theorem 3.1
and Corollary 3.3.

3.1.1 Convex models that can be written as inf-projections

(i) SDP-representable functions Following [29, Eq. (1.3)], we say that a
function f : Rn → R ∪ {∞}, is semidefinite-programming-representable
(SDP-representable) if its epigraph can be expressed as the feasible region
of some SDP problems, i.e., epi f equals(x, t) ∈ Rn×R : ∃u ∈ RN s.t. A00+A0t+

n∑
i=1

Aixi+

N∑
j=1

Bjuj � 0

 (3.5)

for some {A00, A0, A1, . . . , An, B1, . . . , BN} ⊂ Sd, d ≥ 1 and N ≥ 1. These
functions arise in various applications and include important examples
such as least squares loss functions, `1 norm, and nuclear norm, etc; see,
for example, [11, Section 4.2] for more discussions. Using the symmetric
matrices in (3.5), we define a linear map A : Sd → Rn+N+1 as

A(W ) := [〈A1,W 〉 · · · 〈An,W 〉 〈B1,W 〉 · · · 〈BN ,W 〉 〈A0,W 〉]T . (3.6)

Then it is routine to show that A∗ : Rn+N+1 → Sd is given by A∗(x, u, t) =

A0t+
∑n
i=1Aixi+

∑N
j=1Bjuj for (x, u, t) ∈ Rn×RN ×R. Now, if we define

F (x, u, t) := t+ δD(x, u, t)

with D = {(x, u, t) : A00 +A∗(x, u, t) � 0} ,
(3.7)

then it holds that f(x) = infu,t F (x, u, t) for all x ∈ Rn. We will show in
Theorem 4.1 (using Corollary 3.3) that a proper closed SDP-representable
function has KL property with exponent 1

2 at points satisfying suitable
assumptions on the SDP representation of F in (3.7).

(ii) Sum of LMI-representable functions We say that a function h : Rn →
R ∪ {∞}, is LMI-representable (see [29, Eq. (1.1)]) if there exist symmetric
matrices A00, Aj , j = 0, . . . , n, such that

epih =

(x, t) ∈ Rn × R : A00 +

n∑
j=1

Ajxj +A0t � 0

 .

It is clear that LMI-representable functions form a special class of SDP-
representable functions. Many commonly used functions are LMI-representable
such as the least squares loss function, the `1, `2, `∞ norm functions, the
indicator functions of their corresponding norm balls, and the indicator
function of the matrix operator norm ball, etc.
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Let f =
∑m
i=1 fi be the sum of m proper closed LMI-representable functions.

In Theorem 4.2, we show that f has KL property with exponent 1
2 at points

under suitable assumptions. Different from Theorem 4.1, which imposes
the “strict complementarity condition” on the corresponding F in (3.7),
Theorem 4.2 directly imposes such kind of condition on the original function
f . Explicit optimization models which can be written as sum of LMI-
representable functions include (non-overlapping) group Lasso and group
fused Lasso, and are discussed in Example 4.1.

(iii) Sum of LMI-representable functions and the nuclear norm The
nuclear norm has been used for inducing low rank of solutions in various
applications; see, for example, [44] for more discussions. Noticing that the
nuclear norm is a special SDP-representable function, we further consider
the sum of LMI-representable functions and the nuclear norm:

f(X) :=

p∑
k=1

fk(X) + ‖X‖∗, (3.8)

where X ∈ Rm×n, ‖X‖∗ denotes the nuclear norm of X (the sum of all
singular values of X) and each fk : Rm×n → R ∪ {∞} is a proper closed
LMI-representable function. Define a function F : Sn+m → R ∪ {∞} by

F (Z) :=

p∑
k=1

fk(X) +
1

2
(tr(U) + tr(V )) + δSm+n

+
(Z); (3.9)

here, we partition the matrix variable Z ∈ Sn+m as follows:

Z =

[
U X
XT V

]
, (3.10)

where U ∈ Sm, V ∈ Sn and X ∈ Rm×n. Then one can show that f(X) =
infU,V F (Z); see (4.26) below. In Theorem 4.3, we will show that f in (3.8)
satisfies KL property with exponent 1

2 at points X̄ such that 0 ∈ ri ∂f(X̄),
under mild conditions. Explicit optimization models of the form (3.8) are
introduced in Remark 4.3.

(iv) Convex models with C2-cone reducible structure SDP representable
functions are all semi-algebraic. As an attempt to go beyond semi-algebraicity,
we analyze functions involving C2-cone reducible structure. Specifically, we
consider the following function f : X→ R ∪ {∞}:

f(x) := `(Ax) + 〈v, x〉+ γ(x), (3.11)

where γ is a closed gauge5 whose polar gauge6 is C2-cone reducible, the
function ` : Y→ R is strongly convex on any compact convex set and has
locally Lipschitz gradient, A : X→ Y is a linear map, and v ∈ X.

5 A gauge is a nonnegative positively homogeneous convex function that vanishes at the
origin.

6 See [28, Proposition 2.1(iii)].



Kurdyka- Lojasiewicz exponent via inf-projection 15

Notice that f(x) = inft F (x, t), where

F (x, t) := `(Ax) + 〈v, x〉+ t+ δD(x, t), (3.12)

with D = {(x, t) ∈ X× R : γ(x) ≤ t}. In Section 4.4, we will deduce that f
in (3.11) has KL property with exponent 1

2 at points satisfying assumptions
involving relative interior of some subdifferential sets; see Corollary 4.1.
Optimization models in the form of (3.11) are presented in Example 4.2.

3.1.2 Nonconvex optimization models that can be written as inf-projections

(i) Difference-of-convex functions We consider difference-of-convex (DC)
functions of the following form:

f(x) = P1(x)− P2(Ax), (3.13)

where P1 : X→ R∪{∞} is a proper closed convex function, P2 : Y→ R is a
continuous convex function and A : X→ Y is a linear map. These functions
arise in many contemporary applications including compressed sensing;
see, for example, [1, 51,56, 57] and references therein. In the literature, the
following function is a typically used majorant for designing and analyzing
algorithms for minimizing DC functions. It is obtained from (3.13) by
majorizing the concave function −P2 using the Fenchel conjugate P ∗2 of P2:

F (x, y) = P1(x)− 〈Ax, y〉+ P ∗2 (y). (3.14)

Note that f(x) = infy F (x, y) thanks to the definition of Fenchel conjugate
and [45, Theorem 12.2]. In Theorem 5.1, we will deduce the KL exponent
of f in (3.13) from that of F in (3.14).

(ii) Bregman envelope The Bregman envelope of a proper closed function
f : X→ R ∪ {∞}, is defined in [10] as follows:

Fφ(x) := inf
y
{f(y) + Bφ(y, x)} (3.15)

where φ : X→ R is a differentiable convex function and

Bφ(y, x) = φ(y)− φ(x)− 〈∇φ(x), y − x〉 (3.16)

is the Bregman distance. Note that Fφ is an inf-projection by definition.
In Section 5.2, we will show that if φ satisfies Assumption 5.1 and f is
a KL function with exponent α ∈ (0, 1] and satisfies inf f > −∞, then
Fφ in (3.15) is also a KL function with exponent α ∈ (0, 1]. As we shall
see in Remark 5.1, the Fφ with φ satisfying Assumption 5.1 covers the
widely studied Moreau envelope (see, for example, [46, Section 1G]) and
the recently proposed forward-backward envelope [49].
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(iii) Least squares loss function with rank constraint Consider the fol-
lowing least squares loss function with rank constraint:

f(X) :=
1

2
‖AX − b‖2 + δrank(·)≤k(X), (3.17)

where X ∈ Rm×n, A : Rm×n → Rp is a linear map, b ∈ Rp and k is an
integer between 1 and min{m,n} − 1. The model above is considered in
many applications such as principal components analysis (PCA); see [54]
for more details. Notice that f in (3.17) is an inf-projection in the following
form:

f(X) = inf
U

{
1

2
‖AX − b‖2 + δD̂(X,U)

}
, (3.18)

where

D̂ := {(X,U) ∈ Rm×n × Rm×(m−k) : UTX = 0 and UTU = Im−k},

and Im−k is the identity matrix of size m−k. In Section 5.3, we first establish
an auxiliary KL calculus rule concerning Lagrangian in Theorem 5.3. Then,
using this result together with Theorem 3.1, we give an explicit KL exponent
(dependent on n, m and k) of f in (3.17) in Theorem 5.4.

4 KL exponents for some convex models

4.1 Convex models with SDP-representable structure

In this section, we explore the KL exponent of SDP-representable functions
introduced in Section 3.1.1(i). More specifically, we will deduce the KL exponent
of a proper closed function f with its epigraph represented as in (3.5), under
suitable conditions on F in (3.7). To this end, we collect the u components in
D in (3.7) for each fixed x ∈ dom ∂f and define the following set:

Dx =
{
u ∈ RN : (x, u, f(x)) ∈ D

}
. (4.1)

Roughly speaking, these are extra variables that correspond to the “x-slice” in
the “lifted” SDP representation. As we shall see in the proof of Theorem 4.2,
when f is the sum of LMI-representable functions (which is SDP-representable),
one can have Dx = {(f1(x), . . . , fm(x))}.

We begin with three auxiliary lemmas. The first one relates the KL exponent
of f , whose epigraph is represented as in (3.5), to that of F in (3.7).

Lemma 4.1 Let f : Rn → R ∪ {∞} be a proper closed SDP-representable
function with its epigraph represented as in (3.5). Then the function F defined
in (3.7) is proper, closed and convex.

Next, suppose in addition that x̄ ∈ dom ∂f , α ∈ [0, 1), and that the following
conditions hold:

(i) The set Dx̄ defined as in (4.1) is nonempty and compact.
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(ii) The function F defined in (3.7) satisfies the KL property with exponent
α at every point in {x̄} ×Dx̄ × {f(x̄)}.

Then f satisfies the KL property at x̄ with exponent α.

Proof Observe from the definition that

f(x) = inf
u,t
F (x, u, t).

First, note that D 6= ∅ because f is proper. Since D is clearly closed and
convex, we conclude that F is proper, closed and convex. We will now check the
conditions in Corollary 3.3 and apply the corollary to deduce the KL property
of f from that of F .

To this end, by assumption, we see that F satisfies the KL property with
exponent α on {x̄} ×Dx̄ × {f(x̄)} = {x̄} ×Arg minu,t F (x̄, u, t) and that Dx̄

is nonempty and compact. The desired conclusion now follows from a direct
application of Corollary 3.3. This completes the proof. ut

The second lemma relates the KL exponent of F in (3.7) to that of another
SDP-representable function with carefully constructed matrices involved in its
representation.

Lemma 4.2 Let f be a proper closed function and x̄ ∈ dom f . Suppose that f
is SDP-representable with its epigraph represented as in (3.5), and that there
exists (xs, us, ts) such that A00 + A∗(xs, us, ts) � 0, where A00 and A are
given in (3.5) and (3.6) respectively. Let F be defined as in (3.7) and Dx̄ be
defined as in (4.1).7 Let ū ∈ Dx̄ and suppose that 0 ∈ ∂F (x̄, ū, f(x̄)). Then the
following statements hold:

(i) It holds that A0 6= 0. Moreover, the set span {A1, . . . , An, B1, . . . , BN , A0}
has an orthogonal basis {Â0, . . . , Âp}, where p ≥ 0 and Â0 6= 0, such that[

a1 . . . an b1 . . . bN a0

]
=
[
â1 . . . âp â0

]
U

for some U ∈ R(p+1)×(n+N+1) having full row rank and the entries of the
(p + 1)th row of U are 0 except for Up+1,n+N+1 = 1; here, ai, bj and

âk ∈ Rd2 are the columnwise vectorization of the matrices Ai, Bj and

Âk, respectively.
(ii) Define F1 : Rp+1 → R ∪ {∞} by

F1(z, t) := t+ δD1(z, t)

with D1 =

{
(z, t) : A00 + Â0t+

p∑
w=1

Âwzw � 0

}
,

(4.2)

where p ≥ 0 and {Â0, . . . , Âp} is the orthogonal basis constructed in (i).8

Suppose that U(x̄, ū, f(x̄)) ∈ dom ∂F1 and F1 satisfies the KL property

7 Notice that F is proper and closed thanks to the existence of the Slater point (xs, us, ts).
8 Note that F1 is proper and closed thanks to the existence of the Slater point (xs, us, ts).
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at U(x̄, ū, f(x̄)) with exponent α ∈ [0, 1), where U is the same as in (i).9

Then F satisfies the KL property at (x̄, ū, f(x̄)) with exponent α.

Proof Since 0 ∈ ∂F (x̄, ū, f(x̄)), we have in view of [46, Exercise 8.8] that

0n+N+1 ∈ (0n, 0N , 1) +ND(x̄, ū, f(x̄)), (4.3)

where D is defined as in (3.7), and 0k is the zero vector of dimension k. Next,
since δD(x, u, t) = [δSd+−A00

◦ A∗](x, u, t) and we have A∗(xs, us, ts) � −A00

by assumption, using [45, Theorem 23.9], we deduce that

ND(x̄, ū, f(x̄)) = ∂
[
δSd+−A00

◦ A∗
]
(x̄, ū, f(x̄)) = ANSd+−A00

(A∗(x̄, ū, f(x̄))).

This together with (4.3) implies that there exists Y ∈ NSd+−A00
(A∗(x̄, ū, f(x̄)))

such that

〈A1, Y 〉 = · · · = 〈An, Y 〉 = 〈B1, Y 〉 = · · · = 〈BN , Y 〉 = 0 but 〈A0, Y 〉 = −1;

in particular, A0 6∈ span {A1, . . . , An, B1, . . . , BN} and hence A0 6= 0.
If span {A1, . . . , An, B1, . . . , BN} = {0}, then Ai = Bj = 0 for i = 1, . . . , n

and j = 1, . . . , N . In this case, set Â0 = A0. We see that {Â0} is an orthogonal
set and we have [

a1 . . . an b1 . . . bN a0

]
= â0

[
0Tn+N 1

]
,

where 0n+N is the zero vector of dimension n+N . Thus, the conclusion in (i)
holds in this case.

Otherwise, span {A1, . . . , An, B1, . . . , BN} 6= {0} and we let {Ā1, . . . , Āp}
be a maximal linearly independent subset of {A1, . . . , An, B1, . . . , BN}. Then
there existsM0 ∈ Rp×(n+N) with full row rank such that [a1 . . . an b1 . . . bN ] =

[ā1 . . . āp]M0, where āi ∈ Rd2 is the columnwise vectorization of Āi. Thus

[a1 . . . an b1 . . . bN a0] = [ā1 . . . āp a0]

[
M0 0
0 1

]
. (4.4)

Using Gram-Schmidt process followed by a suitable scaling to {Ā1, . . . , Āp, A0},
there exists an invertible upper triangle matrix U0 ∈ R(p+1)×(p+1) with the
(U0)p+1,p+1 = 1 and an orthogonal basis {Â1, . . . , Âp, Â0} of span {Ā1, . . . , Āp, A0}
such that [ā1 . . . āp a0] =

[
â1 . . . âp â0

]
U0, where âi is the columnwise vec-

torization of Âi. This together with (4.4) shows that

[
a1 . . . an b1 . . . bN a0

]
= [ā1 . . . āp a0]

[
M0 0
0 1

]
=
[
â1 . . . âp â0

]
U,

9 Here and henceforth, U(x̄, ū, f(x̄)) is a short-hand notation for the matrix vector product

U

 x̄
ū

f(x̄)

.
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where U := U0

[
M0 0
0 1

]
has full row rank and the entries of the (p+ 1)th row of

U are 0 except for Up+1,n+N+1 = 1. This proves (i).
Now, using the definition of F1 in (4.2), we have F (x, u, t) = F1(U(x, u, t)).

Since U is surjective and the KL exponent of F1 is α at U(x̄, ū, f(x̄)), using a
similar argument as in [34, Theorem 3.2], the KL exponent of F at (x̄, ū, f(x̄))
equals α. This completes the proof. ut

Finally, we rewrite F1 in (4.2) suitably as a function on Sd that satisfies a
certain “strict complementarity” condition so that Lemma 2.3 can be readily
applied to deducing the KL exponent of F1 explicitly.

Lemma 4.3 Let f be a proper closed function and x̄ ∈ dom f . Suppose in
addition that f is SDP-representable with its epigraph represented as in (3.5).
Let F be defined as in (3.7), Dx̄ be defined as in (4.1), and ū ∈ Dx̄. Suppose
that the following conditions hold:

(i) (Slater’s condition) There exists (xs, us, ts) such that A00+A∗(xs, us, ts) �
0, where A00 and A are given in (3.5) and (3.6) respectively.10

(ii) (Strict complementarity) It holds that 0 ∈ ri ∂F (x̄, ū, f(x̄)).

Let F1 be defined as in (4.2). Then U(x̄, ū, f(x̄)) ∈ dom ∂F1 and F1 satisfies
the KL property at U(x̄, ū, f(x̄)) with exponent 1

2 , where U is given in Lemma
4.2(i).

Proof Define Ā : Sd → Rp+1 by

Ā(W ) :=
[
〈Â1,W 〉 . . . 〈Âp,W 〉 〈Â0,W 〉

]T
,

where {Â0, . . . , Âp} is given by Lemma 4.2(i). Since {Â0, . . . , Âp} is orthogonal,

we see that Ā is surjective and Ā∗ : Rp+1 → Sd with Ā∗(z, t) := Â0t +∑p
w=1 Âwzw is injective. Also, for any (z, t) ∈ Rp+1, by orthogonality,

ĀĀ∗(z, t) = Ā

(
Â0t+

p∑
w=1

Âwzw

)
=
(
‖Â1‖2F z1, . . . , ‖Âp‖2F zp, ‖Â0‖2F t

)
.

Choose a basis {H1, H2, . . . ,Hr} of ker Ā and define a linear map H : Sd →
Rr by11

H(W ) := [〈H1,W 〉 · · · 〈Hr,W 〉]T . (4.5)

Define a proper closed function F2 : Sd → R ∪ {∞} by

F2(X) := ‖Â0‖−2
F 〈Â0, X〉+ δD2(X)

with D2 :=
{
X ∈ Sd+ : HX = HA00

}
.

(4.6)

10 Note that this condition implies that both F in (3.7) and F1 in (4.2) are proper and
closed.
11 In the case when ker Ā = {0} so that the basis is empty (i.e., r = 0), we define H to be

the unique linear map that maps Sd onto the zero vector space.
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Thanks to the identity (ker Ā)⊥ = Range (Ā∗) and the fact that HX = HA00

if and only if X −A00 ∈ (ker Ā)⊥, we have the following relations concerning
D2 and the D1 defined in (4.2):

(z, t) ∈ D1 =⇒ A00 + Ā∗(z, t) ∈ D2,

X ∈ D2 ⇒ ∃ unique (z, t) s.t. A00 + Ā∗(z, t) = X, and (z, t) ∈ D1,
(4.7)

where the second implication also makes use of the injectivity of Ā∗. We then
deduce further that for any (z, t) ∈ Rp+1,

F2(A00 + Ā∗(z, t))− ‖Â0‖−2
F 〈Â0, A00〉

= 〈Ā
(
‖Â0‖−2

F Â0

)
, (z, t)〉+ δD2(A00 + Ā∗(z, t))

= t+ δD2
(A00 + Ā∗(z, t)) = F1(z, t),

(4.8)

where the last equality follows from (4.7).
Next, let U be as in Lemma 4.2(i). Since the entries in the (p+ 1)th row of

U are 0 except for Up+1,n+N+1 = 1, there exists z̄ ∈ Rp such that12

U(x̄, ū, f(x̄)) = (z̄, f(x̄)). (4.9)

Now, define
X̄ := A00 + Ā∗(z̄, f(x̄)). (4.10)

We claim that 0 ∈ ri ∂F2(X̄). We first show that

0 ∈ ri ∂F1(z̄, f(x̄)). (4.11)

In fact, using [45, Theorem 23.9] (note that U(xs, us, ts) ∈ intD1 thanks to
assumption (i)) together with the assumption (ii), we have

0 ∈ ri ∂F (x̄, ū, f(x̄)) = ri
[
UT∂F1 (U(x̄, ū, f(x̄)))

]
= UT ri ∂F1 (U(x̄, ū, f(x̄))) ,

where the second equality follows from [45, Theorem 6.6]. Since U has full row
rank and thus UT is injective, recalling the definition of z̄ in (4.9), we deduce
further that (4.11) holds. Now, using this and [46, Exercise 8.8], we have

0 ∈ ri ∂F1(z̄, f(x̄)) = (0, . . . , 0︸ ︷︷ ︸
p entries

, 1) + riND1
(z̄, f(x̄)). (4.12)

Now, notice that δD1
(z, t) =

[
δSd+−A00

◦ Ā∗
]

(z, t) and

D2 3 Xs := A00 + Ā∗(zs, ts) = A00 +A∗(xs, us, ts) � 0 (4.13)

with (zs, ts) = U(xs, us, ts), where the inclusion holds thanks to (4.7). Using
these and [45, Theorem 23.9], we see that

riND1
(z̄, f(x̄)) = ri ∂

[
δSd+−A00

◦ Ā∗
]
(z̄, f(x̄)) = ri ĀNSd+(X̄) = Ā riNSd+(X̄),

12 Recall that p ≥ 0. When p = 0, we interpret z̄ as a null vector so that U(x̄, ū, f(x̄)) = f(x̄).
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where the last equality follows from [45, Theorem 6.6]. This together with
(4.12) implies that there exists Ỹ ∈ riNSd+(X̄) such that

〈Â1, Ỹ 〉 = · · · = 〈Âp, Ỹ 〉 = 0 and 〈Â0, Ỹ 〉 = −1. (4.14)

The second relation in (4.14) gives 〈Â0, Ỹ + ‖Â0‖−2
F Â0〉 = 〈Â0, Ỹ 〉 + 1 = 0.

In addition, in view of the first relation in (4.14) and the orthogonality of
{Â0, . . . , Âp}, we have 〈Âi, Ỹ + ‖Â0‖−2

F Â0〉 = 〈Âi, Ỹ 〉 + 〈Âi, ‖Â0‖−2
F Â0〉 = 0

for all i = 1, . . . , p. Thus, it holds that Ỹ + ‖Â0‖−2
F Â0 ∈ ker Ā. Hence, there

exists ω ∈ Rr such that

Ỹ + ‖Â0‖−2
F Â0 =

r∑
i=1

Hiωi (4.15)

with r and Hi defined as in (4.5).13 Using (4.15) and the definition of Ỹ , we
have further that

0 = Ỹ + ‖Â0‖−2
F Â0 −

r∑
i=1

Hiωi ∈ riNSd+(X̄) + ‖Â0‖−2
F Â0 + RangeH∗. (4.16)

On the other hand, using the definition of F2 in (4.6), we have

ri ∂F2(X̄) = ‖Â0‖−2
F Â0 + ri ∂δD2

(X̄)

= ‖Â0‖−2
F Â0 + ri

(
NH−1{HA00}(X̄) +NSd+(X̄)

)
= ‖Â0‖−2

F Â0 + riNH−1{HA00}(X̄) + riNSd+(X̄)

= ‖Â0‖−2
F Â0 + RangeH∗ + riNSd+(X̄),

where the second equality follows from [45, Theorem 23.8] and (4.13), and
the third equality follows from [45, Corollary 6.6.2]. This together with (4.16)
shows

0 ∈ ri ∂F2(X̄). (4.17)

In view of (4.13) and (4.17), we can now apply Lemma 2.3 and deduce that,
for a given compact neighborhood U of X̄, there exists c > 0 such that for any
X ∈ U ∩D2,

dist(X,Arg minF2) ≤ c
(
F2(X)− F2(X̄)

) 1
2 . (4.18)

Thus, fix an ε > 0 so that A00 + Ā∗(z, t) ∈ U whenever (z, t) ∈ B((z̄, f(x̄)), ε);
such an ε exists thanks to the definitions of z̄ in (4.9) and X̄ in (4.10). Now,
consider any (z, t) satisfying (z, t) ∈ B((z̄, f(x̄)), ε) and F1(z̄, f(x̄)) < F1(z, t) <
F1(z̄, f(x̄)) + ε. Then (z, t) ∈ domF1, which means A00 + Ā∗(z, t) ∈ D2

according to (4.7). Hence, using (4.18), we have

dist2((z, t),Arg minF1) ≤ ‖(z, t)− (z∗, t∗)‖2
(a)

≤ c1
∥∥Ā∗(z, t)− Ā∗(z∗, t∗)∥∥2

F

13 In the case when ker Ā = {0} (i.e., r = 0), we have Ỹ + ‖Â0‖−2
F Â0 = 0. In this case, we

interpret ω as a null vector.
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= c1‖A00 + Ā∗(z, t)−X∗‖2F = c1dist2(A00 + Ā∗(z, t),Arg minF2)

≤ c2c1
(
F2(A00 + Ā∗(z, t))− F2(X̄)

) (b)
= c2c1 (F1(z, t)− F1(z̄, f(x̄))) ,

where X∗ denotes the projection of A00 + Ā∗(z, t) on Arg minF2 and (z∗, t∗)
is the corresponding element in Arg minF1 such that X∗ = A00 + Ā∗(z∗, t∗)
(the existence of (z∗, t∗) follows from (4.7) and (4.8)), (a) holds for some
c1 > 0 because Ā∗ is injective, and (b) follows from (4.8). Combining this
with [14, Theorem 5], we conclude that F1 satisfies the KL property with
exponent 1

2 at (z̄, f(x̄)) = U(x̄, ū, f(x̄)). ut

We are now ready to state and prove our main result in this section.

Theorem 4.1 (KL exponent of SDP-representable functions) Let f be
a proper closed function and x̄ ∈ dom ∂f . Suppose in addition that f is SDP-
representable with its epigraph represented as in (3.5) and that the following
conditions hold:

(i) (Slater’s condition) There exists (xs, us, ts) such that A00+A∗(xs, us, ts) �
0, where A00 and A are given in (3.5) and (3.6) respectively.

(ii) (Compactness) The set Dx̄ defined as in (4.1) is nonempty and com-
pact.

(iii) (Strict complementarity) It holds that 0 ∈ ri ∂F (x̄, u, f(x̄)) for all
u ∈ Dx̄, where F is defined as in (3.7) and Dx̄ is defined as in (4.1).14

Then f satisfies the KL property at x̄ with exponent 1
2 .

Remark 4.1 In Theorem 4.1, we require 0 ∈ ri ∂F (x̄, u, f(x̄)) for all u ∈ Dx̄

with Dx̄ defined as in (4.1). This can be hard to check in practice. In Sections 4.2
and 4.3, we will impose additional assumptions on f so that this condition
can be replaced by 0 ∈ ri ∂f(x̄), which is a form of strict complementarity
condition imposed on the original function f (rather than the representation
F in the lifted space).

Proof In view of Lemma 4.1, it suffices to show that F satisfies the KL property
with exponent 1

2 at every point in {x̄} ×Dx̄ × {f(x̄)}. Fix any ū ∈ Dx̄. From
Lemma 4.3, we know that F1 defined as in (4.2) has KL property with exponent
1
2 at U(x̄, ū, f(x̄)) ∈ dom ∂F1, where U is given in Lemma 4.2(i). Using this
together with Lemma 4.2, we know that F satisfies the KL property with
exponent 1

2 at (x̄, ū, f(x̄)). This completes the proof. ut

We would like to point out that the third condition in Theorem 4.1 cannot
be replaced by “0 ∈ ri ∂f(x̄)” in general. One concrete counter-example is
f(x) = x4. Indeed, for this function, the global minimizer is 0 and we have

14 We note that because of the Slater’s condition, the function F in (3.7) is proper and
closed.
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∂f(0) = {∇f(0)} = {0}, which implies that 0 ∈ ri ∂f(0). Moreover, this
function is SDP-representable:

epi f =

(x, t)∈ Rn × R :


1 y 0 0
y t 0 0
0 0 1 x
0 0 x y

 � 0 for some y

 .

It is easy to check that the first two conditions of Theorem 4.1 are satisfied
for x̄ = 0. However, it can be directly verified that this f does not have KL
property with exponent 1

2 at 0. This concrete example suggests that the third
condition in Theorem 4.1 cannot be replaced by 0 ∈ ri ∂f(x̄) in general.

Next, in Sections 4.2 and 4.3, we will look at special SDP-representable
functions and show that the third condition in Theorem 4.1 can indeed be
replaced by 0 ∈ ri ∂f(x̄) in those cases.

4.2 Sum of LMI-representable functions

In this section, we discuss how the KL exponent of the sum of finitely many
proper closed LMI-representable functions as defined in Section 3.1.1(ii) can
be deduced through Theorem 4.1. Compared with Theorem 4.1, the strict
complementarity condition in this section is now imposed directly on the
original function.

Theorem 4.2 (KL exponent of sum of LMI-representable functions)
Let f =

∑m
i=1 fi, where each fi : Rn → R ∪ {∞} is proper and closed. Sup-

pose that each fi is LMI-representable, i.e., there exist di ≥ 1 and matrices
{Ai00, A

i
0, A

i
1, . . . , A

i
n} ⊂ Sdi such that

epi fi =

(x, t) ∈ Rn × R : Ai00 +

n∑
j=1

Aijxj +Ai0t � 0

 .

Suppose in addition that there exist xs ∈ Rn and ss ∈ Rm such that for
i = 1, . . . ,m,

Ai00 +

n∑
j=1

Aijx
s
j +Ai0s

s
i � 0.

If x̄ ∈ dom ∂f satisfies 0 ∈ ri ∂f(x̄), then f satisfies the KL property at x̄ with
exponent 1

2 .

Proof We first derive an SDP representation of epi f . To this end, define

D̂ :=

{
(x, s, t) : t ≥

m∑
i=1

si and si ≥ fi(x), ∀i = 1, . . . ,m

}
.
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Then it holds that (x, s, t) ∈ D̂ if and only if
t−
∑m
i=1 si 0 · · · 0

0 A1
00 +

∑n
j=1A

1
jxj +A1

0s1

...
...

. . .

0 · · · Am00 +
∑n
j=1A

m
j xj +Am0 sm

 � 0.

(4.19)
Since

(x, t) ∈ epi f ⇐⇒ t ≥
m∑
i=1

fi(x) ⇐⇒ ∃s ∈ Rm s.t. (x, s, t) ∈ D̂, (4.20)

we see that f is SDP-representable. Moreover, if we define

F (x, s, t) := t+ δD̂(x, s, t), (4.21)

then it holds that f(x) = infs,t F (x, s, t) for all x ∈ Rn. We next show that f
and the F defined in (4.21) satisfy the conditions required in Theorem 4.1.

First, from the definition of xs ∈ Rn and ss ∈ Rm, we have
ts −

∑m
i=1 s

s
i 0 · · · 0

0 A1
00 +

∑n
j=1A

1
jx
s
j +A1

0s
s
1

...
...

. . .

0 · · · Am00 +
∑n
j=1A

m
j x

s
j +Am0 s

s
m

 � 0,

where ts :=
∑m
i=1 s

s
i + 1. This together with (4.19) and (4.20) shows that

condition (i) in Theorem 4.1 holds.

Next, note that the set {s : (x̄, s, f(x̄)) ∈ D̂} = {(f1(x̄), . . . , fm(x̄))}, which
is clearly nonempty and compact. In view of this and (4.21), we conclude that
condition (ii) in Theorem 4.1 is satisfied.

Finally, we look at the strict complementarity condition, i.e., condition (iii)
in Theorem 4.1. Notice that the definition of xs ∈ Rn implies

xs ∈
m⋂
i=1

int dom fi. (4.22)

Write s̄ := (f1(x̄), · · · , fm(x̄)) for notational simplicity. Define

C0 =

{
(x, s, t) : t ≥

m∑
i=1

si

}
and Ci = {(x, s, t) : si ≥ fi(x)}, ∀i = 1, . . . ,m.

Then D̂ =
⋂m
i=0 Ci. Moreover, using [45, Theorem 7.6], we have for i = 1, . . . ,m

that

riCi = ri {(x, s, t) : gi(x, s, t) ≤ 0} = {(x, s, t) ∈ ri dom gi : gi(x, s, t) < 0}
= {(x, s, t) ∈ ri dom fi × Rm × R : gi(x, s, t) < 0} ,



Kurdyka- Lojasiewicz exponent via inf-projection 25

where gi(x, s, t) = fi(x)− si for each i. This together with (4.22) shows that⋂m
i=0 riCi 6= ∅. Using this, [45, Theorem 23.8] and the definition of F in (4.21),

we have

∂F (x̄, s̄, f(x̄)) = (0n+m, 1) +

m∑
i=0

NCi(x̄, s̄, f(x̄)), (4.23)

where 0p is the zero vector of dimension p, and recall that s̄ = (f1(x̄), · · · , fm(x̄)).
We claim that 0 ∈ ri ∂F (x̄, s̄, f(x̄)). To this end, note first that the as-

sumption 0 ∈ ri ∂f(x̄) and (4.22) together with [45, Theorem 23.8] imply
that x̄ ∈

⋂
i dom ∂fi. Hence, we have from [45, Theorem 23.7] that for each

i = 1, . . . ,m,

NCi(x̄, s̄, f(x̄)) = cl [cone ∂gi(x̄, s̄, f(x̄))]

= cl
⋃
λi≥0

(λi∂fi(x̄), 0i−1,−λi, 0m+1−i)
(4.24)

where the second equality follows from [46, Proposition 10.5] and coneB
denotes the convex conical hull of B. Similarly, we also have

NC0(x̄, s̄, f(x̄)) = cl
⋃
λ0≥0

(0n, λ0 · 1m,−λ0) , (4.25)

where 1m is the m-dimensional vector of all ones. Using (4.23), (4.24) and
(4.25), we have

− (0n+m, 1) + ri ∂F (x̄, s̄, f(x̄))
(a)
=

m∑
i=0

riNCi(x̄, s̄, f(x̄))

(b)
=

m∑
i=1

ri

cl
⋃
λi≥0

(λi∂fi(x̄), 0i−1,−λi, 0m+1−i)

+ri

cl
⋃
λ0≥0

(0n, λ0 · 1m,−λ0)


(c)
=

m∑
i=1

⋃
λi>0

(λi ri ∂fi(x̄), 0i−1,−λi, 0m+1−i) +
⋃
λ0>0

(0n, λ0 · 1m,−λ0)

where (a) follows from (4.23) and [45, Corollary 6.6.2], (b) follows from (4.24)
and (4.25), and (c) follows from [45, Theorem 6.3] and [45, Corollary 6.8.1].
This together with 0 ∈ ri ∂f(x̄) yields

0 ∈ (ri ∂f(x̄), 0m, 0) = (0n, 0m, 1) + (ri ∂f(x̄),−1m, 0) + (0n, 1m,−1)

= (0n, 0m, 1) +

(
m∑
i=1

ri ∂fi(x̄),−1m, 0

)
+ (0n, 1m,−1) ⊆ ri ∂F (x̄, s̄, f(x̄)),

where the second equality follows from [45, Theorem 23.8] and [45, Corol-
lary 6.6.2], thanks to (4.22). Thus, condition (iii) in Theorem 4.1 is also
satisfied. The desired conclusion now follows from Theorem 4.1. ut
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Example 4.1 Note that `1-norm, `2-norm, convex quadratic functions and
indicator functions of second-order cones are all LMI-representable. Using
these, we can infer from Theorem 4.2 that the following functions f satisfy the
KL property with exponent 1

2 at any x̄ that verifies 0 ∈ ri ∂f(x̄):

(i) Group Lasso with overlapping blocks of variables:

f(x) =
1

2
‖Ax− b‖2 +

s∑
i=1

wi‖xJi‖,

where b ∈ Rp, A ∈ Rp×n, Ji ⊆ {1, . . . , n} with
⋃s
i=1 Ji = {1, . . . , n},

xJi is the subvector of x indexed by Ji, and wi ≥ 0, i = 1, . . . , s. We
emphasize here that Ji ∩ Jj can be nonempty when i 6= j.

(ii) Least squares with products of second-order cone constraints:

f(x) =
1

2
‖Ax− b‖2 + δ∏s

i=1 SOC ni
(x),

where b ∈ Rp, A ∈ Rp×n, x = (x1, . . . , xs) ∈
∏s
i=1 Rni with xi ∈ Rni ,

i = 1, . . . , s, and SOCni is the second-order cone in Rni .
(iii) Group fused Lasso [2]:

f(x) =
1

2
‖Ax− b‖2 +

s∑
i=1

wi‖xJi‖+

s∑
i=2

νi‖xJi − xJi−1‖,

where b ∈ Rp, A ∈ Rp×n with n = rs for some r ∈ N, Ji is an equi-
partition of {1, . . . , n} in the sense that

⋃s
i=1 Ji = {1, . . . , n}, Ji ∩ Jj = ∅

and |Ji| = |Jj | = r for i 6= j, wi, νi ≥ 0, i = 1, . . . , s.

4.3 Sum of LMI-representable functions and the nuclear norm

In this section, we apply Theorem 4.2 and Corollary 3.3 to derive the KL
exponent of the function in (3.8) under suitable assumptions. It is known (see,
for example [44]) that the nuclear norm can be expressed as

‖X‖∗ =
1

2
inf
U,V

{
tr(U) + tr(V ) :

[
U X
XT V

]
� 0, U ∈ Sm, V ∈ Sn

}
(4.26)

for any X ∈ Rm×n. This fact plays an important role for our analysis later
on, and shows that the nuclear norm is an SDP representable function. To the
best of our knowledge, it is not known that whether the nuclear norm is LMI
representable. Our analysis is an attempt to generalize our results on the sum
of LMI representable functions (with strict complementarity assumption on
the original function) to a large subclass of SDP representable functions that
arises in many important areas such as matrix completion [44].
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Theorem 4.3 (KL exponent of sum of LMI-representable functions
and the nuclear norm) Let f be defined as in (3.8) and let symmetric
matrices Ak00, Ak0 , Akij, i = 1, . . . ,m and j = 1, . . . , n, be such that

epi fk =

(X, t) : Ak00 +

m∑
i=1

n∑
j=1

AkijXij +Ak0t � 0

 .

Suppose in addition that there exist Xs ∈ Rm×n and ss ∈ Rp such that for
k = 1, . . . , p,

Ak00 +

m∑
i=1

n∑
j=1

AkijX
s
ij +Ak0s

s
k � 0.

If X̄ ∈ dom ∂f satisfies 0 ∈ ri ∂f(X̄), then f satisfies the KL property at X̄
with exponent 1

2 .

Remark 4.2 Similar to Theorem 4.2, the “ri-condition” here is also imposed on
f itself, while such a condition is imposed on the F in (3.7) in Theorem 4.1.

Proof Let F be defined as in (3.9) with the matrix variable Z ∈ Sn+m

partitioned as in (3.10). Then f(X) = infU,V F (Z), thanks to (4.26). Let
r = rank(X̄) and

X̄ = [P+ P0]

[
Σ+ 0
0 0

]
[Q+ Q0]

T
= P+Σ+Q

T
+,

be a singular value decomposition of X̄, where Σ+ ∈ Rr×r is a diagonal matrix
whose diagonal entries are the r positive singular values of X̄, [P+ P0] is
orthogonal with P+ ∈ Rm×r and P0 ∈ Rm×(m−r), [Q+ Q0] is orthogonal with
Q+ ∈ Rn×r and Q0 ∈ Rn×(n−r). Define15

Z̄ :=

[
P+Σ+P

T
+ X̄

X̄T Q+Σ+Q
T
+

]
.

Then Z̄ � 0. Now, using [45, Theorem 23.8], the definition of F and [45,
Corollary 6.6.2], we have

ri ∂F (Z̄)=

{
1

2

[
Im Λ
ΛT In

]
+Y : Λ ∈ ri ∂

(
p∑
k=1

fk

)
(X̄), Y ∈riNSm+n

+
(Z̄)

}
. (4.27)

Next, since 0 ∈ ri ∂f(X̄) and the nuclear norm is continuous, we see
from [45, Theorem 23.8] and [45, Corollary 6.6.2] that

0 ∈ ri ∂f(X̄) = ri ∂

(
p∑
k=1

fk

)
(X̄) + ri ∂‖X̄‖∗. (4.28)

15 When r = 0, we set Z̄ = 0 ∈ Sm+n.
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Moreover, recall from [55, Example 2] and [45, Corollary 7.6.1] that

ri ∂‖X̄‖∗=

{
[P+ P0]

[
Ir 0
0 W

]
[Q+ Q0]

T
: W ∈R(m−r)×(n−r), ‖W‖2<1

}
, (4.29)

where ‖W‖2 is the operator norm of W , that is, the largest singular val-
ue of W . Combining (4.28) and (4.29), we conclude that there exist C ∈
ri ∂ (

∑p
k=1 fk)(X̄) and W0 with ‖W0‖2 < 1 such that

0 = C + [P+ P0]

[
Ir 0
0 W0

]
[Q+ Q0]

T
= C + P0W0Q

T
0 + P+Q

T
+. (4.30)

On the other hand, using the definition of Z̄ and a direct computation, we
have

Z̄=

[
1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]
︸ ︷︷ ︸

P̂


2Σ+ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


[

1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]T
. (4.31)

Note that P̂T P̂ = P̂ P̂T= Im+n, meaning that (4.31) is an eigenvalue decom-
position of Z̄. Thus, we can compute that

riNSm+n
+

(Z̄) = ri
[
(−Sm+n

+ ) ∩
{
Z̄
}⊥]

= P̂

[
0 0
0 −intSm+n−r

+

]
P̂T

3

[
1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]
0 0 0 0
0 − 1

2Im−r
1
2W0 0

0 1
2W

T
0 − 1

2In−r 0
0 0 0 −Ir




1√
2
PT+

1√
2
QT+

PT0 0
0 QT0

1√
2
PT+ − 1√

2
QT+


=

1

2

[
−Im −C
−CT −In

]
,

where the inclusion holds because ‖W0‖2 < 1, and the last equality follows from
(4.30) and a direct computation. This together with (4.27) and the definition of
C implies that 0 ∈ ri ∂F (Z̄). Moreover, one can see that F is the sum of p+ 1
proper closed LMI-representable functions and the Slater’s condition required
in Theorem 4.2 holds. Thus, we conclude from Theorem 4.2 that F in (3.9)
has KL property at Z̄ with exponent 1

2 .
Finally, recall that for the F defined in (3.9), we have

inf
U,V

F (Z) = f(X) and Arg min
U,V

F

([
U X̄
X̄T V

])
=
{

(P+Σ+P
T
+ , Q+Σ+Q

T
+)
}
.16

These together with Corollary 3.3 and the fact that the KL exponent of F at
Z̄ is 1

2 shows that f satisfies the KL property at X̄ with exponent 1
2 . ut

16 When r = 0, this set is {(0, 0)} and Z̄ = 0.
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Remark 4.3 In [60, Proposition 12], it was shown that if ` : Rp → R is
strongly convex on any compact convex set with locally Lipschitz gradient and
A : Rm×n → Rp is a linear map, then the function

f(X) = `(AX) + ‖X‖∗

satisfies the KL property with exponent 1
2 at any X̄ that verifies 0 ∈ ri ∂f(X̄).

In particular, the loss function X 7→ `(AX) is smooth. The more general case
where the nuclear norm is replaced by a general spectral function was considered
in [18, Theorem 3.12], and a sufficient condition involving the relative interior
of the subdifferential of the conjugate of the spectral function was proposed
in [18, Proposition 3.13], which, in general, is different from the regularity
condition 0 ∈ ri ∂f(X̄).

On the other hand, using our Theorem 4.3, we can deduce the KL exponent
of functions in the form of (3.8) at points X̄ satisfying the condition 0 ∈
ri ∂f(X̄), but with a different set of conditions on the loss function. For instance,
one can prove using Theorem 4.3 that the following functions f satisfy the KL
property with exponent 1

2 at a point X̄ verifying 0 ∈ ri ∂f(X̄):

(i) f(X) = 1
2‖AX − b‖

2 + µ
∑
i,j |Xij | + ν‖X‖∗, where µ > 0 and ν > 0,

b ∈ Rp and A : Rm×n → Rp is a linear map.
(ii) f(X) = ‖AX−b‖+µ

∑
i,j |Xij |+ν‖X‖∗, where µ > 0 and ν > 0, b ∈ Rp

and A : Rm×n → Rp is a linear map.

In view of [18, Theorem 3.12], it would be of interest to extend Theorem 4.3
to cover more general spectral functions. However, since our analysis in this
subsection is based on LMI or SDP representability, it is not clear how this
can be achieved at this moment. This would be a potential important future
research direction.

Remark 4.4 (Discussion of the relative interior conditions) In Theorems 4.1, 4.2
and 4.3, the conclusions of KL exponent being 1/2 were derived under relative
interior conditions. If these relative interior conditions were dropped, then the
corresponding conclusions could fail, in general. For example, in [60, equation

(53)], the authors provided an example of f̃(X) := f1(X)+‖X‖∗ for X ∈ R2×2,

where f1 is a convex quadratic function on R2×2, and showed that 0 /∈ ri ∂f̃(X)
for some X ∈ R2×2 and the first-order error bound is not satisfied at X.
Recalling [14, Theorem 5] and [23, Corollary 3.6], this means that f̃ cannot
have a KL exponent of 1

2 at X.
We also would like to point out that, when the relative interior condition

fails, one can follow the approach in Section 4.1 and the general error bound
result for ill-posed semidefinite programs [24, 50] to derive a KL exponent that
depends on the degree of singularity of a certain semidefinite system in the
lifted representation. In general, this KL exponent will approach 1 quickly as
the dimension grows, which can be of less interest. For simplicity, we do not
discuss this in detail.
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4.4 Convex models with C2-cone reducible structure

In this section, we explore the KL exponent of functions that involve C2-cone
reducible structures. Our first theorem concerns the sum of the support function
of a C2-cone reducible closed convex set and a specially structured smooth
convex function. In the theorem, we will also make use of the so-called bounded
linear regularity condition [8, Definition 5.6]. Recall that {D1,D2} is said to
be boundedly linearly regular at x̄ ∈ D1 ∩D2 if for any bounded neighborhood
U of x̄, there exists c > 0 such that

dist(x,D1 ∩D2) ≤ c[dist(x,D1) + dist(x,D2)] for all x ∈ U.

It is known that if D1 and D2 are both polyhedral, then {D1,D2} is boundedly
linearly regular at any x̄ ∈ D1 ∩D2; moreover, if D1 is polyhedral and D1 ∩
riD2 6= ∅, then {D1,D2} is also boundedly linearly regular at any x̄ ∈ D1∩D2;
see [9, Corollary 3].

Theorem 4.4 (Composite convex models with C2-cone reducible struc-
ture) Let ` : Y → R be a function that is strongly convex on any compact
convex set and has locally Lipschitz gradient, A : X→ Y be a linear map, and
v ∈ X. Consider the function

h(x) := `(Ax) + 〈v, x〉+ σD(x)

with D being a nonempty C2-cone reducible closed convex set. Suppose 0 ∈
∂h(x̄). Then, one has

x̄ ∈ ND(−A∗∇`(Ax̄)− v).

If we assume in addition that {A−1{Ax̄}, ND(−A∗∇`(Ax̄)− v)} is boundedly
linearly regular at x̄, then h satisfies the KL property at x̄ with exponent 1

2 .

Proof Since 0 ∈ ∂h(x̄), we see from [46, Exercise 8.8] that

w̄ := −A∗∇`(Ax̄)− v ∈ ∂σD(x̄) = ∂δ∗D(x̄) = (∂δD)−1(x̄),

where the last equality follows from [46, Proposition 11.3]. This implies x̄ ∈
∂δD(w̄) = ND(w̄).

We now assume in addition the bounded linear regularity condition and
prove the alleged KL property. First, since D is a C2-cone reducible closed
convex set, there exists ρ̃ > 0 and a mapping Θ : X → V which is twice
continuously differentiable on B(w̄, ρ̃) and a closed convex pointed cone K ⊆ V
such that Θ(w̄) = 0, DΘ(w̄) is onto and D ∩ B(w̄, ρ̃) = {w : Θ(w) ∈ K} ∩
B(w̄, ρ̃).

Fix any ρ ∈ (0, ρ̃) so that DΘ(w) is onto whenever w ∈ B(w̄, ρ). Then, we
have from [46, Exercise 10.7] that

ND(w) = DΘ(w)∗NK(Θ(w)) for all w ∈ B(w̄, ρ). (4.32)
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Now, fix any δ > 0. Take w ∈ D ∩ B(w̄, ρ) and x ∈ ND(w) ∩ B(x̄, δ). Then
x = DΘ(w)∗ux for some ux ∈ NK(Θ(w)) according to (4.32). For such a ux,
one can observe that

DΘ(w̄)∗ux∈ DΘ(w̄)∗NK(Θ(w)) ⊆DΘ(w̄)∗K◦=DΘ(w̄)∗NK(Θ(w̄))=ND(w̄),

where K◦ is the polar of K, the set inclusion follows from the definition of
normal cone and the fact that K is a closed convex cone, the first equality
holds because Θ(w̄) = 0 and the last equality follows from (4.32). Thus, for
any w ∈ D ∩B(w̄, ρ) and x ∈ ND(w) ∩B(x̄, δ), we have

dist(x,ND(w̄)) ≤ ‖x−DΘ(w̄)∗ux‖ = ‖DΘ(w)∗ux −DΘ(w̄)∗ux‖
≤ L‖ux‖‖w − w̄‖,

(4.33)

where L is the Lipschitz continuity modulus of DΘ over the set B(w̄, ρ), which
is finite because Θ is twice continuously differentiable.

Next, for each z ∈ B(w̄, ρ), define the linear map

W(z) =
(
DΘ(z)DΘ(z)∗

)−1
DΘ(z).

Then W is continuously differentiable on B(w̄, ρ) because Θ is twice contin-
uously differentiable on B(w̄, ρ) with surjective gradient map. Moreover, for
any w ∈ D ∩B(w̄, ρ) and x ∈ ND(w) ∩B(x̄, δ), it follows from the definition
of ux that [W(w)](x) = ux. Let M be the Lipschitz continuity modulus of
w 7→ W(w) on B(w̄, ρ), which is finite because W is continuously differentiable
on B(w̄, ρ). Then we have for any w ∈ D ∩B(w̄, ρ) and x ∈ ND(w) ∩B(x̄, δ)
that

‖ux − ux̄‖ = ‖[W(w)](x)− [W(w̄)](x̄)‖
≤ ‖[W(w)](x)− [W(w̄)](x)‖+ ‖[W(w̄)](x)− [W(w̄)](x̄)‖
≤M‖x‖ ‖w − w̄‖+ ‖W(w̄)‖‖x− x̄‖
≤Mρ(‖x̄‖+ ‖x− x̄‖) + ‖W(w̄)‖‖x− x̄‖,

where the last inequality follows from triangle inequality and the fact that
w ∈ B(w̄, ρ). In particular, ‖ux‖ ≤ ‖ux̄‖+Mρ(‖x̄‖+ δ) + ‖W(w̄)‖δ =: κ. This
together with (4.33) implies that

ND(w) ∩B(x̄, δ) ⊆ ND(w̄) + κL ‖w − w̄‖B(0, 1) for all w ∈ B(w̄, ρ).

This means that the mapping w 7→ ND(w) is calm at w̄ with respect to x̄; see [21,
Page 182]. Thus, according to [21, Theorem 3H.3], the mapping x 7→ (ND)−1(x)
is metrically subregular at x̄ with respect to w̄; see [21, Page 183] for the
definition. Noting also that ∂σD = (ND)−1 according to [46, Example 11.4],
we then deduce from [3, Theorem 3.3] that there exist δ′ ∈ (0, δ) and c0 > 0
such that

σD(x)− σD(x̄)− 〈w̄, x− x̄〉
≥ c0 dist(x, (∂σD)−1(w̄))2 = c0 dist(x,ND(w̄))2

(4.34)
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whenever ‖x− x̄‖ ≤ δ′. We now follow a similar line of argument used in [60,
Theorem 2] and [23, Theorem 4.2] to show the desired conclusion. Observe that

Arg minh = {z : 0 ∈ ∂h(z)}
= {z : Az = Ax̄ and −A∗∇`(Az)− v ∈ (ND)−1(z)}
= {z : Az = Ax̄ and z ∈ ND(−A∗∇`(Ax̄)− v)}.

Then it follows that for any bounded convex neighborhood U of x̄ with U ⊆
B(x̄, δ′), there exists c1 > 0 such that for any z ∈ U,

dist(z,Arg minh) = dist(z,A−1{Ax̄} ∩ND(w̄))

(a)

≤ α[dist(z,A−1{Ax̄}) + dist(z,ND(w̄))]

(b)

≤ α[c1 ‖Ax̄−Az‖+ dist(z,ND(w̄))]

(c)

≤ α
[
c1 ‖Ax̄−Az‖+ c

− 1
2

0

√
σD(z)− σD(x̄)− 〈w̄, z − x̄〉

]
;

(4.35)

here, (a) holds for some α > 0 because of the bounded linear regularity
assumption, (b) holds for some c1 > 0 thanks to the Hoffman error bound, and
(c) follows from (4.34). Now, as ` is strongly convex on compact convex sets,
there exists β > 0 such that for all z ∈ U, we have

β‖Ax̄−Az‖2 ≤ `(Az)− `(Ax̄)− 〈A∗∇`(Ax̄), z − x̄〉.

Combining this with (4.35), we have for any z ∈ U that

dist(z,Arg minh) ≤ α
(
c1 ‖Ax̄−Az‖+ c

− 1
2

0

√
σD(z)− σD(x̄)− 〈w̄, z − x̄〉

)
≤ αc1 β−

1
2

√
`(Az)− `(Ax̄)− 〈A∗∇`(Ax̄), z − x̄〉

+ αc
− 1

2
0

√
σD(z)− σD(x̄)− 〈w̄, z − x̄〉.

Note that
√
a+
√
b ≤
√

2
√
a+ b for a, b ≥ 0, and

h(z)−h(x̄) = `(Az)−`(Ax̄)−〈A∗∇`(Ax̄), z− x̄〉+σD(z)−σD(x̄)−〈w̄, z− x̄〉.

Thus, there exists c > 0 such that dist(z,Arg minh) ≤ c
√
h(z)− h(x̄) for all

z ∈ U. Combining this with [14, Theorem 5], we conclude that h satisfies the
KL property at x̄ with exponent 1

2 . ut

As a corollary of the preceding theorem, we consider the KL exponent
of a class of gauge regularized optimization problems. Recall that a convex
function γ : X → R ∪ {∞} is called a gauge if it is nonnegative, positively
homogeneous, and vanishes at the origin. It is clear that any norm is a gauge.
In the next corollary, we make explicit use of the gauge structure and replace
the relative interior condition in Theorem 4.4 by one involving the so-called
polar gauge. Recall from [28, Proposition 2.1(iii)] that for a gauge γ, its polar
can be given by γ◦(x) = supz{〈x, z〉 : γ(z) ≤ 1}; moreover, polar of norms are
their corresponding dual norms.
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Corollary 4.1 Let f be defined as in (3.11). Suppose that 0 ∈ ∂f(x̄) and
γ(x̄) > 0. Then γ◦(−A∗∇`(Ax̄)−v) = 1. Suppose in addition that −A∗∇`(Ax̄)−
v ∈ dom ∂γ◦ and the following relative interior condition holds:

A−1{Ax̄} ∩

(⋃
λ>0

λ (ri ∂γ◦(−A∗∇`(Ax̄)− v))

)
6= ∅. (4.36)

Then f satisfies the KL property at x̄ with exponent 1
2 .

Proof Since 0 ∈ ∂f(x̄), we see from [46, Exercise 8.8] that

w̄ := −A∗∇`(Ax̄)− v ∈ ∂γ(x̄).

Since we have from [28, Proposition 2.1(iv)] that γ∗ = δC with C = {x :
γ◦(x) ≤ 1}, we conclude from (2.1) that γ◦(w̄) ≤ 1 and γ(x̄) = 〈x̄, w̄〉. Since
γ(x̄) > 0, we also have from γ(x̄) = 〈x̄, w̄〉 and [28, Proposition 2.1(iii)] that

1 =
〈x̄, w̄〉
γ(x̄)

≤ sup
z
{〈w̄, z〉 : γ(z) ≤ 1} = γ◦(w̄).

Thus, it holds that γ◦(w̄) = 1.
Next, suppose in addition that w̄ ∈ dom ∂γ◦ and (4.36) holds. Let F (x, t)

be defined as in (3.12). Observe that

F (x, t) = `(Ã(x, t)) + 〈(v, 1), (x, t)〉+ σD◦(x, t)

where Ã(x, t) := Ax and D◦ is the polar of D, which is given by D◦ =
{(x, t) : γ◦(x) + t ≤ 0} according to the proof of [45, Theorem 15.4]. From our
assumption, the set {(x, t) : γ◦(x) ≤ t} is a C2-cone reducible closed convex
set, which implies that D◦ is also C2-cone reducible. Now, observe from [45,
Theorem 23.7] that for any (u, s) ∈ dom ∂γ◦ × R satisfying γ◦(u) + s = 0, we
have

ND◦(u, s) = cl

⋃
λ≥0

λ
(
∂γ◦(u), 1

) ,

which together with [45, Theorem 6.3] and [45, Corollary 6.8.1] gives

riND◦(u, s) =
⋃
λ>0

λ
(
ri ∂γ◦(u), 1

)
.

Applying this relation with (u, s) = (w̄,−γ◦(w̄)) = (w̄,−1) together with the
relative interior condition (4.36) shows that(

A−1{Ax̄} × R
)
∩ riND◦(w̄,−1) 6= ∅.

In view of this and [9, Corollary 3], we obtain that {
(
A−1{Ax̄}×R

)
, ND◦(w̄,−1)}

is boundedly linearly regular. It follows from Theorem 4.4 that F satisfies the
KL property at (x̄, γ(x̄)) with exponent 1

2 . Since f(x) = inft∈R F (x, t), we see
from Corollary 3.3 that f satisfies the KL property at x̄ with exponent 1

2 . ut
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While checking C2-cone reducibility directly using the definition can be
difficult, a sufficient condition related to standard constraint qualifications was
given in [47, Proposition 3.2].17 Specifically, let K ⊆ Y be a C2-cone reducible
closed convex set and G : X→ Y be a twice continuously differentiable function.
If G(x̄) ∈ K and G is nondegenerate at x̄ in the sense that

DG(x̄)X +
(
TK(G(x̄)) ∩

[
− TK(G(x̄))

])
= Y, (4.37)

then G−1(K) is a C2-cone reducible set. In particular, if g1, . . . , gm are C2

functions with {∇gi(x̄) : i ∈ I(x̄)} being linearly independent, where I(x̄) :=
{i : gi(x̄) = 0}, then the set {x : gi(x) ≤ 0, i = 1, . . . ,m} is C2-cone reducible
at x̄.

We will now present a few concrete examples of functions to which Theorem
4.4 and Corollary 4.1 can be applied, taking advantage of the aforementioned
sufficient condition (4.37) for checking C2-cone reducibility.

Example 4.2 Let ` : Y → R be a function that is strongly convex on any
compact convex set and has locally Lipschitz gradient, A : X→ Y be a linear
map, and v ∈ X.

(i) (Entropy-like regularization) Let X = Rn and Y = Rm. Denote

p(x) =


n∑
i=1

xi log(xi)− (

n∑
i=1

xi) log(

n∑
i=1

xi) if x ∈ Rn+,

∞ else,

with the convention that 0 log 0 = 0. This function is proper closed convex
and arises in the study of maximum entropy optimization [46, Example
11.12]. We claim that f(x) = `(Ax) + 〈v, x〉+ p(x) satisfies the KL property
with exponent 1

2 at any stationary point x̄. To see this, recall from [46,
Example 11.12] that

p(x) = σD(x), where D = {x ∈ Rn : g(x) ≤ 0},

and g(x) = log(
∑n
i=1 e

xi). Then we have from Theorem 4.4 that−A∗∇`(Ax̄)−
v ∈ D. Moreover, for all x ∈ D, ∇g(x) = ( ex1∑n

i=1 e
xi
, . . . , exn∑n

i=1 e
xi

) 6= 0. Thus,

in view of the discussion preceding this example, D is C2-cone reducible.
Finally, notice that for any x ∈ D, the set

ND(x) =

{⋃
λ≥0 λ{∇g(x)} if g(x) = 0,

{0} if g(x) < 0,

is polyhedral, and hence, {A−1{Ax̄}, ND(−A∗∇`(Ax̄)− v)} is boundedly
linearly regular [8, Corollary 5.26]. So, Theorem 4.4 implies that f satisfies
the KL property with exponent 1

2 at any stationary point x̄.

17 The quoted result is for C1-cone reducibility. However, it is apparent from the proof how
to adapt the result for C2-cone reducibility.
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(ii) (Positive semidefinite cone constraints) Let X = Sn and Y = Rm.
Using the C2-cone reducibility of Sn+, one can see that f(X) = `(AX) +
〈V,X〉+δSn+(X) satisfies the KL property with exponent 1

2 at any stationary

point X̄ when A−1{AX̄} ∩ ri
(
N−Sn+(−A∗∇`(AX̄)− V )

)
6= ∅. We note

that this result has also been derived in [19] via a different approach.
(iii) (Schatten p-norm regularization) Let X = Sn and Y = Rm. Let p ∈

[1, 2] ∪ {∞} and consider the following optimization model with Schatten
p-norm regularization:

f(X) = `(AX) + 〈V,X〉+ τ‖X‖p for all X ∈ Sn,

where ‖X‖p =
(∑n

i=1 |λi(X)|p
) 1
p and λn(X) ≥ λn−1(X) ≥ · · · ≥ λ1(X)

are eigenvalues of X. The dual norm of ‖ · ‖p is the Schatten q-norm with
1
p + 1

q = 1 where q ∈ {1} ∪ [2,∞]. Let g(λ1, . . . , λn) =
(∑n

i=1 |λi|q
) 1
q . It

can be directly verified that g is convex, symmetric and C2-cone reducible.
So, ‖X‖q = g(λ(X)) is also C2-cone reducible [18, Proposition 3.2]. Thus,
from Corollary 4.1, f satisfies the KL property with exponent 1

2 at any
nonzero stationary point X̄ under the relative interior condition (4.36) with
γ(X) = ‖X‖p.

5 KL exponents for some nonconvex models

5.1 Difference-of-convex functions

In this section, we study a relationship between the KL exponents of the
difference-of-convex (DC) function f in (3.13) and the auxiliary function F
in (3.14). In [36, Theorem 4.1], it was shown that if f in (3.13) satisfies the
KL property at x̄ ∈ dom ∂f with exponent 1

2 and P2 has globally Lipschitz
gradient, then F in (3.14) satisfies the KL property at (x̄,∇P2(Ax̄)) ∈ dom ∂F
with exponent 1

2 . Here we study the converse implication as a corollary to
Theorem 3.1.

Theorem 5.1 (KL exponent of DC functions) Suppose that f and F are
defined in (3.13) and (3.14) respectively. If F is a KL function with exponent
α ∈ [0, 1), then f is a KL function with exponent α.

Proof Let x̄ ∈ dom ∂f . We will show that f satisfies the KL property at x̄ with
exponent α.

Note that we have dom ∂f = dom ∂P1 thanks to [46, Corollary 10.9] and
the fact that continuous convex functions are locally Lipschitz continuous.
Hence, we actually have x̄ ∈ dom ∂P1.

Now, using [46, Exercise 8.8] and [46, Proposition 10.5], we have for any
ξ̄ ∈ ∂P2(Ax̄) that

∂F (x̄, ξ̄) =

[
∂P1(x̄)−A∗ξ̄
∂P ∗2 (ξ̄)−Ax̄

]
⊇
[
∂P1(x̄)−A∗ξ̄

0

]
. (5.1)
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where the inclusion follows from the fact that ∂P ∗2 = ∂P−1
2 (see [46, Proposi-

tion 11.3]). Since x̄ ∈ dom ∂P1, we see further from (5.1) that {x̄}×∂P2(Ax̄) ⊆
dom ∂F . Then condition (i) of Theorem 3.1 holds because one can show using
(2.1) that Arg miny F (x̄, y) = ∂P2(Ax̄). On the other hand, the assumption
on KL property of F shows that condition (ii) of Theorem 3.1 holds. Now, it
remains to prove that F is level-bounded in y locally uniformly in x before we
can apply Theorem 3.1 to establish the desired KL property.

To this end, we will show that for any x∗ ∈ X and β ∈ R, the following set
is bounded:

{(x, y) : ‖x− x∗‖ ≤ 1, F (x, y) ≤ β}. (5.2)

Suppose to the contrary that the above set is unbounded for some x∗ and β.
Then there exists a sequence

{(xk, yk)} ⊆ {(x, y) : ‖x− x∗‖ ≤ 1, F (x, y) ≤ β} (5.3)

with ‖yk‖ → ∞. Passing to a subsequence if necessary, we may assume without

loss of generality that xk → x̃ for some x̃ ∈ B(x∗, 1) and that limk
yk

‖yk‖ exists.

Denote this latter limit by d. Then ‖d‖ = 1. Next, using the definition of
{(xk, yk)} in (5.3) and the definition of F , we have for all sufficiently large k
that

β ≥ F (xk, yk) = P1(xk)− 〈Axk, yk〉+ P ∗2 (yk) ≥ f(xk) (5.4)

⇒ β

‖yk‖
≥ P1(xk)

‖yk‖
−
〈
Axk, yk

‖yk‖

〉
+
P ∗2 (yk)

‖yk‖
, (5.5)

where the second inequality in (5.4) follows from the definition of Fenchel
conjugate. Then we see in particular from (5.4) and the closedness of f that
x̃ ∈ dom f = domP1. Using this, the closedness of P1 and the definition of d,
we have upon passing to limit inferior in (5.5) that

0 ≥ −〈Ax̃, d〉+ lim inf
k→∞

P ∗2 (yk)

‖yk‖
(a)

≥ −〈Ax̃, d〉+ (P ∗2 )∞(d)

(b)
= −〈Ax̃, d〉+ σdomP2

(d) = −〈Ax̃, d〉+ sup
x∈domP2

{〈x, d〉},

where (a) follows from [7, Theorem 2.5.1] and (b) follows from [7, Theorem 2.5.4].
Since domP2 = Y, we deduce from the above inequality that d = 0, which
contradicts the fact that ‖d‖ = 1. Thus, we have shown that (5.2) is bounded
for any x∗ ∈ X and any β ∈ R, which implies that F is level-bounded in y
locally uniformly in x. This completes the proof. ut



Kurdyka- Lojasiewicz exponent via inf-projection 37

5.2 Bregman envelope

In this section, we discuss the KL exponent of the Bregman envelope (3.15) of
a proper closed function. We consider the following assumption on φ in (3.16),
which is general enough for the corresponding (3.15) to include the celebrated
Moreau envelope and the forward-backward envelope introduced in [49] as
special cases. Further comments on this assumption will be given in Remark 5.1
below.

Assumption 5.1 The function φ in (3.16) is twice continuously differentiable
and there exists a1 > 0 such that for all x ∈ X,

∇2φ(x)− a1I � 0; (5.6)

here I is the identity map, and for a linear map A : X→ X, A � 0 means it is
positive semidefinite, i.e., A = A∗ and 〈h,Ah〉 ≥ 0 for all h ∈ X.

Given a proper closed function f and a function φ satisfying Assumption 5.1,
we first analyze the KL property of the following auxiliary function:

F (x, y) := f(y) + Bφ(y, x) (5.7)

with Bφ defined in (3.16). For this function, applying [46, Proposition 8.8]
and [46, Proposition 10.5], we have the following formula for ∂F at any x ∈ X
and y ∈ dom f ,

∂F (x, y) =

[
−∇2φ(x)(y − x)

∂f(y) +∇φ(y)−∇φ(x)

]
. (5.8)

This formula will be used repeatedly in our discussion below.

Lemma 5.1 Let f : X→ R ∪ {∞} be a KL function with exponent α ∈ [ 1
2 , 1).

Let F be defined in (5.7) with φ satisfying Assumption 5.1. Then F is a KL
function with exponent α.

Proof Thanks to [34, Lemma 2.1], it suffices to show that F satisfies the
KL property at any point (x, y) with 0 ∈ ∂F (x, y). Let (x̄, ȳ) be such that
0 ∈ ∂F (x̄, ȳ). Then in view of (5.8), we see that 0 ∈ ∂F (x̄, ȳ) implies that
∇2φ(x̄)(ȳ − x̄) = 0. Combining this with (5.6) we deduce that ȳ = x̄.

Next, since f is a KL function with exponent α, there exist c, η, ε > 0 such
that

1

c
dist

1
α (0, ∂f(y)) ≥ f(y)− f(x̄) (5.9)

whenever y ∈ B(x̄, ε)∩dom ∂f and f(y) < f(x̄)+η. Since φ is twice continuously
differentiable, by shrinking ε further if necessary, we see that there exists b1 > a1

with a1 being as in (5.6) such that for any (x, y) ∈ B((x̄, x̄), ε), there exists
x0 ∈ B(x̄, ε) so that

‖∇φ(y)−∇φ(x)‖ ≤ b1‖y − x‖
and 〈y − x,∇φ(y)−∇φ(x)〉 = 〈y − x, [∇2φ(x0)](y − x)〉.
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To the second relation in the above display, apply Cauchy-Schwartz inequality
to the left hand side and apply (5.6) to the right hand side to obtain ‖y −
x‖‖∇φ(x) −∇φ(y)‖ ≥ a1‖y − x‖2. Combining this with the first relation in
the above display, we obtain that

b1‖y − x‖ ≥ ‖∇φ(y)−∇φ(x)‖ ≥ a1‖y − x‖. (5.10)

Now, combining (5.8) with [34, Lemma 2.2], we deduce that there exists
C0 > 0 such that for (x, y) ∈ B((x̄, x̄), ε) with y ∈ dom ∂f ,

dist
1
α (0, ∂F (x, y))

≥ C0

(
‖∇2φ(x)(y − x)‖ 1

α + inf
ξ∈∂f(y)

‖ξ +∇φ(y)−∇φ(x)‖ 1
α

)
(a)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α + (a1b

−1
1 )

1
α inf
ξ∈∂f(y)

‖ξ +∇φ(y)−∇φ(x)‖ 1
α

)
(b)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α +(a1b

−1
1 )

1
α inf
ξ∈∂f(y)

η1‖ξ‖
1
α−(a1b

−1
1 )

1
α η2‖∇φ(y)−∇φ(x)‖ 1

α

)
(c)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α + (a1b

−1
1 )

1
α inf
ξ∈∂f(y)

η1‖ξ‖
1
α − a

1
α
1 η2‖y − x‖

1
α

)
≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖ 1

α + ‖y − x‖ 1
α

)
,

(5.11)

where (a) follows from (5.6) and the fact that
(
a1
b1

) 1
α

< 1, (b) follows from

[34, Lemma 3.1] for some η1 > 0 and η2 ∈ (0, 1), (c) follows from the first
inequality in (5.10), and the last inequality holds with C1 := C0 min{(1 −
η2)a

1
α
1 , η1(a1b

−1
1 )

1
α } > 0.

Next, since ∇φ is Lipschitz continuous on B(x̄, ε/2) with Lipschitz constant
b1 in view of (5.10), by shrinking ε further, we may assume 2b1ε

2 < 1 and that
for any (x, y) ∈ B((x̄, x̄), ε),

0 ≤ Bφ(y, x) = φ(y)− φ(x)− 〈∇φ(x), y − x〉

≤ b1
2
‖y − x‖2 ≤ b1

2
(2ε)2 < 1,

(5.12)

where the first inequality follows from the convexity of φ. Combining this with
(5.11), we deduce further that for (x, y) ∈ B((x̄, x̄), ε) with y ∈ dom ∂f and
F (x, y) < F (x̄, x̄) + η,

dist
1
α (0, ∂F (x, y)) ≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖ 1

α +
(
2b−1

1 Bφ(y, x)
) 1

2α

)
(a)

≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖ 1

α + (2b−1
1 )

1
2αBφ(y, x)

)
(b)
= C1c

(
inf

ξ∈∂f(y)
c−1‖ξ‖ 1

α + (2b−1
1 )

1
2α c−1Bφ(y, x)

)
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(c)

≥ C2

(
inf

ξ∈∂f(y)
c−1‖ξ‖ 1

α + Bφ(y, x)

)
(d)

≥ C2 (f(y)− f(x̄) + Bφ(y, x))

= C2 (F (x, y)− F (x̄, x̄))

where (a) holds because 1
2α ≤ 1 and Bφ(y, x) < 1, thanks to (5.12), the constant

c for (b) comes from (5.9), (c) holds with C2 := C1cmin{1, (2b−1
1 )

1
2α c−1},

(d) follows from (5.9) because (x, y) ∈ B((x̄, x̄), ε), y ∈ dom ∂f and f(y) ≤
F (x, y) < F (x̄, x̄) + η = f(x̄) + η, and the last equality holds because f(x̄) =
F (x̄, x̄). This completes the proof. ut

We are now ready to analyze the KL property of the Bregman envelope Fφ
in (3.15).

Theorem 5.2 (KL exponent of Bregman envelope) Let f : X → R ∪
{∞} be a proper closed function with inf f > −∞. Suppose that φ satisfies
Assumption 5.1 and that f is a KL function with exponent α ∈ [ 1

2 , 1). Then
Fφ defined in (3.15) is a KL function with exponent α.

Proof Let F be defined as in (5.7). We will use Theorem 3.1 to deduce the KL
exponent of Fφ from that of F . To this end, we need to check all the conditions
required by Theorem 3.1.

First, we claim that F is level-bounded in y locally uniformly in x. To prove
this, fix any x0 ∈ X and t ∈ R. Define

Ux0 := {(x, y) : ‖x− x0‖ ≤ 1, F (x, y) ≤ t}.

Thus, it suffices to show that Ux0
is bounded. To this end, note that φ is

strongly convex with modulus a1 according to Assumption 5.1. We have from
this and the definition of Bregman distance that for any (x, y) ∈ Ux0 ,

a1

2
‖x− y‖2 ≤ Bφ(y, x).

Since inf f > −∞ by assumption, we deduce further that for any (x, y) ∈ Ux0
,

inf f +
a1

2
‖x− y‖2 ≤ inf f + Bφ(y, x) ≤ f(y) + Bφ(y, x) = F (x, y) ≤ t.

Since x ∈ B(x0, 1), we deduce from the above inequality that Ux0
is bounded.

Thus, we have shown that F is level-bounded in y locally uniformly in x.
Next, using [46, Exercise 8.8], we have for any x ∈ dom ∂Fφ and any

ȳ ∈ Arg miny F (x, y) that

0 ∈ ∂f(ȳ) +∇Bφ(·, x)(ȳ),

which implies that ∂f(ȳ) 6= ∅. This together with (5.8) implies that ∂F (x, ȳ) 6= ∅
for any such x and ȳ. In particular, condition (i) in Theorem 3.1 is satisfied.

Finally, note that condition (ii) in Theorem 3.1 is also satisfied thanks
to Lemma 5.1. Thus, we deduce from Theorem 3.1 that Fφ satisfies the KL
property with exponent α at any x ∈ dom ∂Fφ. ut
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Remark 5.1 The Bregman envelope (3.15) with φ satisfying Assumption 5.1
covers several envelopes studied in the literature.

(i) When φ(·) = 1
2λ‖ · ‖

2 with some λ > 0, the function Fφ in (3.15) becomes

Fφ(x) = inf
y

{
f(y) +

1

2λ
‖x− y‖2

}
=: eλf(x).

This function is known as the Moreau envelope of f . In [34, Theorem 3.4],
it was proved that if f is a convex KL function with exponent α ∈ (0, 2

3 )
that is continuous on dom ∂f , then eλf is a KL function with exponent

max
{

1
2 ,

α
2−2α

}
. Here, without the convexity and continuity assumptions,

we can obtain a tighter estimate on the KL exponent of eλf via Theorem
5.2: if f is a KL function with exponent α ∈ [ 1

2 , 1) and inf f > −∞, then
eλf is a KL function with exponent α.

(ii) If the function f in (3.15) takes the form h+ g, where g is a proper closed
function, and h is twice continuously differentiable with Lipschitz gradient
whose modulus is less than 1

γ , then the function φ(x) := 1
2γ ‖x‖

2 − h(x)
is convex and satisfies Assumption 5.1. The forward-backward envelope
ψγ of the function f = h+ g was defined in [49] as follows (see also the
discussion in [35, Section 2]):

ψγ(x) = inf
y
{h(y) + g(y) + Bφ(y, x)}.

In [35, Theorem 3.2], it was shown that if the first-order error bound
condition (or error bound condition in the sense of Luo-Tseng) holds
for h + g, with h being in addition analytic and g being in addition
convex, continuous on dom ∂g, subanalytic and bounded below, then ψγ
is a KL function with exponent 1

2 . Here, in view of Theorem 5.2, we can
deduce the KL exponent of ψγ without the convexity and (sub)analyticity
assumptions: if f = h+ g is a KL function with exponent α ∈ [ 1

2 , 1) and
inf f > −∞, g is a proper closed function, and h is twice continuously
differentiable with Lipschitz gradient whose modulus is less than 1

γ , then
ψγ is a KL function with exponent α.

5.3 Least squares loss function with rank constraint

In this section, we compute an explicit KL exponent of the function f in
(3.17), which can be rewritten as an inf-projection as in (3.18). Now, observe
further that one can relax the orthogonality constraint and introduce a penalty
function without changing the optimal value in (3.18), i.e.,

f(X) = inf
U

{
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2F + δD̃(X,U)︸ ︷︷ ︸

f̃(X,U)

+δB̃(X,U)

}
,

(5.13)
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where

D̃ := {(X,U) ∈ Rm×n × Rm×(m−k) : UTX = 0},
B̃ := {(X,U) ∈ Rm×n × Rm×(m−k) : 0.5Im−k � UTU � 2Im−k},

where A � B means the matrix B − A is positive semidefinite. In view of
(5.13), as another application of Theorem 3.1, we will deduce the KL exponent
of f via that of f̃ + δB̃.

We start with the following result, which is of independent interest.

Theorem 5.3 Let h : X → R and G : X → Y be continuously differentiable.
Assume that G−1{0} 6= ∅ and define the functions g and g1 by

g(x) := h(x) + δG−1{0}(x), g1(x, λ) := h(x) + 〈λ,G(x)〉.

Let x̄ ∈ dom ∂g and suppose that the linear map ∇G(x̄) : Y→ X is injective.
Then the following statements hold:

(i) There exists ε > 0 so that for each x ∈ B(x̄, ε), the function λ 7→
‖∇h(x) +∇G(x)λ‖ has a unique minimizer.

(ii) If g1 satisfies the KL property at (x̄, λ(x̄)) with exponent α, then g satisfies
the KL property at x̄ with exponent α, where λ(x̄) is the unique minimizer
of λ 7→ ‖∇h(x̄) +∇G(x̄)λ‖.

Proof We first prove (i). Since ∇G(x̄) is an injective linear map and x 7→ ∇G(x)
is continuous, there exists an ε > 0 so that ∇G(x) is an injective linear map
whenever x ∈ B(x̄, ε). Then statement (i) follows immediately because the
function λ 7→ ‖∇h(x) + ∇G(x)λ‖ is minimized if and only if the quantity
‖∇h(x) +∇G(x)λ‖2 is minimized, and this latter function is a strongly convex
function in λ whenever x ∈ B(x̄, ε), thanks to the fact that ∇G(x) is an
injective linear map from Y to X.

We now prove (ii). Let x ∈ B(x̄, ε) and λ(x) denote the unique minimizer
of λ 7→ ‖∇h(x) +∇G(x)λ‖. Then λ(x) is also the unique minimizer of λ 7→
‖∇h(x) +∇G(x)λ‖2. Using the first-order optimality condition, we see that
λ(x) has to satisfy the relation ∇G(x)∗ (∇h(x) +∇G(x)λ(x)) = 0, which gives

λ(x) = −(∇G(x)∗∇G(x))−1(∇G(x)∗∇h(x));

here the inverse exists because ∇G(x) is injective. Since h and G are continu-
ously differentiable, we conclude that λ is a continuous function on B(x̄, ε).

Since g1 satisfies the KL property at (x̄, λ(x̄)) with exponent α, there
exist a, ν, c > 0 such that whenever (x, λ) ∈ B ((x̄, λ(x̄)), ν) and g1(x̄, λ(x̄)) <
g1(x, λ) < g1(x̄, λ(x̄)) + a, it holds that

‖∇g1(x, λ)‖ ≥ c (g1(x, λ)− g1(x̄, λ(x̄)))
α
. (5.14)

Next, using [46, Exercise 8.8], for any x ∈ B(x̄, ε) ∩ dom ∂g, we have

∂g(x) = ∇h(x) +NG−1{0}(x) ⊆ ∇h(x) + {∇G(x)λ : λ ∈ Y} ,
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where the inclusion follows from [46, Corollary 10.50] and the injectivity of
∇G(x). This implies that for any x ∈ B(x̄, ε) ∩ dom ∂g,

dist(0, ∂g(x)) ≥ inf
λ
‖∇h(x) +∇G(x)λ‖ = ‖∇h(x) +∇G(x)λ(x)‖, (5.15)

where the equality follows from the definition of λ(x) as the unique minimizer.
On the other hand, we have for any x ∈ dom ∂g and any λ that

∇g1(x, λ) =

[
∇h(x) +∇G(x)λ

G(x)

]
=

[
∇h(x) +∇G(x)λ

0

]
, (5.16)

where the second equality holds because G(x) = 0 whenever x ∈ dom ∂g.
Combining (5.16) with (5.15), we then obtain for any x ∈ B(x̄, ε) ∩ dom ∂g
that

dist(0, ∂g(x)) ≥ ‖∇g1(x, λ(x))‖. (5.17)

Now, choose 0 < ε′ < min{ε, ν√
2
} small enough so that when x ∈ B(x̄, ε′)∩

dom ∂g, we have ‖λ(x)−λ(x̄)‖ ≤ ν√
2
; such an ε′ exists thanks to the continuity

of λ(·). This implies that (x, λ(x)) ∈ B ((x̄, λ(x̄)), ν) whenever x ∈ B(x̄, ε′) ∩
dom ∂g. Therefore, for x ∈ B(x̄, ε′) ∩ dom ∂g with g(x̄) < g(x) < g(x̄) + a, we
have (x, λ(x)) ∈ B ((x̄, λ(x̄)), ν) and

g1(x̄, λ(x̄)) = g(x̄) < g(x) = g1(x, λ(x)) < g(x̄) + a = g1(x̄, λ(x̄)) + a.

For these x, combining (5.14) with (5.17), we have

dist(0, ∂g(x)) ≥ c
(
g1(x, λ(x))− g1(x̄, λ(x̄))

)
α = c (g(x)− g(x̄))

α
,

where the equality holds because G(x) = 0 whenever x ∈ dom ∂g. This com-
pletes the proof. ut

We now make use of Theorem 5.3 to deduce the KL exponent of f̃ + δB̃
in (5.13) at points (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k. For notational
simplicity, we write

τ := mn+m(m− k) + n(m− k)− 1. (5.18)

Lemma 5.2 The function f̃ + δB̃ given in (5.13) satisfies the KL property

with exponent 1− 1
4·9τ at points (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k,

where τ is given in (5.18).

Proof Define the function G : Rm×n ×Rm×(m−k) → R(m−k)×n by G(X,U) :=
UTX, one can rewrite f̃ as

f̃(X,U) =
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2F + δG−1{0}(X,U).

Now, for X ∈ Rm×n, U ∈ Rm×(m−k) and Λ ∈ R(m−k)×n, define

f̃1(X,U,Λ) :=
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2F + tr(ΛTUTX).
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Note that f̃1 is a polynomial of degree 4 on Rτ where τ is given in (5.18). We
deduce from [20, Theorem 4.2] that f̃1 is a KL function with exponent 1− 1

4·9τ .

Next, since (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k, we see that (X̄, Ū)

lies in the interior of B̃. Thus, we have (X̄, Ū) ∈ dom ∂f̃ . We will now check
the conditions in Theorem 5.3 for the functions f̃1 and f̃ (in place of g1 and
g, respectively) at (X̄, Ū). Notice first that the functions (X,U) 7→ 1

2‖AX −
b‖2 + 1

2‖U
TU − Im−k‖2F and G are continuously differentiable, and G−1{0} is

clearly nonempty. We next claim that the linear map ∇G(X̄, Ū) is injective.
To this end, let Y ∈ ker∇G(X̄, Ū). Then, using the definition of the derivative
mapping of G, for any (H,K) ∈ Rm×n × Rm×(m−k), we have

0 = 〈(H,K), [∇G(X̄, Ū)](Y )〉 = 〈[DG(X̄, Ū)](H,K), Y 〉
= 〈ŪTH +KT X̄, Y 〉 = 〈H, ŪY 〉+ 〈X̄Y T ,K〉.

Since H and K are arbitrary, we deduce that

ŪY = 0 and X̄Y T = 0.

These together with ŪT Ū = Im−k imply that Y = 0. Thus, it holds that
ker (∇G(X̄, Ū)) = {0}, i.e., ∇G(X̄, Ū) is an injective linear map. Now, using
Theorem 5.3, we conclude that f̃ satisfies the KL property at (X̄, Ū) with
exponent 1− 1

4·9τ .

Finally, since (X̄, Ū) ∈ int B̃, one can verify directly from the definition
that, at (X̄, Ū), the KL exponent of f̃ + δB̃ is the same as that of f̃ . This
completes the proof. ut

Now we are ready to compute the KL exponent of f in (3.17). Interestingly,
the derived KL exponent can be determined explicitly in terms of the number
of rows/columns of the matrix involved and the upper bound constant in the
rank constraint.

Theorem 5.4 The function f given in (3.17) is a KL function with exponent
1− 1

4·9τ , where τ is given in (5.18).

Proof Notice that f(X) = infU (f̃ + δB̃)(X,U) and that for any X ∈ dom ∂f ,

Arg min
U

(f̃ + δB̃)(X,U) = {U : UTX = 0 and UTU = Im−k}, (5.19)

where f̃ + δB̃ is given in (5.13). We will check the conditions in Theorem 3.1
and apply the theorem to deducing the KL exponent of f .

First, the function f̃ + δB̃ is clearly proper and closed. Next, for any fixed

X, the U with (X,U) ∈ D̃ ∩ B̃ satisfies 0.5Im−k � UTU � 2Im−k. This shows
that f̃ + δB̃ is bounded in U locally uniformly in X. Furthermore, for any

X ∈ dom ∂f and any U ∈ Arg minU (f̃ + δB̃)(X,U), we have using (5.19)
and [46, Exercise 8.8] that

∂(f̃ + δB̃)(X,U) = (A∗(AX − b), 0) +ND̃∩B̃(X,U) 6= ∅.
These together with (5.19) and Lemma 5.2 implies that the conditions required
by Theorem 3.1 are satisfied. Applying Theorem 3.1, we conclude that f is a
KL function of exponent 1− 1

4·9τ . ut
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6 Concluding remarks

In this paper, we show that the KL exponent is preserved via inf-projection,
under mild assumptions. The result is then used for studying KL exponents
of various convex and nonconvex models, including some SDP-representable
functions, convex functions involving C2-cone reducible structures, Bregman
envelopes, and more specifically, the sum of the least squares loss function and
the indicator function of matrices of rank at most k.

Although several important calculus rules have been developed in this
manuscript and the previous work [34], the KL exponents of some commonly
used nonconvex models are still unknown, such as the least squares loss function
with `1−2 regularization [57]. Estimating the exponents for these models is an
interesting future research question. Another future research direction will be
to look at how KL exponent behaves under other important operations such
as taking the maximum of finitely many or the supremum of infinitely many
functions, as discussed in Remark 3.1. Finally, notice that many of our results
in this paper for convex models require the strict complementarity condition
0 ∈ ri ∂f(x). It will be interesting to identify suitable assumptions (other than
polyhedral settings) under which the strict complementarity condition can be
relaxed, as discussed in Remark 4.4.
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