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Coordinating quality, time, and carbon emissions in perishable food 

production: A new technology integrating GERT and the Bayesian 

approach 

Abstract: This study concerns improving the performance of perishable food production from the 

joint perspective of management and technology. We consider a new idea about sustainable quality 

management for perishable food, which has aroused growing concern recently. Quality 

improvement activities (QIAs) should be carried out within the framework of the sustainable 

development. This motivates us to explore the tradeoffs among three sustainable metrics which 

involve quality, time and carbon emissions in perishable food production when optimizing QIA 

decision making. Our main contribution is proposing a new technology integrating Graphic 

Evaluation and Review Technique (GERT) and Bayesian approach, in which GERT can present the 

uncertainty of the three metrics and forecast their expected trends, and Bayesian approach can 

evaluate the probabilistic changes of the three metrics resulting from QIA decision making. To the 

best of our knowledge, this study is the first to use the above decision-making technology in food 

quality management. Furthermore, a multi-objective optimization model is built and a customized 

multi-objective particle swarm optimization is employed to generate the three-dimensional Pareto 

front to aid the decision making. We take bottled milk production as an example and present a case 

study on a famous Chinese dairy manufacturing firm. Numerical results and managerial insights 

show the advantages of our technology which include: (1) we can mitigate uncertainty, but does not 

change the random nature of food production; (2) we can reinforce the stability of the probabilistic 

change of the three metrics by increasing of the QIA-trial size; (3) we can visualize the optimal 

tradeoffs among the three metrics from different angles of view; and (4) we can figure out 
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2  

individualized sustainable quality management plans which are node-oriented and 

objective-oriented. In conclusion, we hope this study can be a beneficial supplement to the quality 

management field of perishable food with respect to technology innovation. 

Keywords: sustainability; food quality; Graphic Evaluation and Review Technique; Bayesian 

approach; multi-objective optimization 

1. Introduction 

“Perishable food” refers to food to which spoilage will quickly occur without being kept 

refrigerated or frozen, such as meat, dairy, seafood, and so on (Buisman et al., 2019; Chernonog and 

Avinadav, 2019). Perishable food supply chain (PFSC) is defined as a supply chain that concerns 

the processes from farm to fork with respect to perishable food (Behzadi et al., 2018; Chen et al., 

2018; Utomo et al., 2018). Due to the perishable characteristics, decisions on energy-sensitive 

technologies and mechanical use need to be made during the supply chain activities, which entails 

the correlation between quality and sustainability (Stefansdottir et al., 2018). The term 

“sustainability”, defined as the harmony among ecological, economic and social aspects, also 

emphasizes the waste management and resource conservation in the perishable food sector 

(Sgarbossa and Russo, 2017; Mangla et al., 2018). As a matter of fact, high quality can reduce 

perishable food loss, and further meet the social demand (Govindan, 2018; Irani et al., 2018). That 

is, it not only has a negative impact on the environmental issues, but also benefits the social issues 

(Willersinn et al., 2015; Rohmer et al., 2019). Therefore, perishable food quality, in a general sense, 

belongs to the broad category of sustainability (Baldwin, 2009; Akkerman et al., 2010). All these 

contribute to the increasing research interest in food quality management in the context of 

sustainability. 
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This study proposes a new idea about sustainable quality management in perishable food 

production (SQMPFP) which is a process by which the decision maker (DM) reviews the quality of 

all factors involved in perishable food production from the perspectives of sustainable metrics. 

Previous studies usually passively preserve food quality by binding quality concern with logistics 

and supply chain optimization problems (Zhang et al., 2003; Rong et al., 2011; Soysal et al., 2014; 

Sel et al., 2015; Li et al., 2016; Banasik et al., 2017; Hsiao et al., 2017; Musavi and Bozorgi-Amiri., 

2017; He et al.,2018; Shankar et al.,2018; Tabrizi et al., 2018; Tsang et al., 2018). The neglect of 

sustainability concern also causes imperfect quality management plans. Unlike these studies, the 

SQMPFP, in a more active way, immediately optimizes food quality from the perspective of 

technical means. In fact, quality development relies on the technical means employed in the 

production steps rather than supply chain entities (Stefansdottir et al., 2018). Thus, there is an 

urgent demand to reexamine the characteristics of perishable food quality development triggered by 

technical means and driven by sustainable considerations. 

The SQMPFP exhibits the following three characteristics. First, the quality development is 

shown as the generation, transfer, and integration of perishable food quality during production from 

the perspective of technical means, which is decided by personnel, equipment-related, raw-material, 

technological, and environmental factors. In terms of these factors, the decisions on quality 

improvement activities (QIAs) selection can be made to affect the quality of food being produced 

(Besik and Nagurney, 2017). For example, when cows produce raw milk, the QIA candidates 

include forage detecting, feeder training, antibiotics testing, as well as the combination of these 

single QIAs. Second, not only the production steps, but also the QIAs carried out in the production 

steps, demand time and energy which will result in time consumption and carbon emissions (de 
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Jong, 2013). However, the available time is restricted by short shelf life of perishable food 

(Ala-Harja and Helo, 2014; Teng et al., 2016; Feng et al., 2017; Li et al., 2017; Tiwari et al., 2018). 

Energy consumption is strictly limited to the low-carbon emissions (Allaoui et al., 2018; Huang et 

al., 2018). Therefore, there may exist possible tradeoffs among the three sustainable metrics 

including quality, time and carbon emissions from the perspective of the whole production process. 

Third, the three sustainable metrics are all under uncertainties (Rong et al., 2011; Ting et al., 2014). 

In respect of a production step, uncertainties emerge due to temperature- and time-sensitive nature 

of perishable food (Aung and Chang, 2014a; He et al., 2018). The perishability of food leads to 

vague resource inputs (e.g., time and energy) and quality output (Gillibert et al., 2018; Tabrizi et al., 

2018). In respect of a QIA, uncertainties result from the reasonability of mechanized use and 

employed technologies in it (Yaseen et al., 2017). Different QIA decision making at a production 

step leads to different effects on quality, time and carbon emissions of the production step. 

Two difficulties then arise when optimizing QIA decision making. One is the accuracy of 

forecasts of quality, time, and carbon emissions with stochastic nature both of production steps and 

QIAs. The other is the link between a production step and its possible QIA, which can figure out the 

probabilistic differences between pre-QIA-decision-making and post-QIA-decision-making 

sustainable metrics of a production step. This study proposes a novel decision-making technology 

which integrates Graphic Evaluation and Review Technique (GERT) and Bayesian approach, where 

GERT can be used to generate measures of presenting the uncertainty of the three sustainable 

metrics during perishable food production and forecast their expected trends, and Bayesian 

approach can evaluate the dynamic changes of sustainable metrics of all production steps resulting 

from QIA decision making. To the best of our knowledge, this study is the first to use the above 
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decision-making technology in food quality management. Furthermore, this study builds a 

multi-objective optimization model to search for the best tradeoffs among the three sustainable 

metrics. 

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3 

presents the Bayesian-updated GERT. Section 4 proposes a multi-objective model and its solution 

approach. Section 5 shows the computational results and insights. Section 6 states the conclusions. 

2. Literature Review 

2.1. Perishable food quality 

Works related to perishable food quality have been conducted on different levels. From the 

perspective of the whole PFSC, researches by Aung and Chang (2014b) and Shankar et al. (2018) 

both develop a traceability system, whereas the study by Dania et al. (2018) highlights the supply 

chain collaboration. Aiming at some segments of PFSC or the sub-problems of PFSC optimization, 

studies preserve perishable food quality in location-allocation problems (Zhang et al., 2003; Musavi 

and Bozorgi-Amiri, 2017; Jonkman et al., 2019), routing-allocation problems (Soysal et al., 2014; 

Tsang et al., 2018), production-distribution problems (Rong et al., 2011; Sel et al., 2015; Li et al., 

2016; Banasik et al., 2017), pricing-inventory problems (Teng et al., 2016; Feng et al., 2017; Li et 

al., 2017; Tabrizi et al., 2018; Tiwari et al., 2018), and customer behavior problems 

(Aschemann-Witzel et al., 2018; He et al.,2018; Singh et al.,2018; Yoo and Cheong, 2018). In 

addition, micro-level studies are also recommended by designing the multi-temperature storing 

space for transport vehicles (Hsiao et al., 2017), determining an optimum target temperature range 

for refrigerated storage (Aung and Chang, 2014a; de Frias et al., 2018; Ndraha et al., 2018), and 

adopting edible coating or packaging to protect the perishable foods (Arnon-Rips and Poverenov, 
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2018; Bortolini et al., 2018). However, several limitations exist in the above studies: 

 Perishable food quality management is treated as a passive concept. 

 Perishable food quality is addressed without sustainable consideration. 

 The positive effect of perishable food quality on sustainability is ignored. 

 Quality management is addressed more from the management than from the technology 

perspective. 

2.2. Quality uncertainty and dynamics 

Being aware of that the quality degradation of perishable food depends on time and 

temperature, researches address dynamics of food quality by using quality degradation equations 

(Zhang et al., 2003), proposing a minimum residual shelf life and quality control time (Sel et al., 

2015), defining a quality level index to trace the quality decrease (Li et al., 2016; Jonkman et al., 

2019), and characterizing quality level by a stepped decrease function with time (Musavi and 

Bozorgi-Amiri, 2017; Hsiao et al., 2017). The first commonality among the above studies lies in 

that the dynamics of food quality addressed are only driven by the self-nature of perishable food, 

few studies have paid attention to dynamics triggered by external factors, such as QIA decision 

making. Second is that most studies formulate the dynamics of food quality without considering 

uncertainty. Although Rong et al. (2011) consider that the expected quality at given time periods 

and temperatures can demonstrate the trend of quality degradation, the quality uncertainty has not 

yet been really targeted. A few researches try to use sampling tests to distinguish whether the food 

conforms to the quality specification (Chen et al., 2014; Sader et al., 2018) or whether the food is 

contaminated (Chebolu-Subramanian and Gaukler, 2015), but the uncertainty in these articles has 

not involved the quality dynamics. Therefore, the combined consideration of quality uncertainty and 
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dynamics of perishable food is rare. 

2.3. Multi-objective optimization 

When developing objectives for optimization models, cost or profit is a common metric due to 

the commercial nature of perishable food (Zhang et al., 2003; Rong et al., 2011; Sel et al., 2015; Li 

et al., 2016; Hsiao et al., 2017; Jonkman et al., 2017; Albornoz and Urrutia–Gutiérrez, 2018; Aras 

and Bilge, 2018; Mogale et al., 2018b). According to Table 1, numerous studies put forward other 

metrics, such as temporal, social, and environmental impacts. To coordinate these conflicting 

metrics, multi-objective modelling is employed by Govindan et al. (2014), Soysal et al. (2014), 

Banasik et al. (2017), Miranda-Ackerman et al. (2017), Musavi and Bozorgi-Amiri (2017), Allaoui 

et al. (2018), Bortolini et al. (2018), Jonkman et al. (2019), Mogale et al. (2018a), Tsang et al. 

(2018), Jonkman et al. (2019), and Rohmer et al. (2019). The common limitations of them are: 

 Perishable food quality maximization has not yet been pursued as an independent goal. 

 Little research considers perishable food quality as a sustainable metric. 

 The relationships between the quality and other sustainable metrics have not yet been 

explored. 

In addition, the Pareto front is necessary in multi-objective problems (Ehrgott, 2005). This 

study respects the existing approaches, such as ε-constraint method (Soysal et al., 2014; Banasik et 

al., 2017; Allaoui et al., 2018; Rohmer et al., 2019), normalized normal constraint method (Bortolini 

et al., 2018), genetic algorithm (Miranda-Ackerman et al., 2017; Musavi and Bozorgi-Amiri, 2017; 

Kowalski et al., 2018; Tsang et al., 2018), and particle swarm optimization (Govindan et al., 2014; 

Tabrizi et al., 2018), but we employ a customized particle swarm optimization algorithm to fit our 

model. 
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Table 1 A summary of relevant works 

Paper Topic Sustainability 
Quality 
control 

Uncertainty 
of quality 

Dynamics 
of quality 

Multiple 
objectives 

Objectives 
details 

Solution 
method 

Zhang et al. (2003) 
Location-allocation 
for cold chain 

 √  √  Cost 
Meta- 
heuristic 

Rong et al. (2011) 
Production and 
distribution for food 
supply chain 

 √ √ √  Cost 
Exact 
approach 

Govindan et al. 
(2014) 

Location–routing for 
perishable food 
supply chain network 

√    √ 
Cost, 
environmental 
impact 

Meta- 
heuristic 

Soysal et al. (2014) 
Vehicle routing, 
resource allocation for 
beef transportation 

√ √   √ 
Cost, 
carbon emission 

Exact 
approach 

Sel et al. (2015) 
Production and 
distribution for dairy 
supply chain 

 √  √  Cost 
Meta- 
heuristic 

Li et al. (2016) 
Production and 
distribution for 
perishable food 

 √  √  profit 
Exact 
approach 

Banasik et al. 
(2017) 

Production and 
distribution in food 
supply chain 

√ √   √ 
Cost, 
environmental 
impact 

Exact 
approach 

Hsiao et al. (2017) 
Resource allocation 
for cold chain 

 √  √  Cost 
Meta- 
heuristic 

Jonkman et al. 
(2017) 

Location-allocation 
for food process 
design 

     Profit 
Exact 
approach 

Miranda-Ackerman 
et al. (2017) 

Agro-food supply 
chain network design 

√    √ 
Cost, 
environmental 
impact 

Meta- 
heuristic 

Musavi and 
Bozorgi-Amiri 
(2017) 

Facility location, 
vehicle routing for 
food supply chain 

√ √  √ √ 
Cost, 
quality, 
carbon emission 

Meta- 
heuristic 

Allaoui et al. 
(2018) 

Agro-food supply 
chain network design 

√    √ 

Cost, 
environmental 
and social goal, 
efficiency 

Exact 
approach 

Albornoz and 
Urrutia–Gutiérrez 
(2018) 

Crop resource 
allocation 

     Profit 
Exact 
approach 

Aras and Bilge 
(2018) 

Location-allocation 
for food supply chain 
network 

     Cost 
Exact 
approach 

Bortolini et al. 
(2018) 

Location-allocation 
for closed loop food 
distribution network 

√    √ 
Cost, 
environmental 
impact 

Exact 
approach 

Mogale et al. 
(2018a) 

Location-allocation 
for food grain supply 
chain 

    √ 
Cost, 
lead time 

Meta- 
heuristic 

Mogale et al. 
(2018b) 

Food transportation 
and storage for food 
grain supply chain 

     Cost 
Meta- 
heuristic 

Tabrizi et al. 
(2018) 

Food supply and 
inventory policy 

√ √  √ √ 

Total profit of 
leader, 
total profit of 
follower 

Meta- 
heuristic 

Tsang et al. (2018) 
Vehicle routing and 
resource allocation for 
food distribution 

 √   √ 
Cost, 
time 

Meta- 
heuristic 

Jonkman et al. 
(2019) 

Location-allocation 
for crop production 
and harvest 

√ √  √ √ 
Profit, 
environmental 
impact 

Exact 
approach 

Rohmer et al. 
(2019) 

Production and 
distribution for food 
network design 

√    √ 
Cost, 
environmental 
impact 

Exact 
approach 
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2.4. Research gaps 

In summary, this study aims at filling the gaps in the existing literatures. 

First, this study is the first attempt to immediately optimize perishable food quality from the 

joint perspective of management and technology, and under sustainable consideration. 

Second, we pay attention to the neglect of combined consideration of dynamics and 

uncertainty in perishable food production. We are the first attempt to propose a novel technology by 

integrating GERT and Bayesian approach to show the joint dynamic uncertainty. 

Third, we develop a multi-objective model to pursue quality together with the other two 

sustainable metrics. To the best of our knowledge, balancing the triple objectives simultaneously is 

also rare among the existing relevant works. 

3. Technology of Bayesian-updated GERT for SQMPFP 

3.1. Networks of perishable food production: A bottled milk case 

Dairy product is a typical product within the category of perishable food (Sel et al., 2015). It is 

heated and cooled many times to maintain its quality during its production, which requires various 

combinations of time- and energy-sensitive technologies to show quality in different sustainable 

metrics (de Jong, 2013; Stefansdottir et al., 2018). This motivates us to focus on production 

technology optimization of this product type. We address an SQMPFP problem on dairy product 

production based on a centralized chain structure. Centralization refers to the situation where 

decisions in a production chain are made by a single DM who has all information at hand (Chen et 

al., 2014). We have identified that in eastern China, there are several famous dairy manufacturing 

firms with centralized chain structures, such as Beingmate, Bright Dairy, and New Hope. They 

manage their own farms and complete production lines, and adopt vertical strategies with quality 
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control. In this study, we concentrate on the production steps of a typical dairy product, namely 

bottled milk (see Fig. 1), based on our survey of these companies. The production process before 

the filled milk consists of three sub-steps: sterilized milk processing, auxiliary materials concocting 

and bottles preparation. Reprocessing is only allowed in the latter two sub-steps, because the 

unqualified milk must be abandoned absolutely to comply with the national food safety standard. 

Both auxiliary materials recycling and bottles recycling are recommended so that the whole 

production process forms a sustainable network structure. 

1.Cows
2.Raw 

milk

4.Sterilized 

milk

10.Filled 

milk

5.Minerals 7.Mixtures
8.Auxiliary 

materials

6.Fruits & 

vegetables

9.Raw 

bottles

11.Retort 

sterilized milk

3.Preprocessed 

milk

12.Final 

products

 

Fig. 1 The sequence of production steps of bottled milk 

During the production of bottled milk, the resource input and quality output cannot be 

deterministically determined as they are uncertain quantities (Gillibert et al., 2018; Stefansdottir et 

al., 2018; Tabrizi et al., 2018). Based on sequential production steps, a stochastic network is drawn 

to show the randomness and dynamics during the product form transitions (see Fig. 2a). A node 

represents a product form. Twelve product forms are respectively designated with nodes numbered 

Nodes 1 to 12. The disposal node exists in reality but is omitted here due to the space of figure. An 

arc represents a possible product form transition. Define that   is an arbitrary node in the network, 

         , where   is the number of nodes in the network;       is an arc emitted from node  , 

and   is a node next to node  ,     , where    is the set of all successor nodes of node   and 

       . The quality outputted by node   is represented by                   
 
 

 which 
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follows a Dirichlet distribution, i.e.,           , where     is the quality outputted from node   

to its  th successor node (arranged in ascending order of node numbers), and 

                  
 
 

 can be estimated by historical quality data. Furthermore, producing 

quality products needs time and carbon emissions. It seems not difficult to time each production 

step and estimate the corresponding carbon emissions. Nowadays, the traceability system has been 

developed to time and visualize food producing in many Chinese companies (Wang and Yue, 2017; 

Wang et al., 2017; Shen et al., 2018). The carbon emissions can also be estimated by electricity and 

fuel consumption (de Jong, 2013; Soysal et al., 2014). But they are still under uncertainty and 

correlated with each other. Therefore, we define that time     and carbon emissions     on each 

arc respectively follow normal distributions, i.e.,                
  ,                

  . The 

combination of them follows a bivariate normal distribution, denoted as               , where 

     
   

   
 ,      

    

    
 ,      

    
            

               
  , and     is the correlation between 

    and    . Therefore, the uncertainties of a stochastic network have been quantified by arc 

parameters         
  . 
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Fig. 2 Transformation from stochastic network to GERT networks 

In a general stochastic network, there are three types of input (i.e., XOR, OR and AND) and 

two types of output (i.e., Deterministic and Non-deterministic), resulting in six types of node logic, 
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denoted as  (XOR & Deterministic),  (XOR & Non-deterministic),  (OR & 

Deterministic),  (OR & Non-deterministic),  (AND & Deterministic), and  (AND & 

Non-deterministic) (Zhou et al., 2016; Nelson et al., 2016). However, a GERT network only 

considers one input node logic, i.e., XOR (Pritsker, 1966). Therefore, we follow an equivalent 

transformation criterion to draw equivalent three-echelon GERT networks for Fig. 2a which results 

in Fig. 2b. Both in bottom- and middle-echelon networks, the AND types are replaced by XOR 

types, on the premise of regarding the network in an echelon as a whole, and outputting an 

equivalent integrated arc. The details will be shown in Section 4.1. 

Not only the uncertainty, but also the dynamics are taken into consideration when analyzing 

the effects on GERT networks by QIA decision making. Define that     represents the  th QIA 

in node  ,           , where    is the number of QIAs in node  . Whether a QIA is carried 

out or not in a node will immediately affect the quality, time and carbon emissions of the arcs 

outputted by this node (Note that here we only consider the carbon emissions associated with 

electricity and fuel consumption, because the carbon footprint of a QIA mainly results from 

electricity and fuel use). For example, when cows produce raw milk, a QIA named “milking by 

machines” is carried out. Then it improves the milk quality, saves the milking time, and certainly 

increases carbon emissions. However, the effect caused by QIA decision making is probabilistic, 

and it will not change the random nature of GERT networks. Bayesian approach, as a popular tool 

in Statistics, is used to update the probability of an event when more information becomes available 

(Zhan et al., 2014; Zhan and Liu, 2016). In this study, we regard carrying out a QIA as providing the 

arc parameters with “more information”. Therefore, the GERT networks updated by QIA decision 

making are obviously more complicated than the ones without update. 
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3.2. Bayesian updates of arc parameters 

The DM needs to decide whether or not to locate a node to carry out a QIA, as well as whether 

or not to allocate a QIA to it. We define two types of decision variables: one is location variable   , 

which is equal to 1 if node   is located, and 0, otherwise; the other is allocation variable    , 

which is equal to 1 if QIA     is carried out in node  , and 0, otherwise. Then the relationship 

between the two types of decision variables is formulated as 

        .          (1) 

Different QIA strategies lead to different updates of arc parameters. We call the arc parameters 

        
   original parameters. Differently, we call the arc parameters affected by QIA decision 

making as updated parameters, and denote them as         
   where      

   

   
 . 

When a QIA is carried out in a node, QIA characteristics including effectiveness, time and 

carbon emissions are under uncertainty. Therefore, numerous QIA trials are needed to simulate 

these uncertain characteristics. Then, the Bayesian approach is employed to update the arc 

parameters in the GERT networks based on the observations of the QIA trials. 

3.2.1. Bayesian update of arc probability 

As aforementioned, the original arc probability means the original quality outputted by node  . 

It follows a Dirichlet distribution           . Suppose that from the long-term perspective, the 

arc probability affected by an effective QIA also follows a Dirichlet distribution, and is denoted as 

              , where                       
 
 

,      

      
   
       

 .     is a 

coefficient representing the promoting degree of the original arc probability. To our knowledge, a 

QIA is not always effective and sometimes may lose its effectiveness, which indicates that the 

effectiveness of a QIA is also under uncertainty. In terms of a single QIA trial, whether or not a QIA 
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can successfully change the arc probability seems like a categorical trial. Suppose that there are 

    trials of QIA    . Therefore, the effectiveness of QIA     in all     QIA trials follows a 

multinomial distribution denoted as        
             .      can be rewritten as     

                   
   

             

   
      

         

 . All the sub-vectors of     are      vectors 

filled with 0-1 numbers. For example,       

     

 
      

   
 
 
 
  means that the quality outputted 

by node   goes to the first subsequent node in the second trial of QIA    . 

By borrowing the property of conjugate family (Berger, 1985), we can infer that the Dirichlet 

distribution is conjugate to itself with respect to a multinomial likelihood function. Then, by using 

the Bayes’ theorem, the posterior arc probability outputted by node   is 

       
                             

    
          .  (2) 

Then, the updated arc probability outputted by node   affected by QIA decision making is 

     
               

             

               

        (3) 

          
   can be calculated by an important property of Dirichlet distribution which results 

in           
   

               

                   
. Eq. (3) integrates QIA decision making and Bayesian 

updates. If carrying out a QIA (i.e.,      and a certain      ), the righthand side of Eq. (3) is 

equal to the expected value of posterior arc probability. If no QIA is carried out (i.e.,      and 

each      ), the righthand side of Eq. (3) is equal to the expected value of the original arc 

probability. 

3.2.2. Bayesian updates of both arc time and arc carbon emissions 

The updates of the arc time and arc carbon emissions obviously differ from the arc probability. 
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Time and carbon emissions are always consumed in spite of the uncertainty of QIA effectiveness. 

As aforementioned, time     and carbon emissions     follow normal distributions, i.e., 

               
  ,                

  , and               . Based on the common assumptions in 

the real-world practice, a QIA’s time    
  and carbon emissions    

  also follow similar 

distributions, i.e.,               , where      
   
 

   
  ,      

     
     

 ,     

 
    

            

               
  , and     is the correlation between    

  and    
 . It is very 

important to note that    
  is related to    , and    

  is related to    . Generally,    
  accounts for 

a proportion of    ,    
  accounts for a proportion of    . Then, the relationship is formulated as a 

likelihood function, i.e., 

       
                       ,          (4) 

where        
   

   
     

 

   
     

  ,          
         

         
 ,          

        
                        

                               
  , and 

        is the correlation between    
  and    

  given    . 

Then, by borrowing again the property of conjugate family (Berger, 1985), we can infer that 

the Gaussian family is conjugate to itself with respect to a Gaussian likelihood function. Therefore, 

by using the Bayes’ theorem, we can obtain 

        
           

                 
                 

   
 
 ,     (5) 

where       

      
 

 

   

      
 

 

   

  is the sample mean of     observed in all     QIA trials,      
  and 

     
  respectively represent sample time and carbon emissions in the  th QIA trial,         

  

 
        

 

        
  , 

                                  
  

  
                     

       ,  (6) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16  

and 

                           
  

  
           

   
  

.      (7) 

Proof: 

First, by borrowing Corollary B.5 of Bijma et al. (2017), we can infer 

                                         
  .       (8) 

Second, according to Eq. (4), the likelihood function is 

               
          

                  
          .    (9) 

Third, by referring to page 400 of Bolstad and Curran (2017), we can obtain 

               
                    ,          (10) 

where         and         are respectively shown in Eqs. (6) and (7). 

Therefore, Eq. (5) can be calculated by borrowing Corollary B.5 of Bijma et al. (2017) again.

□ 

Property 1. The posterior mean           
   is the weighted sum of the prior mean        

and the coefficient-multiplied sample mean (CMSM)        
      . 

Proof: 

First, 

       
                 

                     
  

  
           

   
  

  

                     
  

  
           

           
  

 

             
  

  
            

           
  

. 

Second, 
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     . (11) 

According to Eq. (11), Property 1 is proved. The weights are respectively             
  

  
 

           
           

  

           
  

  
 and             

  
  

            
           

  

           
          . □ 

Property 2. The posterior variance           
   depends on the prior variance        and 

the likelihood variance          
          

  . Precisely, 

           
   

  

         
  

           
          

   
  

.   (12) 

Proof: 

First,                
   

         

         
 ,        

           
   

 
  

 

        
 

 
 

        

 . 

Second,           
      

          according to Eq. (9), then 

         
          

      
         

                 
   

 
  

       
         

                
    

                      
          

  
, 

therefore,           
          

   
  

                  
         . 

Third,           
          

                 
   

 
  

             
  

  
            

           
  

       
    

                    
  

  
                   

           
  

  

     
                     

           
  

  

          
  

           
          

   
  

 
  

. 

Therefore, Eq. (12) is proved. □ 

Then, according to Eq. (12), we can infer            
   

  

         
  

. Therefore, 

          
         .         (13) 
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Furthermore, we can infer that the smaller the likelihood variance is, the greater the gap 

between the prior variance and the posterior variance will be. Because the likelihood variance is 

inversely proportional to the QIA-trial size, the increase of QIA-trial size will broaden the gap 

between the prior variance and the posterior variance. 

Then the updated time and carbon emissions of an arc affected by QIA decision making are 

integrated into 

     
             

            

            
        (14) 

The above formula integrates QIA decision making and Bayesian updates. If carrying out a 

QIA (i.e.,      and a certain      ), the righthand side of Eq. (14) is equal to the posterior 

value of arc time and arc carbon emissions. If no QIA is carried out (i.e.,      and each     

 ), the righthand side of Eq. (14) is equal to the original value. 

3.3. Equivalent parameters between any two nodes in a GERT network 

This part continues to develop the methodology when we need to calculate the equivalent 

Bayesian-updated parameters between any two nodes in a GERT network, by borrowing the ideas 

of moment-generating function (MGF) from the statistical field, as well as the transfer function (TF) 

and the Mason’s gain formula both from the control system field. 

3.3.1. Bayesian-updated bivariate moment-generating function 

The classical bivariate MGF (BMGF) of two random variables is an alternative specification of 

their joint probability distribution. Since the two random variables (i.e., time and carbon emissions) 

in this study are Bayesian-updated parameters, the BMGF is defined as follows. 

Definition 1. Let    
     be the BMGF of Bayesian-updated parameters vector     

(including time     and carbon emissions    ). We call this BMGF a Bayesian-updated BMGF 

(BBMGF) which is formulated as 
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              ,           (15) 

where   is the vector of two dummy variables    and   , i.e.,    
  

  
 . 

By referring to the proof on page 120 of Hogg and Craig (1978), we can rewrite BBMGF as 

   
            

                       
        

   
                                       

   
 

          

               
    

   
                       

   
 

          

 (16) 

where          and          are respectively the mean and standard deviation of 

             
   ;           and          are respectively the mean and standard deviation of 

             
   ; and         is the correlation between              

    and              
   . 

Define    
      and    

      as the Bayesian-updated univariate MGF (BUMGF) of time     

and carbon emissions     respectively. By referring to the proofs on pages 111 and 120 of Hogg 

and Craig (1978), we can obtain Property 3. 

Property 3. The relationships between the BBMGF and the BUMGFs are as follows: 

   
             

     ,          (17) 

   
             

     .          (18) 

Then, according to an important characteristic of MGF, i.e., the first-order derivative of an 

MGF is equal to the first-order central moment (i.e., the mean) when the dummy variable is equal to 

zero, we can further obtain Property 4. 

Property 4. The relationships between the BBMGF and the mean of Bayesian-updated time 

(respectively carbon emissions) are as follows: 

     
         

   
 
    

       ,          (19) 

     
         

   
 
    

       .          (20) 
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3.3.2. Bayesian-updated multivariate transfer function 

The classical TF of an arc in a GERT network integrates multiple parameters into a single 

parameter to decrease the complexity of the network. Since the arc parameters in this study are 

Bayesian-updated, the TF is defined as follows. 

Definition 2. Let    
           be the TF which integrates BBMGF    

           and 

Bayesian-updated probability     on arc      . We call this the Bayesian-updated multivariate TF 

(BMTF) which is formulated as 

   
                  

          .        (21) 

Property 5. The relationship between the Bayesian-updated probability and the BMTF is 

       
        .            (22) 

By combining Eqs. (21) and (22), we can obtain 

   
           

   
          

   
        

.          (23) 

By combining Eqs. (19), (20) and (23), we can obtain Property 6. 

Property 6. The relationship between the mean of Bayesian-updated time (or carbon emissions) 

and the BMTF is as follows: 

       
 

   
        

  
    

         

   
 
    

,        (24) 

       
 

   
        

  
    

         

   
 
    

.        (25) 

3.3.3. Mason’s gain formula 

After the formulations of BBMGF and BMTF, the Mason’s gain formula, which is a 

mathematical tool in the signal flowgraph theory, is employed to calculate the equivalent BMTF 

(EBMTF) between any two nodes. Suppose that   and   are any two nodes,      , 

    
           is the EBMTF between   and   in a GERT network. The Mason’s gain formula is 
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presented as 

    
           

           

 
,         (26) 

where   is the serial number of a forward path (a forward path is a path from   to   and does not 

pass through any node more than once),      is the total gain (the total gain is the product of the 

BMTFs of all arcs in the  th forward path) of the  th forward path from   to   in a GERT 

network,      is the determinant of the sub-network formed by removing the  th forward path 

(from   to  ) from a GERT network (the formula of the determinant of a sub-network is similar to 

the determinant of a GERT network shown below),   is the determinant of a GERT network and 

its expression is 

             
 

  ,          (27) 

where   is the order of the loop (a path that starts and ends at the same node, and does not pass 

through any other node more than once) in a GERT network,  th-order loop refers to the set of   

disconnected loops in a GERT network,   is the serial number of an  th-order loop, and   
 
 is the 

total gain of the  th  th-order loop in a GERT. 

3.3.4. Equivalent Bayesian-updated parameters between any two nodes 

In a GERT network with XOR nodes, any network structure is a combination of series, parallel 

and self-loop basic networks, in which the equivalent probability between any two nodes can be 

obtained by setting the dummy variable equal to zero in the equivalent TF, and the equivalent 

time/carbon emissions between any two nodes can be calculated by differentiating the equivalent 

TF with respect to the dummy variable and then setting the dummy variable equal to zero, which is 

proved on page 31 of Pritsker (1966). In addition, the Mason’s gain formula does not change the 

network structure. 

Then, similar to Pritsker (1966), Properties 5 and 6 can be extended to 

        
        ,           (28) 
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,       (29) 

       
 

    
        

  
     

         

   
 
    

.       (30) 

where     is the equivalent Bayesian-updated probability,         is the mean of equivalent 

Bayesian-updated time, and        is the mean of equivalent Bayesian-updated carbon emissions 

between any two nodes in a GERT network. 

4. Multi-objective Model Formulation 

This part builds a multi-objective model in the proposed three-echelon Bayesian-updated 

GERT networks to simultaneously pursue the total quality, total time and total carbon emissions. 

4.1. Multiple objectives 

We consider three objectives including maximizing total quality, minimizing total time and 

minimizing total carbon emissions from the perspective of producing a unit of bottled milk. The 

word “total” means the whole production steps from the beginning to the end. We regard the 

bottom-echelon GERT network in Fig. 2b as a big node numbered as Node 13 in terms of the 

middle-echelon network (Fig. 3a). The parameters outputted by Node 13 are             , 

                  ,                   . 

Similarly, we regard the middle-echelon network as a big node numbered as Node 14 in terms 

of the top-echelon network (Fig. 3b). The parameters outputted by Node 14 are        

           ,                               ,                               . 
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Fig. 3 The network structure in different echelon 

Then, we consider the top-echelon network (i.e., the whole network). Arcs        and 
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        need to emerge into one arc, which is equal to updating the parameters of arc        by 

arc         in a closed-loop network. Note that the parameters of arc        are affected not 

only by arc         but also by itself, due to the feedback arcs        and       , and the 

self-loop arc      . Therefore, we propose an approximation method detailed as follows. 

Step 1. Define a generation vector denoted as         in which                 means 

the generation updated by arc        , and                 means the generation updated by 

feedback and self-loop arcs. Let         be a temporary superscript for parameters of arc       , 

i.e.,       
       

      
       

      
       

 . 

Step 2. Let the Bayesian-updated probability, time, and carbon emissions of arc        

resulting from QIA decision making be the initial generation, denoted as       
     

      
     

      
     

  

                   . 

Step 3. Update the present generation. We will obtain two individuals of the next generation. 

Step 3.1. Update the present generation by arc        . We will obtain the first individual 

whose parameters are calculated by      
         

      
       

      ,      
         

          
       

        , 

and      
         

          
       

        . 

Step 3.2. Update the first individual of the next generation by feedback and self-loop arcs. By 

using the methodology in Section 3.3, we will obtain the second individual 

      
           

      
           

      
           

 . 

Step 4. Evaluate the gap between two individuals of the same generation, and decide whether 

to continue with the next iteration. Let   be a threshold. If the gap satisfies 

    
      

           
      

         
 

     
          

      
           

      
         

 

     
          

      
           

      
         

 

     
            , 

then stop, and rewrite                           
           

      
           

      
           

 . Otherwise, 

rewrite        ,        , and repeat Step 3. □ 
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Finally, we develop the three objective functions as follows: 

           ,            (31) 

              ,           (32) 

              .           (33) 

4.2. A customized algorithm 

The above model appears as a multi-objective nonlinear stochastic dynamic programming 

model. Solving such a model with a large-scale numerical example by common mathematical 

software is time-consuming and sometimes intractable. In order to accelerate the search for the 

feasible non-dominated solutions (NDSs) and plot Pareto front more quickly, we employ a 

metaheuristic called customized MOPSO (CMOPSO) which integrates the classical MOPSO, a 

voting strategy, the approximation method for developing objective functions, and the 

Bayesian-updated GERT. 

4.2.1. Decision-variable coding by a voting strategy 

A classical MOPSO involves an iterative program in which a particle               

moves in the multi-dimensional space during each iteration   with an iteration-dependent position 

  
  and velocity   

 . Each particle always searches and updates its individual best position   
  

and global best position      
  (Moslemi and Zandieh, 2011; Govindan et al., 2014; Tabrizi et al., 

2018).   
 ,   

 ,   
  and      

  in this study are all            vectors, because a particle 

embraces the information of all decision variables. However, the two types of decision variables 

(i.e., location variables and allocation variables) are both binary variables which interrelate with 

each other by Eq. (1). Therefore, the immediate use of binary coding for both types of variables will 

lead to too many infeasible solutions. In this case, we propose a voting strategy detailed as follows. 
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(1) Particle initialization 

First, a binary value of 0 or 1 is randomly provided to each node, which indicates whether a 

node is chosen or not to carry out a QIA. Then, each QIA candidate of a chosen node is randomly 

provided a vote (a nonnegative real number). The candidate which possesses the most votes will 

win the selection, that is, this QIA candidate will be carried out in the node which is chosen 

beforehand. Using this strategy, Eq. (1) is equivalent to 

     
                  
                 

         (34) 

where     represents the vote received by QIA    . 

Hence, the position vector of a particle falls into two sub-vectors (i.e., the discrete sub-vector 

   
  and the continuous sub-vector    

 ), and is shown as 

  
   

   
 

   
  ,             (35) 

where 

   
           

 ,           (36) 

   
             

           
             

  .   (37) 

Similarly, the velocity vector of a particle is also divided into two sub-vectors (i.e., the discrete 

sub-vector    
  and the continuous sub-vector    

 ), and is shown as 

  
   

   
 

   
  .             (38) 

(2) Particle update 

Without loss of generality, the velocity of a particle is updated by 

  
       

        
    

            
    

  ,   (39) 

where   is a number randomly generated from the range between 0 and 1,   is the inertia weight 

with a damping rate related to iteration time, and    and    are the learning factors. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26  

Different from the update of the velocity, the update of the position depends on the sub-vector 

types of the position vector. In terms of discrete sub-vector, the Sigmoid function is employed to 

transform the discrete sub-vector of the updated velocity into a position-related probability    
    

which is formulated as 

   
    

 

       
   .           (40) 

Then, the discrete sub-vector of the position is updated by 

   
     

          
    

            
          (41) 

In terms of continuous sub-vector, the updated position is 

   
       

     
   .          (42) 

4.2.2. Algorithm procedure 

Fig. 4 shows the details of how the CMOPSO integrates the classical MOPSO, the voting 

strategy, the approximation method, and the Bayesian-updated GERT. 
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Fig.4 The procedure of the CMOPSO 

5. Case Study 

5.1. Case description 

The model and approach in this study are applied to a real case based on our on-the-spot 

investigation. A famous dairy manufacturing firm called Beingmate has mature and self-owned 

production lines, and accumulated plenty of dairy-production experience and historical data. Its 

production steps of bottled milk, shown beforehand as three-echelon GERT networks in Fig. 2b, are 

comparatively fixed but, the efficacy, the efficiency, and the environmental friendliness of the 
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network arcs are to be further optimized. Table 2 lists the possible QIAs and Table 3 shows their 

attributes. The DM of the firm tries to carry out QIAs to update the original attributes of arcs. As 

listed in Table 4, these original attributes of arcs show the status quo of the bottled milk production 

lines. A QIA can be not only a single mechanized operation or food safety inspection technology, 

but also arbitrary combinations of them. Furthermore, a QIA will affect the values of arc parameters, 

whose extents are recorded by relational databases shown in Table 5. These databases are very 

valuable and set up by the cooperation of Beingmate and us. Presently, Beingmate faces the 

problem of QIA decision making to put forward sustainable quality management plans.In addition, 

let the maximum iterations be 300, the particle population size be 200, the NDS population size be 

150, the inertia weight be 1 with a damping rate 0.99, and two learning factors be both 1.5, and the 

gap threshold in the approximation method be 0.01. The CMOPSO is coded by MATLAB R2017b 

on a 3.4 GHz laptop with 8 GB of RAM. 

5.2. Tradeoffs of multiple objectives 

After running for 359 seconds, the Pareto front is achieved (Fig. 5a). Due to the existence of 

the three objectives, the Pareto front emerges as a curved surface with an inclined shape. We call it 

“surface of Pareto front” (SPF) and the star-shaped points composing the SPF “global NDSs” 

(GNDSs). The GNDSs hold the non-dominated locations and are derived from the particles who are 

moving towards point   (the ideal point for all three objectives). Therefore, no particles exist 

below the SPF. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 

29  

 
Table 2 The QIA candidates in each node 

 1 2 3 4 5 6 7 8 9 10 11 

QIA1 
①Detecting 

forage 
①Using milk 

purifier 
①Using UHT 

machines 
①Filling by 

machines 
①Sensory 

tests 
①Testing 

preservative 
①Sterilizing 
by machines 

①Filling by 
machines 

①Filling by 
machines 

①Using UHT 
machines 

①Low-temp 
transportation 

QIA2 
②Training 

feeders 
②Alcohol 

tests 
②Microbial 

tests 
②Testing lead 

tank 
②Microbial 

tests 
②Testing 
pesticide 

②Microbial 
tests 

②Microbial 
tests 

②Sterilizing the 
bottles 

②Microbial 
tests 

②Low-temp 
storing 

QIA3 
③Testing 
antibiotics 

③Using 
homogenizer 

③Training 
operators 

③Training 
operators 

③Testing 
mineral content 

③Fresh-keeping 
packaging 

③Training 
operators 

③Low-temp 
filling 

③Low-temp 
filling 

③Training 
operators 

③Protective 
packaging 

QIA4 
④Milking by 

machines 
④Low-temp 

storing 
④Cleaning the 

plant 
④Low-temp 

filling 
④Low-temp 

storing 
④Low-temp 

storing 
④Sterilizing 

the plant 
④Improving 
the recycling 

④Improving 
the recycling 

④Improving 
the recycling 

④Improving 
the recycling 

QIA5 ①+② ①+② ①+② ①+② ①+② ①+② ①+② ①+② ①+② ①+② ①+② 
QIA6 ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ ①+③ 
QIA7 ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ ①+④ 
QIA8 ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ ②+③ 
QIA9 ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ ②+④ 

QIA10 ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ ③+④ 
QIA11 ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ ①+②+③ 
QIA12 ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ ①+②+④ 
QIA13 ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ ①+③+④ 
QIA14 ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ ②+③+④ 
QIA15 ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ ①+②+③+④ 

 
Table 3 The attributes of the QIA candidates in each node 

 1 2 3 4 5 6 7 8 9 10 11 

QIA1 
300,50,0.5 
6.54,1.09 

300,50,0.4 
13.08,2.18 

5,0.83,0.45 
10.9,1.82 

5,0.83,0.6 
0.22,0.04 

200,33.33,0.7 
4.36,0.73 

120,20,0.55 
2.62,0.44 

60,10,0.25 
26.16,4.36 

5,0.83,0.3 
0.22,0.04 

5,0.83,0.2 
0.22,0.04 

5,0.83,0.6 
10.9,1.82 

600,100,0.35 
100,16.67 

QIA2 
600,100,0.6 

1,0.17 
180,30,0.7 
0.39,0.07 

300,50,0.7 
6.54,1.09 

60,10,0.4 
1.31,0.22 

300,50,0.55 
6.54,1.09 

60,10,0.3 
1.31,0.22 

300,50,0.5 
6.54,1.09 

300,50,0.55 
6.54,1.09 

60,10,0.4 
26.16,4.36 

300,50,0.55 
6.54,1.09 

100,17,0.3 
13.63,2.27 

QIA3 
60,10,0.55 
1.31,0.22 

400,67,0.65 
17.44,2.91 

500,83,0.35 
1,0.17 

500,83,0.8 
1,0.17 

400,67,0.5 
8.72,1.45 

90,15,0.55 
2,0.33 

500,83,0.45 
1,0.17 

120,20,0.35 
16.35,2.73 

90,15,0.6 
12.26,2.04 

500,83,0.7 
1,0.17 

90,15,0.5 
2,0.33 

QIA4 
5,0.83,0.3 
0.55,0.09 

900,150,0.7 
122,20.33 

600,100,0.5 
6.81,1.14 

60,10,0.3 
8.13,1.36 

60,10,0.3 
8.13,1.36 

70,12,0.65 
9.5,1.58 

600,100,0.8 
6.81,1.14 

120,20,0.45 
3.92,0.65 

90,15,0.3 
2.94,0.49 

80,13,0.4 
2.62,0.44 

70,11,0.3 
2.29,0.38 

QIA5 
900,150,0.55 

7.54,1.26 
480,80,0.3 
13.47,2.25 

305,51,0.55 
17.44,2.91 

65,11,0.35 
1.53,0.26 

500,83,0.35 
10.9,1.82 

180,30,0.6 
3.93,0.66 

360,60,0.35 
32.7,5.45 

305,51,0.5 
6.76,1.13 

65,11,0.55 
26.38,4.4 

305,51,0.3 
17.44,2.91 

700,117,0.45 
113.63,18.94 

QIA6 
360,60,0.4 
7.85,1.31 

700,117,075 
30.52,5.09 

505,84,0.75 
11.9,1.98 

505,84,0.5 
1.22,0.2 

600,100,0.6 
13.08,2.18 

210,35,0.7 
4.62,0.77 

560,93,0.5 
27.16,4.53 

125,21,0.45 
16.57,2.76 

95,16,0.5 
12.48,2.08 

505,84,0.6 
11.9,1.98 

690,115,0.7 
102,17 

QIA7 
305,51,0.45 
7.09,1.18 

1200,200,0.65 
135.08,22.51 

605,101,0.6 
17.71,2.95 

65,11,0.55 
8.35,1.39 

260,43,0.3 
12.49,2.08 

190,32,0.5 
12.12,2.02 

660,110,0.65 
32.97,5.5 

125,21,0.7 
4.14,0.69 

95,16,0.3 
3.16,0.53 

85,14,0.5 
13.52,2.25 

670,112,0.6 
102.29,17.05 

QIA8 
660,110,0.6 
2.31,0.39 

580,97,0.5 
17.83,2.97 

800,133,0.5 
7.54,1.26 

560,93,0.8 
2.31,0.39 

700,117,0.75 
15.26,2.54 

150,25,0.45 
3.31,0.55 

800,133,0.8 
7.54,1.26 

420,70,0.5 
22.89,3.82 

150,25,0.4 
38.42,6.4 

800,133,0.75 
7.54,1.26 

190,32,0.5 
15.63,2.61 

QIA9 
605,101,0.5 
1.55,0.26 

1080,180,0.8 
122.39,20.4 

900,150,0.35 
13.35,2.23 

120,20,0.65 
9.44,1.57 

360,60,0.7 
14.67,2.45 

130,22,0.3 
10.81,1.8 

900,150,0.35 
13.35,2.23 

420,70,0.75 
10.46,1.74 

150,25,0.6 
29.1,4.85 

380,63,0.3 
9.16,1.53 

170,28,0.8 
15.92,2.65 

QIA10 
65,11,0.8 
1.86,0.31 

1300,217,0.6 
139.44,23.24 

1100,183,0.4 
7.81,1.3 

560,93,0.85 
9.13,1.52 

460,77,0.55 
16.85,2.81 

160,27,0.8 
11.5,1.92 

1100,183,0.5 
7.81,1.3 

240,40,0.4 
20.27,3.38 

180,30,0.65 
15.2,2.53 

580,97,0.7 
3.62,0.6 

160,27,0.85 
4.29,0.72 

QIA11 
960,160,0.6 
8.85,1.48 

880,147,0.65 
30.91,5.15 

805,134,0.8 
18.44,3.07 

565,94,0.7 
2.53,0.42 

900,150,0.5 
19.62,3.27 

270,45,0.45 
5.93,0.99 

860,143,0.75 
33.7,5.62 

425,71,0.8 
23.11,3.85 

155,26,0.45 
38.64,6.44 

805,134,0.5 
18.44,3.07 

790,132,0.6 
115.63,19.27 

QIA12 
905,151,0.4 
8.09,1.35 

1380,230,0.7 
135.47,22.58 

905,151,0.7 
24.25,4.04 

125,21,0.5 
9.66,1.61 

560,93,0.75 
19.03,3.17 

250,42,0.5 
13.43,2.24 

960,160,0.55 
39.51,6.59 

425,71,0.65 
10.68,1.78 

155,26,0.8 
29.32,4.89 

385,64,0.85 
20.06,3.34 

770,128,0.5 
115.92,19.32 

QIA13 
365,61,0.85 

8.4,1.4 
1600,267,0.8 
152.52,25.42 

1105,184,0.85 
18.71,3.12 

565,94,0.7 
9.35,1.56 

660,110,0.4 
21.21,3.54 

280,47,0.65 
14.12,2.35 

1160,193,0.85 
33.97,5.66 

245,41,0.55 
20.49,3.42 

185,31,0.7 
15.42,2.57 

585,98,0.5 
14.52,2.42 

760,127,0.75 
104.29,17.38 

QIA14 
665,111,0.7 
2.86,0.48 

1480,247,0.85 
139.83,23.31 

1400,233,0.75 
14.35,2.39 

620,103,0.75 
10.44,1.74 

760,127,0.8 
23.39,3.9 

220,37,0.5 
12.81,2.14 

1400,233,0.6 
14.35,2.39 

540,90,0.5 
26.81,4.47 

240,40,0.4 
41.36,6.89 

880,147,0.4 
10.16,1.69 

260,43,0.8 
17.92,2.99 

QIA15 
965,161,0.8 

9.4,1.57 
1780,297,0.6 
152.91,25.49 

1405,234,0.45 
25.25,4.21 

625,104,0.5 
10.66,1.78 

960,160,0.5 
27.75,4.63 

340,57,0.8 
15.43,2.57 

1460,243,0.75 
40.51,6.75 

545,91,0.7 
27.03,4.51 

245,41,0.85 
41.58,6.93 

885,148,0.6 
21.06,3.51 

860,143,0.7 
117.92,19.65 

Note: each cell sequentially lists                        . 

Nodes 
QIAs 

Nodes 
QIAs 
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Table 4 The attributes of the arcs 
Arcs 

 
1,2 1,0 2,3 2,0 3,4 3,0 4,10 4,0 5,7 5,0 6,7 6,0 7,8 7,0 8,8 8,10 8,0 9,9 9,10 9,0 10,9 10,1

1 
10,1

2 
10,0 11,9 11,1

2 
11,0 

    19 3 23 3 26 4 25 3 25 2 22 3 34 4 18 29 4 19 25 3 9 18 13 3 9 20 3 

    (s) 30 / 900 / 1000 / 60 / 60 / 70 / 720 / 120 60 / 90 60 / 90 900 120 / 80 100 / 

    (s) 5 / 150 / 160 / 10 / 10 / 12 / 120 / 20 10 / 15 10 / 15 150 20 / 13 16 / 

    (g) 0.06 / 30 / 33 / 0.12 / 2.62 / 3 / 24 / 2.62 0.12 / 2 0.12 / 2 30 1.6 / 1.8 1.2 / 

    (g) 0.01 / 5 / 5.5 / 0.02 / 0.44 / 0.5 / 4 / 0.44 0.02 / 0.33 0.02 / 0.33 5 0.25 / 0.3 0.2 / 

    0.15 / 0.62 / 0.65 / 0.18 / 0.76 / 0.78 / 0.63 / 0.45 0.19 / 0.42 0.13 / 0.48 0.64 0.31 / 0.46 0.35 / 

 
Table 5 The relationships between the QIA candidates and the arcs 

QIAs 
 

1,2 2,3 3,4 4,10 5,7 6,7 7,8 8,8 8,10 9,9 9,10 10,9 10,11 10,12 11,9 11,12 

QIA1 
0.91,33 0.25,33 0.01,1 1.00,1 0.77,22 0.63,13 0.08,7 0.08,1 1.00,1 0.14,1 1.00,1 0.05,1 0.01,1 0.04,1 0.88,60 0.86,67 

0.99,0.73 0.30,1.45 0.25,1.21 0.65,0.02 0.62,0.48 0.47,0.29 0.52,2.91 0.08,0.02 0.65,0.02 0.10,0.02 0.65,0.02 0.84,1.09 0.27,1.21 0.87,1.15 0.98,10 0.99,11.1 
0.41,1,3 0.77,1.3 0.93,1.9 0.75,1.3 0.45,1.1 0.42,1.1 0.92,1.8 0.69,1,1 0.77,1.2 0.65,1,1 0.72,1.2 0.86,1.0 0.96,1.0 0.77,1.8 0.81,1,1 0.90,1.7 

QIA2 
0.95,67 0.17,20 0.23,33 0.50,7 0.83,33 0.46,7 0.29,33 0.71,30 0.83,33 0.40,6 0.50,7 0.77,30 0.25,33 0.71,32 0.56,10 0.50,11 

0.94,0.11 0.01,0.04 0.17,0.73 0.92,0.15 0.71,0.73 0.30,0.15 0.21,0.73 0.71,0.65 0.98,0.73 0.93,2.62 1.00,2.91 0.77,0.65 0.18,0.73 0.80,0.69 0.88,1.36 0.92,1.51 
0.19,1.1 0.13,1.1 0.46,1.3 0.43,1.2 0.45,1.3 0.44,1.2 0.49,1.3 0.41,1 0.45,1.3 0.85,1.0 0.95,1.6 0.39,1.0 0.43,1.3 0.35,1.3 0.78,1.1 0.86,1.6 

QIA3 
0.67,7 0.31,44 0.33,56 0.89,56 0.87,44 0.56,10 0.41,56 0.50,12 0.67,13 0.50,9 0.60,10 0.85,50 0.36,56 0.81,53 0.53,9 0.47,10 

0.96,0.15 0.37,1.94 0.03,0.11 0.89,0.11 0.77,0.97 0.40,1.22 0.04, 0.11 0.86,1.64 0.99,1.82 0.86,1.23 0.99,1.36 0.33,0.10 0.03,0.11 0.38,0.11 0.53,0.20 0.63,0.22 
0.44,1.2 0.73,1.5 0.14,1.1 0.15,1.1 0.42,1.2 0.48,1.3 0.12,1.1 0.78,1.1 0.87,1.9 0.78,1.2 0.87,1.7 0.10,1.1 0.11,1.1 0.09,1.1 0.45,1.2 0.50,1.2 

QIA4 
1.00,1 0.50,100 0.38,67 0.50,7 0.50,7 0.50,8 0.45,67 0.50,12 0.67,13 0.50,9 0.60,10 0.47,8 0.08,9 0.40,8 0.47,7 0.41,8 

0.90,0.06 0.8,13.56 0.17,0.76 0.99,0.90 0.76,0.90 0.76,1.06 0.22,0.76 0.60,0.39 0.97,0.44 0.60,0.29 0.96,0.33 0.57,0.26 0.08,0.29 0.62,0.28 0.56,0.23 0.66,0.25 
0.71,1.9 0.90,1.7 0.34,1.2 0.82,1.8 0.88,1.8 0.86,1.8 0.31,1.2 0.63,1.3 0.70,1.0 0.56,1.4 0.62,1.0 0.58,1.4 0.64,1.0 0.52,1.0 0.56,1.4 0.62,1.0 

QIA5 
0.97,100 0.35,53 0.23,34 1.00,7 0.89,56 0.72,20 0.33,40 0.84,31 1.00,34 0.68,7 1.00,7 0.77,31 0.25,34 0.72,32 0.90,70 0.88,78 
0.99,0.84 0.31,1.50 0.35,1.94 0.93,0.17 0.81,1.21 0.57,0.44 0.58,3.63 0.72,0.68 0.98,0.75 0.93,2.64 1.00,2.93 0.90,1.74 0.37,1.94 0.92,1.84 0.98,11.4 0.99,12.6 
0.12,1.4 0.48,1.4 0.70,2.2 0.44,1.5 0.49,1.4 0.45,1.3 0.74,2.1 0.36,1,1 0.40,1.5 0.87,1.1 0.96,1.8 0.63,1.0 0.70,1.3 0.56,2.1 0.75,1.2 0.83,2.3 

QIA6 
0.92,40 0.44,78 0.34,56 1.00,56 0.91,67 0.75,23 0.44,62 0.68,13 1.00,14 0.76,10 1.00,11 0.85,51 0.36,56 0.81,53 0.90,69 0.87,77 

0.99,0.87 0.50,3.39 0.27,1.32 0.91,0.14 0.83,1.45 0.61,0.51 0.53,3.02 0.86,1.66 0.99,1.84 0.86,1.25 0.99,1.39 0.86,1.19 0.28,1.32 0.88,1.25 0.98,10.2 0.99,11.3 
0.44,1.5 0.71,1.8 0.45,2 0.11,1.4 0.49,1.3 0.49,1.4 0.77,1.9 0.74,1.2 0.82,2.1 0.76,1.3 0.85,1.9 0.39,1.1 0.44,1.1 0.35,1.9 0.80,1.3 0.89,1.9 

QIA7 
1.00,34 0.57,133 0.38,67 1.00,7 0.81,29 0.73,21 0.48,73 0.68,13 1.00,14 0.76,10 1.00,11 0.49,9 0.09,9 0.41,9 0.89,67 0.87,74 

0.99,0.79 0.82,15.0 0.35,1.97 0.99,0.93 0.83,1.39 0.80,1.35 0.58,3.66 0.61,0.41 0.97,0.46 0.61,0.32 0.96,0.35 0.87,1.35 0.31,1.50 0.89,1.42 0.98,10.2 0.99,11.4 
0.43,2.2 0.87,2 0.46,2.1 0.82,2.1 0.77,1.9 0.78,1.9 0.78,2 0.58,1.4 0.65,1.2 0.57,1.5 0.63,1.2 0.75,1.4 0.83,1.0 0.66,1.8 0.73,1.5 0.81,1.7 

QIA8 
0.96,73 0.39,64 0.44,89 0.90,62 0.92,78 0.68,17 0.53,89 0.78,42 0.88,47 0.63,15 0.71,17 0.90,80 0.47,89 0.87,84 0.70,19 0.66,21 

0.97,0.26 0.37,1.98 0.19,0.84 0.95,0.26 0.85,1.70 0.52,0.37 0.24,0.84 0.90,2.29 0.99,2.54 0.95,3.84 1.00,4.27 0.79,0.75 0.20,0.84 0.82,0.79 0.90,1.56 0.93,1.74 
0.16,1.3 0.45,1.6 0.10,1.4 0.18,1.3 0.44,1.5 0.42,1.5 0.19,1.4 0.70,1.1 0.78,2.2 0.85,1.2 0.95,2.3 0.17,1.1 0.19,1.4 0.15,1.4 0.69,1.3 0.76,1.8 

QIA9 
1.00,67 0.55,120 0.47,100 0.67,13 0.86,40 0.65,14 0.56,100 0.78,42 0.88,47 0.63,15 0.71,17 0.81,38 0.30,42 0.76,40 0.68,17 0.63,19 

0.96,0.17 0.80,13.6 0.29,1.48 0.99,1.05 0.85,1.63 0.78,1.20 0.36,1.48 0.80,1.05 0.99,1.16 0.94,2.91 1.00,3.23 0.82,0.92 0.23,1.02 0.85,0.96 0.90,1.59 0.93,1.77 
0.16,2 0.83,1.8 0.34,1.5 0.70,2 0.62,2.1 0.80,2 0.30,1.5 0.39,1.3 0.44,1.3 0.72,1.4 0.80,1.6 0.37,1.4 0.41,1.3 0.33,1.3 0.68,1.5 0.76,1.6 

QIA10 
1.00,7 0.59,144 0.52,122 0.90 ,62 0.88,51 0.70,18 0.60,122 0.67,24 0.80,27 0.67,18 0.75,20 0.87,58 0.39,64 0.83,61 0.67,16 0.62,18 

0.97,0.21 0.82,15.5 0.19,0.87 0.99,1.01 0.87,1.87 0.79,1.28 0.25,0.87 0.89,2.03 0.99,2.25 0.88,1.52 0.99,1.69 0.64,0.36 0.11,0.40 0.69,0.38 0.70,0.43 0.78,0.48 
0.49,2.1 0.78,2.2 0.19,1.3 0.33,1.9 0.68,2 0.72,2.1 0.20,1.3 0.66,1.4 0.74,1.9 0.66,1.6 0.74,1.7 0.10,1.5 0.11,1.1 0.09,1.1 0.43,1.6 0.47,1.2 

QIA11 
0.97,107 0.49,98 0.45,89 1.00,63 0.94,100 0.79,30 0.54,96 0.88,43 1.00,47 0.84,16 1.00,17 0.90,81 0.47,89 0.87,85 0.91,79 0.89,88 
0.99,0.98 0.51,3.43 0.36,2.05 0.95,0.28 0.88,2.18 0.66,0.66 0.58,3.74 0.90,2.31 0.99,2.57 0.95,3.86 1.00,4.29 0.90,1.84 0.38,2.05 0.92,1.94 0.98,11.6 0.99,12.9 
0.13,1.6 0.62,1.9 0.41,2.5 0.16,1.6 0.43,1.6 0.47,1.6 0.63,2.2 0.64,1.2 0.71,2.4 0.85,1.3 0.94,2.5 0.41,1.1 0.46,1.4 0.37,2.2 0.81,1.4 0.90,2.5 

QIA12 
1.00,101 0.61,153 0.48,101 1.00,14 0.90,62 0.78,28 0.57,107 0.88,43 1.00,47 0.84,16 1.00,17 0.81,39 0.30,43 0.76,41 0.91,77 0.89,86 
0.99,0.90 0.82,15.1 0.42,2.69 0.99,1.07 0.88,2.11 0.82,1.49 0.62,4.39 0.80,1.07 0.99,1.19 0.94,2.93 1.00,3.26 0.91,2.01 0.40,2.23 0.93,2.11 0.98,11.6 0.99,12.9 
0.11,2.3 0.76,2.1 0.41,2.4 0.77,2.3 0.63,2.2 0.71,2.1 0.70,2.3 0.40,1.4 0.45,1.5 0.75,1.5 0.84,1.8 0.70,1.4 0.78,1.3 0.62.2.1 0.80,1.6 0.88,2.3 

QIA13 
1.00,41 0.64,178 0.52,123 1.00,63 0.92,73 0.80,31 0.62,129 0.80,25 1.00,27 0.86,19 1.00,21 0.87,59 0.39,65 0.83,62 0.90,76 0.88,84 

0.99,0.93 0.84,17 0.36,2.08 0.99,1.04 0.89,2.36 0.82,1.57 0.59,3.77 0.89,2.05 0.99,2.28 0.89,1.54 0.99,1.71 0.88,1.45 0.33,1.61 0.90,1.53 0.98,10.4 0.99,11.6 
0.44,2.4 0.72,2.5 0.31,2.2 0.37,2.2 0.61,2.1 0.78,2.2 0.49,2.1 0.70,1.5 0.78,2.1 0.71,1.7 0.78,1.9 0.43,1.5 0.48,1.1 0.38,1.9 0.75,1.7 0.83,1.9 

QIA14 
1.00,74 0.62,164 0.58,156 0.91,69 0.93,84 0.76,24 0.66,156 0.82 ,54 0.90,60 0.73,24 0.80,27 0.91,88 0.49,98 0.88,93 0.76,26 0.72,29 

0.98,0.32 0.82,15.5 0.30,1.59 0.99,1.16 0.90,2.60 0.81,1.42 0.37,1.59 0.91,2.68 1.00,2.98 0.95,4.14 1.00,4.60 0.84,1.02 0.25,1.13 0.86,1.07 0.91,1.79 0.94,1.99 
0.11,2.2 0.72,2.3 0.37,1.6 0.33,2.1 0.43,2.3 0.74,2.3 0.31,1.6 0.68,1.4 0.75,2.2 0.75,1.6 0.83,2.3 0.32,1.5 0.35,1.4 0.28,1.4 0.71,1.7 0.78,1.8 

QIA15 
1.00,107 0.66,198 0.58,156 1.00,69 0.94,107 0.83,38 0.67,162 0.90,55 1.00,61 0.89,25 1.00,27 0.91,89 0.50,98 0.88,93 0.91,86 0.90.96 
0.99,1.04 0.84,17 0.43,2.81 0.99,1.18 0.91,3.08 0.84,1.71 0.63,4.50 0.91,2.70 1.00,3.00 0.95,4.16 1.00,4.62 0.91,2.11 0.41,2.34 0.93,2.22 0.98,11.8 0.99,13.1 
0.20,2.5 0.79,2.6 0.36,2.5 0.39,2.4 0.43,2.4 0.77,2.4 0.41,2.4 0.70,1.5 0.78,2.4 0.75,1.7 0.83,2.5 0.38,1.5 0.43,1.4 0.34 ,2.2 0.76,1.8 0.85,2.5 

Note: each cell sequentially lists                                                 . 
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(a) Surface of Pareto front      (b) GNDSs from a bird’s-eye angle   

  

(c) GNDSs from a right-hand-side angle    (d) GNDSs from a left-hand-side angle   

Fig. 5 Four scatterplots of GNDSs from different angles 

By omitting one dimension from the original three-dimensional subfigure (i.e., Fig. 5a), some 

insights are gained. Figs. 5b-5d show the GNDS scatterplots from different angles of view. In these 

subfigures, we also draw Pareto fronts which we call “line of Pareto front” (LPF), and the 

star-shaped points in LPF is called “local NDSs” (LNDSs). Note that all star-shaped points in these 

subfigures are still the GNDSs, but not necessary the LNDSs in terms of the present subfigure. In 

Fig. 5b, the major part of the particle population is in the area between the LPF    and an 

approximately-parallel line  , which means that the tradeoff between quality and time can be 
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achieved at different carbon-emission levels. However, it also implies that the DM can achieve a 

second-best tradeoff between quality and time when they must submit to an acceptable limitation on 

carbon emissions. This phenomenon conforms with the viewpoint of major literatures which 

highlight the environmental impact rather than other objectives. 

Furthermore, Fig. 5c presents that the most GNDSs are close to LPF   , which means that the 

optimal tradeoff between quality and carbon emissions can make the timeliness well-realized. In 

other words, it is not advisable to sacrifice the interests of the quality and carbon emissions 

objectives to only meet the demand of timeliness. Unlike Figs. 5b and 5c, Fig. 5d shows an extreme 

condition in which most GNDSs do not care their distances from LPF   . This implies the reality 

that high quality is often not resulted from the best tradeoff between time and carbon emissions. 

Either time or carbon emissions has/have to make concessions in order to achieve a “high quality” 

goal. 

Three managerial insights are generated as follows: 

 The second-best tradeoff between quality and time can be achieved when given 

beforehand a reasonable carbon-emission limitation. 

 The best tradeoff between quality and carbon emissions can ensure well-realized 

timeliness. 

 The best tradeoff between time and carbon emissions cannot result in high quality. 

5.3. Bayesian updates 

5.3.1. Effects by Bayesian updates 

As highlighted before, the proposed technology based on the Bayesian approach can explain 

the probabilistic changes of arc parameters after QIA decision making. We choose the GNDS which 
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is the closest to the ideal point   as an example. In this GNDS, QIAs are carried out in several 

nodes. Accordingly, totally ten arcs are Bayesian-updated by QIAs. We draw the joint probability 

density of time and carbon emissions for each arc, and obtain numerous bell-shaped surfaces. We 

then focus on the two metrics of each bell-shaped surface, i.e., the central location and the height. 

As shown in Fig. 6, the central locations of pre-update and post-update bells are distinctly different. 

The latter mostly are on further locations from the zero points than the former. We infer that the 

reason may lie in the employed QIA in each arc costs time and increases carbon emissions which 

respectively add(s) to the total time and energy consumption. Moreover, the post-update bells are 

much slimmer and taller than the pre-update ones, which indicates that Bayesian updates reduce the 

fluctuations of time and energy consumption. Therefore, two managerial insights are summed up as: 

 The Bayesian approach evaluates the differences between the pre-update and post-update 

arc parameters. 

 The Bayesian approach mitigates the instability of the post-update arc parameters. 

5.3.2. Sensitivity analysis 

Fig. 6 also conducts the sensitivity analysis on the effects of the uncertainty mitigation after we 

simulate QIA trials for different times (                  , respectively). More details are 

shown in Table 6. We obtain the following three managerial insights. 

 The increase of the QIA-trial size lets the bells leave their current locations and move to 

new ones. 

 The increase of the QIA-trial size gradually narrows the gap between the two 

neighbouring bells. 

 The increase of the QIA-trial size leads to much slimmer and taller bells.  
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Fig. 6 Differences between pre- and post-update arc parameters  
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Table 6 Sensitivity analysis with respect to QIA-trial size 

Arcs Change of QIA-trial size Change of post-update parameters 

                                                   

(5,7) 10 168.8 7.5749 9.2391 0.3959 0.7310 

 20 243.8 10.7629 8.6610 0.3629 0.7068 

 30 299.2 13.2635 8.1993 0.3370 0.6864 

 40 346.4 14.5360 7.8175 0.3160 0.6688 

 50 390.5 16.0089 7.4935 0.2985 0.6536 

       

(6,7) 10 189.6 8.6441 7.7064 0.3651 0.7531 

 20 219.8 10.6850 6.1331 0.3041 0.7467 

 30 231.1 11.9956 5.2498 0.2664 0.7439 

 40 250.7 12.7228 4.6644 0.2400 0.7425 

 50 259.8 13.3442 4.2398 0.2203 0.7416 

       

(7,8) 10 1239.7 48.8497 44.4649 1.7893 0.7646 

 20 1381.3 52.1186 32.7648 1.3337 0.7737 

 30 1335.0 54.7048 27.1494 1.1097 0.7769 

 40 1328.7 55.0834 23.6908 0.9704 0.7786 

 50 1373.5 55.8949 21.2877 0.8731 0.7797 

       

(9,9) 10 108.7 4.2589 6.7039 0.3088 0.3894 

 20 112.5 5.8745 5.0951 0.3001 0.4259 

 30 141.8 7.6876 4.3181 0.2927 0.4583 

 40 141.2 9.1999 3.8393 0.2861 0.4851 

 50 135.6 10.7758 3.5061 0.2799 0.5074 

       

(9,10) 10 49.0 0.1256 5.0649 0.0199 0.0836 

 20 44.8 0.1315 3.8365 0.0198 0.0766 

 30 60.9 0.1430 3.2129 0.0197 0.0752 

 40 52.5 0.1488 2.8196 0.0196 0.0757 

 50 38.8 0.1542 2.5427 0.0195 0.0771 

       

(10,9) 10 52.9 5.5152 2.1868 0.2457 0.7331 

 20 58.3 7.2894 1.7152 0.2104 0.7884 

 30 64.8 8.8180 1.4741 0.1870 0.8110 

 40 72.1 9.5134 1.3165 0.1700 0.8233 

 50 73.1 9.9908 1.2020 0.1569 0.8310 

       

(10,11) 10 835.8 39.0834 28.2474 1.3787 0.9582 

 20 787.1 38.9648 20.3361 0.9939 0.9596 

 30 802.7 41.3254 16.7070 0.8169 0.9601 

 40 826.3 41.1083 14.5138 0.7099 0.9603 

 50 806.3 40.9725 13.0059 0.6362 0.9604 

       

(10,12) 10 67.9 4.1593 3.1269 0.2105 0.5396 

 20 71.9 5.7211 2.3819 0.1878 0.6191 

 30 79.3 7.1441 2.0301 0.1711 0.6574 

 40 89.0 7.9069 1.8085 0.1583 0.6801 

 50 90.4 8.4690 1.6503 0.1479 0.6950 

       

(11,9) 10 156.6 3.0174 10.4154 0.2927 0.4286 

 20 190.1 3.8673 8.9577 0.2888 0.4167 

 30 162.1 4.2776 7.9929 0.2862 0.4129 

 40 166.3 5.0710 7.2951 0.2842 0.4131 

 50 172.6 5.5838 6.7607 0.2826 0.4156 

       

(11,12) 10 149.0 1.6071 10.6628 0.1956 0.3037 

 20 159.4 1.8750 8.5737 0.1942 0.2977 

 30 101.7 1.9309 7.3853 0.1934 0.3013 

 40 89.3 2.1933 6.5954 0.1929 0.3083 

 50 93.1 2.3957 6.0226 0.1924 0.3166 
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The first and second insights can be explained by Property 1, while the third can be explained 

by Property 2. Property 1 states that the posterior mean is the weighted sum of the prior mean and 

the CMSM. The increase of the QIA-trial size, on one hand, impels the posterior mean to get closer 

to the CMSM because the QIA-trial size is proportional to the weight of the CMSM; and, on the 

other hand, makes the value of the CMSM more stable because the QIA-trial size is inversely 

proportional to the variance of the CMSM. Moreover, Property 2 states that the increase of the 

QIA-trial size broadens the gap between the posterior variance and the prior variance. Therefore, 

the bell will be more like a peak than its previous shape as QIA-trial size increases. In a word, the 

increase of the QIA-trial size reinforces the stability of the probabilistic change. 

Nevertheless, the parameters’ random nature remains, no matter which QIAs are carried out 

and how many arcs are Bayesian-updated. The time and carbon emissions still obey a joint 

probability distribution with the same type as the original. Therefore, when evaluating the 

probabilistic differences between pre-update and post-update arc parameters, an important 

advantage of our technology lies in that we only mitigates the uncertainty of arc parameters, but 

maintains the parameters with the random nature, which conforms to the complicated food spoilage 

mechanism. 

5.4. Sustainable quality management plans 

This part puts forward individualized sustainable quality management plans by different 

objective preferences. All GNDSs are first arranged respectively in descending/ascending/ascending 

order of their quality/time/carbon-emission objectives. As shown in Fig. 7, Nodes 1 and 2 

coincidentally choose a simple food safety inspection technology when quality concern is 

highlighted. More specifically, Node 1 employs forage tests and Node 2 employs alcohol tests. 
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These two tests do not cost too much time and energy, but both can ensure a respectable quality 

improvement. However, Nodes 4, 5, 6, 7, 8, 9, and 11 all carry out more complex, multiple 

mechanized operations or food safety inspection technologies (Learning from Table 2, a QIA with a 

no-less-than-eleven number means the combined use of no-less-than-three operations or 

technologies) leading to more time and carbon emissions. This implies that: 

 The raw-milk processing in Beingmate works well so that the milk quality is assured by 

deploying only simple milk safety inspection technologies. 

 The DM shifts his focus to other steps (e.g., auxiliary materials concocting and sterilized 

bottles preparation) where quality assurance lags behind and potential hazard exists. 

However, if the DM prefers the other two objectives, some time-consuming or 

carbon-intensive QIAs are replaced by time-saving or low-carbon ones. By comparing Figs. 8 and 9 

with Fig. 7, Nodes 4, 7, 8, 9, and 11 in Fig. 7 reverse their QIA strategies in both Figs. 8 and 9 to 

simultaneously pursue time and energy savings. These nodes represent the assembling-related or 

recycling-related steps. QIA tradeoffs exist between quality and time (or carbon emissions) in these 

steps, such as using or not using filling machine, and improving or not improving recycling process. 

Unlike these steps, Nodes 5 and 6 still stick to the same QIA, which implies that those nodes 

associated with auxiliary materials concocting are in urgent need of QIA regardless of DM’s 

preference on quality, time or carbon emissions. Therefore, the individualized sustainable quality 

management plans are node-oriented and objective-oriented. In this case, the nodes associated with 

the auxiliary materials concocting are given the highest priorities. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

38  

 

Fig. 7. QIA plans when highlighting quality concern 

 

 

Fig. 8. QIA plans when highlighting timeliness concern 

 

 

Fig. 9. QIA plans when highlighting carbon-emission concern 

6. Conclusions 

This study can be regarded as a tradeoff analysis on multi-dimensional components of 

food-production sustainability. The main innovation of this study is proposing a new technology by 
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implanting the Bayesian approach into the GERT, which is the first to use the above 

decision-making approach in food quality management. With the help of our technology, the 

dynamics and uncertainty can be jointly measured by the probabilistic difference between the 

pre-update and post-update status of food production networks. Or rather, our technology mitigates 

uncertainty, but it does not change the random nature of food production. This is a very important 

advantage of our technology, which conforms to the reality of food production systems and the 

complicated food spoilage mechanism involving a large number of uncertainties. Furthermore, the 

validity of our technology is based on plenty of historical data accumulation co-gathered by the firm 

and our affiliation. That is, our technology is data-driven, and not out of date. 

Generally speaking, this study fills the gaps in the existing literatures. Besides the new 

technology highlighted above, the data source and model formulation are also unusual. Since we 

address QIA decision making on food production steps, the data are technology-based and mostly 

come from the food safety inspection, microbial tests, physicochemical tests, and so on. Fortunately, 

we have our own institute, laboratories, and funds to support this research. In our model, we have 

adopted a novel approach called CMOPSO to analyze the optimal tradeoffs of the three objectives. 

Our approach can visualize the optimal tradeoffs from different angles of view, and conclude the 

relationship between GDNS and LDNS. In addition, our approach can figure out individualized 

sustainable quality management plans, which are node-oriented and objective-oriented. 

However, there are still some future research directions. First, we need to broaden our research 

scope to cover the whole product life cycle (not only food production) to put forward more 

thorough quality management plans, where the GERT networks are more complicated and the QIA 

candidates should be reconsidered. Second, we need to consider the effects of human behavioural 
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factors on the manual/mechanized use of the employed technologies in some QIAs. Third, we can 

combine our technology with the existing food-safety-related approaches, e.g., the HACCP system, 

to further explore hazard analysis and determine the critical control points for assurance of food 

safety. Nonetheless, we hope this study can be a beneficial supplement to the quality management 

field of perishable food with respect to technology innovation. 
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