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Abstract: In this paper we study multi-agent scheduling with release dates and
preemption on a single machine, where the scheduling objective function of each agent
to be minimized is regular and of the maximum form (max-form). The multi-agent
aspect has three versions, namely ND-agent (multiple agents with non-disjoint job sets),
ID-agent (multiple agents with an identical job set), and CO-agent (multiple competing
agents with mutually disjoint job sets). We consider three types of problems: The first
type (type-1) is the constrained scheduling problem, in which one objective function is to
be minimized, subject to the restriction that the values of the other objective functions
are upper bounded. The second type (type-2) is the weighted-sum scheduling problem,
in which a positive combination of the objective functions is to be minimized. The
third type (type-3) is the Pareto scheduling problem, for which we aim to find all the
Pareto-optimal points and their corresponding Pareto-optimal schedules. We show that
the type-1 problems are polynomially solvable, and the type-2 and type-3 problems are
strongly NP -hard even when all jobs’ release dates are zero and processing times are one.
When the number of the scheduling criteria is fixed and they are all lateness-like, such as
minimizing Cmax, Fmax, Lmax, Tmax, and WCmax, where WCmax is the maximum weighted
completion time of the jobs, the type-2 and type-3 problems are polynomially solvable.
To address the type-3 problems, we develop a new solution technique that guesses the
Pareto-optimal points through some elaborately constructed schedule-configurations.
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1 Introduction

In multi-criteria scheduling, we have m scheduling objective functions f (1), f (2), · · · , f (m)

to be minimized. In this paper we only consider the regular scheduling objective functions,
whereby a scheduling objective function f is regular if it is a function nondecreasing in
the completion times of the jobs. Let α be the machine environment and β the processing
requirements of the jobs. The following three types of problems are often studied in
multi-objective scheduling research.

Constrained Scheduling Problem (CSP): α|β|f (m) : f (i) ≤ Xi ∀i = 1, 2, · · · ,m− 1,
where X1, X2, · · · , Xm−1 are m − 1 given threshold values. The goal of the problem
is to find a feasible schedule π that minimizes f (m)(π), subject to the constraint that
f (i)(π) ≤ Xi for i = 1, 2, · · · ,m− 1.

Weighted-Sum Scheduling Problem (WSP): α|β|
∑m

i=1 λif
(i), where λ1, λ2, · · · , λm

are positive weights. The goal of the problem is to find a feasible schedule π that minimizes∑m
i=1 λif

(i)(π).

Pareto Scheduling Problem (PSP): α|β|(f (1), f (2), · · · , f (m)), where the third field
indicates that there are m independent minimization criteria. The goal of the problem is
to find all the Pareto-optimal points and their corresponding Pareto-optimal schedules.
We give the formal definitions of Pareto-optimal points and Pareto-optimal schedules in
Section 2.1.

As observed by Hoogeveen [15], and T’Kindt and Billaut [27], there are some basic
relations between the above three types of problems. Results on the CSP can be taken
as preprocessing for research on the corresponding WSP and PSP. The NP -hardness of
the CSP or WSP implies the NP -hardness of the corresponding PSP. The polynomial
solvability of the PSP implies the polynomial solvability of the corresponding CSP and
WSP (although the time complexity for solving such problems may sometimes be very
different). Moreover, each optimal schedule for the WSP is also a Pareto-optimal schedule
for the corresponding PSP. For convenience, we use

α|β|{f (1), f (2), · · · , f (m)}

to denote all the above three multi-criteria scheduling problems.

In this paper we consider multi-criteria scheduling on a single machine with release
dates and preemption. So α is 1 and β is “rj, pmtn”. Moreover, the m scheduling criteria

are of the max-form. Consequently, we express f (1), f (2), · · · , f (m) as f
(1)
max, f

(2)
max, · · · , f (m)

max,
respectively, in the sequel.

Problem Formulation: We present the problems studied in this paper in the multi-
agent scheduling framework introduced by Agnetis et al. [1] as follows: We are given n
jobs J = {1, 2, · · · , n}, where each job j has a release date rj ≥ 0 and a processing time
pj > 0, that are to be scheduled preemptively on a single machine. There are m agents
{1, 2, · · · ,m} and m subsets J (1),J (2), · · · ,J (m) of J , where J (i) is owned by agent i
and the jobs in J (i) are called the jobs of agent i for i = 1, 2, · · · ,m. We use ni = |J (i)|
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to denote the number of jobs of agent i. Then a natural assumption is that

J (1) ∪ J (2) ∪ · · · ∪ J (m) = J = {1, 2, · · · , n}. (1)

Moreover, each job j ∈ J (i) has a due date d
(i)
j and a weight w

(i)
j ≥ 0 with respect to

agent i, 1 ≤ i ≤ m. We assume in this paper that all the data rj, pj, d
(i)
j , and w

(i)
j are

integers.

Given a schedule π of the n jobs, we use the following notation throughout the paper.

• Cj(π) is the completion time of job j under schedule π.

• Fj(π) = Cj(π)− rj is the flow time of job j under schedule π.

• f (i)
j (Cj(π)) is the cost of job j ∈ J (i) with respect to agent i in schedule π, where f

(i)
j (·)

is a nondecreasing function over [0,+∞).

• L(i)
j (π) = Cj(π) − d

(i)
j is the lateness of job j ∈ J (i) with respect to agent i under

schedule π.

• T (i)
j (π) = max{0, Cj(π) − d(i)j } = max{0, L(i)

j (π)} is the tardiness of job j ∈ J (i) with
respect to agent i under schedule π.

• w(i)
j Cj(π) is the weighted completion time of job j ∈ J (i) with respect to agent i under

schedule π.

• C(i)
max(π) = max{Cj(π) : j ∈ J (i)} is the makespan of agent i under schedule π.

• F (i)
max(π) = max{Fj(π) : j ∈ J (i)} is the maximum flow time of agent i under schedule

π.

• L(i)
max(π) = max{L(i)

j (π) : j ∈ J (i)} is the maximum lateness of agent i under schedule
π.

• T (i)
max(π) = max{T (i)

j (π) : j ∈ J (i)} is the maximum tardiness of agent i under schedule
π.

• WC
(i)
max(π) = max{w(i)

j Cj(π) : j ∈ J (i)} is the maximum weighted completion time of
agent i under schedule π.

• f (i)
max(π) = max{f (i)

j (π) : j ∈ J (i)} is the maximum cost of agent i under schedule π. We

call f
(i)
max the scheduling objective function of agent i. Then each of the objective functions

C
(i)
max, F

(i)
max, L

(i)
max, T

(i)
max, and WC

(i)
max is a specific choice for f

(i)
max.

According to Agnetis et al. [1], there are two typical versions of multi-agent scheduling
models related to our research as follows:

– If J (1),J (2), · · · ,J (m) are mutually disjoint, then the m agents are called competing
agents. In this case, we add CO in the β field to describe the scheduling problem and call
it CO-agent scheduling. Then we denote our CO-agent scheduling problems by

1|rj, pmtn, CO|{f (1)
max, f

(2)
max, · · · , f (m)

max}.

– If J (1),J (2), · · · ,J (m) are not restricted to be mutually disjoint, then the m agents
are called non-disjoint agents. In this case, we add ND to the β field to describe the
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scheduling problem and call it ND-agent scheduling. Then we denote our ND-agent
scheduling problems by

1|rj, pmtn, ND|{f (1)
max, f

(2)
max, · · · , f (m)

max}.

It is evident that CO-agent scheduling is a special version of ND-agent scheduling.

The classical multi-criteria scheduling problem to minimize m max-form scheduling
criteria is in fact another special version of ND-agent scheduling. In this case, we have
J (1) = J (2) = · · · = J (m) = J . Since the m agents have identical sets of jobs, we add ID
to the β field to describe the scheduling problem and call it ID-agent scheduling. Then
we denote our ID-agent scheduling problems by

1|rj, pmtn, ID|{f (1)
max, f

(2)
max, · · · , f (m)

max}.

Research Motivation: The scheduling problems considered in this paper are motivated
by cooperation and competition of multiple agents, where each agent can be regarded as a
firm, a factory, or an investor. When several agents cooperate to work on a joint project,
each agent seeks to minimize its own loss or maximize its own profit, yet they need to
work cooperatively to complete the project. So the scheduling of the joint activities of the
agents in carrying out the project needs to strike a proper balance between the benefit
and cost to each participating agent. As stated in Agnetis et al. [2], management prob-
lems in which multiple agents compete on the usage of a common processing resource are
receiving increasing attention in different application environments and different method-
ological fields. Agnetis et al. [1] presented applications of multi-agent scheduling in
various contexts, including job re-scheduling, railway scheduling, aircraft landing, multi-
project scheduling, cross-docking distribution, and communication network. T’Kindt and
Billaut [27] discussed applications of multi-criteria scheduling in the contexts of bottle
manufacturing, electroplating and chemical processing, steel manufacturing, car assem-
bling, cheque processing, transport scheduling, timetabling, sports scheduling, and satel-
lite scheduling. The common feature in these examples is that m agents with different
objectives work together to perform n jobs.

Literature Review: Multi-criteria scheduling research has been rapidly developing
in the past two decades. Some classical results play important roles in the research
on this topic. For example, Hoogeveen [14] addressed the two-criteria scheduling

problems 1||{f (1)
max, f

(2)
max} and the three-criteria scheduling problems 1||{f (1)

max, f
(2)
max, f

(3)
max},

and Hoogeveen and van de Velde [16] addressed the two-criteria scheduling problem
1||{

∑
Cj, fmax}. The methodologies applied in these studies, which are commonly adopted

in subsequent related research, have helped the development of this research stream.
Multi-criteria scheduling has become a very popular topic in scheduling research. With
over a thousand papers published on this topic, Hoogeveen [15], Nelson et al. [21], T’kindt
and Billaut [27], and Agnetis et al. [1] provided comprehensive reviews of the related re-
search results.

Multi-agent scheduling models were first introduced by Agnetis et al. [2], and Baker
and Smith [5]. Some early research on multi-agent scheduling can be found in Agnetis

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

et al. [2, 3], Baker and Smith [5], Cheng et al. [8, 9], Ng et al. [22], and Yuan et al.
[32]. The phenomenal growth of multi-agent scheduling has confirmed its importance in
scheduling research. Some recent research on multi-agent scheduling includes Agnetis et
al. [1], Gao and Yuan [11], Gao et al. [12], He and Leung [13], Li et al. [20], Oron et al.
[23], Sadi and Soukhal [24], Sadi et al. [25], Yuan et al. [31], and Yuan [28, 29, 30].

In this paper we only consider the max-form scheduling criteria. We summarize the
most related known results in Table 1.

Table 1: The complexity results of related research in the literature.
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Problem Complexity Reference

1|ID|f (m)
max : f

(i)
max ∀i ≤ m− 1 O(mn2) Hoogeveen [14]

1|ID|λ1f (1)
max + λ2f

(2)
max O(n4) Hoogeveen [14]

1|ID|(f (1)
max, f

(2)
max) O(n4) Hoogeveen [14]

1|ID|L(2)
max : L

(1)
max O(n log n) Hoogeveen [14]

1|ID|λ1L(1)
max + λ2L

(2)
max O(n3 log n) Hoogeveen [14]

1|ID|(L(1)
max, L

(2)
max) O(n3 log n) Hoogeveen [14]

1|ID|λ1f (1)
max + λ2f

(2)
max + λ3f

(3)
max O(n8) Hoogeveen [14]

1|ID|(f (1)
max, f

(2)
max, f

(3)
max) O(n8) Hoogeveen [14]

1|ID|
∑m

i=1 λif
(i)
max Strongly NP -hard Hoogeveen [14]

1|rj, pmtn, ID|f (2)
max : f

(1)
max O(n2) Sourd [26]

1|rj, pmtn, ID|λ1f (1)
max + λ2f

(2)
max O(n4) Sourd [26]

1|rj, pmtn, ID|(f (1)
max, f

(2)
max) O(n4) Sourd [26]

1|CO|f (2)
max : f

(1)
max O(n2) Agnetis et al. [2]

1|CO|λ1f (1)
max + λ2f

(2)
max O(n1n2n

2) Agnetis et al. [2]

1|CO|(f (1)
max, f

(2)
max) O(n1n2n

2) Agnetis et al. [1]

1|CO|L(2)
max : L

(1)
max O(n log n) Yuan et al. [32]

1|CO|λ1L(1)
max + λ2L

(2)
max O(n1n2n) Yuan et al. [32]

1|CO|(L(1)
max, L

(2)
max) O(n1n2n) Agnetis et al. [1]

1|CO|{C(1)
max, C

(2)
max} O(n) Agnetis et al. [1]

1|CO|f (m)
max : f

(i)
max ∀i ≤ m− 1 O(n2) Agnetis et al. [3]

1|CO|
∑m

i=1 λiC
(i)
max with fixed m O(n) Agnetis et al. [1]

1|CO|
∑m

i=1 λiL
(i)
max with fixed m O((n1 · · ·nm)mn log n) Agnetis et al. [1]

1|CO|
∑m

i=1 λif
(i)
max with fixed m Pseudo-polynomial time Cheng et al. [9]

1|CO, w
(i)
j = w(i)|

∑m
i=1 λiWC

(i)
max O(n+m logm) Cheng et al. [9]

1|CO|
∑m

i=1WC
(i)
max Strongly NP -hard Cheng et al. [9]

1|CO|
∑m

i=1 L
(i)
max or

∑m
i=1 T

(i)
max Binary NP -hard Cheng et al. [9]

1|CO|
∑m

i=1 λiL
(i)
max or

∑m
i=1 λiT

(i)
max Strongly NP -hard Yuan [28]

1|rj, pmtn, CO|f (2)
max : f

(1)
max O(n2) Leung et al. [19]

1|ND|{C(1)
max, C

(2)
max} O(n) Agnetis et al. [1]

1|ND|L(2)
max : L

(1)
max O(n log n) Agnetis et al. [1]

1|ND|f (2)
max : f

(1)
max O(n2) Agnetis et al. [1]

1|ND|
∑m

i=1 λiL
(i)
max with fixed m O(n) Agnetis et al. [1]

1|ND|f (m)
max : f

(i)
max ∀i ≤ m− 1 O(mn2) Agnetis et al. [1]

Methodology Discussion: For problem 1|prec|fmax, Lawler [17] presented an O(n2)
algorithm, called Lawler’s rule, for solving the problem. Lawler’s rule has a huge impact on
scheduling research. Almost all the studies concerning the max-form scheduling criterion
may use Lawler’s rule or its derivatives. For example, Baker et al. [4] presented an O(n2)
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algorithm to solve problem 1|rj, pmtn|fmax and Hoogeveen [14] presented an O(mn2)

algorithm to solve problem 1||f (m)
max : f

(i)
max ≤ Xi ∀i = 1, 2, · · · ,m − 1. In Section 3 we

extend the results in Baker et al. [4] and Hoogeveen [14] to devise a method to solve

the constrained ND-agent scheduling problem 1|rj, pmtn, ND|f (m)
max : f

(i)
max ≤ Xi ∀i =

1, 2, · · · ,m− 1.

The “ε-constraint method” (see Hoogeveen [15] and T’kindt and Billaut [27]) is an
efficient way to solve the Pareto scheduling problem α|β|(f, g), where f and g are two
regular scheduling objective functions to be minimized. The idea underpinning the ε-
constraint method is as follows: Suppose that x̃ is a number such that the constrained
problem α|β|g : f ≤ x̃ is feasible. Let y be the optimal value of problem α|β|g : f ≤ x̃ and
let x be the optimal value of problem α|β|f : g ≤ y. Then (x, y) is a Pareto-optimal point
of problem α|β|(f, g).

As described in Hoogeveen [15] and T’kindt and Billaut [27], the ε-constraint method
can be used to generate all the Pareto-optimal points of problem α|β|(f, g) by iteratively
solving problems α|β|g : f ≤ x and α|β|f : g ≤ y.

Agnetis et al. [2] studied the Pareto CO-agent scheduling problem 1|CO|(f (A), f (B))
using the “schedule-structure analysis” approach, where there are two competing agents
A and B with scheduling objective functions f (A) and f (B), respectively. They showed
that, for X ∈ {A,B}, if f (X) =

∑
C

(X)
j , then the X-jobs are scheduled in the shortest

processing time (SPT) order in a Pareto-optimal schedule, and if f (X) = L
(X)
max, then the

X-jobs are scheduled in the earliest due date (EDD) order in a Pareto-optimal schedule.
Applying the schedule-structure analysis approach, Agnetis et al. [2] showed that the

Pareto CO-agent scheduling problems 1|CO|(
∑
C

(A)
j , L

(B)
max) and 1|CO|(L(A)

max, L
(B)
max) are

polynomially solvable. Following Agnetis et al. [2], Agnetis et al. [3], Cheng et al.
[8, 9], Oron et al. [23], and Yuan et al. [32] also adopted the schedule-structure analysis
approach to address related problems in their studies.

For the Pareto scheduling problem α|β|(f (1), f (2), · · · , f (m)), we present in Section 2.1
two lemmas (Lemmas 2.1 and 2.2) to replace the role of the ε-constraint method. For the

case where each of the objective functions f
(i)
max, i = 1, 2, · · · ,m, is lateness-like (defined

in Section 2.3), our problem 1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max) can be solved by a new
technique by guessing the Pareto-optimal points through some elaborately constructed
schedule-configurations.

It is noted that we use in this paper the Pmtn-LS schedule (defined in Section 2.2)
for scheduling jobs with release dates and preemption. Based on some basic properties of
the Pmtn-LS schedule, we can only consider permutations of the jobs for scheduling. We
believe that this technique can be effectively used to address other scheduling problems
with release dates and preemption.

Our Contributions: In this paper we study the single-machine multi-agent schedul-
ing problem 1|rj, pmtn, A|{f (1)

max, f
(2)
max, · · · , f (m)

max}, where A ∈ {ND, ID,CO}. For most

cases, we assume that each f
(i)
max is a lateness-like objective function, i = 1, 2, . . . ,m. We

summarize our main findings in Table 2.
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Table 2: Complexity results of polynomially solvable problems in this paper.
m rj ,pmtn Agent Problem f

(i)
max Time complexity References

Any rj ,pmtn ND CSP Regular O(mn2) Theorem 3.1
Any rj ,pmtn ID CSP Regular O(mn2) Theorem 3.1
Any rj ,pmtn CO CSP Regular O(n2) Theorem 3.2
Any rj = 0,no pmtn ND CSP Lateness-like O(mn+ n log n) Theorem 3.4
Any rj = 0,no pmtn ID CSP Lateness-like O(mn+ n log n) Theorem 3.4
Any rj = 0,no pmtn CO CSP Lateness-like O(n log n) Theorem 3.4
Fixed rj ,pmtn ND PSP Lateness-like O((n1 · · ·nm)m−1n2) Theorem 4.2
Fixed rj ,pmtn ND WSP Lateness-like O((n1 · · ·nm)m−1n2) Theorem 4.2

Fixed rj ,pmtn ID PSP Lateness-like O(nm2−m+2) Theorem 4.2

Fixed rj ,pmtn ID WSP Lateness-like O(nm2−m+2) Theorem 4.2
Fixed rj ,pmtn CO PSP Lateness-like O((n1 · · ·nm)m−1n) Theorem 4.5
Fixed rj ,pmtn CO WSP Lateness-like O((n1 · · ·nm)m−1n) Theorem 4.5
Fixed rj = 0,no pmtn ND PSP Lateness-like O((n1 · · ·nm)m−1n log n) Theorem 4.3
Fixed rj = 0,no pmtn ND WSP Lateness-like O((n1 · · ·nm)m−1n log n) Theorem 4.3

Fixed rj = 0,no pmtn ID PSP Lateness-like O(nm2−m+1 log n) Theorem 4.3

Fixed rj = 0,no pmtn ID WSP Lateness-like O(nm2−m+1 log n) Theorem 4.3
Fixed rj = 0,no pmtn CO PSP Lateness-like O((n1 · · ·nm)m−1n) Theorem 4.5
Fixed rj = 0,no pmtn CO WSP Lateness-like O((n1 · · ·nm)m−1n) Theorem 4.5

Moreover, we show that the weighted-sum multi-agent scheduling problems 1|ID, pj =

1|
∑m

i=1WC
(i)
max, 1|ID, pj = 1|

∑m
i=1 L

(i)
max, 1|ID, pj = 1|

∑m
i=1 T

(i)
max, and 1|CO, pj =

1|
∑m

i=1 λiT
(i)
max, and 1|CO, pj = 1|

∑m
i=1WC

(i)
max are strongly NP -hard.

Organization of the Paper: We organize the rest of the paper as follows: In Section
2 we present some preliminaries. In Section 3 we show that the constrained multi-agent
scheduling problems are polynomially solvable. In Section 4 we show that, when m is fixed
and the scheduling criteria are lateness-like, the multi-agent Pareto scheduling problems
are polynomially solvable. In Section 5 we provide strong NP -hardness results for some
restricted weighted-sum multi-agent scheduling problems. We conclude the paper and
suggest topics for future research in Section 6.

2 Some preliminaries

In Section 2.1 we formally define the Pareto scheduling problem and provide some basic
properties. In Section 2.2 we introduce the Pmtn-LS schedule for scheduling jobs with
release dates and preemption, followed by some discussions. In Section 2.3 we introduce
the lateness-like criteria and the EDD-like permutations.

2.1 Pareto scheduling problems

Consider the Pareto scheduling problem α|β|(f (1), f (2), · · · , f (m)). The objective vec-
tor of a feasible schedule π is given by (f (1)(π), f (2)(π), · · · , f (m)(π)). An m-vector
(X1, X2, · · · , Xm) is called a Pareto-optimal point if there is a feasible schedule π∗ such
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that (f (1)(π∗), f (2)(π∗), · · · , f (m)(π∗)) = (X1, X2, · · · , Xm) and there is no feasible sched-
ule π with

(f (1)(π), f (2)(π), · · · , f (m)(π)) < (X1, X2, · · · , Xm),

i.e., f (i)(π) ≤ Xi for all i and at least one of the inequalities is strict. In this case, π∗ is
called a Pareto-optimal schedule corresponding to (X1, X2, · · · , Xm).

The following lemma is directly implied from the above definition.

Lemma 2.1. Let (X1, X2, · · · , Xm) be a Pareto-optimal point. Then each optimal sched-
ule of the constrained scheduling problem

α|β|f (m) : f (i) ≤ Xi ∀i = 1, 2, · · · ,m− 1

is a Pareto-optimal schedule corresponding to (X1, X2, · · · , Xm).

Suppose that we are given a set of m-vectors X and we are informed that X includes
all the Pareto-optimal points of problem α|β|(f (1), f (2), · · · , f (m)). Usually, some vectors
in X may not be Pareto-optimal. Then a question arises: How do we determine whether
or not a vector (X1, X2, · · · , Xm) ∈ X is Pareto-optimal? We provide the following lemma
to address the question.

Lemma 2.2. Let (X1, X2, · · · , Xm) be an m-vector. Then (X1, X2, · · · , Xm) is a
Pareto-optimal point of problem α|β|(f (1), f (2), · · · , f (m)) if and only if, for each k ∈
{1, 2, · · · ,m}, the constrained scheduling problem

α|β|f (k) : f (i) ≤ Xi ∀i 6= k

is feasible and has the optimal value Xk.

Proof. The necessity (⇒) is implied in Lemma 2.1 directly.

To prove the sufficiency (⇐), we suppose to the contrary that (X1, X2, · · · , Xm) is
not a Pareto-optimal point. Since, for each k ∈ {1, 2, · · · ,m}, the constrained schedul-
ing problem α|β|f (k) : f (i) ≤ Xi,∀i 6= k, is feasible and has the optimal value Xk,
we conclude that there must be a Pareto-optimal point (X ′1, X

′
2, · · · , X ′m) such that

(X ′1, X
′
2, · · · , X ′m) < (X1, X2, · · · , Xm). Let π′ be a Pareto-optimal schedule correspond-

ing to (X ′1, X
′
2, · · · , X ′m) and let k ∈ {1, 2, · · · ,m} be such that X ′k < Xk. Then π′ is a

feasible schedule for problem α|β|f (k) : f (i) ≤ Xi ∀i 6= k. The fact that f (k)(π′) = X ′k < Xk

implies that the optimal value of problem α|β|f (k) : f (i) ≤ Xi ∀i 6= k is less than Xk. This
contradicts the hypothesis. The lemma follows. �

2.2 Pmtn-LS schedule

A nonpreemtive schedule π = (π(1), π(2), · · · , π(n)) of the n jobs J = {1, 2, · · · , n} is
called a permutation schedule if the jobs are scheduled consecutively without preemp-
tion from time 0 to

∑n
j=1 pj in the order π(1), π(2), · · · , π(n). In this case, we have
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Cπ(j)(π) = pπ(1) + pπ(2) + · · · + pπ(j) for j = 1, 2, · · · , n. Given a regular scheduling
objective function f(·), it is well known that the optimal value of problem 1||f can be
achieved by a permutation schedule. We will see that the feasible schedules for problem
1|rj, pmtn|f do not differ much from the permutation schedules.

Given a permutation (list) π = (π(1), π(2), · · · , π(n)) of the n jobs J = {1, 2, · · · , n},
the following algorithm, called Pmtn-LS(π), generates a feasible preemptive list schedule
for problem 1|rj, pmtn|f .

Pmtn-LS(π): Schedule the jobs preemptively using the strategy that, at any decision
point τ (when some jobs are completed or some jobs are released), schedule the remaining
part of the first available job in the list π. By “a job is available at time τ”, we mean
that the job is released by time τ and has not been completed. The schedule obtained by
Pmtn-LS(π) is called the Pmtn-LS schedule determined by π.

As given in Yuan et al. [31], Pmtn-LS(π) can be implemented in the following way: We
first schedule job π(1) as early as possible. When the first j jobs in π have been scheduled
and j < n, we schedule the (j+ 1)-st job π(j + 1) preemptively in the remaining idle time
space as early as possible. We repeat this procedure until all the jobs are scheduled.

In the above discussion, the term “time space” is understood as “a set of time intervals”
or “a set of time periods”. We use such a term repeatedly in the following discussion.
For example, the time space occupied by a schedule π refers to the set of time intervals
in which the machine is busy in π.

Yuan et al. [31] showed that each of the above two implementations of Pmtn-LS(π)
runs in O(n log n) time. For convenience, for a permutation π = (π(1), π(2), · · · , π(n)),
we also use π to denote the Pmtn-LS schedule determined by π. Then Sj(π) (starting
time), Cj(π) (completion time), fj(Cj(π)), and fmax(π) have their meanings.

It is noted that, for distinct permutations π and π′ of the n jobs, the two Pmtn-LS
schedules determined by π and π′, respectively, occupy the same time space, so we have
Cmax(π) = Cmax(π

′). Based on this fact, for each J ′ ⊆ J , we use the following two
notation in our discussion:

• T (J ′) denotes the time space occupied by a Pmtn-LS schedule of J ′.
• C(J ′) denotes the makespan of a Pmtn-LS schedule of J ′.
Recall that the earliest release date (ERD) order of the n jobs J = {1, 2, · · · , n} is a

permutation π = (π(1), π(2), · · · , π(n)) of the n jobs such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n).

Lemma 2.3. Suppose that the ERD order of the n jobs in J is given in advance. Then
T (J ) and C(J ) can be calculated in O(n) time.

Proof. Let π = (π(1), π(2), · · · , π(n)) be the ERD order of the n jobs in J given in
advance. Then rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n). Given the ERD order, the schedule obtained
by algorithm Pmtn-LS(π) has no preemption. Then Cj(π) = Sj(π) + pj for every job j.
Set Cπ(0) = 0. From the implementation of Pmtn-LS(π), for i = 1, 2, · · · , n, the values

10
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Sπ(i)(π) and Cπ(i)(π) can be calculated iteratively in the following way:{
Sπ(i)(π) = max{rπ(i), Cπ(i−1)(π)},
Cπ(i)(π) = Sπ(i)(π) + pπ(i).

Clearly, the time complexity for calculating these values is given by O(n). Especially,
C(J ) = Cπ(n)(π) can be calculated in O(n) time. Since T (J ) =

⋃n
i=1[Sπ(i)(π), Cπ(i)(π)],

T (J ) can also be calculated in O(n) time. The lemma follows. �

Given a permutation π = (π(1), π(2), · · · , π(n)) of the n jobs in J , for each k ∈
{1, 2, · · · , n}, we introduce the following three notation:

• π|k = (π(1), π(2), · · · , π(k)), which restricts the permutation π to its first k jobs.

• J π
k = {π(1), π(2), · · · , π(k)}, which is the set of the first k jobs in the permutation

π.

• Sπk = {j : Cj(π) ≤ Ck(π)}, which is the set of jobs completed by time Ck(π) in π.

From the implementation of Pmtn-LS(π), we have

Cπ(k)(π) = C(Sππ(k)) ≤ C(J π
k ) = Cmax(π|k) for all k = 1, 2, · · · , n. (2)

Note that all the values in (2) can be obtained in O(n log n) time by running algorithm
Pmtn-LS(π). For the case where rj = 0 for all the jobs, all the values in (2) are given by
pπ(1) + pπ(2) + · · ·+ pπ(k), k = 1, 2, · · · , n, so they can be obtained in O(n) time.

Lemma 2.4. The Pmtn-LS schedule dominates all the feasible schedules, i.e., for every
feasible schedule σ of the n jobs, there is a permutation π of the n jobs such that Cj(π) ≤
Cj(σ), j = 1, 2, · · · , n.

Proof. For a given feasible schedule σ of the n jobs, let π = (π(1), π(2), · · · , π(n))
be the permutation of the n jobs so that Cπ(1)(σ) < Cπ(2)(σ) < · · · < Cπ(n)(σ).
Given j ∈ {1, 2, · · · , n}, let k be the index such that π(k) = j, i.e., j is the k-th
job in the permutation π. Then J π

k = {π(1), π(2), · · · , π(k)}. Since Pmtn-LS(π|k)
schedules the jobs in J π

k preemptively as early as possible, we have Cmax(π|k) ≤
max{Cπ(1)(σ), Cπ(2)(σ), · · · , Cπ(k)(σ)} = Cπ(k)(σ). From (2), we conclude that Cj(π) =
Cπ(k)(π) ≤ Cmax(π|k) ≤ Cπ(k)(σ) = Cj(σ). This proves the lemma. �

Since we only consider regular scheduling objective functions, from Lemma 2.4, it
suffices to consider the Pmtn-LS schedules in the rest of the paper.

Note that C(J π
1 ) ≤ C(J π

2 ) ≤ · · · ≤ C(J π
n ) for every permutation π =

(π(1), π(2), · · · , π(n)). Moreover, from (2), we have Cπ(k)(π) ≤ C(J π
k ) for k = 1, 2, · · · , n,

but we cannot guarantee the equalities because of the release dates. A permutation
π = (π(1), π(2), · · · , π(n)) is called completion-coinciding if Cπ(1)(π) < Cπ(2)(π) < · · · <
Cπ(n)(π). For completion-coinciding permutations, we clearly have Sππ(k) = J π

k and

Cπ(k)(π) = C(Sππ(k)) = C(J π
k ) for k = 1, 2, · · · , n, so C(J π

1 ) < C(J π
2 ) < · · · < C(J π

n ).

Not all the permutations are completion-coinciding. However, the following lemma
enables us to consider completion-coinciding permutations if necessary.
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Lemma 2.5. For each permutation π, the new permutation π∗ obtained from π by listing
the n jobs in increasing order of their completion times in π is a completion-coinciding
permutation such that Pmtn-LS(π) and Pmtn-LS(π∗) generate the same schedule, imply-
ing Cj(π

∗) = Cj(π) for j = 1, 2, · · · , n.

Proof. Let π = (π(1), π(2), · · · , π(n)). If π is a completion-coinciding permutation, we
have nothing to do. Then we assume in the following that π is not completion-coinciding.

Let k be the largest index in {1, 2, · · · , n} such that Cπ(k)(π) < Cπ(i)(π) for some index
i with i < k. For our purpose, we may choose the index i such that Cπ(i)(π) = C(J π

k ).
From the choices of k and i and from (2), we have

Cπ(j)(π) < Cπ(i)(π) = C(J π
k ) for j ∈ {1, 2, · · · , k} \ {i} (3)

and
Cπ(i)(π) < Cπ(k+1)(π) < Cπ(k+1)(π) < · · · < Cπ(n)(π). (4)

If rπ(i) < max{Cπ(j) : j = i + 1, i+ 2, · · · , k}, then there is some index j ∈ {i + 1, i+
2, · · · , k} such that rπ(i) < Cπ(j)(π). Since i < j, job π(i) takes precedence of job π(j) in
permutation π. From the implementation of algorithm Pmtn-LS(π), job π(j) completes
after job π(i) in Pmtn-LS(π). This means that Cπ(j)(π) > Cπ(i)(π), contradicting the
inequality in (3). Consequently, we have

rπ(i) ≥ max{Cπ(j) : j = i+ 1, i+ 2, · · · , k}. (5)

Let π′ = (π′(1), π′(2), · · · , π′(n)) such that

π′(j) =


π(j), for j = 1, 2, · · · , i− 1,

π(j + 1), for j = i, i+ 1, · · · , k − 1,

π(i), for j = k,

π(j), for j = k + 1, k + 2, · · · , n.

(6)

Then π′ is the permutation obtained from π by shifting π(i) to the position after π(k).
When we run algorithm Pmtn-LS(π′), from the first line in (6), the schedule for the i− 1
jobs π′(j) = π(j), 1 ≤ j ≤ i − 1, in Pmtn-LS(π′) is the same as that in Pmtn-LS(π).
From (5) and from the second line in (6), the schedule of the k − i jobs π′(j) = π(j + 1),
i ≤ j ≤ k−1, in Pmtn-LS(π′) is the same as that in Pmtn-LS(π). So, just when the k−1
jobs π′(1), π′(2), · · · , π′(k − 1) are scheduled in Pmtn-LS(π′), the time space occupied by
job π′(k) = π(i) in π is still idle. It follows that the schedule for job π′(k) in Pmtn-LS(π′)
is certainly the same as that in Pmtn-LS(π). From the first three lines in (6), we know
that J π′

k = J π
k , so T (J π′

k ) = T (J π
k ). Thus, from the last line in (6), the schedule for the

remaining n− k jobs π′(j) = π(j), k + 1 ≤ j ≤ n, in Pmtn-LS(π′) is the same as that in
Pmtn-LS(π).

The above discussion reveals that π and π′ satisfy the following three proper-
ties: (i) The two algorithms Pmtn-LS(π′) and Pmtn-LS(π) generate the same sched-
ule, (ii) Cπ(k)(π) < C(J π

k ) < Cπ(k+1)(π) < Cπ(k+2)(π) < · · · < Cπ(n)(π), and (iii)
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Cπ′(k−1)(π
′) < C(J π′

k ) = Cπ′(k)(π
′) < Cπ′(k+1)(π

′) < · · · < Cπ′(n)(π
′). Consequently,

by at most n− 1 repetitions of the above procedure, we eventually obtain a permutation
π∗ = (π∗(1), π∗(2), · · · , π∗(n)) of the n jobs in J such that Pmtn-LS(π∗) and Pmtn-LS(π)
generate the same schedule and Cπ∗(1)(π

∗) < Cπ∗(2)(π
∗) < · · · < Cπ∗(n)(π

∗). Now we
complete the proof by noting that π∗ is obtained from π by listing the n jobs in increasing
order of their completion times in π. �

Suppose that J ′ is a nonempty subset of J = {1, 2, · · · , n}. A job x ∈ J ′ is called
interfering with respect to J ′ if C(J ′ \{x}) < C(J ′). Note that if rj = 0 for all the jobs,
then all the jobs in J ′ are interfering with respect to J ′. But in the general environment
“rj, pmtn”, it is not the case.

Lemma 2.6. Suppose that J ′ and J ′′ are two subsets of J such that J ′ ⊂ J ′′. If
C(J ′) < C(J ′′), then there is an interfering job x with respect to J ′′ such that x ∈ J ′′\J ′.

Proof. Note that J ′′ is the disjoint union of J ′ and J ′′\J ′. Let π be a permutation of the
jobs in J ′′ such that the jobs in J ′ are listed before the jobs in J ′′\J ′. Then the maximum
completion time of the jobs in J ′ is given by max{Cj(π) : j ∈ J ′} = C(J ′) and the
maximum completion time of the jobs in J ′′ is given by max{Cj(π) : j ∈ J ′′} = C(J ′′).
Let x be the last completed job in π, i.e., Cx(π) = C(J ′′). Then C(J ′′ \ {x}) < C(J ′′).
Since C(J ′) < C(J ′′), we have x ∈ J ′′ \ J ′. Thus, x is a required interfering job with
respect to J ′′. The lemma follows. �

Since the original proposition is equivalent to its converse negative proposition,
Lemma 2.6 can be equivalently stated in the following form:

Lemma 2.6′. Suppose that J ′ and J ′′ are two subsets of J such that J ′ ⊂ J ′′. If every
job in J ′′ \ J ′ is not interfering with respect to J ′′, then C(J ′) = C(J ′′).

Lemma 2.7. Let π = (π(1), π(2), · · · , π(n)) be a completion-coinciding permutation of
the jobs in J , and let x and k be two indices with 1 ≤ x < k ≤ n. Let π′ be the new
permutation obtained from π by shifting π(x) to the position just after π(k), i.e.,

π′ = (π(1), · · · , π(x− 1), π(x+ 1), · · · , π(k), π(x), π(k + 1), · · · , π(n)).

Then we have

(i) Cπ(x)(π
′) = Cπ′(k)(π

′) ≤ Cπ(k)(π),

(ii) Cj(π
′) ≤ Cj(π) for every job j ∈ J \ {π(x)},

(iii) Cj(π
′) = Cj(π) for every job j ∈ {π(k + 1), π(k + 2), · · · , π(n)}, and

(iv) if π(x) is an interfering job with respect to J π
k , then Cπ(k)(π

′) < Cπ(x)(π
′) =

Cπ(k)(π).

Proof. Recall that J π
h = {π(1), π(2), · · · , π(h)} for h ∈ {1, 2, · · · , n}. Since π is a

completion-coinciding permutation of the jobs in J , we have

Cπ(h)(π) = Cmax(π|h) = C(J π
h ) for h ∈ {1, 2, · · · , n}. (7)
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The definitions of π, π′, x, and k imply that π(x) = π′(k) and J π′

k = J π
k . From (2) and

(7), we have

Cπ(x)(π
′) = Cπ′(k)(π

′) ≤ Cmax(π
′|k) = C(J π′

k ) = C(J π
k ) = Cπ(k)(π). (8)

This proves (i).

Now let j ∈ J \ {π(x)}. Then there are some h, h′ ∈ {1, 2, · · · , n} such that j =
π(h) = π′(h′). Note that h 6= x and h′ 6= k since j 6= π(x) and j 6= π′(k). By the
definitions of π and π′, we have J π′

h′ ⊆ J π
h (in fact, if h ≤ x − 1 or h ≥ k + 1, we have

h = h′ and J π′

h′ = J π
h , and if x+ 1 ≤ h ≤ k, we have h = h′ + 1 and J π′

h′ = J π
h \ {π(x)}).

This implies that C(J π′

h′ ) ≤ C(J π
h ). From (2) and (7) again, we have

Cj(π
′) = Cπ′(h′)(π

′) ≤ Cmax(π
′|h′) = C(J π′

h′ ) ≤ C(J π
h ) = Cmax(π|h) = Cπ(h)(π) = Cj(π).

This proves (ii).

The result in (iii) follows from (7) and the fact that, for h = k + 1, k + 2, · · · , n, we
have Cπ(h)(π

′) = C(Sπ′π(h)) = C(J π
h ).

To prove (iv), we assume that π(x) is an interfering job with respect to J π
k . Then we

have
Cmax(π

′|k−1) = C(J π′

k−1) = C(J π
k \ {π(x)}) < Cπ(k)(π), (9)

where the first equality follows from (2). From (8) and (9), the only possibility is that
Cπ(k)(π

′) < Cπ′(k)(π
′) = Cmax(π

′|k) = Cπ(k)(π), or equivalently, Cπ(k)(π
′) < Cπ(x)(π

′) =
Cπ(k)(π). This proves the lemma. �

The above results on Pmtn-LS schedules enable us to deploy a new method to deal
with preemptive scheduling problems (with job release dates): Using C(J ′) with J ′ ⊆ J
as a parameter, it suffices to consider permutations of the jobs in J ′. In most cases,
we need not obtain C(J ′) by generating a Pmtn-LS schedule of J ′; instead, we use the
lemmas established in this subsection repeatedly. As a result, we do not consider the
release dates directly in the sequel.

2.3 Lateness-like criteria and EDD-like permutations

Consider multi-agent scheduling in which f
(1)
max, f

(2)
max, · · · , f (m)

max are the scheduling objective
functions of the m agents {1, 2, · · · ,m}, respectively. The scheduling criterion of mini-

mizing f
(i)
max is called lateness-like if f

(i)
max is regular and there is a permutation, denoted

by Oi = (i1, i2, · · · , ini), of the ni jobs in J (i) such that, for every time instant τ , we have

f
(i)
i1 (τ) ≥ f

(i)
i2 (τ) ≥ · · · ≥ f

(i)
ini

(τ). (10)

In this case, f
(i)
max is also called a lateness-like objective function and Oi is an optimal

permutation for problem 1|rj, pmtn|f (i)
max. This in fact follows from the idea for solving

problem 1|rj, pmtn|fmax in Baker et al. [4]. We call Oi an EDD-like permutation of agent
i, i = 1, 2, · · · ,m.
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Given an EDD-like permutation of agent i, for each job j ∈ J (i), we use j(s) to denote
the position index of job j in Oi, i.e., j = ij(s).

The lateness-like criterion and EDD-like permutation are so named because the prob-
lem 1|rj, pmtn|Lmax, which minimizes the maximum lateness, has an optimal permuta-

tion in which the jobs are sequenced in the EDD order. If f
(i)
max = L

(i)
max, by setting

Oi = (i1, i2, · · · , ini) as the EDD order of the jobs in J (i), i.e., di1 ≤ di2 ≤ · · · ≤ dini ,
then the relations in (10) hold obviously. This is the intuition behind the definitions of
the lateness-like criterion and EDD-like permutation.

Some common lateness-like scheduling criteria are minimizing Cmax, Fmax, Lmax, Tmax,
and WCmax. For f

(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, Table 3 depicts the correspond-

ing EDD-like permutation Oi and the time complexity for generating Oi.

Table 3: EDD-like permutations Oi with respect to f
(i)
max.

f
(i)
max Oi = (i1, i2, · · · , ini) Time Complexity

C
(i)
max An arbitrary order O(n)

F
(i)
max ri1 ≤ ri2 ≤ · · · ≤ rini O(n log n)

L
(i)
max d

(i)
i1 ≤ d

(i)
i2 ≤ · · · ≤ d

(i)
ini

O(n log n)

T
(i)
max d

(i)
i1 ≤ d

(i)
i2 ≤ · · · ≤ d

(i)
ini

O(n log n)

WC
(i)
max w

(i)
i1 ≥ w

(i)
i2 ≥ · · · ≥ w

(i)
ini

O(n log n)

We can observe from Table 3 that, for f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, the

corresponding EDD-like permutations Oi can be obtained in at most O(n log n) time. This
time complexity is usually dominated by the final time complexity for solving a multi-
agent problem. Thus, when a lateness-like criterion of minimizing f

(i)
max is considered and

its concrete form is uncertain, we always assume that the EDD-like permutation Oi is
given in advance.

3 Constrained multi-agent scheduling problems

Given an (m − 1)-vector (X1, X2, · · · , Xm−1), we consider the following two constrained
multi-agent scheduling problems

1|rj, pmtn, ND|f (m)
max : f (i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1, (11)

1|rj, pmtn, CO|f (m)
max : f (i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1. (12)

Then the problem in (12) is a subproblem of the problem in (11). We take the convention
in this section that, for a time τ , a job j ∈ J and an agent i ∈ {1, 2, · · · ,m},

f
(i)
j (τ) = −∞ if j /∈ J (i). (13)

A job j ∈ J is called legal at time τ if τ ≥ rj + pj and f
(i)
j (τ) ≤ Xi for all i ∈

{1, 2, · · · ,m − 1}. Hence, if no job is legal at time C(J ), then the problem in (11)
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is infeasible. Subsequently, we design algorithms that always check if a job j ∈ J is
legal at time C(J ). Since we clearly have C(J ) ≥ rj + pj, to check the legality of

job j at time C(J ), we only need to check the relations f
(i)
j (C(J )) ≤ Xi for all i ∈

{1, 2, · · · ,m− 1}. Generally, we have the following lemma to determine the last job in an
optimal permutation.

Lemma 3.1. Suppose that the problem in (11) is feasible and let x be a legal job at time

C(J ) such that f
(m)
x (C(J )) is as small as possible. Then there is an optimal schedule

(permutation) π = (π(1), π(2), · · · , π(n)) for the problem such that π(n) = x.

Proof. To prove the lemma, we assume that π′ = (π′(1), π′(2), · · · , π′(n)) is an optimal
completion-coinciding permutation for the problem. If π′(n) = x, we are done by setting
π = π′. Suppose that π′(n) 6= x. Then we set π as the permutation obtained from π′ by
shifting x to the last position of the permutation. From Lemma 2.7, we have Cx(π) ≤
Cπ′(n)(π

′) = C(J ) and Cj(π) ≤ Cj(π
′) for all j ∈ {1, 2, · · · , n} \ {x}. Since x is legal

at time C(J ), π is certainly a feasible permutation for the problem such that π(n) = x.

Now, f
(m)
j (Cj(π)) ≤ f

(m)
j (Cj(π

′)) ≤ f
(m)
max(π′) for all j ∈ J (m) \ {x} and, from the choice

of x, we have f
(m)
x (Cx(π)) ≤ f

(m)
x (C(J )) ≤ f

(m)
π′(n)(C(J )) = f

(m)
π′(n)(Cπ′(n)(π

′)) ≤ f
(m)
max(π′).

Consequently, π is an optimal schedule with π(n) = x. The lemma follows. �

We notice that in a feasible Pmtn-LS schedule determined by the permutation π =
(π(1), π(2), · · · , π(n)) with π(n) = x, the maximum completion time of the jobs in J is
C(J ) and the jobs in J \ {x} occupy the time space T (J \ {x}), so job x is processed in
the first px units of time in the time space [rx, C(J )] \ T (J \ {x}), which is sufficient for
processing job x because of the feasibility of the permutation. This further implies that
assigning x as the last job in an optimal permutation does not affect the subsequent steps
to find the final optimal solution.

The above discussion enables us to present the following algorithm.

Algorithm 3.1. For the problem in (11) with given X1, X2, · · · , Xm−1.

Step 1. Set J := {1, 2, · · · , n} and k := n. Moreover, sort the n jobs in J in the ERD

order and denote the ERD order of the jobs by ~J .

Step 2. Calculate C(J ) by using the ERD order ~J and set τ := C(J ).

Step 3. Generate the set L(τ) that consists of all the jobs j ∈ J legal at time τ , i.e.,

f
(i)
j (τ) ≤ Xi for all i ∈ {1, 2, · · · ,m− 1}. (14)

• If L(τ) 6= ∅, pick a job x ∈ L(τ) such that f
(m)
x (τ) is as small as possible. Then go

to Step 4.

• If L(τ) = ∅, i.e., no job in J is legal at time τ , then terminate the algorithm and
output infeasibility.

Step 4. Define π(k) = x and do the following:
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• If k ≥ 2, then set J := J \ {x}, ~J := ~J \ {x} and k := k − 1, and go to Step 2.

• If k = 1, then go to Step 5.

Step 5. Output the optimal permutation π = (π(1), π(2), · · · , π(n)) and, if necessary,

run algorithm Pmtn-LS(π) to obtain the final schedule and calculate f
(m)
max(π).

Theorem 3.1. Algorithm 3.1 solves the problem in (11) in O(mn2) time.

Proof. The correctness of Algorithm 3.1 follows from Lemma 3.1. Algorithm 3.1 has n
iterations. Step 1 runs in O(n log n) time, which is the time used to sort the jobs in the

ERD order ~J . Note that Step 1 is not included in the iterations of the algorithm. Step
2 runs in O(n) time, which follows from Lemma 2.3 since the ERD order ~J is given in
advance. Step 3 runs in O(mn) time, which is dominated by the time used for checking
the O(mn) inequalities in (14). Step 4 runs in O(n) time. Thus, the time complexity
of each iteration of the algorithm is given by O(mn). It follows that the overall running
time of Algorithm 3.1 is O(mn2). �

For the constrained CO-agent scheduling problem in (12), since J (1),J (2), · · · ,J (m)

form a partition of J = {1, 2, · · · , n}, the running time of Step 3 in Algorithm 3.1 is O(n).
Then the time complexity of Algorithm 3.1 reduces to O(n2) in this case. Consequently,
we have the following result.

Theorem 3.2. The problem in (12) is solvable in O(n2) time.

The result in Theorem 3.2 seems the best possible since, up to now, the best time
complexity for solving problem 1||fmax is O(n2).

When rj = 0 for all jobs and all the m criteria are of max-lateness form, the following
two special problems can be more efficiently solved:

1|ND|L(m)
max : L(i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1, (15)

1|CO|L(m)
max : L(i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1, (16)

Theorem 3.3. The problem in (15) is solvable in O(mn+ n log n) time and the problem
in (16) is solvable in O(n log n) time.

Proof. For convenience, for a job j and an agent i with j /∈ J (i), we define d
(i)
j = +∞.

This takes the same rule as the convention in (13). Moreover, we define X(m) = +∞.

For the ND-agent version, the restriction “L
(i)
max ≤ Xi ∀i = 1, 2, · · · ,m − 1” requires

that the completion time Cj of each job j should satisfy Cj−d(i)j ≤ Xi for i = 1, 2, · · · ,m−
1, which induces a deadline

d̄j = min{Xi + d
(i)
j : i = 1, 2, · · · ,m}

on job j, j = 1, 2, · · · , n. The deadlines of the n jobs can be determined in O(mn) time.

So the ND-agent problem in (15) reduces to problem 1|d̄j|L(m)
max in O(mn) time.
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For the CO-agent version, we only need to calculate the deadlines by setting

d̄j = Xi + d
(i)
j for the unique i with j ∈ J (i).

Then the deadlines of the n jobs can be determined in O(n) time and the CO-agent

problem in (16) reduces to problem 1|d̄j|L(m)
max in O(n) time.

Note that 1|d̄j|L(m)
max is in fact a subproblem of problem 1|d̄j|Lmax on the n jobs

{1, 2, · · · , n}. For t ∈ (0,+∞) and j ∈ {1, 2, · · · , n}, we define fj(t) = t−dj if t ≤ d̄j and
fj(t) = +∞ if t > d̄j. Then problem 1|d̄j|Lmax is the same as problem 1||fmax. Lawler’s
algorithm for solving this special problem can be stated as follows:

(A1): Starting at time τ :=
∑n

j=1 pj, schedule an unscheduled and legal job j, i.e., d̄ ≥ τ ,
with the maximum due date dj in the interval [τ − pj, τ ]. Reset τ := τ − pj and repeat the
above procedure. If there are no unscheduled and legal jobs in some iteration with τ > 0,
then the problem is infeasible.

For this special problem 1|d̄j|Lmax, the time complexity of algorithm A1 can be reduced
to O(n log n) by introducing a simple data structure in the following way:

At each decision point τ of algorithm A1, a list ~J is used to sort the unscheduled and
illegal jobs in nondecreasing order of their deadlines, and another list ~S is used to sort the
unscheduled and legal jobs in nondecreasing order of their due dates. Initially, ~J sorts all
the jobs and ~S is empty. We set τ :=

∑n
j=1 pj and start the implementation of algorithm

A1. If some job in ~J is legal at time τ , then the last job in ~J , say, j, is legal at time τ ,
i.e., d̄j ≥ τ . Then we delete j from ~J and insert j in the job list ~S by a binary search so

that the jobs in the updated ~S are still listed in the EDD order. Whence ~J and ~S have
been generated in the current iteration, and ~S is nonempty, we pick the last job of ~S, say,
i, delete i from ~S, and schedule job i in the time interval [τ − pj, τ ]. After this, we set
τ := τ − pi and proceed to the next iteration.

Now the time complexity O(n log n) follows from the fact that deleting an item from
a sorted list or inserting an item in a sorted list by a binary search takes O(log n) time.

The above discussion implies that the problem in (15) is solvable in O(mn + n log n)
time and the problem in (16) is solvable in O(n log n) time. The result follows. �

Remark: If f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all i = 1, 2, · · · ,m, we can

slightly modify the proof of Theorem 3.3 to establish the following result.

Theorem 3.4. Suppose that f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all i =

1, 2, · · · ,m. Then problem

1|ND|f (m)
max : f (i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1

is solvable in O(mn+ n log n) time and problem

1|CO|f (m)
max : f (i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1

is solvable in O(n log n) time.
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4 Pareto multi-agent scheduling problems

Let m, the number of agents, be a fixed number. Let f
(i)
max be the scheduling objective

function of agent i ∈ {1, 2, · · · ,m}. We assume in this section that each criterion of

minimizing f
(i)
max is lateness-like. Let Oi = (i1, i2, · · · , ini) be an EDD-like permutation of

the ni jobs in J (i), i = 1, 2, · · · ,m.

4.1 The ND-agent version

We consider the following Pareto ND-agent scheduling problem

1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max). (17)

Recall that when we state that π is a schedule of J = {1, 2, · · · , n}, we mean that π
refers to a permutation of the n jobs in J and we also refer to the Pmtn-LS schedule
determined by the permutation π.

For a given schedule π, a job hi is called the bottleneck job of agent i under π if hi ∈ J (i)

and hi is the last job (in terms of completion time) in the schedule such that

f
(i)
hi

(Chi(π)) = max
j∈J (i)

f
(i)
j (Cj(π)) = f (i)

max(π).

In this case, we also say that hi is a bottleneck job under schedule π. Note that each
agent has a unique bottleneck job under π, but distinct agents may have a common
bottleneck job. Thus there may be repetitions in the sequence h1, h2, · · · , hm. Sometimes
it is useful to re-order the m agents by a permutation σ = (σ(1), σ(2), · · · , σ(m)) such
that the bottleneck jobs are listed in nondecreasing order of their completion times in
π, i.e., Chσ(1)(π) ≤ Chσ(2)(π) ≤ · · · ≤ Chσ(m)

(π). The bottleneck jobs have the following
useful property.

Lemma 4.1. Let iq be the bottleneck job of agent i under schedule π. Then Ciq′(π) <
Ciq(π) for all q′ = 1, 2, · · · , q − 1, where Ciq(π) is the completion time of job iq in π.

Proof. Suppose to the contrary that there is some q′ ∈ {1, 2, · · · , q−1} such that Ciq′(π) >
Ciq(π). Then we have

f (i)
max(π) ≥ f

(i)
iq′ (Ciq′(π)) ≥ f

(i)
iq′ (Ciq(π)) ≥ f

(i)
iq (Ciq(π)) = f (i)

max(π),

where the second and third inequalities follow from the fact that all the scheduling ob-
jective functions are regular and lateness-like. Then we have f

(i)
max(π) = f

(i)
iq′ (Ciq′(π)), so

iq is not the last completed job, assuming f
(i)
max(π) in π. This contradicts the assumption

that iq is the bottleneck job of agent i under π. The lemma follows. �
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A schedule-configuration of the problem in (17) is defined as a pair (σ,Q), where
σ = (σ(1), σ(2), · · · , σ(m)) is a permutation of the m agents {1, 2, · · · ,m}, and

Q =


q1,1 q1,2 · · · · · · q1,m−1
q2,1 q2,2 · · · · · · q2,m−1
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
qm,1 qm,2 · · · · · · qm,m−1


is an m× (m− 1)-matrix of nonnegative integers such that

0 ≤ qs,1 ≤ qs,2 ≤ · · · ≤ qs,m−1 ≤ nσ(s) for s = 1, 2, · · · ,m, (18)

and
q1,1, q2,2, · · · , qm−1,m−1 ≥ 1. (19)

For convenience, we denote the matrix Q as Q = (qs,t)m×(m−1) in the sequel.

To grasp the essence of a schedule-configuration (σ,Q), we can regard that the
s-th row of Q is associated with agent σ(s) for s = 1, 2, · · · ,m. In the s-th row
(qs,1, qs,2, · · · , qs,m−1), each entry qs,t has two meanings: it refers to the qs,t-th job σ(s)qs,t

of agent σ(s) and the set of the first qs,t jobs J Oσ(s)
qs,t = {σ(s)1, σ(s)2, · · · , σ(s)qs,t} of agent

σ(s). Thus, from the s-th row (qs,1, qs,2, · · · , qs,m−1), we can generate a sequence of m− 1
subsets of the job set of agent σ(s)

(J Oσ(s)
qs,1 , J Oσ(s)

qs,2 , · · · ,J Oσ(s)
qs,m−1) (20)

such that
J Oσ(s)
qs,1 ⊆ J Oσ(s)

qs,2 ⊆ · · · ⊆ J Oσ(s)
qs,m−1 . (21)

By taking each sequence in (20) as a row, we obtain the following m× (m− 1)-matrix

J (σ,Q) =


J Oσ(1)
q1,1 J Oσ(1)

q1,2 · · · · · · J Oσ(1)
q1,m−1

J Oσ(2)
q2,1 J Oσ(2)

q2,2 · · · · · · J Oσ(2)
q2,m−1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
J Oσ(m)
qm,1 J Oσ(m)

qm,2 · · · · · · J Oσ(m)
qm,m−1

 ,

which consists of m× (m− 1) subsets of J .

Now, for a schedule-configuration (σ,Q), we define m−1 subsets of J = {1, 2, · · · , n}
by setting for each t = 1, 2, · · · ,m− 1

J (σ,Q)
t = J Oσ(1)

q1,t ∪ J Oσ(2)
q2,t ∪ · · · ∪ J Oσ(m)

qm,t . (22)

Note that J (σ,Q)
t is the union of the m subsets in the t-th column of matrix J (σ,Q). From

(21) and (22), we have

J (σ,Q)
1 ⊆ J (σ,Q)

2 ⊆ · · · ⊆ J (σ,Q)
m−1 , (23)
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so
C(J (σ,Q)

1 ) ≤ C(J (σ,Q)
2 ) ≤ · · · ≤ C(J (σ,Q)

m−1 ). (24)

Given a schedule-configuration (σ,Q), the principal diagonal vector of matrix Q,
i.e., (q1,1, q2,2, · · · , qm−1,m−1), plays an important role in our analysis. For each t ∈
{1, 2, · · · ,m− 1}, let hσ(t) be the qt,t-th job of agent σ(t), i.e.,

hσ(t) = σ(t)qt,t, or equivalently, h
(σ(t))
σ(t) = qt,t. (25)

Then we obtain a vector

h(σ,Q) = (hσ(1), hσ(2), · · · , hσ(m−1))

of m − 1 job indices. We call h(σ,Q) the principal vector induced by (σ,Q). Since
1 ≤ qt,t ≤ nσ(t) for all t = 1, 2, · · · ,m−1, we see that the principal vector h(σ,Q) induced
by (σ,Q) is well-defined.

The purposes of the m − 1 sets J (σ,Q)
1 ⊆ J (σ,Q)

2 ⊆ · · · ⊆ J (σ,Q)
m−1 and the principal

vector h(σ,Q) = (hσ(1), hσ(2), · · · , hσ(m−1)) are to calculate the following m− 1 values

Xσ(t)(σ,Q) = f
(σ(t))
hσ(t)

(C(J (σ,Q)
t )), t = 1, 2, · · · ,m− 1. (26)

Finally, we define Xσ(m)(σ,Q) as the optimal value of the constrained scheduling problem

1|rj, pmtn, ND|f (σ(m))
max : f (σ(t))

max ≤ Xσ(t)(σ,Q) ∀t = 1, 2, · · · ,m− 1. (27)

With the m− 1 values in (26) and the value Xσ(m)(σ,Q) in hand, we obtain an m-vector

X(σ,Q) = (X1(σ,Q), X2(σ,Q), · · · , Xm(σ,Q)). (28)

We call X(σ,Q) the objective vector of the schedule-configuration (σ,Q).

The reason for the above elaboration is to come up with a well-designed procedure for
solving the Pareto multi-agent scheduling problem in (17). The idea underpinning this
procedure is as follows:

– Lemma 2.2 tells us that, if we can find a set of m-vectors X including all the Pareto-
optimal points, then we can solve problem 1|rj, pmtn|(f (1)

max, f
(2)
max, · · · , f (m)

max) by solving,
for each (X1, · · · , Xm) ∈ X , the constrained scheduling problem

1|rj, pmtn, ND|f (k)
max : f (i)

max ≤ Xi ∀i 6= k,

where k ∈ {1, 2, · · · ,m}. For efficiency consideration, we naturally require that the size
of X be bounded by a polynomial in n.

– To find such a set X , upon studying the structure of the Pareto-optimal schedules,
we find that there are only a polynomial number of patterns for the bottleneck jobs and
their completion times.

– In a fixed pattern of the Pareto-optimal schedules, the bottleneck jobs h1, h2, · · · , hm
of the m agents and their completion times Ch1 , Ch2 , · · · , Chm are determined. Then we

put the vector (X1, X2, · · · , Xm) into X , where Xi = f
(i)
hi

(Chi) for i = 1, 2, · · · ,m.
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– Although the Pareto-optimal schedules are unknown in advance, we find that
the schedule-configurations in fact cover all the patterns of the Pareto-optimal sched-
ules. We can show that, for each Pareto-optimal point (X1, X2, · · · , Xm), there must
be a schedule-configuration (σ,Q) such that the objective vector of (σ,Q) is given by
X(σ,Q) = (X1, X2, · · · , Xm).

– As a result, we can set X as the set of objective vectors of the schedule-configurations,
i.e.,

X = {X(σ,Q) : (σ,Q) is a schedule-configuration}.

– The set X constructed in the above way has a size polynomial in n since there are
a total of O(m!(n1n2 · · ·nm)m−1) = O(nm

2−m) schedule-configurations, which is exactly
what we are looking for.

– In summary, to solve the problem in (17), we enumerate all
the schedule-configurations, generate the vector set X = {X(σ,Q) :
(σ,Q) is a schedule-configuration}, and finally pick the Pareto-optimal points in
X . This completes the discussion of the rationale for the proposed procedure.

Lemma 4.2. Suppose that the EDD-like permutations O1, O2, · · · , Om are given in ad-
vance. Then, for each schedule-configuration (σ,Q), the objective vector X(σ,Q) of
(σ,Q) can be obtained in O(n2) time. For the case where rj = 0 for all the jobs and

f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all the agents, the time complexity reduces to

O(n log n).

Proof. Given a schedule-configuration (σ,Q), we calculate some necessary items.

The principal vector h(σ,Q) = (hσ(1), hσ(2), · · · , hσ(m−1)) can be obtained in a constant
time since m is a fixed number and hσ(t) = σ(t)qt,t for t = 1, 2, · · · ,m− 1.

For each pair (s, t) with s ∈ {1, 2, · · · ,m} and t ∈ {1, 2, · · · ,m−1}, the job set J Oσ(s)
qs,t

can be obtained in O(n) time since we have a total of n jobs and the permutation Oσ(s)

of agent σ(s) is given in advance.

From the definition J (σ,Q)
t = J Oσ(1)

q1,t ∪ J Oσ(2)
q2,t ∪ · · · ∪ J Oσ(m)

qm,t in (22), the m − 1 sets

J (σ,Q)
1 ,J (σ,Q)

2 , · · · ,J (σ,Q)
m−1 can be obtained in O(mn) = O(n) time.

To calculate the m− 1 values C(J (σ,Q)
1 ), C(J (σ,Q)

2 ), · · · , C(J (σ,Q)
m−1 ), we generate a per-

mutation π of the n jobs in which the n jobs are listed in the order

J (σ,Q)
1 , J (σ,Q)

2 \ J (σ,Q)
1 , · · · , J (σ,Q)

m−1 \ J
(σ,Q)
m−2 , J \ J

(σ,Q)
m−1 .

Since J (σ,Q)
1 ⊆ J (σ,Q)

2 ⊆ · · · ⊆ J (σ,Q)
m−1 as described in (23), we can generate π in O(n)

time. By running algorithm Pmtn-LS(π) in O(n log n) time, we obtain the m− 1 values

C(J (σ,Q)
1 ), C(J (σ,Q)

2 ), · · · , C(J (σ,Q)
m−1 ).

Given h(σ,Q) = (hσ(1), hσ(2), · · · , hσ(m−1)) and (C(J (σ,Q)
1 ), C(J (σ,Q)

2 ), · · · , C(J (σ,Q)
m−1 )),

for each t = 1, 2, · · · ,m− 1, the value Xσ(t)(σ,Q) = f
(σ(t))
hσ(t)

(C(J (σ,Q)
t )) defined in (26) can

be calculated in a constant time.
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The total time complexity for the above calculations is O(n log n). But since
Xσ(m)(σ,Q) is the optimal value of the constrained scheduling problem in (27), from
Theorem 3.1, the value Xσ(m)(σ,Q) is available in O(mn2) = O(n2) time. Consequently,
the objective vector X(σ,Q) can be calculated in O(n2) time.

When rj = 0 for all the jobs and f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all the

agents, from Theorem 3.3, the value Xσ(m)(σ,Q) can be determined in O(mn+n log n) =
O(n log n) time. Then X(σ,Q) can be calculated in O(n log n) time. �

The following lemma is critical for our discussion. To enhance the readability of the
paper, we present the proof in the Appendix.

Lemma 4.3. For each Pareto-optimal point (X1, X2, · · · , Xm) of the Pareto schedul-

ing problem 1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max) in (17), there exists a schedule-
configuration (σ,Q∗) such that the objective vector of (σ,Q∗) is given by X(σ,Q∗) =
(X1, X2, · · · , Xm).

Proof. See the Appendix. �

Remark: To help the reader understand Lemma 4.3, we consider the special problem
1|CO|(L(1)

max, L
(2)
max, · · · , L(m)

max) and let (X1, X2, · · · , Xm) be a Pareto-optimal point of this
problem. Same as the case where m = 2 studied in Agnetis et al. [1], there must be a
Pareto-optimal schedule π corresponding to (X1, X2, · · · , Xm) such that, for each agent
i, the ni jobs of agent i are scheduled in the EDD order Oi = (i1, i2, · · · , ini) in π,
i = 1, 2, · · · ,m. This implies that, for each j ∈ {1, 2, · · · , n}, the set of the first j jobs in
π is of the form

J π
j = {π(1), π(2), · · · , π(j)} = J O1

j1
∪ J O2

j2
∪ · · · ∪ J Om

jm
, (29)

where ji ∈ {0, 1, · · · , ni} for i = 1, 2, · · · ,m, such that j1 + j2 + · · ·+ jm = j.

Now let hi be the bottleneck job of agent i under π, i = 1, 2, · · · ,m, and let
σ = (σ(1), σ(2), · · · , σ(m)) be a permutation of the m agents {1, 2, · · · ,m} such that
Chσ(1)(π) < Chσ(2)(π) < · · · < Chσ(m)

(π). By setting

qs,t = max{q : J Oσ(s)
q ⊆ J π

hσ(t)
}, s = 1, 2, · · · ,m, t = 1, 2, · · · ,m− 1,

we obtain a schedule-configuration (σ,Q∗), where Q∗ = (qs,t)m×(m−1). From (29), it is
observed that

J π
hσ(t)

= J Oσ(1)
q1,t ∪ J Oσ(2)

q2,t ∪ · · · ∪ J Oσ(m)
qm,t = J (σ,Q∗)

t , t = 1, 2, · · · ,m− 1.

Consequently, we have

Chσ(t)(π) = C(J (σ,Q∗)
t ), t = 1, 2, · · · ,m− 1,

so
Xσ(t) = L

(σ(t))
hσ(t)

(π) = Xσ(t)(σ,Q
∗), t = 1, 2, · · · ,m− 1. (30)
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Note that Xσ(m)(σ,Q
∗) is the optimal value of problem

1|CO|L(σ(m))
max : L(σ(t))

max ≤ Xσ(t)(σ,Q
∗) ∀t = 1, 2, · · · ,m− 1

and (X1, X2, · · · , Xm) is a Pareto-optimal point. From Lemma 2.1 or Lemma 2.2, Xm is
the optimal value of problem

1|CO|L(σ(m))
max : L(σ(t))

max ≤ Xσ(t) ∀t = 1, 2, · · · ,m− 1.

It follows from (30) that Xσ(m) = Xσ(m)(σ,Q
∗). Consequently,

X(σ,Q∗) = (X1(σ,Q
∗), X2(σ,Q

∗), · · · , Xm(σ,Q∗)) = (X1, X2, · · · , Xm).

This shows that Lemma 4.3 is valid for problem 1|CO|(L(1)
max, L

(2)
max, · · · , L(m)

max).

From the above discussion, we have the following algorithm for solving the Pareto
ND-agent scheduling problem in (17).

Algorithm 4.1. For the problem 1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max) in (17).

Step 0. (Preprocessing) Generate the EDD-like permutations O1, O2, · · · , Om in advance.

Step 1. Generate the set Γ that consists of all the schedule-configurations (σ,Q).

Step 2. For each schedule-configuration (σ,Q) ∈ Γ, calculate its objective vector
X(σ,Q) = (X1(σ,Q), X2(σ,Q), · · · , Xm(σ,Q)). Set

X := {X(σ,Q) : (σ,Q) is a schedule-configuration}

and X ∗ := ∅. Here X ∗ can be interpreted as the set of Pareto-optimal points determined
currently.

Step 3. Pick a vector X = (X1, X2, · · · , Xm) ∈ X and do the following:

(3.1) For k from 1 to m, do the following:

• Solve the constrained scheduling problem

1|rj, pmtn, ND|f (k)
max : f (i)

max ≤ Xi ∀i 6= k

and let X∗k be the optimal value. If the problem is infeasible, then we define X∗k = +∞.

(3.2) If (X∗1 , X
∗
2 , · · · , X∗m) 6= (X1, X2, · · · , Xm), then set X := X \ {X}. Go to Step

4.

(3.3) If (X∗1 , X
∗
2 , · · · , X∗m) = (X1, X2, · · · , Xm), then let π(X) be an arbitrary schedule

obtained in Step (3.1). Set X := X \ {X} and X ∗ := X ∗ ∪ {X}. Go to Step 4.

Step 4. If X 6= ∅, return to Step 3. If X = ∅, then output X ∗ together with the schedules
π(X) for X ∈ X ∗ and terminate the algorithm.

Theorem 4.1. Suppose that all the m scheduling criteria of minimizing
f
(1)
max, f

(2)
max, · · · , f (m)

max are lateness-like and the EDD-like permutations O1, O2, · · · , Om

are given in advance. Then Algorithm 4.1 solves the Pareto scheduling problem
1|rj, pmtn, ND|(f (1)

max, f
(2)
max, · · · , f (m)

max) in (17) in O((n1n2 · · ·nm)m−1n2) = O(nm
2−m+2)

time.
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Proof. From Lemma 4.3, each Pareto-optimal point must be the objective vector of
some schedule-configuration. Thus, the vector set X generated in Step 2 includes all the
Pareto-optimal points. From Lemma 2.2, we can run Algorithm 3.1 m times to determine
whether or not a vector X = (X1, X2, · · · , Xm) in X is Pareto-optimal. Such tasks are
done in Step 3. Hence, Algorithm 4.1 solves the problem in (17).

To analyze the time complexity, recall that m is a fixed number. To generate a
schedule-configuration (σ,Q), we have m! (a constant) choices for the permutation σ =
(σ(1), σ(2), · · · , σ(m)) of the m agents and at most

(n1 + 1)m−1(n2 + 1)m−1 · · · (nm + 1)m−1 = O((n1n2 · · ·nm)m−1)

choices for the m × (m − 1)-matrix Q = (qs,t)m×(m−1). Thus, we have |Γ| =
O((n1n2 · · ·nm)m−1) in Step 1. This further implies that |X | = O((n1n2 · · ·nm)m−1)
in Step 2. From Lemma 4.2, each vector X(σ,Q) ∈ X can be obtained from (σ,Q)
in O(n2) time. Thus, Step 2 runs in O((n1n2 · · ·nm)m−1n2) time. Step 3 has |X | =
O((n1n2 · · ·nm)m−1) iterations. In each iteration, Step (3.1) solves the m constrained
scheduling problems

1|rj, pmtn, ND|f (k)
max : f (i)

max ≤ Xi ∀i 6= k

for k = 1, 2, · · · ,m. From Theorem 3.1, each of the problems is solvable in O(n2) time.
Thus, Step 3 runs in O((n1n2 · · ·nm)m−1n2) time. It follows that Algorithm 4.1 runs in
O((n1n2 · · ·nm)m−1n2) = O(nm

2−m+2) time. �

If f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, then the EDD-like permutation Oi can be

generated in O(n log n) time. From Theorem 4.1, we have the following result.

Theorem 4.2. If f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all the agents i ∈

{1, 2, · · · ,m}, then Algorithm 4.1 solves the problem 1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max)
in (17) in O((n1n2 · · ·nm)m−1n2) = O(nm

2−m+2) time.

If rj = 0 for all the jobs and f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, by putting

Theorem 3.4 in the time complexity analysis of Algorithm 4.1, we deduce the following
result.

Theorem 4.3. If f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, then problem

1|ND|(f (1)
max, f

(2)
max, · · · , f (m)

max)

is solvable in O((n1n2 · · ·nm)m−1n log n) = O(nm
2−m+1 log n) time.

Proof. Note that Algorithm 4.1 certainly solves this subproblem correctly. Since
f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max}, the EDD-like permutations O1, O2, · · · , Om can

be generated in O(mn log n) = O(n log n) time in Step 0.

From Lemma 4.2, Step 2 runs in O((n1n2 · · ·nm)m−1n log n) time. From Theorem 3.4,
Step 3 runs in O((n1n2 · · ·nm)m−1n log n) time. Consequently, Algorithm 4.1 solves the
problem in O((n1n2 · · ·nm)m−1n log n) = O(nm

2−m+1 log n) time. �
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4.2 The CO-agent version

We now consider the Pareto CO-agent scheduling problem

1|rj, pmtn, CO|(f (1)
max, f

(2)
max, · · · , f (m)

max), (31)

in which each function f
(i)
max is lateness-like. Note that J (1),J (2), · · · ,J (m) form a parti-

tion of J = {1, 2, · · · , n} with |J (i)| = ni. Then n1 + n2 + · · ·+ nm = n.

From the discussion in Section 4.1, the problem in (31) is solvable in
O((n1n2 · · ·nm)m−1n2) time. We improve the time complexity by a small trick. To this
end, we re-consider the constrained CO-agent scheduling problem

1|rj, pmtn, CO|f (m)
max : f (i)

max ≤ Xi ∀i = 1, 2, · · · ,m− 1, (32)

where each function f
(i)
max is lateness-like. Recall that, for each agent i, the EDD-like

permutation Oi = (i1, i2, · · · , ini) is given in advance. Similar to Lemma 3.1, we have the
following lemma to determine the last job in an optimal permutation.

Lemma 4.4. Suppose that the problem in (32) is feasible. Then there is an optimal
permutation π = (π(1), π(2), · · · , π(n)) for the problem such that π(n) = x, where

– x = ini if there is some i ∈ {1, 2, · · · ,m− 1} such that f
(i)
i,ni

(C(J )) ≤ Xi, and

– x = mnm otherwise.

Proof. Since the constrained CO-agent scheduling problem in (32) is a special version
of the constrained ND-agent scheduling problem in (11), the result follows directly from
Lemma 3.1. �

Recalling that for 1 ≤ i ≤ m and 1 ≤ q ≤ ni, we have J Oi
q = {i1, i2, · · · , iq}. We now

introduce some new notation. Given an m-vector (x1, x2, · · · , xm) with xi ∈ {0, 1, · · · , ni}
for each i ∈ {1, 2, · · · ,m}, we define

J (x1, x2, · · · , xm) = J O1
x1
∪ J O2

x2
∪ · · · ∪ J Om

xm (33)

and
C(x1, x2, · · · , xm) = C(J O1

x1
∪ J O2

x2
∪ · · · ∪ J Om

xm ). (34)

Then C(0, 0, · · · , 0) = 0 and C(n1, n2, · · · , nm) = C(J ).

Each value C(x1, x2, · · · , xm) can be determined inO(n log n) time, as stated in Section
2.2. Thus, all the values C(x1, x2, · · · , xm) can be determined in O(n1n2 · · ·nmn log n)
time.

Remark: With the help of an ERD order ~J of J as in Algorithm 3.1, the time complexity
for calculating all the values C(x1, x2, · · · , xm) can be reduced to O(n1n2 · · ·nmn). But
the O(n1n2 · · ·nmn log n) time complexity is sufficient for our subsequent discussion.

Now we use the following algorithm to solve the problem in (32).
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Algorithm 4.2. For the problem in (32).

Step 1. Set (x1, x2, · · · , xm) := (n1, n2, · · · , nm), τ := C(x1, x2, · · · , xm), and k := n.

Step 2. Check the condition

f
(i)
ixi

(τ) ≤ Xi for all i = 1, 2, · · · ,m− 1

to find a job ixi legal at time τ .

• If some job ixi with xi ≥ 1 and 1 ≤ i ≤ m−1 is legal at time τ , then set π(k) := ixi.
Go to Step 3.

• Otherwise, do the following:

– If xm ≥ 1, then set π(k) := mxm. Go to Step 3.

– If xm = 0, then terminate the algorithm and output infeasibility.

Step 3. Suppose that π(k) := ixi for some i ∈ {1, 2, · · · ,m}. Do the following:

• If k ≥ 2, then set τ := C(x1, · · · , xi−1, xi − 1, xi+1, · · · , xm), xi := xi − 1, and
k := k − 1, and go to Step 2.

• If k = 1, then go to Step 4.

Step 4. Output the permutation π = (π(1), π(2), · · · , π(n)), which is optimal for the
problem under consideration.

Lemma 4.5. Given all the permutations O1, O2, · · · , Om and all the values
C(x1, x2, · · · , xm) in advance, Algorithm 4.2 solves the problem in (32) with lateness-like
criteria in O(mn) time.

Proof. The correctness of Algorithm 4.2 is implied in Lemma 4.4. To analyze the time
complexity, we notice that Algorithm 4.2 has n iterations. In each iteration, Step 2 runs
in O(m) time and Step 3 runs in a constant time (since all the values C(x1, x2, · · · , xm)
are given in advance). Consequently, Algorithm 4.2 runs in O(mn) time. �

Lemma 4.6. Given all the permutations O1, O2, · · · , Om and all the values
C(x1, x2, · · · , xm) in advance, for each schedule-configuration (σ,Q), the objective vec-
tor X(σ,Q) of (σ,Q) can be obtained in O(n) time.

Proof. Similar to the proof of Lemma 4.2, for a schedule-configuration (σ,Q), the principal
vector h(σ,Q) = (hσ(1), hσ(2), · · · , hσ(m−1)) can be obtained in a constant time. But in
the current status, for t = 1, 2, · · · ,m− 1, we have

J (σ,Q)
t = J Oσ(1)

q1,t ∪ J Oσ(2)
q2,t ∪ · · · ∪ J Oσ(m)

qm,t = J (x1(t), x2(t), · · · , xm(t)),

where xi(t) = qσ−1(i),t for i = 1, 2, · · · ,m. This implies that the m − 1 values

C(J (σ,Q)
1 ), C(J (σ,Q)

2 ), · · · , C(J (σ,Q)
m−1 ) have been given in advance. Consequently, for

t = 1, 2, · · · ,m − 1, the value Xσ(t)(σ,Q) = f
(σ(t))
hσ(t)

(C(J (σ,Q)
t )) defined in (26) can be

calculated in a constant time.
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Finally, we note that Xσ(m)(σ,Q) is the optimal value of the constrained scheduling
problem

1|rj, pmtn, CO|f (σ(m))
max : f (σ(t))

max ≤ Xσ(t)(σ,Q) ∀t = 1, 2, · · · ,m− 1.

From Lemma 4.5, the value Xσ(m)(σ,Q) can be obtained in O(mn) = O(n) time. Conse-
quently, the objective vector X(σ,Q) can be calculated in O(n) time. �

Algorithm 4.3. For the problem 1|rj, pmtn, CO|(f (1)
max, f

(2)
max, · · · , f (m)

max) in (31).

Step 0. (Preprocessing) Calculate all the values C(x1, x2, · · · , xm) for 0 ≤ xi ≤ ni
∀i = 1, 2, · · · ,m.

Step 1. Generate the set Γ that consists of all the schedule-configurations (σ,Q).

Step 2. For each schedule-configuration (σ,Q) ∈ Γ, calculate its objective vector
X(σ,Q) = (X1(σ,Q), X2(σ,Q), · · · , Xm(σ,Q)). Set

X := {X(σ,Q) : (σ,Q) is a schedule-configuration}

and X ∗ := ∅. Here X ∗ can be interpreted as the set of Pareto-optimal points determined
currently.

Step 3. Pick a vector X = (X1, X2, · · · , Xm) ∈ X and do the following:

(3.1) For k from 1 to m, do the following:

• Solve the constrained scheduling problem

1|rj, pmtn, CO|f (k)
max : f (i)

max ≤ Xi ∀i 6= k

and let X∗k be the optimal value. If the problem is infeasible, then we define X∗k = +∞.

(3.2) If (X∗1 , X
∗
2 , · · · , X∗m) 6= (X1, X2, · · · , Xm), then set X := X \ {X}. Go to Step

4.

(3.3) If (X∗1 , X
∗
2 , · · · , X∗m) = (X1, X2, · · · , Xm), then let π(X) be an arbitrary schedule

obtained in Step (3.1). Set X := X \ {X} and X ∗ := X ∗ ∪ {X}. Go to Step 4.

Step 4. If X 6= ∅, return to Step 3. If X = ∅, then output X ∗ together with the schedules
π(X) for X ∈ X ∗ and terminate the algorithm.

From the discussion in Section 4.1, it is obvious that Algorithm 4.3 solves the problem
in (31) correctly. As for the time complexity, we notice the following facts:

– Step 0 runs in O(n1n2 · · ·nmn log n) time. This follows from the fact that each value
C(J ′) with J ′ ⊆ J can be obtained in O(n log n) time, as stated in Section 2.2.

– Step 1 runs in O((n1n2 · · ·nm)m−1) time. This follows from the fact that the number
of schedule-configurations, i.e. |Γ|, is upper bounded by O((n1n2 · · ·nmn)m−1).

– Step 2 runs in O((n1n2 · · ·nm)m−1n) time. This follows from Lemma 4.6.

– Step 3 runs in O((n1n2 · · ·nm)m−1n) time. This follows from Lemma 4.5.

The above discussion leads to the following result.
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Theorem 4.4. Suppose that the objective functions f
(1)
max, f

(2)
max, · · · , f (m)

max are lateness-like
and the EDD-like permutations O1, O2, · · · , Om are given in advance. Then Algorithm 4.3
solves problem 1|rj, pmtn, CO|(f (1)

max, f
(2)
max, · · · , f (m)

max) in O((n1n2 · · ·nm)m−1n) time.

As a consequence of Theorem 4.4, we have the following result.

Theorem 4.5. If f
(i)
max ∈ {C(i)

max, F
(i)
max, L

(i)
max, T

(i)
max,WC

(i)
max} for all i = 1, 2, · · · ,m, then

problem 1|rj, pmtn, CO|(f (1)
max, f

(2)
max, · · · , f (m)

max) is solvable in O((n1n2 · · ·nm)m−1n) time.

When m = 2, Theorem 4.5 implies that problem 1|rj, pmtn, CO|(L(1)
max, L

(2)
max) is solv-

able in O(n1n2n) time. This is an improvement over the time complexity O(n1n2n log n)
established in Yuan et al. [31].

5 NP -hardness when m is arbitrary

In this section we assume that m, the number of agents, is arbitrary. Hoogeveen [14]

showed that problem 1|ID|f (1)
max + f

(2)
max + · · · + f

(m)
max is strongly NP -hard. We show that

the problem remains strongly NP -hard even when pj = 1 for all the jobs.

Recently Agnetis [1] showed that problem 1|ND, pj = 1|
∑m

i=1 λiC
(i)
max is strongly NP -

hard. In their proof, they defined that λi = 1 for all the agent i. Then problem 1|ND, pj =

1|
∑m

i=1C
(i)
max is also strongly NP -hard. This result can be used to show the following

results related to our research.

Theorem 5.1. The three scheduling problems 1|ID, pj = 1|
∑m

i=1WC
(i)
max, 1|ID, pj =

1|
∑m

i=1 L
(i)
max, and 1|ID, pj = 1|

∑m
i=1 T

(i)
max are strongly NP -hard.

Proof. The reductions used in our proof are very easy, so we only present an informal
description.

We first consider problem 1|ID, pj = 1|
∑m

i=1WC
(i)
max. Beginning with an instance

I of problem 1|ND, pj = 1|
∑m

i=1C
(i)
max, we obtain an instance I ′ of problem 1|ID, pj =

1|
∑m

i=1WC
(i)
max by replacing each agent i with an agent i, 1 ≤ i ≤ m, and setting w

(i)
j = 1

if j ∈ J (i) and w
(i)
j = 0 otherwise for 1 ≤ j ≤ n and 1 ≤ i ≤ m. It can be observed

that the reduction is done in polynomial time under unary encoding and, under every
schedule of the n jobs, the objective value of instance I ′ is the same as that of instance
I. Consequently, problem 1|ID, pj = 1|

∑m
i=1WC

(i)
max is strongly NP -hard.

We next consider problem 1|ID, pj = 1|
∑m

i=1 L
(i)
max. Beginning with an instance I

of problem 1|ND, pj = 1|
∑m

i=1C
(i)
max, we obtain an instance I ′′ of problem 1|ID, pj =

1|
∑m

i=1 L
(i)
max by replacing each agent i with an agent i, 1 ≤ i ≤ m, and setting d

(i)
j = 0

if j ∈ J (i) and d
(i)
j = n otherwise for 1 ≤ j ≤ n and 1 ≤ i ≤ m. It can be observed

that the reduction is done in polynomial time under unary encoding and, under every
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schedule of the n jobs, the objective value of instance I ′′ is the same as that of instance
I. Consequently, problem 1|ID, pj = 1|

∑m
i=1 L

(i)
max is strongly NP -hard.

The above discussion for problem 1|ID, pj = 1|
∑m

i=1 L
(i)
max is still valid for problem

1|ID, pj = 1|
∑m

i=1 T
(i)
max. Then problem 1|ID, pj = 1|

∑m
i=1 T

(i)
max is also strongly NP -hard.

This completes the proof. �

Yuan [28] showed that problem 1|CO|
∑m

i=1 λiL
(i)
max is strongly NP -hard by a reduction

from the strongly NP -hard problem 1||
∑
wjTj proved in Lawler [18]. The reduction in

Yuan [28] also implies that problem 1|CO|
∑m

i=1 λiT
(i)
max is stronglyNP -hard. By modifying

the reduction in Yuan [28], we present the following stronger complexity result.

Theorem 5.2. Problem 1|CO, pj = 1|
∑m

i=1 λiT
(i)
max is strongly NP -hard.

Proof. Suppose that we are given an instance I of problem 1||
∑
wjTj, in which there are

n jobs {1, 2, · · · , n} with each job j having a processing time pj > 0, a due date dj ≥ 0,
and a weight wj > 0, where all the values pj, dj, and wj are integers. We construct an

instance I ′ of problem 1|CO, pj = 1|
∑m

i=1 λiT
(i)
max as follows:

• We have m = n competing agents 1, 2, · · · , n. Each agent i ∈ {1, 2, · · · , n} has pi
jobs i1, i2, · · · , ipi with a common processing time 1 and a common due date di. Moreover,
the weight of agent i is given by λi = wi. Then we have a total of p1 + p2 + · · ·+ pn jobs
in I ′.

Essentially, I ′ is obtained from I by regarding each job i (of processing time pi and
due date di) in I as pi jobs (of processing time 1 and due date di) of agent i in I ′ and
taking wi as the weight of agent i in I ′.

Under unary encoding, the sizes of both I and I ′ are given by

O(n+
∑n

i=1 pi +
∑n

i=1 di +
∑n

i=1wi).

Thus, the above construction can be done in polynomial time under unary encoding.

In every schedule π (without artificial idle times) of instance I ′, the maximum tardiness

T
(i)
max(π) of agent i is determined by the completion time of the last job of agent i in π.

Then we may regard the processing of the pi jobs of agent i in π as the processing of
job i with preemption in π with Ti(π) = T

(i)
max(π). This means that problem 1|CO, pj =

1|
∑m

i=1 λiT
(i)
max on instance I ′ is equivalent to problem 1|pmtn|

∑
wjTj on instance I. Since

all the jobs are released at time 0, 1|pmtn|
∑
wjTj is equivalent to 1||

∑
wjTj. Therefore,

problem 1|CO, pj = 1|
∑m

i=1 λiT
(i)
max on instance I ′ is equivalent to problem 1||

∑
wjTj on

instance I. From the strong NP -hardness of problem 1||
∑
wjTj established in Lawler

[18], we conclude that problem 1|CO, pj = 1|
∑m

i=1 λiT
(i)
max is strongly NP -hard. This

completes the proof. �

Cheng et al. [9] showed that problem 1|CO|
∑m

i=1WC
(i)
max is strongly NP -hard. Similar

to the proof of Theorem 5.2, by using problem 1|CO|
∑m

i=1WC
(i)
max for the reduction and

30



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

replacing each job j with processing pj by pj unit-length jobs belonging to the same agent
as j, we deduce the following result.

Theorem 5.3. Problem 1|CO, pj = 1|
∑m

i=1WC
(i)
max is strongly NP -hard.

6 Conclusions

In this paper we study multi-agent scheduling with release dates and preemption on a
single machine, where the scheduling objective function of each agent to be minimized
is regular and of the max-form and the multi-agent aspect is ND-agent, ID-agent, or
CO-agent. We show that the constrained multi-agent scheduling problems are solvable in
polynomial time, and the weighted-sum and Pareto multi-agent scheduling problems are
solvable in polynomial time if the number of agents is a fixed number and the scheduling
criteria are lateness-like. We also show that the weighted-sum and Pareto multi-agent
scheduling problems are strongly NP -hard even when rj = 0 and pj = 1 for all the jobs.

Comparing with the known results in the literature, our research advances multi-
criteria scheduling research in the following aspects: (i) Our research on problem

1|rj, pmtn, ND|(f (1)
max, f

(2)
max, · · · , f (m)

max) with lateness-like criteria is innovative. The tech-
nique we develop to address this problem goes beyond the methodology presented in the
literature. (ii) From Tables 1 and 2, for the CSP in the “rj, pmtn” environment, the
time complexity of our algorithms matches the corresponding time complexity of the al-
gorithms for solving their special versions with rj = 0 in the literature. (iii) From Tables
1 and 2, for the WSP and PSP in the “rj, pmtn” environment, the time complexity of our
algorithms improves the existing results in the literature. (iv) Our NP -hardness results
for CO-agent scheduling are the first such results for the special version with pj = 1 for
all the jobs. Future research should address the following questions.

Cheng et al. [9] showed that problem 1|CO|
∑m

i=1 L
(i)
max is at least NP -hard in the

ordinary sense and the computational complexity status of the problem (whether it is
strongly NP -hard or solvable in pseudo-polynomial time) is still open. Moreover, to the
best of our knowledge, the computational complexity of the following related problems is
still open:

• Problem 1|CO|
∑m

i=1 f
(i)
max, where m is fixed.

• Problem 1|ID|
∑m

i=1 f
(i)
max, where m is fixed.

• Problem 1|ND|
∑m

i=1 f
(i)
max, where m is fixed.

• Problem 1|CO, pj = 1|
∑m

i=1 λiL
(i)
max.

• Problem 1|CO, pj = 1|
∑m

i=1 L
(i)
max.

• Problem 1|CO, pj = 1|
∑m

i=1 T
(i)
max.
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Appendix: Proof of Lemma 4.3

Proof. Suppose that π is a Pareto-optimal schedule corresponding to (X1, X2, · · · , Xm).
From Lemma 2.5, we can also regard π as a completion-coinciding permutation of J =
{1, 2, · · · , n}. Then Sππ(k) = J π

k for k = 1, 2, · · · , n and Cπ(1)(π) < Cπ(2)(π) < · · · <
Cπ(n)(π). Let hi be the bottleneck job of agent i under π, i = 1, 2, · · · ,m and let σ =
(σ(1), σ(2), · · · , σ(m)) be a permutation of the m agents {1, 2, · · · ,m} such that

Chσ(1)(π) ≤ Chσ(2)(π) ≤ · · · ≤ Chσ(m)
(π). (35)

Note that some equalities in (35) may hold since different agents may share a common
bottleneck job.

For our purpose, we choose the Pareto-optimal schedule π such that the following
two conditions are satisfied:

(C1)
∑m

s=1Chs(π) is as small as possible, and

(C2) subject to condition (C1),
∑m

s=1 h
(s)
s is as large as possible.

Recall that j(s) is the index of job j in Os, i.e., j = sj(s). We define two matrices
Q = (qs,t)m×m and Q̃ = (q̃s,t)m×m in the following way.

Definition of Q = (qs,t)m×m: For 1 ≤ s ≤ m and 1 ≤ t ≤ m, we set qs,t as the maximum

index in {0, 1, · · · , nσ(s)} such that all the jobs in J Oσ(s)
qs,t = {σ(s)1, σ(s)2, · · · , σ(s)qs,t} are

completed by time Chσ(t)(π) in π, i.e.,

qs,t = max{q : J Oσ(s)
q ⊆ Sπhσ(t)}. (36)

It is observed that

0 ≤ qs,1 ≤ qs,2 ≤ · · · ≤ qs,m ≤ nσ(s) for each s with 1 ≤ s ≤ m. (37)

From the choices of these qs,t in (36), we further have, for s, t ∈ {1, 2, · · · ,m},

J Oσ(s)
qs,t ⊆ Sπhσ(t) (38)

and
σ(s), qs,t + 1 /∈ Sπhσ(t) . (39)
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Definition of Q̃ = (q̃s,t)m×m: The matrix Q̃ = (q̃s,t)m×m is obtained from Q by setting

q̃s,t =

{
min{qs,t, h(σ(s))σ(s) }, if t ≤ s,

qs,t, if t > s.
(40)

From (37) and (40), it is clear that

0 ≤ q̃s,1 ≤ q̃s,2 ≤ · · · ≤ q̃s,m ≤ nσ(s) for each s with 1 ≤ s ≤ m. (41)

Since hσ(t) is the bottleneck job of agent σ(t) and hσ(t) ∈ Sπhσ(t) , from Lemma 4.1 and

the choice of qs,t, we have

qt,t ≥ h
(σ(t))
σ(t) ≥ 1 for t = 1, 2, · · · ,m. (42)

From (40), the expressions in (42) also imply that

q̃t,t = h
(σ(t))
σ(t) ≥ 1 for t = 1, 2, · · · ,m. (43)

Let Q∗ = (q̃s,t)m×(m−1) be the m× (m− 1)-matrix obtained from Q̃ by deleting the last
column, i.e.,

Q∗ =


q̃1,1 q̃1,2 · · · · · · q̃1,m−1
q̃2,1 q̃2,2 · · · · · · q̃2,m−1
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
q̃m,1 q̃m,2 · · · · · · q̃m,m−1

 .

From (41) and (43), Q∗ satisfies the two conditions in (18) and (19). Therefore, we have
the following claim.

Claim 1. (σ,Q∗) is a schedule-configuration.

Now we set h(σ,Q∗) = (hσ(1), hσ(2), · · · , hσ(m−1)). Since (σ,Q∗) is a schedule-
configuration, the relations in (43) further imply the following claim.

Claim 2. h(σ,Q∗) = (hσ(1), hσ(2), · · · , hσ(m−1)) is the principal vector induced by the
schedule-configuration (σ,Q∗).

We borrow the notation in (22) and set J (σ,Q)
t = J Oσ(1)

q1,t ∪ J Oσ(2)
q2,t ∪ · · · ∪ J Oσ(m)

qm,t and

J (σ,Q̃)
t = J Oσ(1)

q̃1,t
∪ J Oσ(2)

q̃2,t
∪ · · · ∪ J Oσ(m)

q̃m,t
for t = 1, 2, · · · ,m. Note that t = m is allowed

here. From the definition of Q∗, we have

J (σ,Q∗)
t = J (σ,Q̃)

t for t = 1, 2, · · · ,m− 1. (44)

Since q̃s,t ≤ qs,t for all s, t ∈ {1, 2, · · · ,m}, from (38), we further have

J (σ,Q̃)
t ⊆ J (σ,Q)

t ⊆ Sπhσ(t) for all t = 1, 2, · · · ,m.
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We next prove the following long and critical claim.

Claim 3. For each t ∈ {1, 2, · · · ,m}, every job (if any) in Sπhσ(t) \J
(σ,Q̃)
t is not interfering

with respect to Sπhσ(t) .

Suppose to the contrary that the result in Claim 3 is violated. Let t be the minimum

index in {1, 2, · · · ,m} such that there is some interfering job x ∈ Sπhσ(t) \ J
(σ,Q̃)
t with

respect to Sπhσ(t) . Then we have

Chσ(t)(π) = C(Sπhσ(t)) > C(Sπhσ(t) \ {x}) ≥ C(J (σ,Q̃)
t ). (45)

The minimality of t implies that there are no interfering jobs in Sπhσ(s) \J
(σ,Q̃)
s with respect

to Sπhσ(s) for s = 1, 2, · · · , t− 1. From Lemma 2.6′, we have

Chσ(s)(π) = C(Sπhσ(s)) = C(J (σ,Q̃)
s ) for s = 1, 2, · · · , t− 1. (46)

From (45) and (46), we further have

hσ(t) /∈ {hσ(1), hσ(2), · · · , hσ(t−1)}. (47)

We may assume that x = σ(s)xs for every s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s)), i.e., x

is the xs-th job of agent σ(s) if x ∈ J (σ(s)). Note that the relation x /∈ J (σ,Q̃)
t can be

equivalently written as

x = σ(s)xs /∈ J
Oσ(s)
q̃s,t

for s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s)). (48)

Then we have
xs ≥ q̃s,t + 1 for s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s)). (49)

The inequalities in (49) can be further enhanced. To this end, we define l as the
maximum index in {t, t+ 1, · · · ,m} such that hσ(t) = hσ(l). From (35), we have

hσ(t) = hσ(t+1) = · · · = hσ(l). (50)

From (47) and the relations Chσ(1)(π) ≤ Chσ(2)(π) ≤ · · · ≤ Chσ(m)
(π) in (35), we have

Chσ(t−1)
(π) < Chσ(t)(π). The choice of l further implies that Chσ(l+1)

(π) > Chσ(t)(π). Then
we have

Chσ(1)(π) ≤ · · · ≤ Chσ(t−1)
(π) < Chσ(t)(π) < Chσ(l+1)

(π) ≤ · · · ≤ Chσ(m)
(π), (51)

where Chσ(0)(π) = 0 and Chσ(m+1)
(π) = +∞.

If s ∈ {1, 2, · · · , t− 1}, then the definition of q̃s,t in (40) implies that q̃s,t = qs,t. From

(48), we have x /∈ J Oσ(s)
qs,t . Then the definition of qs,t in (36) implies that xs ≥ qs,t + 2.

If s ∈ {l + 1, l + 2, · · · ,m}, from (51), we have Chσ(s)(π) > Chσ(t)(π). This implies

that hσ(s) 6∈ Sπhσ(t) , so qs,t < h
(σ(s))
σ(s) . From the definition of q̃s,t in (40), we have q̃s,t =

min{qs,t, h(σ(s))σ(s) } = qs,t. Again, we have xs ≥ qs,t + 2.
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If s ∈ {t, t + 1, · · · , l}, then hσ(t) = hσ(s) is the bottleneck job of agent σ(s) under

π. From (42), we have h
(σ(s))
σ(s) ≤ qs,s = qs,t, where the equality follows from the fact that

hσ(t) = hσ(s). Then q̃s,t = min{qs,t, h(σ(s))σ(s) } = h
(σ(s))
σ(s) .

From the above discussion, the inequalities in (49) can be enhanced as follows: For
s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s)), we have{

xs ≥ qs,t + 2, if s /∈ {t, t+ 1, · · · , l},

xs ≥ h
(σ(s))
σ(s) + 1, if s ∈ {t, t+ 1, · · · , l}.

(52)

Let π∗ be the new permutation of the n jobs in J obtained from permutation π by
shifting x to the position just after hσ(t). Since x is an interfering job with respect to
Sπhσ(t) , from Lemma 2.7, we have

Chσ(t)(π
∗) < Cx(π

∗) = Chσ(t)(π),

Cj(π
∗) ≤ Cj(π), if j 6= x,

Cj(π
∗) = Cj(π), if Cj(π) > Chσ(t)(π).

(53)

From the relation Cj(π
∗) ≤ Cj(π) for j 6= x in (53), together with the regularity of the

scheduling objective functions, we have

f
(s)
j (Cj(π

∗)) ≤ f (s)
max(π) for j ∈ J (s) \ {x} and s = 1, 2, · · · ,m. (54)

We now prove the following inequalities: For s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s), we have{
f
(σ(s))
x (Cx(π

∗)) < f
(σ(s))
max (π), if s ∈ {1, 2, , · · · , t− 1},

f
(σ(s))
x (Cx(π

∗)) ≤ f
(σ(s))
max (π), if s ∈ {t, t+ 1, · · · ,m}.

(55)

Recall the relation Cx(π
∗) = Chσ(t)(π) in (53).

If s /∈ {t, t+ 1, · · · , l}, from (52), we have xs ≥ qs,t + 2. Let ys be the (qs,t + 1)-th job
of agent σ(s). Then Cys(π) > Chσ(t)(π). From the lateness-like property, we have

f (σ(s))
x (Chσ(t)(π)) ≤ f (σ(s))

ys (Chσ(t)(π)) ≤ f (σ(s))
ys (Cys(π)) ≤ f (σ(s))

max (π). (56)

Thus, the inequalities in (55) hold for s ∈ {l + 1, l + 2, · · · ,m}.

For s ∈ {1, 2, , · · · , t − 1}, we have f
(σ(s))
ys (Cys(π)) < f

(σ(s))
max (π) since Cys(π) >

Chσ(t)(π) = Chσ(s)(π) and hσ(s) is the bottleneck job of agent σ(s) under π. This means
that the last inequality in (56) must be strict. Thus, the inequalities in (55) hold for
s ∈ {1, 2, , · · · , t− 1}.

For s ∈ {t, t + 1, · · · , l}, from (52), we have xs ≥ h
(σ(s))
σ(s) + 1. From the lateness-

like property again, we have f
(σ(s))
x (Chσ(t)(π)) ≤ f

(σ(s))
hσ(s)

(Chσ(t)(π)) = f
(σ(s))
max (π), where the

equality follows from the fact that hσ(t) = hσ(s) is the bottleneck job of agent σ(s) under
π. This proves the inequalities in (55).
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Since σ is a permutation of the m agents {1, 2, · · · ,m}, a weakened version of (55)
can be written as: For s ∈ {1, 2, · · · ,m} with x ∈ J (σ(s)), we have

f (s)
x (Cx(π

∗)) ≤ f (s)
max(π). (55′)

From (54) and (55′), we have f
(s)
max(π∗) ≤ f

(s)
max(π) for every agent s. But since π is a

Pareto-optimal schedule, we must have

f (s)
max(π

∗) = f (s)
max(π) = Xs for all s = 1, 2, · · · ,m. (57)

Thus, we conclude from (57) that π∗ is also a Pareto-optimal schedule corresponding to
(X1, X2, · · · , Xm).

For each s ∈ {1, 2, · · · ,m}, we use h∗s to denote the bottleneck job of agent s under
schedule π∗. Then h∗σ(s) is the bottleneck job of agent σ(s) under π∗. For each job j

with j 6= x and Cj(π) > Chσ(s)(π), we have f
(σ(s))
j (Cj(π

∗)) ≤ f
(σ(s))
j (Cj(π)) < f

(σ(s))
max (π) =

f
(σ(s))
max (π∗), where the first inequality follows from the relation Cj(π

∗) ≤ Cj(π) for j 6= x
in (53) and the second inequality follows from the fact that the bottleneck job hσ(s) is the

last job, assuming the value f
(σ(s))
max (π) in π. Thus, we have

j 6= h∗σ(s) if j 6= x and Cj(π) > Chσ(s)(π). (58)

For s ∈ {1, 2, · · · , t − 1}, the relation f
(σ(s))
x (Cx(π

∗)) < f
(σ(s))
max (π) in (55) implies that

x 6= h∗σ(s). From the relation Chσ(s)(π) = C(Sπhσ(s)) = C(J (σ,Q̃)
s ) in (46), together with the

fact that x /∈ J (σ,Q̃)
s , we have

max{Cj(π∗) : j ∈ J (σ,Q̃)
s }

≥ C(J (σ,Q̃)
s ) = Chσ(s)(π)

= max{Cj(π) : j ∈ J (σ,Q̃)
s }

≥ max{Cj(π∗) : j ∈ J (σ,Q̃)
s },

where the last inequality follows from the relation Cj(π
∗) ≤ Cj(π) for j 6= x in (53).

This implies that Chσ(s)(π) = max{Cj(π∗) : j ∈ J (σ,Q̃)
s }. For every job j ∈ J (σ,Q̃)

s with
j 6= hσ(s), we have j 6= x, so Cj(π

∗) ≤ Cj(π) < Chσ(s)(π). Thus, the only possibility is

that Chσ(s)(π
∗) = max{Cj(π∗) : j ∈ J (σ,Q̃)

s } = Chσ(s)(π). From (58), together with the
fact that x 6= h∗σ(s), we conclude that

Ch∗
σ(s)

(π∗) = Chσ(s)(π) and h∗σ(s) = hσ(s) for s = 1, 2, · · · , t− 1. (59)

For s ∈ {l + 1, l + 2, · · · ,m}, from (53), we have Cx(π
∗) = Chσ(t)(π) < Chσ(s)(π) =

Chσ(s)(π
∗) and Cj(π

∗) = Cj(π) for all the jobs j with Cj(π) > Chσ(s)(π). Thus, from (58)
directly, we have

Ch∗
σ(s)

(π∗) = Chσ(s)(π) and h∗σ(s) = hσ(s) for s = l + 1, l + 2, · · · ,m. (60)
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For s ∈ {t, t+ 1, · · · , l}, we have Cx(π
∗) = Chσ(s)(π). From (58) directly, we have

Ch∗
σ(s)

(π∗) ≤ Chσ(s)(π) = Cx(π
∗) for s = t, t+ 1, · · · , l. (61)

If any one of the inequalities in (61) is strict, then from (59), (60), and (61), we have∑m
s=1Ch∗s(π

∗) =
∑m

s=1Ch∗σ(s)(π
∗) <

∑m
s=1Chσ(s)(π) =

∑m
s=1Chs(π). This contradicts the

choice of π under condition (C1), since π∗ is also a Pareto-optimal schedule corresponding
to (X1, X2, · · · , Xm). Consequently, we have

Ch∗
σ(s)

(π∗) = Chσ(s)(π) = Cx(π
∗) and h∗σ(s) = x for s = t, t+ 1, · · · , l. (62)

Now we have
∑m

s=1Ch∗s(π
∗) =

∑m
s=1Chs(π). Thus, (C1) is satisfied by both π and

π∗. But then, by combining (59), (60), and (62), we have
∑m

s=1 h
∗(s)
s −

∑m
s=1 h

(s)
s =∑m

s=1 h
∗(σ(s))
σ(s) −

∑m
s=1 h

(σ(s))
σ(s) =

∑l
s=t(xs − h

(σ(s))
σ(s) ) > 0, where the unique inequality follows

from the relation xs ≥ h
(σ(s))
σ(s) + 1 in (52). This means

∑m
s=1 h

∗(s)
s >

∑m
s=1 h

(s)
s , which

contradicts the choice of π under condition (C2). Claim 3 follows.

Claim 3 states that, for each t ∈ {1, 2, · · · ,m}, J (σ,Q̃)
t is a subset of Sπhσ(t) such that

no jobs in Sπhσ(t) \ J
(σ,Q̃)
t are interfering with respect to Sπhσ(t) . By using Lemma 2.6′, we

have
Chσ(t)(π) = C(Sπhσ(t)) = C(J (σ,Q̃)

t ) for t ∈ {1, 2, · · · ,m}. (63)

Recall from Claim 2 that the principal vector induced by (σ,Q∗) is given by h(σ,Q∗) =
(hσ(1), hσ(2), · · · , hσ(m−1)). Thus, for each t ∈ {1, 2, · · · ,m− 1}, the entry Xσ(t)(σ,Q

∗) of
the objective vector X(σ,Q∗) is given by

Xσ(t)(σ,Q
∗)

= f
(σ(t))
hσ(t)

(C(J (σ,Q∗)
t )) ⇐ from (26)

= f
(σ(t))
hσ(t)

(C(J (σ,Q̃)
t )) ⇐ from (44)

= f
(σ(t))
hσ(t)

(Chσ(t)(π)) ⇐ from (63)

= f
(σ(t))
max (π) ⇐ from the definition of hσ(t)

= Xσ(t). ⇐ from the definition of π

(64)

Recall that Xσ(m)(σ,Q
∗) is the optimal value of problem

1|rj, pmtn, ND|f (σ(m))
max : f (σ(t))

max ≤ Xσ(t)(σ,Q) ∀t = 1, 2, · · · ,m− 1

in (27). From (64), this problem is identical to

1|rj, pmtn, ND|f (σ(m))
max : f (σ(t))

max ≤ Xσ(t) ∀t = 1, 2, · · · ,m− 1. (65)

Since (X1, X2, · · · , Xm) is a Pareto-optimal point, from Lemma 2.1 or Lemma 2.2, the
optimal value of the problem in (65) is just Xσ(m). Then we have

Xσ(m)(σ,Q
∗) = Xσ(m). (66)
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It follows from (64) and (66) that

X(σ,Q∗) = (X1(σ,Q
∗), X2(σ,Q

∗), · · · , Xm(σ,Q∗)) = (X1, X2, · · · , Xm).

This proves the lemma. �
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