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Abstract: This paper examines the effects of HSR development on airport technical efficiency 
and the labor productivity at airports. Existing literature mainly focuses on the impacts of HSR 
on passenger traffic. In addition to passengers, HSR development may influence airports’ other 
outputs such as cargo and flight movements together with various inputs. These inputs and 
outputs collectively determine airports’ technical efficiency. With access to a dataset consisting 
of 46 Chinese airports and 16 Japanese airports from 2007 to 2015, the paper firstly adopts 
both the standard two-stage Data Envelopment Analysis (DEA) and double bootstrap methods 
to evaluate the impacts of HSR development on airports’ technical efficiency. We then evaluate 
the effects of HSR on airport labor productivity which is measured by both work-load units per 
employee and aircraft movements per employee. Our main findings indicate that HSR 
development relates to a decline in airport efficiency. Airports located in cities that have better 
connectivity or accessibility in the HSR network suffer more efficiency loss than the others. It 
is also observed that the locational advantage of HSR stations relative to airports is negatively 
associated with airport efficiency. By contrast, good intermodal linkage between the airport 
and its nearest HSR station is positively correlated with airport efficiency. Furthermore, the 
study reports different results between China and Japan with respect to the effects of HSR on 
labor productivity.   
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1. Introduction

The rapid development of high-speed rail (HSR) around the world, especially in Northeast Asia, has 

attracted many researchers to study the interaction between air transport and HSR. Many studies 

examine the impacts of HSR on airports’ passenger traffic (e.g. Yang and Zhang, 2012; Clewlow et 

al., 2014; Jiang and Zhang, 2014; Zhang et al., 2018; Liu et al., 2019). Overall, the development of 

HSR tends to reduce air traffic in many markets, but improved air-HSR integration and hence a 

better air-HSR intermodal service may increase air traffic in many cases (refer to Zhang et al. (2019) 

for a comprehensive literature review on this topic). However, few studies have investigated the 

effects of HSR on airport productivity. 

 The possible impact of HSR on airport productivity can be more complicated than its impact 

on airports’ passenger volume, as airport productivity is affected by various output dimensions, such 

as passenger numbers, aircraft movement, and cargo throughput. Dobruszkes (2011) and 

Dobruszkes et al. (2014) reveal that a decline in the number of passengers does not necessarily result 

in a decrease in the number of flights for some given routes. On those routes, airlines may arrange 

more flights per day using smaller airplanes to compete with HSR. A real-world case is Guiyang-

Guangzhou Air Express, a service promoted by Guiyang airport in 2014, which provides cheaper 

and more flights per day to confront the competition from HSR. Such express services are very 

popular on the HSR-affected routes. As a result, the output of an airport captured by its total aircraft 

movements may not be negatively influenced as the passenger number would be. Additionally, HSR 

development may also affect airports’ other outputs such as cargo throughput and inputs such as 

employees. For example, Chen and Jiang (2020) investigate the impacts of HSR entry on air cargo 

in China and conclude that the entry of HSR services reduces air cargo throughput in the domestic 

market. These situations make the impacts of HSR on airport productivity more complicated and 

worthy of further investigation.  
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Aiming at filling the research gap, this study explores the effects of HSR on the productivity 

of airports in the context of two Northeast Asian countries, China and Japan, where HSR traffic 

accounts for over 80% of the world. 1  In particular, we examine (1) how the level of HSR 

development (not just the presence of HSR service) associates with airport technical efficiency, (2) 

whether improving air-HSR intermodal linkage could increase airport productivity, and (3) how the 

locational advantage of the HSR station relative to the airport affects airport productivity. After 

answering the above questions, we can contribute to the literature by providing a more 

comprehensive understanding on the impact of HSR-related factors on airport technical efficiency, 

an aspect that has received scant attention in the literature. Moreover, to our knowledge, this is the 

first empirical study to explore the impact of HSR on airports’ labor productivity. Research findings 

from this study may be of interest to policy makers on decisions related to airport capacity expansion, 

HSR development and promotion of air-HSR intermodal services. 

With access to a dataset from 2007 to 2015, we first employ data envelopment analysis (DEA) 

approach to assess the technical efficiency of 62 airports in China and Japan. The obtained efficiency 

scores are then used as dependent variables in the second-stage regression analysis to examine the 

effects of HSR on airport efficiency. In terms of the main variables of interest, we use two measures, 

HSR connectivity and HSR accessibility, to capture the level of HSR development. The quality of 

air-HSR intermodal service is captured by the distance between an airport and its nearest HSR 

station. The locational advantage of the HSR station compared to the airport is measured by ratio of 

the distance from an airport to its city center and the distance from the airport’s competing HSR 

station to the city center. Moreover, we estimate our results by adopting the double bootstrap 

method.2 Given that the inputs of most sample airports have changed marginally except the number 

                                                 
1 More information about the development of HSR network in China and Japan can be found in Wan et al. (2016) and Liu et al. 
(2019). 

2 This is to respond to the criticism that the traditional two-stage DEA approach lacks a well-defined data generation process and 
there exists unknown serial correlation of the efficiency scores in the first stage (Simar and Wilson, 2007). 



4 
 

of employees during our study period, we also examine the effect of HSR on airports’ labor 

productivity, which is measured by the work-load units per employee and the aircraft movements 

per employee.  

We find that HSR development relates to a decline in the technical efficiency of airports. 

Airports located in cities that have better positions in the HSR network suffer more efficiency loss 

than the others. We also find that the locational advantage of HSR stations is negatively associated 

with airport performance. By contrast, good access to an airport from its nearest HSR station is 

positively correlated with airport efficiency, especially for the airports in China. Furthermore, HSR 

development is likely to decrease the labor productivity at Chinese airports, but the development of 

HSR in Japan is found to increase the aircraft movements per employee. 

 The paper is organized as follows. Section 2 presents the literature review. Section 3 discusses 

our methodology and Section 4 describes data construction. Section 5 reports the empirical findings 

and Section 6 contains concluding remarks. 

 

2. Literature review 

This study is related to the literature using DEA approach to evaluate airport efficiency. The 

application of DEA has a long history, and has gained vast popularity in the transportation field in 

recent years. Libert and Niemeier (2013) already thoroughly reviewed the application of DEA in 

airport benchmarking by comparing the selection of DEA models, the choice of inputs and outputs, 

and the context of investigation. As almost all the articles reviewed by Libert and Niemeier (2013) 

were published before 2010, studies published after 2010 on adopting two-stage DEA approach and 

double bootstrap DEA methods are listed in Table 1. 
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Table 1 Studies adopting two-stage DEA or bootstrap techniques to identify factors affecting airport efficiency (2010-2020) 

Research Sample 
 Methodology Variables for productivity measures 

Influencing 
Factors 

Model Account for observed 
heterogeneity 

Inputs Outputs 

Chaouk et al. (2020) 59 European and Asia-
Pacific airports 
(2009, 2015) 

Safety and security; 
Human development; 
Macro-economic development; 
Institutions composition. 

Output-oriented CRS; 
Output-oriented VRS. 

Two-stage approach 
with Tobit regression;  
Bootstrap with 
truncated regression. 

Number of employees; 
Number of runways; 
Terminal size; 
Number of gates. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements; 
Non-aeronautical 
revenues. 

Karanki & Lim 
(2020) 

59 US airports 
(2009-2016) 

Hub status; 
Agreement types.  

Output-oriented CRS; 
Output-oriented VRS. 

Bootstrap with 
truncated regression. 

Number of employees; 
Number of gates; 
Terminal size; 
Operational costs. 

Work unit load; 
Non-aeronautical 
revenues. 

Ngo & Tsui (2020) 11 New Zealand 
airports 
(2006-2017) 

Privatisation; 
Low-cost carrier; 
Disaster (earthquake); 
Global financial crisis; 
GDP per capita; 
Number of domestic destinations; 
Number of international destinations; 
Number of establishments; 
Number of regional guest arrivals.  

Slack-Based Measure 
DEA-Window 
Analysis. 

Two-stage approach 
with Tobit regression. 

Runway lengths; 
Operational costs; 
Labor costs. 

Aircraft movements; 
Aeronautical 
revenues;  
Non-aeronautical 
revenues. 

Galli et al. (2020) 31 Italian airports 
(2003-2014) 

HSR development; 
GDP per capita; 
Population; 
Stock exchange; 
Public share; 
Hub status; 
Airport market share. 

Output-oriented CRS. Bootstrap with 
truncated regression. 

Number of employees; 
Number of runways. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 
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Fragoudaki & 
Giokas (2016) 

38 Greek airports. 
(2011) 

Number of destinations; 
Geographical location; 
Accommodation infrastructure; 
Mixture of operations; 
International airports. 

Output-oriented VRS. Two-stage approach 
with Tobit regression. 

Runway lengths; 
Terminal size; 
Apron size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Orkcu et al. (2016) 21 Turkish airports 
(2009-2014) 

Population; 
Hub status; 
Operating hours; 
Mixture of operations; 
International passenger traffic. 

Output-oriented VRS; 
Malmquist-DEA. 

Bootstrap with 
truncated regression. 

Number of runway; 
Runway lengths; 
Terminal size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Merkert & Assaf 
(2015) 

30 International airports 
(2013) 

Non-aeronautical revenues; 
Ownership; 
Low-cost carrier; 
Geographical location. 

Output-oriented VRS 
Bootstrap. 

Two-stage approach 
with Tobit regression;  
Bootstrap with 
truncated regression. 

Runway lengths; 
Terminal size; 
Full time equivalent. 
 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

D’Alfonso et al. 
(2015) 

34 Italian airports 
(2010) 

Competition. Output-oriented VRS. Two-stage approach 
with location scale non-
parametric regression. 

Number of employees; 
Number of runways; 
Number of gates; 
Number of terminals; 
Number of check-in desks; 
Airport size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 
 

Adler & Liebert 
(2014) 

48 European airports 
and 3 Australian 
airports 
(1998-2007) 

Non-aeronautical revenues; 
Heavy delays; 
Runway capacity utilization rate; 
Ownership; 
Competition; 
Regulation. 

Input-oriented VRS. Robust cluster 
regression. 

Labor costs; 
Operational costs; 
Runway capacity. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements; 
Non-aeronautical 
revenues. 

Coto-Millan, et al. 
(2014) 

35 Spanish airports 
(2009-2011) 

Airport size; 
Low-cost carrier. 

Input-oriented VRS; 
Input-oriented CRS; 
Malmquist-DEA. 

Two-stage approach 
with Tobit regression. 

Labor costs; 
Operational costs; 
Value of fixed assets. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 
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Merkert & Mangia 
(2014) 

35 Italian and 46 
Norwegian airports 
(2007–2009) 

Airport size; 
Population; 
Mixture of operations; 
Competition; 
Profitability.  
 

Input-oriented VRS; 
Input-oriented CRS; 
Input-oriented NIRS. 
 
 

Bootstrap with 
truncated regression. 

Number of employees; 
Number of runways; 
Runway lengths 
Terminal size; 
Runway size; 
Apron size; 
Airport size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Scotti et al. (2014) 44 US airports 
(2005-2009) 

Airport size; 
Average fleet size; 
Percentage of night flights; 
Multiple airport system; 
Percentage of international passenger. 
 

Output-oriented CRS; 
Directional distance 
function approach. 

Two-stage approach 
with Tobit regression. 

Number of gates; 
Runway lengths; 
Terminal size; 
Airport size; 
Operational costs. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Tsui et al. (2014a) 21 Asia-Pacific airports 
(2002-2011) 

Population; 
GDP per capita; 
Percentage of international passenger; 
Hub status; 
Operating hours; 
Alliance membership of dominant 
airline; 
Ownership. 

Output-oriented VRS. Two-stage approach 
with Tobit regression. 

Number of employees; 
Number of runways; 
Terminal size; 
Runway lengths. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Tsui et al. (2014b) 11 New Zealand 
airports 
(2009-2011) 

Population; 
Hub status; 
Operating hours; 
Ownership; 
Disaster; 
Sport tournament. 

Input-oriented VRS; 
Slack-based DEA; 
Malmquist-DEA. 

Bootstrap with 
truncated regression. 

Number of runways; 
Operating costs. 

Passenger traffic; 
Aircraft movements; 
Total revenues. 

Chang et al. (2013) 41 Chinese airports 
(2008) 

Distance to city centre; 
Flight area grade; 
Number of airlines; 
City level. 

Output-oriented VRS; 
Output-oriented CRS; 
Output-oriented 
NIRS. 
 

Bootstrap with 
truncated regression. 

Terminal size; 
Runway size; 
Operating hours. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 
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Ha et al. (2013) 12 Northeast Asian 
airports 
(1994-2011) 

Ownership; 
Corporatization; 
Localization; 
State shares; 
Competition; 
HSR; 
Airline concentration; 
Dominant airline market share; 
Customer power. 
 

Output-oriented VRS; 
Output-oriented CRS. 

Two-stage approach 
with Tobit regression. 

Number of employees; 
Terminal size; 
Runway lengths. 

Work load unit. 

Martini et al. (2013) 33 Italian airports 
(2005-2008) 

Fleet mix; 
Ownership; 
Airport size; 
Low-cost carriers. 

Output-oriented VRS; 
Directional distance 
function approach. 

Bootstrap with 
truncated regression. 

Number of parking spaces; 
Number of baggage claims; 
Runway lengths; 
Terminal size. 
 

Work load unit; 
Aircraft movements; 
Local air pollution; 
Noise levels. 

Assaf & Gillen 
(2012) 

73 International airports 
(2003-2008) 

Non-aeronautical revenues; 
Regulation; 
Ownership. 

Output-oriented VRS; 
Semiparametric 
Bayesian stochastic 
frontier model. 

Two-stage approach 
with Truncated 
regression; 
Bootstrap with 
truncated regression. 

Number of employees; 
Number of runways; 
Terminal size; 
Operational costs. 

Passenger traffic; 
Aircraft movements. 
Non-aeronautical 
revenues; 
 

Barros et al. (2012) 27 French airports 
(2000-2008) 

Airport size; 
Low-cost carriers; 
Hub status. 

Output-oriented CRS. Bootstrap with 
truncated regression. 

Number of employees; 
Passenger terminal size; 
Runway size. 

Passenger traffic; 
Total freight volume; 
Total mail volume; 
Aircraft movements. 

Gitto & Mancuso 
(2012) 

28 Italian airports 
(2000-2006) 

Hub status; 
Seasonality; 
Capital composition; 
Liberalization. 

Output-oriented CRS; 
Bootstrap. 

Bootstrap with 
truncated regression. 

Number of employees; 
Terminal size; 
Runway size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Merkert & Mangia 
(2012) 

46 Norwegian airports 
(2007–2009) 

Geographical location; 
Population. 

Input-oriented VRS; 
Input-oriented CRS; 
Input-oriented NIRS. 
 

Bootstrap with 
truncated regression. 

Number of employees; 
Number of runways; 
Runway lengths 
Terminal size; 
Runway size; 
Apron size; 
Airport size. 

Passenger traffic; 
Cargo throughput; 
Aircraft movements. 

Note: VRS = Variable returns to scale; CRS = Constant returns to scale; NIRS = Non-increasing returns to scale. The articles are presented in reverse chronological order. 
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As depicted in Table 1, majority of the recent studies concentrates on countries in Europe 

and the Asia-Pacific region. A common practice in the literature is to use the output-oriented 

DEA model which is based on the assumption that the primary goal of airports is to maximize 

their outputs with a given set of inputs. The “variable returns to scale” (VRS) model appears 

to be more popular than the constant returns to scale (CRS) model. The major rationale behind 

this is that sampled airports in most studies are of different sizes (e.g. Adler and Liebert, 2014; 

D’Alfonso et al., 2015). VRS models are used to adjust the potential scale effect on airport 

efficiency, so that small airports can be compared with large airports in their efficiency scores. 

In this study, we follow the majority of existing studies and adopt output-oriented VRS model. 

For the assessment of airport efficiency, passenger volume, cargo throughput, and aircraft 

movements are the most preferred output variables, whereas the selection of input variables 

largely depends on the availability of data. Nonetheless, the number of employees, runway 

lengths, and terminal size are among the most frequently used input variables.  

Our research is also relevant to the studies exploring the determinants of airport technical 

efficiency. According to Table 1, we find that GDP per capita, population of the airport’s 

catchment area, hub status, airport size, ownership, competition, and low-cost carriers are the 

most frequently identified factors in the DEA-related literature. In addition, there are a number 

of previous studies using other methods, such as stochastic frontier analysis and total factor 

productivity, to examine the association between airport efficiency and exogeneous factors. 

For example, Oum et al. (2004) and Oum et al. (2008) use stochastic frontier analysis to  

investigate the effect of ownership forms on airport efficiency; Yan and Oum (2014) adopt 

stochastic frontier analysis to identify the influence of government corruption on the efficiency 

of commercial airports in the context of the US; Randrianarisoa et al. (2015) apply residual 

variable factor productivity to examine the correlation between government corruption and 

airport productivity in European countries. Note that most literature includes competition 
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pressure from neighbouring airports as one of the determining factors, while ignoring 

competition from other modes of transport such as HSR. 

HSR could affect airports in two ways. First, HSR can have a traffic redistribution effect 

on airports. That is, some primary hub airports with good air connectivity may win traffic from 

smaller airports that have limited air routes after the introduction of HSR, which in some cases 

could intensify the competition between large and small airports (Liu et al., 2019; Zhang et al., 

2019). Second, HSR itself may be a strong rival to air travel through attracting passengers who 

used to travel by airplanes. As a result, all these aspects will influence airport technical 

efficiency.  

We find only one study investigating the impact of HSR on airport efficiency. Galli et al. 

(2020) use double bootstrap procedure to examine the association between HSR and airport 

technical efficiency in the context of Italy. The authors develop three variables, i.e., the distance 

between an airport and its nearest HSR station, the travel time between an airport and its nearest 

HSR station, and the presence of HSR links in the region of the airport, to measure the 

development of HSR. They find that the proximity between airport and its nearest HSR station 

is positively correlated with airport efficiency. Our study is different from Galli et al. (2020) in 

the following ways. First, we not only take into account the intermodal linkage between HSR 

and air travel, which is measured by the distance between an airport and its nearest HSR station, 

but also consider the relative location advantage of a city’s HSR stations by developing a 

variable that compares the ease of access to the city center from the airport and the airport’s 

corresponding HSR stations. Second, we consider the heterogeneity of HSR services among 

different airports by using train timetable information and calculate the HSR connectivity and 

accessibility for each airport’s city. Third, we explore the impact of HSR on the labor 

productivity at airports, which has received scarce attention.    
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3. Research methodology 

In this section, we first describe the standard two-stage DEA approach and the double bootstrap 

DEA procedure developed by Simar and Wilson (2007). Both approaches have been used to 

explore the effects of exogenous factors on airport technical efficiency. We then specify the 

econometric model for examining the effects of HSR on the labor productivity at airports.    

3.1 Two-stage DEA 

Two-stage procedure is a method wherein efficiency is assessed in the first stage and then the 

resulting efficiency scores are regressed on some exogenous variables in the second stage. In 

this study, we calculate the efficiency of airports by DEA which is a non-parametric approach 

for the identification of efficiency frontiers.3 In this paper, we employ an output-oriented DEA 

model. There are two main reasons. First, it is infeasible to cut the costly airport infrastructures 

without years of rigorous planning even though an airport can lay off its employees in the short 

run. Second, this study aims to provide decision makers at an airport with a view that enables 

them to verify how far the airport’s outputs can be increased with the current level of inputs. 

We also assume that, in the case of airport operations, an increase or decrease in inputs does 

not result in a proportionate change in outputs. Therefore, we use an output-oriented VRS DEA 

model to evaluate the efficiency scores of airports in the first stage. 

  Supposing that we have n decision-making units (DMUs) and each DMU consumes m 

different inputs to produce s different outputs, we can obtain the efficiency score of each DMU 

by solving the following linear programming problem: 

                                                 
3 Compared to parametric efficiency measures such as stochastic frontier analysis (SFA), DEA allows the use of multiple 
inputs and outputs without imposing assumptions about the specification of a functional form for the frontier and the 
probability distribution of the error terms (Cummins and Xie, 2016). On top of that, the DEA efficiency score can be easily 
obtained by solving a number of linear programming problems while SFA relies on maximum likelihood estimation, which 
means that ill-structured data can lead to numerical problems when estimating the coefficients with the SFA model (Chen et 
al., 2015). We tried the one-step SFA model in this study, however, there exists convergence problems due to the structure of 
our data. A possible reason might be that we involve too many dummy variables in the model. 
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 Max θ   

 

 

(1) 

   subject to: �𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑖𝑖  ≤  𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑚𝑚 

�𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑦𝑦𝑟𝑟𝑟𝑟  ≥  𝜃𝜃𝑦𝑦𝑟𝑟𝑟𝑟 , 𝑟𝑟 = 1,2, … , 𝑠𝑠 

�𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 1 

𝜆𝜆𝑗𝑗  ≥ 0, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

where 𝜃𝜃 is the efficiency score, 𝑥𝑥𝑖𝑖𝑖𝑖 denotes the consumption of input i by DMU j, 𝑦𝑦𝑟𝑟𝑟𝑟 is 

the production of output r by DMU j, 𝑥𝑥𝑖𝑖𝑖𝑖  and 𝑦𝑦𝑟𝑟𝑟𝑟 , respectively represent the input i and 

output r of DMU o, which is the DMU under evaluation. The DMU lies on the efficient frontier 

when its efficiency score equals to 1. The efficiency score ranges between 1 and positive 

infinity, and higher score indicates less efficiency.  

  The first-stage DEA only calculates efficiency scores without associating the efficiency 

with other environmental variables. To quantify the effects of HSR on airport efficiency, in the 

second stage, the obtained scores are then carried over to the Tobit regression analysis using 

the following models4: 

𝜃𝜃𝑖𝑖𝑖𝑖∗ =  𝛽𝛽0  +  𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖  +  𝚾𝚾𝑖𝑖𝑖𝑖𝜸𝜸 +  𝛿𝛿𝑖𝑖  + 𝜖𝜖𝑖𝑖𝑖𝑖 

𝜃𝜃𝑖𝑖𝑖𝑖 =  �𝜃𝜃𝑖𝑖𝑖𝑖
∗, 𝑖𝑖𝑖𝑖 𝜃𝜃𝑖𝑖𝑖𝑖∗ > 1 

1,   𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     

 (2) 

                                                 
4 A fundamental difference between truncated regression and Tobit is how data is observed. In the former case, the sample is 
truncated and hence both dependent and independent variables are missing for certain observations, and hence these 
observations are dropped from regression. In the latter case, only the dependent variable cannot be well observed and hence 
censored for certain observations, but the independent variables can be well observed, and therefore the regression does not 
drop those problematic observations. 
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where 𝜃𝜃𝑖𝑖𝑖𝑖∗stands for the latent efficiency score of airport i in year t, 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖  captures the 

development of HSR in the city where airport i is located in year t. 𝚾𝚾𝑖𝑖𝑖𝑖 is the vector of control 

variables. 𝛿𝛿𝑖𝑖 is airport fixed effect and 𝜖𝜖𝑖𝑖𝑖𝑖 is error term.  

After involving the possible substitute and complement effects of HSR on air transport, 

Equation (2) can be extended as follows: 

𝜃𝜃𝑖𝑖𝑖𝑖∗ =  𝛽𝛽0  + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐻𝐻𝐻𝐻𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖  + 𝛽𝛽3𝐻𝐻𝐻𝐻𝑅𝑅𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  +  𝚾𝚾𝑖𝑖𝑖𝑖𝜸𝜸 +  𝛿𝛿𝑖𝑖  +  𝜖𝜖𝑖𝑖𝑖𝑖 

𝜃𝜃𝑖𝑖𝑖𝑖 =  �𝜃𝜃𝑖𝑖𝑖𝑖
∗, 𝑖𝑖𝑖𝑖 𝜃𝜃𝑖𝑖𝑖𝑖∗ > 1 

1,   𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     

(3) 

where 𝐻𝐻𝐻𝐻𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖  and 𝐻𝐻𝐻𝐻𝑅𝑅𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 measure the HSR station’s relative location advantage over 

airport and the possible cooperation between HSR and air transport, respectively. 

3.2 Bootstrap DEA 

Simar and Wilson (2007) criticize the application of traditional two-stage DEA for two reasons. 

First, the traditional procedure fails to describe the coherent data generation process (DGP) 

which would make the regression in the second-stage sensible. Second, the standard method 

may make the inference invalid with the second-stage regression analysis since the first-stage 

DEA efficiency scores are serially correlated. They proposed a double bootstrap procedure to 

deal with these concerns, which has been widely used in recent studies. Similar to the standard 

two-stage DEA, the approach developed by Simar and Wilson (2007) also has two typical 

stages. In the first stage, it corrects the bias in the DEA efficiency scores with a bootstrap 

procedure. Then, the bias-corrected efficiency scores are regressed on environmental 

(exogenous) variables using a second bootstrap procedure applied to the truncated regression. 

We include the brief procedures in the appendix (Appendix 2) and refer the audience to Simar 

and Wilson (2007) for the details of the procedures. The algorithm can be easily performed 

with existing software such as FEAR package in R and STATA.   
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 However, the assumption about DGP in Simar and Wilson (2007) is restrictive because 

it does not include a two-sided noise term. As a result, the preference for truncated regression 

over Tobit in the second stage is less appropriate (Banker and Natarajan, 2008). In addition, 

the approach proposed by Simar and Wilson (2007) assumes that the exogenous factors only 

affect the inefficient processes but not the frontier, which should be tested further (Simar and 

Wilson, 2011). Thus, in this paper, we apply both standard two-stage procedure and Simar and 

Wilson (2007) method to check the robustness of our estimations. Note that the independent 

variables used in the double bootstrap procedure are the same as those used in the standard 

two-stage approach (Equations (2) and (3)).  

3.3 HSR effect on airport’s labor productivity  

Labor and capital are two most important inputs at airports. However, an airport’s physical 

infrastructures, such as terminal buildings and runways, cannot be frequently adjusted. This is 

because capacity expansion projects associated with terminal buildings and runways are lumpy 

and indivisible (Oum and Zhang, 1990) and usually requires years of planning and construction. 

According to our data, only a few airports expanded their terminals or built new runways during 

our study period. By contrast, most airports adjusted their numbers of employees annually to 

cope with market dynamics, meaning that airport productivity reflected by labor productivity 

may be various, which largely depends on the development of HSR in the city. Thus, we also 

look into the impact on partial productivity of labor. In this study, we use two common 

measures of labor productivity. One is based on work-load unit (WLU) per employee, which 

calculates the amount of passengers and cargos handled by an average worker. The calculation 

of WLU follows Ha et al. (2013).5 The other one is the aircraft movements per employee. 

Similar to Equations (2) and (3), Equation (4) is the baseline model and Equation (5) extends 

                                                 
5 We convert one passenger into 100 kg, and one WLU equals to one passenger or 100kg cargo. 
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the model by including the relative location advantage of HSR station and the accessibility 

between HSR station and airport. The specifications are:  

ln (𝐿𝐿𝑖𝑖𝑖𝑖) =  𝛽𝛽0  +  𝛽𝛽1ln (𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖)  +  𝚾𝚾𝑖𝑖𝑖𝑖𝜸𝜸 +  𝛿𝛿𝑖𝑖  + 𝜖𝜖𝑖𝑖𝑖𝑖 (4) 

ln (𝐿𝐿𝑖𝑖𝑖𝑖) =  𝛽𝛽0  +  𝛽𝛽1ln (𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖) +  𝛽𝛽2 ln�𝐻𝐻𝐻𝐻𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖� + 𝛽𝛽3 ln�𝐻𝐻𝐻𝐻𝑅𝑅𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖� +  𝚾𝚾𝑖𝑖𝑖𝑖𝜸𝜸 

+  𝛿𝛿𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖 

 (5) 

where 𝐿𝐿𝑖𝑖𝑖𝑖 is the labor productivity, measured by WLU per employee or aircraft movements 

per employee, at airport i in year t.  

 

4. Data and variable construction 

By the end of 2015, there are more than 200 civil airports6 in mainland China serving in total 

914.8 million passengers (CAAC, 2015) and 87 airports in Japan serving 277.7 million 

passengers. Considering the availability of data, this paper only includes airports that have over 

two million passengers in 2015, resulting in a panel of annual data for 48 Chinese airports and 

18 Japanese airports over the time period from 2007 to 2015. Among the 48 Chinese airports, 

Shanghai Hongqiao Airport (SHA) and Shanghai Pudong Airport (PVG) are merged into one 

airport entity (SHPV) because they are operated by the same airport authority and hence the 

employee data available to the public is aggregated across these two airports. Beijing Nanyuan 

Airport (NAY) is excluded due to the lack of employee data. In the case of Japan, Naha Airport 

(OKA) and Ishigaki Airport (ISG) are removed since they are located on Ishigaki Island which 

cannot be accessed by HSR. As a result, our estimation is based on 46 Chinese airports and 16 

Japanese airports, covering majority of large cities in China and Japan. The sampled Chinese 

airports account for 92.2% of China’s air passenger traffic, 97.7% of freight throughput and 

                                                 
6 206 out of the 210 commercial airports have regular service. 
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77% of aircraft movements. The sampled Japanese airports account for 81.7% of Japan’s air 

passenger traffic, 90.3% of freight throughput and 74.8% of aircraft movements. 

As discussed in Section 2, this paper includes three input variables, i.e., runway length 

which is defined by the total length of all the runways of the airport, terminal size which is the 

sum of passenger and cargo terminal areas, and the number of full-time employees. As for 

output variables, we consider passenger throughput, cargo throughput and aircraft movements. 

The data for input and output variables are collected from various sources, including Statistical 

Data on Civil Aviation of China (2008-2016) published by the Civil Aviation Administration 

of China, Japanese Ministry of Land, Infrastructure, Transport and Tourism (MILT, 2007-

2015), airports’ annual reports, airports’ official websites, and the authors’ direct contact with 

airports managers. Tables 2 and 3 present the descriptive statistics of the input and output 

variables. 

Table 2. Descriptive statistics of input and output variables for Chinese airports 

Variable Observation Mean Std. Min Max 

Outputs (000)      

Passengers 414 12711.51 16208.01 699.88 99188.94 

Cargo 414 242.01 558.85 1.28 3708.83 

Flight Movements 414 107.35 118.08 7.07 705.77 

Inputs      

Runway length (m) 414 4125.12 2518.95 2400 21700 

Terminal Size (m2) 414 143700 245000 3500 1414000 

Employee 414 1953.21 1378.47 320 7136 

 

Table 3. Descriptive statistics of input and output variables for Japanese airports 

Variable Observation Mean Std. Min Max 

Outputs (000)      

Passengers 144 12563.88 16432.51 1717.10 75254.95 
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Cargo 144 295.41 532.58 0 2254.42 

Flight Movements 144 94.88 91.91 14.37 438.54 

Inputs      

Runway length (m) 144 4228.69 2183.73 2500 11000 

Terminal Size (m2) 144 201660.2 288871.1 17052 1177700 

Employee 144 160.65 185.78 4 773 

Control variables used in the regression analysis are listed and explained in Table 4. We 

control the population size and real GDP per capita of the airport’s hinterland. Following Liu 

et al. (2019), we define the hinterland of an airport as the municipality or prefecture-level city 

where the airport locates for the case of China and the prefecture in which the airport is situated 

for the case of Japan. The population size is measured by the number of permanent residents 

in the hinterland. The real GDP per capita is the ratio of hinterland’s real GDP, using 2007 as 

the base year, and the hinterland’s population size. We also control for airport’s characteristics 

which are known to influence airport performance, such as privatization and hub status. Ha et 

al. (2013) reported that intersecting runway structure was negatively associated with airport 

efficiency. Thus, we follow the literature and use runway structure (RwyStructure) to indicate 

the situation of runway intersection or closely (less than 460 meters) located parallel runways. 

In addition, we include jet fuel price (Fuel) and airport competition (Compete) to capture 

external factors that may affect airports’ outputs. Data for Fuel is obtained from IATA Fact 

Sheet. Scotti et al. (2012) found that the intensity of airport competition had a negative impact 

on airport efficiency. Thus, compete reflects the intensity of airport competition measured by 

the number of airports within a catchment area of 100 km around the airport, which definition 

is in line with Bel and Fageda (2010). Further, we control for exogenous demand shocks, such 

as the Winter Storm and Wenchuan earthquake occurred in China in 2008, global financial 
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crisis in 2009,7 and Tohoku earthquake and tsunami occurred in Japan in 2011. The descriptive 

statistics of independent variables are provided in Appendix 1.  

Table 4. Description of control variables 

Variable Label Definition 

Population POP The total population of an airport’s hinterland 

as a proxy for the market size of the airport. 
GDP per capita GDP_POP The real GDP per capita of an airport’s 

hinterland as a proxy for the market size of the 

  Privatization Private Dummy variable. It equals to 1 if an airport is 

fully or partially private. 
Hub status Hub Dummy variable. It equals to 1 if an airport is 

an international hub (Beijing, Shanghai, 

Guangzhou, Haneda, Narita, Kansai). 
Runway structure RwyStructure Dummy variable. It equals to 1 if two runways 

are too close to each other (< 460m) or have 

intersections (Guangzhou, Haneda, Shanghai 

  Jet Fuel Price Fuel Aviation jet fuel price which is measured by 

US 100 dollar/bbl (Base = 2000). 
Competition Compete Number of airports within a 100km radius of 

the airport. 
Winter storm and Wenchuan 

earthquake 

Disaster (China) 
Dummy variable. Year 2008 = 1 

Global financial crisis GFC Dummy variable. Year 2009 = 1 

Tokoku earthquake and 

tsunami 

Disaster (Japan) 
Dummy variable. Year 2011 = 1 

The HSR-related variables of interest, i.e.  𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 , 𝐻𝐻𝐻𝐻𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , and 𝐻𝐻𝐻𝐻𝑅𝑅𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  are 

constructed in the following way. To capture the development of HSR, 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 is measured by 

either HSR connectivity or HSR accessibility in the city where airport i locates in year t. HSR 

connectivity captures the number of cities that are directly connected to a particular city by 

HSR, whereas HSR accessibility measures the convenience of travelling by HSR from a city 

to all other cities in the network. This approach enables us to take into account the heterogeneity 

                                                 
7 In 2008, the Beijing Olympic Games may also affect the airport efficiency in China which is also captured by this dummy 
variable. While the global financial crisis started in 2008, its impact on air traffic was the most prominent in 2009. 
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in individual cities’ HSR development. The calculation of HSR connectivity and accessibility 

follows Liu et al. (2019) and Liu et al. (2020). The value of 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 equals zero when there is 

no HSR station in the city. The calculation is based on China Train Timetable (2007-2015) and 

Japan Railway Timetable (2007-2015). 𝐻𝐻𝐻𝐻𝐻𝐻_𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 and 𝐻𝐻𝐻𝐻𝐻𝐻_𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 capture HSR’s ability to 

substitute and complement air transport, respectively, from the perspective of ground access. 

𝐻𝐻𝐻𝐻𝐻𝐻_𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is measured by the locational advantage of HSR station relative to airport when 

being accessed from the city center. It is calculated based on Equation (6):  

𝐻𝐻𝐻𝐻𝐻𝐻_𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖

 (6) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  is the road distance between airport i and its city center and 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 denotes the road distance between the HSR station and the city center. It is worth 

noting that passengers may travel to a neighboring city to take HSR when there is no HSR 

station in the city. Thus, if there is no HSR station in the city, we choose the nearest HSR 

station to the airport instead. On the other hand, if there are more than one HSR stations in the 

city, we take the average distance from these HSR stations to the city center to calculate 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖. As shown in (7), 𝐻𝐻𝐻𝐻𝐻𝐻_𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 reflects the convenience of transferring between 

air and HSR and hence the easiness of conducing intermodal feeding between these two modes. 

It is measured by the reciprocal of the road distance between airport i and its nearest HSR 

station, as shown in Equation (6). Again, we calculate the mean value of the distance when 

there are multiple HSR stations in airport i’s city. It is expressed as: 

𝐻𝐻𝐻𝐻𝐻𝐻_𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 =  
1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
 (7) 

 

5. Empirical results 
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5.1 Airport Efficiency 

We pool all years from 2007 to 2015 together and calculate the efficiency scores of airports in 

China and Japan separately. The average standard DEA scores of Chinese airports and Japanese 

airports over the 2007-2015 period are 1.781 and 1.248 respectively, indicating that airports in 

China, on average, can improve their outputs by 43.8% and Japanese airport, on average, can 

increase their outputs by 19.8% to reach the efficient frontiers with their current levels of inputs. 

 Figure 1 shows the overall trend of airport efficiency in China and Japan. Chinese 

airports appear to become more technically efficient during our observation period. However, 

there was a loss in efficiency in 2008 among airports in China. This might be attributed to a 

series of natural disasters such as Chinese winter storm and Wenchuan earthquake occurred in 

the first half of 2008 and the tightened security measures prior to and during the Beijing 

Olympic Games. By contrast, Japanese airports seem to be more stable than their counterparts 

in China. The technical efficiency of Japanese airports fell to its lowest level in 2011 because 

of the Tohoku earthquake and tsunami.  

 

(a) Chinese airports 
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(b) Japanese airports 

Figure 1. Trend of overall airport efficiency during the 2007-2015 period 

Figure 2 shows the distribution of efficiency scores across the 46 airports in China in 

ascending order of the airports’ latitudes. We observe that airports in the southern part of China 

where HSR networks are more developed, on average, are more technically efficient than those 

in the north. We also find that the international hub airports located in metropolises such as 

Shanghai (SHPV), Beijing (PEK), and Guangzhou (CAN) have lower median values and little 

inter-quartile ranges of efficiency scores, indicating that these airports are the most efficient 

and stable ones during our study period. On the other hand, the airports close to these hub 

airports are far from efficient, for example, Wuxi (WUX) which is about 160 km away from 

SHPV, Tianjin (TSN) which is about 150 km away from PEK, Zhuhai (ZUH) which is about 

200 km away from CAN, and Chaoshan (SWA) which is about 250 km away from XMN. This 

is consistent with the widely noted traffic leakage from regional airports to “nearby” primary 

airports as passengers in the catchment of the regional airports are willing to spend several 

hours of extra ground travel time to take the advantage of lower fares and more airline services 

at primary airports (Leon, 2011; Lian and Ronnevik, 2011). As a result, these regional airports 

are less capable of exploiting their inputs and tend to have lower capacity utilization than their 

nearby primary airports, despite that they serve overlapping geographical markets. 



22 
 

Similarly, we plot the distribution of efficiency scores for the 16 Japanese airports in 

Figure 3. The airports are sorted based on the ascending order of their longitudes. Most airports 

with low efficiency are situated along the Tokaido Shinkansen which is the busiest HSR line 

in Japan. It also reveals that airports in the west, on average, performs better than those in the 

east where the HSR lines are more densely distributed.     

 

 Figure 2. Boxplot distribution of Chinese airports’ efficiency scores between 2007 and 2015 

 

Figure 3. Boxplot distribution of Japanese airports’ efficiency scores between 2007 and 2015 

As shown in Table 5, the average annual efficiency scores of Chinese airports range from 

1.034 (Shanghai airport group, SHPV) to 3.204 (Yinchuan airport, INC). According to the 

average annual efficiency change rate, airports with the most significant improvement in 

efficiency include Zhuhai (ZUH), Harbin (HRB), Hohhot (HET), Changchun (CGQ) and 
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Chaoshan (SWA) airports. The scores of these airports drop by over 10% every year on average, 

which reflects an increase in airport technical efficiency, meaning that the resources at these 

airports are increasingly well-utilized. For example, the efficiency score of Harbin airport 

decreased from 3.021 in 2007 to 1.142 in 2015, achieving an above-average efficiency gain. 

On the contrary, the DEA scores of Wuxi (WUX) and Wenzhou (WNZ) airports experienced 

a notable increase, as they have grown by more than 5% on average every year. Given that 

Wuxi and Wenzhou are well-connected in the HSR network, this drop might be partially 

attributed to the decline in airport throughputs resulting from the development of HSR. 

Table 5. Summary statistics of efficiency scores for Chinese airports over 2007-2015 

IATA 
Code Airport name Mean Std. Average Year-over- 

Year Change (%) 

SHPV 
Shanghai Pudong Airport 

1.034 0.073 -0.14 
Shanghai Hongqiao Airport 

PEK Beijing Capital Airport 1.101 0.264 -0.72 

HGH Hangzhou Xiaoshan Airport 1.147 0.004 -4.11 

CSX Changsha Huanghua Airport 1.150 0.070 -3.62 

CAN Guangzhou Baiyun Airport 1.165 0.055 -4.95 

SZX Shenzhen Baoan Airport 1.172 0.007 0.88 

XMN Xiamen Gaoqi Airport 1.194 0.260 -0.19 

SYX Sanya Fenghuang Airport 1.214 0.123 -6.59 

HAK Haikou Meilan Airport 1.23 0.172 -7.86 

JHG Xishuangbanna Gasa Airport 1.276 0.135 3.63 

KMG Kunming Changshui Airport 1.282 0.021 -0.08 

XIY Xian Xianyang Airport 1.319 0.056 -0.11 

CTU Chengdu Shuangliu Airport 1.348 0.061 0.30 

WUH Wuhan Tianhe Airport 1.381 0.415 1.48 

LJG Lijiang Sanyi Airport 1.386 0.035 -1.15 

CKG Chongqing Jiangbei Airport 1.458 0.049 -5.97 

KWE Guilin Liangjiang Airport 1.510 0.052 -5.91 

HFE Hefei Xinqiao Airport 1.638 0.030 2.28 

WNZ Wenzhou Longwan Airport 1.676 0.000 5.27 

NNG Nanning Wuxu Airport 1.682 0.119 -5.82 

WUX Sunan Shuofang Airport 1.691 0.593 8.84 
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NKG Nanjing Lukou Airport 1.704 0.039 -5.14 

CGQ Changchun Longjia Airport  1.752 0.233 -10.28 

TYN Taiyuan Wusu Airport 1.782 0.090 -5.22 

SHE Shenyang Taoxian Airport 1.798 0.071 -3.01 

TAO Qingdao Liuting Airport 1.815 0.168 -5.99 

NGB Ningbo Lishe Airport  1.830 0.039 -4.50 

URC Urumqi Diwopu Airport  1.846 0.086 -8.98 

DLC Dalian Zhoushuizi Airport 1.914 0.183 -4.40 

KWL Guiyang Longdongpu Airport 1.931 0.068 -0.13 

SJW Shijiazhuang Zhengding Airport 1.976 0.452 0.36 

TSN Tianjin Binhai Airport 1.987 0.166 -5.91 

HRB Harbin Taiping Airport 2.015 0.204 -13.45 

HET Hohhot Baita Airport 2.075 0.034 -11.63 

CGO Zhengzhou Xinzheng Airport 2.098 0.450 -8.83 

KHN Nanchang Changbei Airport 2.155 0.033 -3.36 

ZGC Lanzhou Zhongchuan Airport 2.244 0.384 -3.64 

FOC Fuzhou Changle Airport 2.341 0.057 -8.68 

TNA Jinan Yaoqiang Airport 2.355 0.239 -7.34 

YNT Yantai Penglai Airport 2.389 0.410 -1.90 

XNN Xining Caojiapu Airport 2.436 0.166 -8.74 

ZUH Zhuhai Jinwan Airport 2.489 0.587 -14.9 

SWA Jieyang Chaoshan Airport 2.537 0.162 -10.17 

LXA Lhasa Gongga Airport 2.550 0.825 -8.86 

JJN Quanzhou Jinjiang Airport 2.651 0.228 -5.18 

INC Yinchuan Hedong Airport 3.204 1.019 -7.68 

Overall  1.781 0.195 -4.18 

According to Table 6, the average efficiency scores of Japanese airports vary from 1.015 

(Fukuoka airport, FUK) to 1.946 (Chubu airport, NGO). Most primary airports, such as Haneda, 

Narita and Osaka, operate at high level of efficiency, whereas Kansai Airport with an average 

score of 1.669 is among the least efficient airports in our Japanese sample. In addition, we 

observe that the efficiency of Japanese airports has stagnated over time. The loss in efficiency 

is particularly severe at Komatsu (KMQ), Kansai (KIX), Chubu (NGO) and Sendai (SDJ) 

airports. Each of them has lost efficiency by more than 2% per year on average.  
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Table 6. Summary statistics of efficiency scores for Japanese airports over 2007-2015 

IATA 
Code Airport name Mean Std. Average Year-over- 

Year Change (%) 

FUK Fukuoka Airport 1.015 0.027 0.06 

KOJ Kagoshima Airport 1.026 0.030 0.09 

HND Haneda Airport 1.030 0.046 0.10 

KMJ Kumamoto Airport 1.032 0.025 0.03 

UKB Kobe Airport 1.039 0.065 0.22 

MYJ Matsuyama Airport 1.040 0.052 0.11 

KMI Miyazaki Airport 1.050 0.056 0.11 

NRT Narita Airport 1.051 0.066 0.39 

ITM Osaka Airport 1.095 0.075 -1.06 

NGS Nagasaki Airport 1.137 0.083 1.82 

SDJ Sendai Airport 1.213 0.286 2.68 

CTS New Chitose Airport 1.409 0.099 -0.63 

KMQ Komatsu Airport 1.518 0.212 6.81 

KIX Kansai Airport 1.669 0.234 4.76 

HIJ Hiroshima Airport 1.700 0.099 1.69 

NGO Chubu Airport 1.946 0.305 4.15 

Overall   1.248 0.072 1.20 

In both China and Japan, we find that large airports, in general, are more technically 

efficient. This observation is consistent with the literature focusing on other countries, for 

example, Italy (Curi et al., 2011; D’Alfonso et al., 2015), UK (Assaf, 2009), and New Zealand 

(Abbott, 2015; Ngo and Tsui, 2020). The finding suggests that small airports in China and 

Japan have more spare capacity and could improve their throughput with their current levels of 

inputs. On top of this, we find that airports’ technical efficiency is less balanced in China than 

in Japan.  

5.2 The impact of HSR on DEA Score 

In this section, we discuss and compare the results obtained from the two-stage DEA approach 

and the double bootstrap procedure. Tables 7 and 8 report the parameter estimation for Chinese 

airports and Japanese airports, respectively. In both tables, the first four columns present the 
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results using standard two-stage DEA approach and columns (5)-(8) show the regression results 

with Simar and Wilson (2007) double bootstrap procedure. Columns (1), (2), (5), and (6) report 

estimates for Equation (2) and columns (3), (4), (7), and (8) report estimates for Equation (3).  

In the case of Chinese airports, variable HSR is positive and statistically significant in all 

specifications, suggesting that HSR development is negatively related to airport efficiency. 

More specifically, increasing the connectivity and accessibility of a city in the HSR network 

implies a loss in the technical efficiency of the city’s airports. The loss in technical efficiency 

can be explained by the reduction in the airport’s outputs due to HSR development. Liu et al. 

(2019) find that HSR development is negatively associated with the passenger traffic at Chinese 

airports. Chen and Jiang (2020) report that air cargo traffic and flight frequencies in Chinese 

domestic market decrease after the entry of HSR. The coefficient of HSR_CE is negative and 

statistically significant, meaning that improving the linkage between airport and HSR station 

may help increase the technical efficiency of the airport. This is because an easy access to the 

airport from HSR stations may promote HSR to feed traffic to the airport, which accordingly 

brings more traffic to the airport (Zhang et al., 2018; Liu et al., 2019). This finding is consistent 

with Galli et al. (2020) and Fernandez et al. (2021). The latter studied 21 European airports and 

documented that airports with the presence of HSR station in the airport are, on average, 23% 

more technically efficient. On the contrary, the coefficient of HSR_SE is positive and 

statistically significant at p = 0.05 level (column (3)) and p = 0.1 level (column (7)). This 

indicates that airport productivity is more likely to decrease when the airport is less convenient 

to be accessed (due to longer ground travel time) from the city center than the competing HSR 

station. The convenience of airport access/egress or HSR station access/egress can affect the 

competitiveness of the respective modes of transport (Talebian and Zou, 2016), as passengers’ 

valuations on airport’s and HSR station’s access/egress times are the highest among all the 

time components of a journey except delays (Roman et al., 2007). Givoni and Banister (2012) 
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also argue that HSR would be less attractive if its stations are located outside of the city 

downtown. Thus, the locational disadvantage of airport relative to HSR station (in terms of the 

relative closeness to the city center) can shift airport’s demand to HSR, leading to reduced air 

passenger volume and aircraft movement and hence productivity.  

Most estimates for control variables satisfy our expectation. GDP per capita of an airport’s 

catchment area is reported to have a positive and statistically significant impact on the airport 

efficiency, indicating that the improvement in people’s living standards is associated with the 

increase in airport efficiency. Hub airports appear to be more efficient, which is consistent with 

the literature (e.g. Tsui et al., 2014). Runway structure is statistically significant and negatively 

related to airport efficiency. This implies that airports with closely located parallel runways or 

intersecting runways are less technically efficient. Ha et al. (2013) also reported similar finding. 

Airports facing fierce competition, measured by the number of airports within the airport’s 

catchment area, are less efficient, which is consistent with Scotti et al.’s (2012) finding with 

Italian airports. It can be explained by the fact that higher number of nearby airports implies 

lower market power of the airport due to possible competition among airports seeking to attract 

common traffic (Bel and Fageda, 2010; Bilotkach et al., 2012). Global financial crisis is 

positive and statistically significant, indicating that airports tend to be less efficient during the 

period of economic downturn. In addition, the coefficients of Disaster are statistically positive. 

As we mentioned earlier, a series of natural disasters such as Chinese winter storms and 

Wenchuan earthquake occurred in the first half of 2008 had substantially affected air traffic. 

In the case of Japanese airports, without controlling for HSR_SE and HSR_CE (columns 

(1), (2), (5), and (6) in Table 8), the coefficients of variable HSR are positive and statistically 

significant, indicating that HSR development is negatively associated with airport efficiency. 

Specifically, adding one more HSR connection to the city implies an increase of 0.007 in the 

airport’s efficiency score, resulting in a maximum of 0.69% drop in airport efficiency. Likewise, 
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the coefficient on HSR accessibility is equal to 0.630, which means a 0.01 unit increase in the 

HSR accessibility may decrease airport efficiency by up to 0.39%.8 This arises partly because 

of the shift in passengers from airplanes to bullet trains in Japanese domestic markets. During 

our study period, three new lines were opened, namely, Hachinohe-Shin Aomori (part of 

Tohoku line), Hakata-Shin Yatsushiro (part of Kyushu line), and Nagano–Kanazawa (part of 

Hokuriku line). The opening of these branch lines enables people living in the remote areas to 

travel to megalopolises such as Tokyo and Osaka by HSR. Coefficients of variable HSR_SE 

are all statistically significant while those of HSR_CE are not always statistically significant, 

implying that the locational advantage of HSR station plays a key role while the HSR-air 

complementary effect is much milder in Japan. This finding is slightly different from that of 

China, probably because the average domestic travel distance in Japan is much shorter than in 

China. Li and Sheng (2016) document that air-HSR intermodal service is not competitive in 

relatively short routes and the competitive distance for air-HSR intermodal service is between 

1200 km and 1600 km. In fact, almost all domestic air routes in Japan is less than 1200 km and 

in these markets air transport and HSR compete fiercely, while many major domestic air routes 

in China are above 1200 km, such as Beijing - Guangzhou, Shanghai - Chengdu, which is ideal 

for intermodal cooperation between air and HSR when there is a convenient linkage between 

the airport and HSR station. We also observe that the characteristics of an airport’s hinterland, 

such as the population and GDP per capita of the airport’s hinterland, have positive impacts on 

                                                 
8 DEA is a linear programming technique for determining how DMUs perform in relation to the frontier. DMUs on the frontier 
itself are assigned an “efficiency rating” of 100 percent, whereas units falling behind the frontier are assigned a rating of less 
than 100 percent. Since we adopted output-oriented DEA model, the efficiency scores range between 1 and infinity. Here, we 
first transform the efficiency scores into efficiency ratings by taking the reciprocal of the efficiency score, and then carry out 
the analysis. For example, supposing the initial efficiency score of an airport is x, increasing one more HSR connection in the 
city where the airport locates implies the efficiency score of the airport will be increased to x+0.009. In other words, the 
efficiency rating of the airport decrease from 1/x to 1/(x+0.009), indicating a maximum of 0.69% (when x =1, the difference 
can reach its maximum) decline.  
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airport efficiency and the earthquake and tsunami occurred in 2011 severely affected airport 

performance.     

As shown in Tables 7 and 8, the estimates for our key variables are consistent when using 

standard two-stage DEA and double bootstrap procedure, in particular, the regression results 

of HSR measured by connectivity and accessibility. However, there are marginal differences 

between these two approaches. First, the coefficients of variable HSR have larger values when 

using double bootstrap procedure. Second, in the case of China, HSR_CE becomes more 

statistically significant while HSR_SE becomes less statistically significant. Third, in the case 

of Japan, the estimates for both HSR_SE and HSR_CE become statistically significant. 

  

 



30 
 

Table 7. Impact of HSR on airport technical efficiency (China)  

 
 
China 

Two-Stage DEA  Double bootstrap procedure 

(1) 
HSR = 

Connectivity 

(2) 
HSR = 

Accessibility 

(3) 
HSR = 

Connectivity 

(4) 
HSR = 

Accessibility 

 (5) 
HSR= 

Connectivity 

(6) 
HSR= 

Accessibility 

(7) 
HSR= 

Connectivity 

(8) 
HSR 

Accessibility 
POP -0.012 

(0.051) 
0.037 

(0.051) 
-0.014 
(0.050) 

0.035 
(0.051) 

 -0.039 
(0.076) 

0.010 
(0.075) 

-0.039 
(0.074) 

0.008 
(0.076) 

GDP_POP -0.354*** 
(0.035) 

-0.306*** 
(0.036) 

-0.357*** 
(0.035) 

-0.309*** 
(0.036) 

 -0.495*** 
(0.045) 

-0.453*** 
(0.045) 

-0.498*** 
(0.043) 

-0.473*** 
(0.047) 

Privatize 0.087 
(0.191) 

0.058 
(0.193) 

0.128 
(0.191) 

0.099 
(0.194) 

 -0.063 
(0.354) 

-0.065 
(0.373) 

0.018 
(0.373) 

0.016 
(0.390) 

Hub -1.330** 
(0.622) 

-1.732*** 
(0.636) 

-1.390** 
(0.615) 

-1.750*** 
(0.633) 

 -2.163** 
(0.994) 

-2.607** 
(1.006) 

-2.274** 
(0.973) 

-2.678** 
(1.057) 

Fuel 0.241** 
(0.112) 

0.058 
(0.106) 

0.289** 
(0.112) 

0.092 
(0.106) 

 0.178 
(0.148) 

-0.001 
(0.138) 

0.234 
(0.143) 

0.050 
(0.134) 

Compete 0.437** 
(0.195) 

0.493** 
(0.200) 

0.362* 
(0.196) 

0.430** 
(0.200) 

 0.550* 
(0.312) 

0.525* 
(0.312) 

0.393 
(0.303) 

0.349 
(0.317) 

RwyStructure 0.135*** 
(0.025) 

0.143*** 
(0.025) 

0.132*** 
(0.024) 

0.141*** 
(0.025) 

 0.266*** 
(0.039) 

0.278*** 
(0.039) 

0.262*** 
(0.038) 

0.281*** 
(0.040) 

Disaster 0.186*** 
(0.069) 

0.253*** 
(0.068) 

0.152** 
(0.069) 

0.226*** 
(0.069) 

 0.287*** 
(0.084) 

0.350*** 
(0.083) 

0.243*** 
(0.082) 

0.307*** 
(0.086) 

GFS 0.168** 
(0.069) 

0.137* 
(0.071) 

0.160** 
(0.069) 

0.129* 
(0.070) 

 0.173** 
(0.087) 

0.143 
(0.089) 

0.164* 
(0.086) 

0.133 
(0.088) 

HSR 0.009*** 
(0.001) 

1.549** 
(0.615) 

0.010*** 
(0.001) 

1.972*** 
(0.648) 

 0.011*** 
(0.002) 

2.104*** 
(0.772) 

0.013*** 
(0.002) 

3.245*** 
(0.887) 
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HSR_SE 
  

0.020** 
(0.009) 

0.011 
(0.009) 

   0.020* 
(0.011) 

0.010 
(0.010) 

HSR_CE 
  

-3.232** 
(1.372) 

-3.209** 
(1.454) 

   -5.302*** 
(1.906) 

-6.708*** 
(2.158) 

Constant 
  

2.984*** 
(0.623) 

2.428*** 
(0.626) 

 3.480*** 
(1.003) 

3.156*** 
(1.018) 

3.854*** 
(0.994) 

3.635*** 
(1.012) 

Airport Dummy Yes Yes Yes Yes  Yes Yes Yes Yes 

N 414 414 414 414  414 414 414 414 

LR chi2 529.11 512.55 536.48 517.66      

Log likelihood -172.92 -181.20 -169.24 -178.64   

 

 

 

 

 

 

 Wald chi2      795.14 737.10 833.53 803.24 

Note. Standard errors are in parentheses. *p <0.1; **p<0.05; ***p<0.01.      
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Table 8. Impact of HSR on airport technical efficiency (Japan) 

 
 
Japan 

Two-stage DEA  Double bootstrap procedure 

(1) 
HSR = 

Connectivity 

(2) 
HSR = 

Accessibility 

(3) 
HSR = 

Connectivity 

(4) 
HSR = 

Accessibility 

 (5) 
HSR = 

Connectivity 

(6) 
HSR = 

Accessibility 

(7) 
HSR = 

Connectivity 

(8) 
HSR = 

Accessibility 
POP -0.507** 

(0.246) 
-0.491* 
(0.249) 

-0.455* 
(0.238) 

-0.454* 
(0.238) 

 -0.688 
(0.463) 

-0.750 
(0.500) 

-0.473 
(0.431) 

-0.531 
(0.423) 

GDP_POP -0.454*** 
(0.109) 

-0.460*** 
(0.109) 

-0.457*** 
(0.101) 

-0.457*** 
(0.101) 

 -0.597*** 
(0.160) 

-0.629*** 
(0.162) 

-0.588*** 
(0.142) 

-0.618*** 
(0.153) 

Privatize -0.114 
(0.093) 

-0.111 
(0.093) 

-0.105 
(0.086) 

-0.105 
(0.087) 

 -0.590 
(0.482) 

-0.577 
(0.519) 

-0.464 
(0.420) 

-0.484 
(0.411) 

Fuel 0.079 
(0.066) 

0.082 
(0.066) 

0.140** 
(0.064) 

0.140** 
(0.064) 

 0.157 
(0.103) 

0.173 
(0.103) 

0.215** 
(0.100) 

0.216** 
(0.096) 

Compete 0.866 
(48.32) 

0.869 
(48.248) 

0.769 
(22.71) 

0.769 
(22.72) 

 -0.221 
(0.262) 

-0.183 
(0.221) 

0.309 
(0.333) 

1.150** 
(0.522) 

GFS 0.080 
(0.051) 

0.079 
(0.051) 

0.089* 
(0.047) 

0.089* 
(0.047) 

 0.107 
(0.077) 

0.110 
(0.078) 

0.126* 
(0.068) 

0.127* 
(0.068) 

Disaster  

 

0.123*** 
(0.039) 

0.123*** 
(0.039) 

0.123*** 
(0.036) 

0.124*** 
(0.036) 

 0.166*** 
(0.059) 

0.164*** 
(0.059) 

0.170*** 
(0.053) 

0.163*** 
(0.052) 

HSR 0.007** 
(0.003) 

0.630** 
(0.277) 

0.0004 
(0.004) 

0.012 
(0.508) 

 0.028*** 
(0.007) 

2.416*** 
(0.661) 

0.007 
(0.012) 

1.492 
(1.154) 

HSR_SE   0.074*** 
(0.017) 

0.074*** 
(0.017) 

   0.085*** 
(0.023) 

0.085*** 
(0.024) 

HSR_CE   -2.752 
(3.538) 

-2.650 
(4.514) 

   -10.57* 
(5.611) 

-17.17** 
(7.659)** 
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Constant 4.788 
(48.34) 

4.716 
(48.27) 

4.552 
(22.75) 

4.543 
(22.76) 

 7.316*** 
(2.724) 

7.699*** 
(2.927) 

5.524** 
(2.471) 

5.118** 
(2.462) 

Airport Dummy Yes Yes Yes Yes  Yes Yes Yes Yes 

N 144 144 414 414  144 144 144 144 

LR chi2 267.63 267.78 286.66 286.65      

Log likelihood 50.25 50.32 59.76 59.76      

Wald chi2      327.87 324.81 341.28 343.67 

Note. Standard errors are in parentheses. *p <0.1; **p<0.05; ***p<0.01. 
Hub and RwyStructure are omitted due to multi-collinearity. 
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5.3 The impact of HSR on airport’s labor productivity 

Table 9 presents the impact of HSR on the labor productivity at Chinese airports. Columns (1)-

(4) report the estimates using WLU as dependent variable and columns (5)-(8) show regression 

results using aircraft movements per employee as dependent variable. We find that variable 

HSR has a negative and statistically significant impact on airport labour productivity. 

Specifically, a 1% increase in HSR connectivity or accessibility reduces labour productivity by 

approximate 0.1%, which is in line with the findings in Section 5.2. It can be explained by the 

reduction of passenger and cargo traffic in Chinese domestic market due to HSR development, 

as Liu et al. (2019) find HSR connectivity and accessibility in general reduce domestic airport 

passenger traffic.  

Columns (3), (4), (7), and (8) take into account the relative location advantage of HSR 

station (HSR_SE) and the possible complementary effect of HSR on aviation (HSR_CE). We 

observe that a reduction in the distance between an airport and its nearest HSR station implies 

an increase in WLU per employee. However, the effect is not statistically significant on aircraft 

movements per employee (columns (7) and (8)). A possible explanation is that the intermodal 

integration of HSR and air transport in China is still at the preliminary stage. Although the 

improvement in the linkage between airport and HSR station may bring additional traffic, in 

particular passenger traffic, to the airport, it is not significant enough to contribute to more 

flights. In fact, only a few sampled airports were directly connected to the HSR network 

between 2007 and 2015. Further, our results show that variable HSR_SE is statistically 

significant in all specifications, indicating that the locational advantage of HSR station relative 

to airport has a negative impact on the airport’s labour productivity, which is consistent to our 

findings in Section 5.2.  

Table 10 shows the regression results for Japanese airports. We observe that there is in 

general no statistical evidence that the three HSR-related variables are strongly associated with 
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airport’s labour productivity. This is possibly because Japanese airports have experienced with 

HSR for quite a long time since the 1970s and the competition between HSR and air transport 

has reached a certain equilibrium years ago (Liu et al., 2019). The recent changes in Japanese 

HSR system during our study period are relatively minor and not enough to break this 

equilibrium. The only exception is that variable HSR has a positive and statistically significant 

coefficient when the dependent variable is aircraft movements per employee, and the 

elasticities of HSR connectivity and accessibility are 0.041 and 0.68, respectively. This result 

may be explained by the fast growth of business jet travellers in Japan as scheduled airline 

services gradually deteriorate due to the competition of HSR. According to the Ministry of 

Land, Infrastructure, Transport and Tourism (MILT), business aviation traffic in Japan has 

grown an average of 10.2 percent per year during the past five years, resulting in a significant 

increase in business jet movements. 9  In addition, airlines may reduce aircraft size when 

competing with HSR. As more ground staff are needed to serve a larger aircraft than a smaller 

aircraft, an increase in aircraft movement per employee can be an outcome of airlines’ 

adjustment on aircraft size. Due to data limitation, we are not able to test these possible 

channels of influence in this study, which can be done in the future when relevant data become 

available. 

 

                                                 
9 The information is retrieved from https://www.ainonline.com/aviation-news/business-aviation/2019-04-16/japan-business-
aviation-grows-amid-welcoming-atmosphere 
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Table 9. Impact of HSR on labor productivity at airports (China)  

 

China 

DV = WLU per employee  DV = aircraft movements per employee  
(1) 

HSR = 
Connectivity 

(2) 
HSR = 

Accessibility 

(3) 
HSR = 

Connectivity 

(4) 
HSR = 

Accessibility 

 (5) 
HSR = 

Connectivity 

(6) 
HSR = 

Accessibility 

(7) 
HSR = 

Connectivity 

(8) 
HSR = 

Accessibility 
Ln(HSR) -0.098 

(0.036)** 
-0.117 
(0.039)*** 

-0.094 
(0.034)** 

-0.108 
(0.040)** 

 -0.079 
(0.033)** 

-0.101 
(0.035)*** 

-0.074 
(0.031)** 

-0.096 
(0.036)** 

Ln(HSR_SE)   -0.124 
(0.047)** 

-0.123 
(0.050)** 

   -0.090 
(0.047)* 

-0.088 
(0.050)* 

Ln(HSR_CE)   0.188 
(0.091)** 

0.167 
(0.095)* 
 

   0.113 
(0.089) 

0.094 
(0.093) 

Constant 3.783 
(0.693)*** 

3.539 
(0.643)*** 

4.726 
(0.789) 

4.452 
(0.744)*** 

 2.721 
(0.717)*** 

2.473 
(0.648)*** 

3.348 
(0.630)*** 

3.052 
(0.664)*** 

Airport Dummy Yes Yes Yes Yes  Yes Yes Yes Yes 

Control Yes Yes Yes Yes  Yes Yes Yes Yes 

N 261 261 261 261  261 261 261 261 

R-square 0.513 0.507 0.531 0.525  0.303 0.301 0.321 0.320 

Note: Standard errors are in parentheses. Robust standard errors clustered by airport are reported in brackets.  *p <0.1; **p<0.05; ***p<0.01. 
Columns (1), (2), (5), and (6) report the estimates for Equation (4). Columns (3), (4), (7), and (8) report the estimates for Equation (5). 
We control for population GDP per capita, privatization, jet fuel price, competition, disaster, and global financial crisis. All estimates for these control variables satisfy our 
expectation. Regression results of these variables are not presented to save space.  

.
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Table 10. Impact of HSR on labor productivity at airports (Japan) 

Japan 

DV = WLU per employee  DV = aircraft movements per employee 
(1) 

HSR = 
Connectivity 

(2) 
HSR = 

Accessibility 

(3) 
 

 (4) 
HSR = 

Connectivity 

(5) 
HSR = 

Accessibility 

(6) 
 

Ln(HSR) -0.018 
(0.037) 

-0.108 
(0.383) 

 
 

 0.046 
(0.020)** 

0.680 
(0.203)*** 

 

Ln(HSR_SE)   -0.114 
(0.195) 

   -0.002 
(0.277) 

Ln(HSR_CE)   0.210 
(0.381) 

   0.112 
(0.546) 

Constant 4.874 
(2.623)* 

4.672 
(2.676) 

5.483 
(3.001)* 
 

 -1.640 
(2.919) 

-1.363 
(2.830) 

-0.831 
(3.800) 
 Airport Dummy Yes Yes Yes  Yes Yes Yes 

Control Yes Yes Yes  Yes Yes Yes 

N 144 144 144  144 144 144 

R-square 0.230 0.227 0.231  0.355 0.370 0.365 

Note. Robust standard errors clustered by airport are reported in brackets.  *p <0.1; **p<0.05; ***p<0.01. 
Compared to the case of China, there are very marginal changes in the expansion of HSR networks in Japan during our study period. In such 
situation, there exist multi-collinearity between Ln(HSR) and the other two variables: Ln(HSR_SE) and Ln(HSR_CE). Therefore, Ln(HSR) is 
omitted in column (3). 
Columns (1), (2), (5), and (6) report the estimates for Equation (4). Columns (3), (4), (7), and (8) report the estimates for Equation (5). 
We control for population GDP per capita, privatization, jet fuel price, competition, disaster, and global financial crisis. All estimates for these 
control variables satisfy our expectation. Regression results of these variables are not presented to save space. 
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6. Conclusion 

This paper examines the impact of HSR development on airport productivity in the context of 

China and Japan. We consider 46 Chinese airports and 18 Japanese airports and conduct the 

analysis over the period of 2007-2015. To capture the heterogeneity of HSR development 

among different cities, we employ HSR connectivity and accessibility developed by Liu et al. 

(2019). Besides, the potential complementarity between HSR and air transport is captured by 

the distance between an airport and its nearest HSR station. The locational advantage of the 

HSR station relative to the airport is also considered in the model to capture the infrastructure 

access/egress-related competition effect of HSR after controlling for the level of HSR 

development. We first examine the impact of HSR on airport technical efficiency with both 

standard two-stage DEA and double bootstrap procedure. Then, we investigate the association 

between HSR and airport labor productivity which is measured by WLU per employee and 

aircraft movements per employee.         

We draw three major conclusions from this study. First, in both China and Japan, the level 

of HSR development appears to be negatively associated with airport efficiency. Second, 

Chinese airports’ technical efficiency is positively and statistically significantly associated with 

the potential of air-HSR intermodal service but its association with the relative locational 

advantage of the HSR station is weak. However, Japanese airports’ technical efficiency is 

strongly and negatively correlated with the locational advantage of the HSR station but has a 

weak relationship with the air-HSR intermodal linkage. Third, HSR development is associated 

with the decrease of labor productivity at Chinese airports, but it is associated with an increase 

in aircraft movement per employee at Japanese airports.  

Our main findings have the following policy implications. First, apart from many other 

concerns, policy makers need to take into account the impact of HSR on airports when deciding 
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on airports’ capacity expansion. Instead of constructing new infrastructures, improving the 

current facilities at airports with advanced technologies, and reducing the ground access time 

may be a better alternative in the context of HSR development. Second, HSR development may 

negatively affect airports’ productivity if it is not well planned. This reduction in technical 

efficiency is likely to be contributed by air traffic loss due to air-HSR competition and hence 

reduced utilization of airport capacity. According to the findings with Japanese airports, 

airports may gradually adjust their labor inputs to cope with the competition of HSR and retain 

high labor productivity in the long term, but the negative impact of HSR on airport’s technical 

efficiency (measured by both labor and capital inputs) can remain for a long time. That is, HSR 

may cause welfare loss via airports’ loss of efficiency if it is not coordinated with airport 

infrastructure development. Thus, policy makers should be more cautious in airport expansion 

projects as well as HSR expansion projects as difficulty in investment cost recovery may persist 

if the airports, especially those small ones, are not able to retain traffic as the HSR network 

expands. Third, in the case of China, given that reducing the access time between HSR stations 

and airport terminals may help the airport gain productivity, it would be a good idea to promote 

air-HSR intermodal linkage. This finding is in line with Xia and Zhang (2017). 

Although the paper has revealed many new insights into the association between HSR and 

airports, some important extensions could be made for further investigation. First, the study 

can be extended by including more relevant variables, for example, the number of airlines in 

service in an airport, to test the robustness of our estimates. Second, further studies should be 

conducted to investigate the differentiated impacts of HSR on WLU per employee and aircraft 

movement per employee as revealed by this study. This different result may indicate a more 

complicated channel of reactions by airlines and passengers, such as the change of aircraft size 

and the possible diversion of demand from scheduled flights to business jets. Third, as a 
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complement to this research, it would be interesting to explore the effect of HSR on the cost 

efficiency of airports. 
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Appendix 1 Descriptive statistics for independent variables  

Table A1. Descriptive statistics of influential factors for Chinese airports 

Variable Obs Mean Std. Min Max 

HSR Connectivity 414 18.384 23.866 0 113 
HSR Accessibility 414 0.079 0.081 0 0.319 

HSR Dummy 414 0.616 0.487 0 1 

Sbs 414 2.605 3.573 0.004 28.769 

Cpl 414 0.024 0.022 0.001 0.093 

POP (106) 414 7.446 5.571 0.465 30.166 

GDP-POP (104RMB) 414 4.393 2.081 0.601 11.449 

Privatize 414 0.285 0.452 0 1 

Hub 414 0.065 0.247 0 1 

Fuel 414 1.029 0.232 0.657 1.276 

Compete 414 0.565 1.057 0 6 

RwyStructure 414 0.034 0.181 0 1 

Disaster 414 0.111 0.315 0 1 

GFS 414 0.111 0.315 0 1 

 

Table A2. Descriptive statistics of influential factors for Japanese airports 

Variable Obs Mean Std. Min Max 

HSR Connectivity 144 22.208 20.387 0 68 

HSR Accessibility 144 0.229 0.237 0 0.790 

HSR Dummy 144 0.667 0.473 0 1 

Sbs 144 6.768 8.190 0.028 30.706 

Cpl 144 0.424 0.058 0.002 0.238 

POP (106) 144 5.091 4.031 1.104 13.515 

GDP-POP (106JPY) 144 4.248 1.301 3.068 7.857 

Privatize 144 0.215 0.412 0 1 

Hub 144 0.215 0.412 0 1 

Fuel  144 1.029 0.232 0.657 1.276 

Compete 144 0.979 0.780 0 2 

RwyStructure 144 0.125 0.332 0 1 

GFS 144 0.111 0.315 0 1 

Disaster 144 0.111 0.315 0 1 
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Appendix 2 Simar and Wilson (2007) double bootstrap procedure 

[1] Calculate the DEA output-oriented efficiency score 𝛿𝛿𝑖𝑖 =  𝛿𝛿(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖|𝓅̂𝓅)∀ 𝑖𝑖 = 1, … ,𝑛𝑛  for each 

DMU using the original data. 

[2]Use maximum likelihood to estimate 𝜷𝜷� of 𝜷𝜷 and 𝜎𝜎𝜀𝜀� of 𝜎𝜎𝜀𝜀 in the truncated regression of 𝛿𝛿𝑖𝑖 on 𝓏𝓏𝑖𝑖 

[3]Loop over the next four steps ([3.1]-[3.4]) L1 times to obtain n sets of bootstrap estimates ℬ𝑖𝑖 =

{𝛿̂𝛿𝑖𝑖𝑖𝑖∗ }𝑏𝑏=1
𝐿𝐿1   

[3.1] For each 𝑖𝑖 = 1, … ,𝑚𝑚, draw 𝜀𝜀𝑖𝑖 from the 𝑁𝑁 (0,𝜎𝜎𝜀𝜀�
2) distribution with left truncation at 

1 − 𝔃𝔃𝒊𝒊𝜷𝜷�  

[3.2] For each 𝑖𝑖 = 1, … ,𝑚𝑚, compute 𝛿𝛿𝑖𝑖∗ = 𝔃𝔃𝒊𝒊𝜷𝜷� + 𝜀𝜀𝑖𝑖 

[3.3] Construct a pseudo data set (𝒙𝒙𝒊𝒊∗,𝒚𝒚𝒊𝒊∗), where 𝒙𝒙𝒊𝒊∗ =  𝒙𝒙𝒊𝒊,  𝒚𝒚𝒊𝒊∗ =  𝒚𝒚𝒊𝒊 𝛿𝛿𝑖𝑖 𝛿𝛿𝑖𝑖∗�  

[3.4] Compute 𝛿𝛿𝚤𝚤�
∗ =  𝛿𝛿(𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊|𝓅̂𝓅∗) ∀ 𝑖𝑖 = 1, … ,𝑛𝑛 , where 𝓅̂𝓅∗ is obtained by replacing Y, X 

with 𝑌𝑌∗ = [𝑦𝑦1∗ … 𝑦𝑦𝑛𝑛∗],𝑋𝑋∗ = [𝑥𝑥1∗ … 𝑥𝑥𝑛𝑛∗ ]. 

[4] For each DMU 𝑖𝑖 = 1, … ,𝑛𝑛, compute the bias -corrected estimator 𝛿𝛿𝑖𝑖 by 𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖 , where 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖 is the bootstrap estimator of the bias obtained from 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑖𝑖 = � 1
𝐿𝐿1
∑ 𝛿𝛿𝑖𝑖𝑖𝑖∗
𝐿𝐿1
𝑙𝑙=1 � − 𝛿𝛿𝑖𝑖 

[5]Use maximum likelihood to estimate the truncated regression of 𝛿𝛿𝑖𝑖 on 𝔃𝔃𝒊𝒊, yielding (𝜷𝜷��,𝝈𝝈��) 

[6] Loop over the next three steps (6.1-6.3) L times to obtain a set of bootstrap estimates ℒ =

{(𝛽̂𝛽∗,𝜎𝜎𝜀𝜀�
∗)𝑏𝑏}𝑏𝑏=1

𝐿𝐿2 : 

[6.1]For each 𝑖𝑖 = 1, … ,𝑚𝑚, draw 𝜀𝜀𝑖𝑖 from the 𝑁𝑁 (0,𝜎𝜎��) distribution with left truncation at 1 −

𝔃𝔃𝒊𝒊𝜷𝜷�� 

[6.2]For each 𝑖𝑖 = 1, … ,𝑚𝑚, compute 𝛿𝛿𝑖𝑖∗∗ = 𝓏𝓏𝑖𝑖𝜷𝜷�� + 𝜀𝜀𝑖𝑖  

[6.3]Use the maximum likelihood method to estimate the truncated regression of 𝛿𝛿𝑖𝑖∗∗ on 𝓏𝓏𝑖𝑖, 

yielding estimates (𝜷𝜷��∗,𝜎𝜎��∗)  

[7]Use the bootstrap values in ℒ and the original 𝛽̂̂𝛽,𝜎𝜎�� to construct estimated confidence intervals for 

each element of 𝜷𝜷 and for 𝜎𝜎𝜀𝜀. 
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