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A two-stage stochastic nonlinear integer-programming model for slot allocation of a liner 1 

container shipping service 2 

Abstract 3 

In this study, we propose a container slot allocation problem for a liner shipping service. A liner 4 

containership provides a regular shipping service with a fixed itinerary and schedule. In practice, the 5 

liner containership may not be fully loaded, which results in a loss of revenue. We therefore segment 6 

shippers into two classes: contract shippers and spot shippers. A contract shipper has a contract with 7 

the shipping company and negotiates a fixed minimum quantity, so that the shipping company can 8 

secure a steady revenue. The remaining containership slots are open to spot shippers, allowing the 9 

shipping company to obtain ad hoc revenue. The container slot allocation problem is investigated in 10 

this study using a two-stage stochastic mixed-integer nonlinear programming model. We use the 11 

sample average approximation based on Lagrangian relaxation and dual decomposition techniques 12 

to effectively solve the model. Finally, we conduct a case study to evaluate the applicability and 13 

effectiveness of the proposed model and the solution algorithm. 14 

Keywords: container slot allocation; two-stage stochastic mixed-integer nonlinear programming; 15 

sample average approximation; Lagrangian relaxation and dual decomposition. 16 

1. Introduction 17 

A liner container shipping company provides regular shipping services according to fixed 18 

itineraries and schedules. While such services benefit the shipping company in canvassing shipping 19 

demands for cargo, the reliance on a fixed schedule means that containerships may not be fully 20 

loaded when they depart from a port. Therefore, liner container shipping companies need an 21 

effective container slot allocation procedure for shippers contracting containerships. Such a 22 

procedure requires completing shippers’ shipping demand with the simultaneous aim of maximizing 23 

the profit of shipping the cargo. This issue is a major concern for the liner container shipping 24 

industry.  25 

Most liner container shipping companies manage container slots by relying on the judgment of 26 

experienced employees or on a simple “first come first serve” (FCFS) principle. Such a container 27 

slot management approach makes little or no use of decision support systems, and it is far from 28 

comprehensive, dynamic, computerized, or integrated (Ting and Tzeng, 2004). Hence, making good 29 
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decisions regarding slot allocation for shippers’ requests is crucial for a liner container shipping 1 

company to improve its revenue. The characteristics of slot allocation in the liner shipping industry, 2 

such as fixed capacities, advanced bookings, and demand segmentation, mean that revenue 3 

management (RM) is a high priority in slot allocation (Zurheide and Fischer, 2010; Meng et al., 4 

2019).  5 

RM has been widely applied and studied for more than 50 years in the airline industry (McGill 6 

and van Ryzin, 1999), and the studies have mainly focused on seat allocation and inventory control 7 

(Belobaba, 1987; Brumelle and McGill, 1990), pricing and overbooking control (Kunnumkal and 8 

Topaloglu, 2011), and air cargo transportation (Huang and Chang, 2010; Levin et al., 2012; 9 

Moussawi-Haidar, 2014; He et al., 2019). Although studies on RM applications in the airline 10 

industry are valuable to the liner shipping industry, there are significant differences between the two 11 

industries. In terms of seat inventory control, airlines commonly use advance bookings and 12 

cancellation penalties to differentiate discount fare classes (Huang and Liang, 2011), whereas in 13 

liner shipping the use of different classes is uncommon (Acciaro, 2011). As for pricing, bookings by 14 

negotiated contracts are rare in the airline industry, whereas the vast majority of liner trade is 15 

fulfilled through service contracts in which the freight rates are confidential and negotiated on a 16 

one-to-one basis (Marlow and Nair, 2008). In terms of overbooking, airlines may compensate 17 

passengers if more passengers show up at the time of a flight than the seats available on that flight; 18 

in contrast, shipping companies rarely compensate shippers even if containers have to wait in the 19 

yard for the next liner containership. As for air cargo transportation, there are two main differences. 20 

First, the space available for air cargo depends on the size of passengers’ baggage. Second, air cargo 21 

transportation is almost point-to-point as part of a hub-and-spoke network; the number of airports on 22 

a flight itinerary is very small (usually less than two stops), and the cargo will be discharged to 23 

empty the aircraft at the final airport of the flight. In container liner shipping, the network structure 24 

may not be hub-and-spoke and each liner shipping route consists of a number of ports (usually more 25 

than three ports), and the containership may not be emptied at the final port of a liner voyage. 26 

because it may carry cargo to be unloaded at the destination port of the next voyage (Zurheide and 27 

Fischer, 2012). All of these differences mean that the RM models proposed for the airline industry 28 
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cannot be directly transferred to the liner shipping industry. The slot allocation problem for liner 1 

container shipping services is thus still an interesting issue that deserves study. Accordingly, this 2 

paper makes the following contributions to the literature:  3 

(i) It proposes a new slot allocation problem integrating the issues of shipping demand 4 

uncertainty, empty container repositioning, and freight rate pricing. 5 

(ii) The proposed slot allocation problem for a liner container shipping service is formulated 6 

as a two-stage stochastic mixed-integer nonlinear programming (2SSMINP) model. As 7 

this model is intractable by using the solution methods proposed in the literature, this 8 

paper develops a solution algorithm to solve the proposed 2SSMINP model, and its 9 

convergence is proved mathematically. The methodology used in the solution algorithm is 10 

the most significant contribution of this paper. 11 

(iii) A number of experiments are implemented to test the proposed model and solution 12 

algorithm. The computational results verify the applicability of the proposed model and 13 

the efficiency of the solution algorithm, and evaluate the effect of the proposed model on 14 

profit growth. 15 

The remainder of this paper is organized as follows. Section 2 reviews the relevant studies and 16 

Section 3 discusses the container slot allocation problem. Section 4 develops the model and Section 17 

5 presents the solution algorithm. Section 6 conducts a numerical experiment to evaluate the model 18 

and the solution algorithm. Finally, Section 7 concludes the study and provides recommendations for 19 

future research. 20 

2. Literature review 21 

The slot allocation problem in container shipping has been studied for decades. Maragos (1994) 22 

took the first step in studying the problem of slot allocation and pricing in the context of both 23 

single-segment and multi-segment container shipping. However, his study did not consider the 24 

associated problem of repositioning empty containers, although this is common practice in shipping 25 

operations and management and can increase a shipping company’s profitability. Ting and Tzeng 26 

(2004) proposed different models to determine the optimal number of containers to accept for each 27 

port pair. Lee et al. (2007, 2009) proposed a heuristic to solve a RM problem for sea cargo on a 28 
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single journey leg. Feng and Chang (2008) studied the optimal slot allocation problem for ocean 1 

carriers serving a specific shipping route, considering slot allocation for empty and laden containers 2 

(Feng and Chang, 2009). Zurheide and Fischer (2010) applied RM to propose a slot allocation model 3 

with prioritization for the liner shipping industry. In their work, the freight rate of ad hoc containers 4 

is treated as a predetermined parameter, but no solution algorithm is presented. Brouer et al. (2011) 5 

revisited the slot allocation problem alongside the issue of empty containers repositioning and 6 

presented two container allocation models based on arc flow and path flow. Bell et al. (2011) 7 

proposed a frequency-based container assignment model to minimize the sailing and dwell time of 8 

containers. Bell et al. (2013) further studied a container-route assignment problem for a shipping 9 

network to minimize the sum of container handling costs, laden container inventory cost, and laden 10 

and empty container leasing costs. Wang et al. (2015) investigated a liner container seasonal 11 

shipping RM problem. Based on the transit-time-sensitive demand of the shipping context, Wang et 12 

al. (2016) proposed a tactical-level container assignment model for a liner shipping network to 13 

maximize total profit. However, in all of these studies, shipping demand is assumed to be known and 14 

deterministic, when in reality shipping demand is generally uncertain (e.g., Wang and Meng 2019).  15 

Considering the uncertainty of shipping demand, Bu et al. (2005) developed two stochastic 16 

programming models to address the slot allocation problem with and without empty container 17 

transportation. Lu et al. (2010) considered the fluctuations in container demand and proposed a 18 

seasonal slot plan based on path flow for a liner container shipping service. Wang et al. (2015) 19 

presented a slot allocation problem in which container shipping demand depended on the freight rate 20 

and formulated the problem as a profit-based container assignment model. Fu et al. (2016) addressed 21 

the slot allocation problem with minimum quantity commitment (MQC) under uncertain demand, 22 

formulating it as a robust optimization model. Recently, Zurheide and Fischer (2015) developed a 23 

bid-price strategy to handle container booking acceptance and slot allocation. Ting and Tzeng (2016) 24 

formulated the slot allocation problem as a bi-objective model to deal with two conflicting 25 

objectives: a carrier’s freight contribution and an agent’s level of satisfaction. However, in all of 26 

these studies, the freight rate of for shipping containers is treated as a given parameter, when in 27 

reality it is more reasonable to consider it as a decision variable. 28 
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To summarize, none of the above studies integrates the issues of shipping demand uncertainty, 1 

empty container repositioning, and freight rate pricing in the context of the slot allocation problem 2 

for a liner container shipping service. Therefore, we aim to fill this gap by considering these issues. 3 

It should be noted that in this paper, the slot allocation problem for a liner container shipping service 4 

is seen as an operational issue, in which the ship routes are known; therefore, the loading/unloading 5 

operations of containers at ports are beyond the research scope. In terms of tactical level issues, such 6 

as ship routing problems, interested readers can refer to Pang and Liu (2014). Regarding operational 7 

issues such as container operations, readers can refer to Bierwirth and Meisel (2010, 2015) and 8 

Gharehgozli and Zaerpour (2018), among others. 9 

3. Problem Description 10 

This section describes the container slot allocation problem. In practice, the liner containerships 11 

deployed on a shipping route are not fully loaded, for two main reasons. The first reason is the low 12 

reliability of shippers. Reports indicates that the no-show rate of shippers can be as high as 30% in 13 

the liner shipping industry (Leach, 2011), and the cancellation rate of container slot bookings is high 14 

among shippers (Zhao et al., 2019 and 2020). The main reason is that there are currently no penalties 15 

for no-shows and booking cancellation in the liner container shipping industry. The second reason 16 

concerns the essential characteristics of liner shipping services. As stated earlier, a liner container 17 

shipping company provides regular shipping services with fixed itineraries and schedules; 18 

containerships should depart on time to respect the fixed schedules (Zurheide and Fischer, 2010). It 19 

should be noted that in practice, schedules are not so rigid, and sailing times may deviate from the 20 

schedule. These two reasons can make the liner container shipping company’s revenue unstable and 21 

not maximized. For the sake of presentation, “containers” refer to twenty-foot equivalent units 22 

(TEUs), where all cargo is stored, and a shipping service refers to a shipping voyage comprising a 23 

number of port calls. Therefore, we consider the slot allocation problem for the voyage of a 24 

containership deployed on a specific shipping route. 25 

To maintain stable and maximum revenue, the liner container shipping company can use a 26 

strategy commonly used in the industry: segmenting shippers into two classes, contract shippers and 27 

spot shippers (Lee et al., 2007). The liner container shipping company gives preferential freight rates 28 
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to contract shippers; to attract contract shippers and obtain a steady revenue, it offers shippers an 1 

agreement stipulating a specific number of containers to be shipped over a given period, called 2 

“contract containers”. The remaining slots of the containership are left open to spot shippers, who 3 

are charged higher freight rates; thus, the liner container shipping company can accept shipping 4 

orders based on the number of available slots, called “ad hoc containers”. Accordingly, contract 5 

shippers hope that the stipulated number of containers signed in the agreement is as high as possible. 6 

However, accepting all potential containers from contract shippers is not the best choice for the liner 7 

container shipping company, because leaving slots for ad hoc shippers will bring more revenue. 8 

Therefore, the best choice for the liner container shipping company is to sign an agreement 9 

stipulating a fixed minimum quantity for contract shippers, called MQC. Then, the liner container 10 

shipping company reserves certain slots for these contract shippers.  11 

Ad hoc containers are temporary, but bring extra revenue for the liner container shipping 12 

company. Recall that the freight rates of contract containers are predetermined by negotiation 13 

between contract shippers and the liner container shipping company, whereas the freight rates of ad 14 

hoc containers are dynamic and are unilaterally determined by the liner container shipping company. 15 

Usually, spot shippers at each port will book slots within a certain period before the containership 16 

departs from the port. Let 𝑇 be the length of the booking period, and define 𝒯 ≔ {1, … , 𝑡, … , 𝑇} as 17 

the set of booking times. In other words, spot shippers at each port can book slots at time 𝑡. The 18 

higher the value of 𝑡, the closer the booking time is to final booking deadline.  19 

Due to trade imbalances between ports, some ports may need empty containers, resulting in 20 

empty container repositioning. Certain slots must be reserved for empty container repositioning, 21 

generating costs for the shipping company. Hence, empty container repositioning needs to be 22 

considered in the slot allocation problem. It should be noted that the laden container flow is driven 23 

externally by customer demands, whereas the empty container flow is driven by the laden container 24 

flow and determined internally by shipping companies themselves; so, the empty containers must 25 

either be accumulated in advance to meet demand or be repositioned to the depots where they are 26 

most urgently needed (Song and Dong, 2015).   27 

Therefore, the framework of slot allocation can be described as follows. First, the slots for 28 
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contract containers and empty containers are reserved; this can be seen as the first-stage decision 1 

problem. If there are still vacant slots beyond the slots determined in the first stage, they are 2 

available for ad hoc containers from spot shippers, which is considered the second-stage decision 3 

problem. Spot shippers at each port will book slots within a certain period before the containership 4 

departs from th2 port. Accordingly, this paper adopts a two-stage decision method based on shipper 5 

segmentation to deal with the proposed slot allocation problem, as illustrated in Figure 1. Our 6 

objective is to maximize the total expected profit from these two stages over a round-trip journey. 7 

Note that our problem concerns a liner shipping service; in a future study, we plan to extend our 8 

method to a shipping network consisting of multiple shipping routes. 9 

 10 

Figure 1. Illustration of two-stage slot allocation 11 

4. Model Development 12 

Before we turn to the model formulation, we introduce the notation used in this paper: 13 

Sets 

𝒫 Set of ports indexed by 𝑖, 𝒫 = {1, … , 𝑖, … , 𝑃} 

𝒫𝑠
𝑜𝑢𝑡 Set of outgoing ports for repositioning empty containers of type 𝑠 

𝒫𝑠
𝑖𝑛 Set of incoming ports for repositioning empty containers of type 𝑠 

𝒲 Set of port pairs, 𝒲 = {(𝑖, 𝑗)|𝑖 ∈ 𝒫, 𝑗 ∈ 𝒫}  
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ℒ Set of legs indexed by 𝑙, ℒ = {1, … , 𝑙, … , 𝐿} 

ℰ Set of types for empty containers  

ℱ Set of types for laden containers 

ℛ Set of types for laden reefer containers  

𝒯 Set of booking times for spot shippers indexed by 𝑡, 𝒯 = {1, … , 𝑡, … , 𝑇} 

Parameters 

𝑝̂𝑠
(𝑖,𝑗)

 Freight rate for a contract container of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑐̂𝑠
(𝑖,𝑗)

 Cost for a laden container of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑐𝑠
(𝑖,𝑗)

 Cost for an empty container of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑑𝑠 Dimension in TEU of a container of type 𝑠  

𝑤̂𝑠 Average weight in tons of a laden container of type 𝑠 

𝑤𝑠 Average weight in tons of an empty container of type 𝑠 

𝐶𝐴𝑃 Capacity in TEU of the deployed containership  

𝑈̅𝑠
(𝑖,𝑗)

 Maximum potential demand for contract containers of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝐷𝑊𝑇𝑙  Deadweight in tons of the deployed containership on leg 𝑙  

𝑅𝑃 Number of reefer plugs of the deployed containership 

𝑀𝑄𝐶𝑠
(𝑖,𝑗)

 Minimum quantity of contract containers of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑁𝑠
𝑖 Number of empty containers of type 𝑠 (𝑠 ∈ ℰ) that can be repositioned from port 𝑖 

𝑁𝑠
𝑗
 Number of empty containers of type 𝑠 (𝑠 ∈ ℰ) to be repositioned to port 𝑗 

α𝑡 Decreasing rate of ad hoc containers’ shipment at time 𝑡 

Decision variables 

𝑥̂𝑠
(𝑖,𝑗)

 Number of contract containers of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑥𝑠
(𝑖,𝑗)

 Number of empty containers of type 𝑠 with O-D pair (𝑖, 𝑗) 

𝑥̃𝑠𝑡
(𝑖,𝑗)

 Number of ad hoc containers of type 𝑠 with O-D pair (𝑖, 𝑗) at time 𝑡  

𝑝𝑠𝑡
(𝑖,𝑗)

 Freight rate for an ad hoc container of type 𝑠 with O-D pair (𝑖, 𝑗) at time 𝑡 

Auxiliary decision variables 

𝑅𝐶𝐴𝑃𝑙
𝑡 Remaining capacity in TEU of the containership on leg 𝑙 at time 𝑡 

𝑅𝐷𝑊𝑇𝑙
𝑡 Remaining deadweight in tons of the containership on leg 𝑙 at time 𝑡 
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𝑅𝑅𝑃𝑙
𝑡  Remaining number of reefer plugs of the containership on leg 𝑙 at time 𝑡 

According to the problem description in Section 3, the profit of the first stage in the round-trip 1 

journey can be given by: 2 

 
      

 

   

 

, , , , ,

1

, ,

ˆ ˆ ˆProfit
i j i j i j i j i j

s s s s s

s i j s i j

p c x c x
    

       (1) 3 

Eq. (1) can be written in the following vector form: 4 

 1Profit  c v  (2) 5 

where vector 𝐯 ≔ (… , 𝑥𝑠
(𝑖,𝑗)

, … , 𝑥𝑠
(𝑖,𝑗)

, … ) represents all of the first-stage decision variables and 6 

𝐜 ≔ (… , (𝑝̂𝑠
(𝑖,𝑗)

− 𝑐̂𝑠
(𝑖,𝑗)

) , … , 𝑐𝑠
(𝑖,𝑗)

, … ) denotes all of the coefficients associated with the first-stage 7 

decision variables.  8 

In general, demand decreases as the price increases. Thus, it is rational to assume that the 9 

shipping demand for ad hoc containers will reach a maximum when the freight rates for ad hoc 10 

containers fall to the freight rates for contract containers. Because the decision variables 𝑥̃𝑠𝑡
(𝑖,𝑗)

 refer 11 

to the number of ad hoc containers accepted from spot shippers, it is reasonable to treat the 12 

maximum potential ad hoc shipping demand as a random variable. Therefore, let 𝐃̅ ≔13 

{𝐷̅𝑠
(𝑖,𝑗)

: (𝑖, 𝑗) ∈ 𝒲, 𝑠 ∈ ℱ ∪ ℛ} be the vector of the maximum potential ad hoc shipping demand 14 

defined over a probability space (Ω, 𝔽, ℙ), with elementary outcomes Ω = {𝐷̅𝑠
(𝑖,𝑗)

(𝜔): (𝑖, 𝑗) ∈15 

𝒲, 𝑠 ∈ ℱ ∪ ℛ}, where 𝐷̅𝑠
(𝑖,𝑗)

(𝜔) is an elementary outcome, 𝔽 is the event space, and ℙ is the 16 

probability measure. Therefore, the slot allocation problem in this paper can be formulated by the 17 

2SSMINP model： 18 

[2SSMINP]    max ,Z Q 
D

v c v v D  (3) 19 

subject to 20 
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i
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       , ,

ˆ , 0             , ,
i j i j

s sx x i j s       (10) 5 

where 𝔼⟦𝑸𝐃̅(𝐯, 𝐃̅)⟧ is the expected recourse function in which 𝑸𝐃̅(𝐯, 𝐃̅) is the optimal objective 6 

function value for the second-stage optimization problem, with a given vector 𝐯 and the random 7 

maximum potential ad hoc shipping demands denoted by 𝐃̅. ρ𝑙
(𝑖,𝑗)

 is a binary parameter that equals 8 

1 if the shipping journey of containers with an O-D pair (𝑖, 𝑗) contains leg l, and 0 otherwise. For a 9 

particular realization of the maximum potential ad hoc shipping demand 𝐃̅(ω) , we let 10 

𝑄𝐃̅(𝐯, 𝐃̅(ω)) be the value of the second-stage optimization model, defined as follows: 11 

          

 

, , ,

,
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i j i j i j
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    D
v D  (11) 12 
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ˆω α           , , ,
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where 𝐷̅𝑠
(𝑖,𝑗)

(𝜔) is the realization of the maximum potential shipping demand for ad hoc containers 21 

of type 𝑠 with an O-D pair (𝑖, 𝑗).  22 
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Eq. (3) is the objective function of the 2SSMINP model, which is equivalent to maximizing the 1 

expected total profit obtained from the two stages. Constraints (4)-(6) specify that the containers 2 

carried on each leg of the voyage cannot exceed the capacity, deadweight, and available reefer plugs 3 

of the containership deployed on the voyage, respectively. The number of accepted contract 4 

containers is restricted to the range given in Constraints (7). Constraints (8) ensure that the total 5 

number of empty containers to be repositioned into other ports cannot exceed the maximum number 6 

of empty containers from its outgoing port. Constraints (9) require the total number of empty 7 

containers from outgoing ports to meet the need of the port where they will be repositioned in. 8 

Constraint (10) defines the ranges of the first-stage decision variables. 9 

Eq. (11) is the objective function of the second-stage optimization model, given the first-stage 10 

decision variables of vector 𝐯 and the realization of the random maximum potential ad hoc 11 

shipping demand 𝐃̅, which aims to maximize the profit from ad hoc containers. Constraints (12)12 

-(14) specify that the total number of containers on board on each leg until booking time 𝑡 cannot 13 

exceed the capacity, deadweight, and available reefer plugs of the containership, respectively. The 14 

right sides of Constraints (15) compute the shipping demand for ad hoc containers with a given 15 

realization of its random maximum potential quantity, which reveal the relationship between 16 

shipping demand and the freight rate of ad hoc containers and indicate that as the freight rates of ad 17 

hoc containers increases, shipping demand decreases. The left sides of Constraints (15) represent the 18 

number of accepted ad hoc containers. Therefore, Constraints (15) specify that the number of ad hoc 19 

containers accepted cannot exceed the shipping demands. Constraints (16) and (17) give the lower 20 

bound and upper bound of the freight rates of ad hoc containers, respectively. Note that the freight 21 

rates for ad hoc containers and the number of accepted ad hoc containers obtained by solving the 22 

second-stage optimization model are related to the realization of 𝐃̅. In addition, at different booking 23 

times, the freight rates of ad hoc containers are usually different, which results in different spot 24 

demands. Therefore, we introduce a time index for the decision variables presented in Constraints 25 

(15) and (17). Constraints (18) define the ranges of the second-stage decision variables.  26 

5. Solution Algorithm 27 
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It is found that the 2SSMINP model cannot be solved by traditional optimization algorithms or 1 

commercial solvers, due to the following four characteristics: (i) the expected value function 2 

𝔼⟦𝑄𝐃̅(𝐯, 𝐃̅)⟧  does not have a closed form and incorporates an optimization model in the 3 

second-stage decision problem; (ii) the objective function value of the second-stage optimization 4 

problem, 𝑄𝐃̅(𝐯, 𝐃̅(ω)), can be obtained only when the first-stage decision variables and realizations 5 

of the random shipping demand for ad hoc containers are provided; (iii) the 2SSMINP model 6 

involves the MQC constraints shown in Eq. (7), and Lim et al. (2006) demonstrated that a 7 

transportation problem with MQC constraints is NP-hard; and (iv) the bilinear terms  𝑝̃𝑠𝑡
(𝑖,𝑗)

× 𝑥̃𝑠𝑡
(𝑖,𝑗)

 8 

in Eq. (11) make 𝑄𝐃̅(𝐯, 𝐃̅(ω)) a nonlinear integer programming model, which increases the 9 

difficulty. The first two characteristics motivate us to use the sample average approximation (SAA) 10 

method proposed by Kleywegt et al. (2001), and the last two characteristics prompt us design a 11 

branch-and-bound (B&B) approach combined with a heuristic method to solve the 2SSMINP model.  12 

The overall procedure of the solution algorithm goes as follows. First, we use SAA to 13 

approximate the expected value function 𝔼⟦𝑄𝐃̅(𝐯, 𝐃̅)⟧ with the sample average function denoted 14 

by 𝑁−1 ∑ 𝑄𝐃̅(𝐯, 𝐃̅𝒏(ω))𝑁
𝑛=1 . Second, the SAA problem with a sample average function is 15 

decomposed into a series of sub-problems using the dual decomposition method, and these 16 

sub-problems are then relaxed by applying the Lagrangian relaxation technique, resulting in a 17 

Lagrangian dual problem. Third, the Lagrangian dual problem is solved by the surrogate 18 

sub-gradient method, in which the surrogate sub-gradient is obtained using the B&B algorithm and a 19 

heuristic algorithm. The following sections elaborate these procedures.  20 

5.1 SAA to approximate the expected value function 𝔼⟦𝑄𝐃̅(𝐯, 𝐃̅)⟧ 21 

The SAA method proposed by Kleywegt et al. (2001) uses a Monte Carlo simulation-based 22 

approach and its basic idea is to approximate the expected value 𝔼⟦𝑄𝐃̅(𝐯, 𝐃̅)⟧ by the sample mean. 23 

The key procedures of the SAA method are as follows. First, a sample 𝐃̅𝟏, … , 𝐃̅𝑁 of N realizations 24 

of the random shipping demand vector of ad hoc containers 𝐃̅ is generated; then, the expected 25 

value function 𝔼⟦𝑄𝐃̅(𝐯, 𝐃̅)⟧ is approximated by the sample average function 26 

𝑁−1 ∑ 𝑄𝑫̅(𝐯, 𝐃̅𝒏(ω))𝑁
𝑛=1 . The 2SSMINP model is thus approximated by the following SAA model: 27 

[SAA]     1

1
max , ω

N

N nn
Z N Q


   D

v c v v D  (19) 28 
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s.t. constraints (4)-(10).  1 

where 𝑄𝐃̅(𝐯, 𝐃̅𝑛(ω))  (𝑛 = 1, … , 𝑁)  is the optimal objective function value for the nth 2 

second-stage optimization problem with a given vector 𝐯  and a given realization 𝐃̅𝒏(ω) . 3 

𝑄𝐃̅(𝐯, 𝐃̅𝑛(ω)) is expressed as follows: 4 

          

 

, , ,

,

ˆ, ω max
i j i j i j

n stn s stn

t i j s

Q p c x
   

    D
v D  (20) 5 

subject to constraints (12)-(18), duplicated for each realization of container shipping demand.  6 

It should be noted that by using the SAA method, we are able to obtain the unbiased estimators 7 

for the lower and upper bounds of the objective function value of the 2SSMINP model, denoted by 8 

𝐿𝐵 and 𝑈𝐵, respectively. Therefore, we can calculate the gap between 𝐿𝐵 and 𝑈𝐵. Readers can 9 

refer to Kleywegt et al. (2001) for more details on SAA. 10 

5.2 Dual decomposition and Lagrangian relaxation to decompose the SAA problem 11 

It can be seen that the SAA problem involves 𝑁 optimization models corresponding to 𝑁 12 

realizations. This motivates us to decompose the SAA problem into 𝑁 sub-problems based on the 13 

realizations, to reduce the difficulty of solving this SAA problem (Carøe and Schultz, 1999; Ahmed, 14 

2013). To carry out the decomposition, the first-stage decision variables are duplicated for each 15 

realization, denoted by 𝐯𝑛 ≔ (… , 𝑥𝑠𝑛
(𝑖,𝑗)

, … , 𝑥𝑠𝑛
(𝑖,𝑗)

, … ), 𝑛 = 1, … , 𝑁. The SAA problem can thus be 16 

rewritten as follows:  17 

       

 

, , ,

1 ,

1
ˆmax

N
i j i j i j

n stn s stn

n t i j s

p c x
N     

 
     

 
   c v  (21) 18 

subject to constraints (4)-(10), constraints (12)-(18), and the non-anticipativity constraints 19 

 1 2 ... N  v v v  (22) 20 

The non-anticipativity constraints (22) can be equivalently written as follows: 21 

 
1

 
N

n n

n

H v 0  (23) 22 

where 𝟎 is a zero vector with a dimension of 𝑅̃ ≔ 𝑁̃(𝑁 − 1), and 𝐇𝑛(𝑛 = 1, … , 𝑁) is a matrix 23 

with 𝑅̃ rows and 𝑁̃ columns (𝑁̃ is the cardinality of vector 𝐯𝑛), defined as follows: 24 

 
     

   

1 2 3

1

, , , , , , , , , , , , ,

, , , , , ,N N

      

    

H I 0 0 H I I 0 0 H 0 I I 0

H 0 I I H 0 0 I

 (24) 25 
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in which I and 0 are the square unity matrix and the zero matrix with size 𝑁̃, respectively. If 𝛌 1 

denotes an 𝑅̃-dimensional vector of Lagrangian multipliers associated with Constraints (23), we 2 

then have a corresponding Lagrangian relaxation problem to that of the SAA, as shown below: 3 

[LR]         

 

, , ,

1 ,

1
ˆmax

N
i j i j i j

n stn s stn n n

n t i j s

LR p c x
N    

  
        

   
   λ c v λ H v  (25) 4 

subject to Constraints (4)-(10), with Constraints (12)-(18) duplicated for each realization of 5 

container shipping demand. Furthermore, the LR model (25) can be split into 𝑁  separate 6 

mixed-integer programming problems corresponding to the 𝑁 realizations of shipping demand for 7 

ad hoc containers, namely: 8 

    
1

 
N

n

n

LR LR


λ λ  (26) 9 

where  10 

         

 

, , ,

,

1
ˆ  max

i j i j i j

n n stn s stn n n

t i j s

LR p c x
N    

 
       

 
  λ c v λ H v  (27) 11 

subject to Constraints (4)-(10), with constraints (12)-(18) associated with the nth realization of 12 

container shipping demand. 13 

Finally, we can obtain the best or tightest upper bound by solving the Lagrangian dual model: 14 

[LD]  minLD LR
λ

λ  (28) 15 

5.3 Surrogate sub-gradient method for solving the Lagrangian dual model 16 

As the sub-gradient method is easy to implement and works well when applied to numerous 17 

practical problems, it has become a popular method for solving the Lagrangian dual model (Fisher, 18 

2004). According to the results of Nemhauser and Wolsey (1998), 𝐠 ≔ ∑ 𝐇𝑛𝐯𝑛
∗𝑁

𝑛=1  is a 19 

sub-gradient for 𝐿𝑅(𝛌), where 𝐯𝑛
∗ is the optimal solution to the nth subproblem 𝐿𝑅𝑛(𝛌). Therefore, 20 

this method needs to solve the optimization models for all sub-problems to obtain the direction of 21 

the sub-gradient, which makes it cumbersome for large-scale problems. Zhao et al. (1999) proposed 22 

a surrogate sub-gradient method to replace the sub-gradient by the surrogate sub-gradient which is 23 

denoted by 𝐠̃ ≔ ∑ 𝐇𝑛𝐯𝑛
𝑁
𝑛=1  (here, 𝐯𝑛 satisfies the surrogate optimality condition). The surrogate 24 

sub-gradient method does not require solving all of the sub-problems, implying that it takes 25 

considerably less effort than the sub-gradient method. Therefore, we adopt the surrogate 26 
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sub-gradient method proposed by Zhao et al. (1999) to solve the LD model shown by Eq. (28), as 1 

follows: 2 

Step 0:  (Initialize) Take an initial Lagrangian multiplier vector 𝛌0 (usually set 𝛌0 = 𝟎) and 3 

solve all of the sub-problems 𝐿𝑅𝑛(𝛌) shown in Eq. (27) to obtain the initial solution, 4 

𝐯𝑛
0∗ (the algorithm used to solve these sub-problems, 𝐿𝑅𝑛(𝛌), is described in Section 5.4). 5 

Next, set the initial surrogate dual as the dual (the surrogate dual is denoted by 𝐿̃(𝛌, 𝐯) ≔6 

∑
1

𝑁
(𝐜′𝐯𝑛 + ∑ ∑ ∑ (𝑝̃𝑠𝑡𝑛

(𝑖,𝑗)
− 𝑐̂𝑠

(𝑖,𝑗)
) × 𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
𝑠∈ℱ∪ℛ(𝑖,𝑗)∈𝒲𝑡∈𝒯 ) + 𝛌′𝐇𝑛𝐯𝑛

𝑁
𝑛=1 ), and set the 7 

initial surrogate sub-gradient as the sub-gradient, i.e. 𝐿̃(𝛌0, 𝐯0) = 𝐿𝑅(𝛌0) , 𝐠̃0 ≔8 

∑ 𝐇𝑛𝐯𝑛
0∗𝑁

𝑛=1 . Estimate the lower bound of 𝐿𝐷 denoted by 𝑍, which can be obtained by 9 

applying a heuristic to the SAA problem (21) (see Section 5.5). Set the initial step size as 10 

τ0 = (𝐿̃0 − 𝑍) ‖𝐠̃0‖2⁄ . 11 

Step 1:  (Update the Lagrangian multiplier vector) Let 𝛌ℓ+1 = 𝛌ℓ + τℓ𝐠̃ℓ , where 𝐠̃ℓ  and τℓ 12 

denote the surrogate sub-gradient and step size in iteration ℓ, respectively, and are given 13 

by 𝐠̃ℓ = ∑ 𝐇𝑛𝐯𝑛
ℓ𝑁

𝑛=1  and τℓ =
βℓτℓ−1‖𝐠̃ℓ−1‖

‖𝐠̃ℓ‖
. βℓ is a scalar satisfying 0 < βℓ < 1 and is 14 

set as βℓ = 1 −
1

𝑅ℓ𝑝 , 𝑝 = 1 −
1

ℓ𝑟 , ℓ = 1,2, … , where 𝑅  and 𝑟  are given positive 15 

constants satisfying 𝑅 ≥ 1, 0 < 𝑟 < 1. The Lagrangian multiplier vector, 𝛌ℓ, converges 16 

to a unique fixed point 𝛌∗ (see Theorem 2.1 in Bragin et al. (2015)). 17 

Step 2:  (Update) Obtain 𝐯ℓ+1 by setting it as 𝐯ℓ+1 ≔ (𝐯1
ℓ, … , 𝐯𝑖−1

ℓ , 𝐯𝑖
ℓ+1∗

, 𝐯𝑖+1
ℓ , … , 𝐯𝑁

ℓ ), where 18 

𝐯𝑖
ℓ+1∗

 is the optimal solution to the ith sub-problem 𝐿𝑅𝑖(𝛌ℓ+1).  19 

Step 3:  (Check the stopping criteria) For a given tolerance δ > 0, if |
𝐿𝑅(𝛌ℓ+1)−𝐿𝑅(𝛌ℓ)

𝐿𝑅(𝛌ℓ)
| ≤ δ, then 20 

the algorithm is terminated. Otherwise, let ℓ = ℓ + 1 and go to Step 1.  21 

5.4 A branch and bound algorithm to solve 𝐿𝑅𝑛(𝛌) 22 

5.4.1 Non-convexity of 𝐿𝑅𝑛(𝛌) 23 

𝐿𝑅𝑛(𝛌), shown in Eq. (27) with a given Lagrangian multiplier vector 𝛌, can be considered as a 24 

nonlinear integer programming problem, given the bilinear terms 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

× 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

 in the objective 25 

function. For the sake of presentation, we define vector 𝐮𝑛 ≔ (𝐯𝐧, 𝐩̃𝑛, 𝐱̃𝑛)  where 𝐩̃𝑛 ≔26 
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(… , 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

, … ) and 𝐱̃𝑛 ≔ (… , 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

, … ). Subsequently, the second-order derivative of the objective 1 

function of 𝐿𝑅𝑛(𝛌) with respect to 𝐮𝑛, i.e. the Hessian matrix denoted by ∇2(𝐿𝑅𝑛(𝛌)), can be 2 

depicted as follows: 3 

   

   

1 2 3

2

4 5 6

7 8 9 2 2

 n

N N N N

LR

  

 
 

   
 
 

A A A

λ A A A

A A A

 (29) 4 

where 𝑁̃̃ is the number of the elements in vector 𝐩̃𝑛, 𝐀1 = (𝟎)𝑁̃×𝑁̃, 𝐀2 = 𝐀3 = (𝟎)
𝑁̃×𝑁̃̃

, 𝐀4 =5 

𝐀7 = (𝟎)
𝑁̃̃×𝑁̃

, 𝐀5 = 𝐀9 = (𝟎)
𝑁̃̃×𝑁̃̃

, 𝐀6 = 𝐀8 =
1

𝑁
(𝐈)

𝑁̃̃×𝑁̃̃
. It is clear that the Hessian matrix is not a 6 

positive semidefinite matrix, which indicates that 𝐿𝑅𝑛(𝛌) is a non-convex, nonlinear mixed-integer 7 

programming model. Therefore, the existing convex optimization techniques embedded in 8 

computerized solvers cannot be applied to solve 𝐿𝑅𝑛(𝛌). 9 

5.4.2 Lower and upper bounds on 𝐿𝑅𝑛(𝛌) 10 

A non-convex mixed-integer nonlinear programming model can be relaxed to a mixed-integer 11 

linear programming model by replacing the non-convex terms by convex under- and over-estimators 12 

(Al-Khayyal and Falk, 1983). The bilinear term 𝑥𝑦 in the domain [𝑥𝐿, 𝑥𝑈] × [𝑦𝐿 , 𝑦𝑈] can be 13 

relaxed by applying the following linear over-estimators: 14 

  min ,U L U L L U L Uxy x y xy x y x y xy x y      (30) 15 

Accordingly, we obtain the following linear over-estimators for the bilinear terms 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

× 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

 in 16 

the objective function of 𝐿𝑅𝑛(𝛌): 17 

                             , , , , , , , , , , , , , ,
min ,

i j i j i j i j i j i j i j i j i j i j i j i j i j i j

stn stn stn stn stn stn stn stn stn stn stn stn stn stnp x p x p x p x p x p x p x      (31) 18 

where 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

 and 𝑝̃𝑠𝑡𝑛

(𝑖,𝑗)
 are the lower and upper bounds of 𝑝̃𝑠𝑡𝑛

(𝑖,𝑗)
, respectively. They are given as 19 

𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

= 𝑝̂𝑠
(𝑖,𝑗)

 and 𝑝̃𝑠𝑡𝑛

(𝑖,𝑗)
= 𝐷𝑠𝑛

(𝑖,𝑗)
(𝜔) α𝑡⁄ + 𝑝̂𝑠

(𝑖,𝑗)
, based on constraints (16) and (17). 𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
 and 20 

𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
 are the lower and upper bounds of 𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
, respectively, and they are given as 𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
= 0 and 21 

𝑥̃𝑠𝑡𝑛

(𝑖,𝑗)
= 𝐷𝑠𝑛

(𝑖,𝑗)
(𝜔). 22 
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We can thus introduce the auxiliary decision variables 𝑦̃𝑠𝑡𝑛
(𝑖,𝑗)

 to replace the bilinear terms 1 

𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

× 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

 and relax 𝐿𝑅𝑛(𝛌) as a mixed-integer linear model by using the over-estimators, as 2 

follows: 3 

           
 

, , ,

,

1
ˆmax

i j i j i j

n n stn s stn n n

t i j s

MILPLR y c x
N    

 
      

 
  λ c v λ H v  (32) 4 

subject to constraints (4)-(10) and constraints (12)-(18), associated with the nth container shipment 5 

demand realization, whereby: 6 

 
               , , , , , , ,

          , , ,
i j i j i j i j i j i j i j

stn stn stn stn stn stn stny p x p x p x i j s t         (33) 7 

 
               , , , , , , ,

          , , ,
i j i j i j i j i j i j i j

stn stn stn stn stn stn stny p x p x p x i j s t         (34) 8 

Let 𝐮̃𝑛 ≔ (𝐯𝑛, 𝐩̃𝑛, 𝐱̃𝑛, 𝐲̃𝑛)  be the decision variable vector of 𝑀𝐼𝐿𝑃𝐿𝑅𝑛(𝛌);  then the 9 

following proposition is straightforward: 10 

Proposition 1: Let 𝐮̃𝑛
∗ ≔ (𝐯𝑛

∗ , 𝐩̃𝑛
∗ , 𝐱̃𝑛

∗ , 𝐲̃𝑛
∗) be the optimal solution of 𝑀𝐼𝐿𝑃𝐿𝑅𝑛(𝛌), and 𝐿𝑅𝑛

∗ (𝛌) 11 

the optimal objective function value of 𝐿𝑅𝑛(𝛌). We thus obtain the following relationship: 12 
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 
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Proposition 1 reveals that 𝑀𝐼𝐿𝑃𝐿𝑅𝑛(𝛌) approximates 𝐿𝑅𝑛(𝛌) with a relative error given as 14 

follows: 15 
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 (36) 16 

5.4.3 A tailored branch-and-bound algorithm and its convergence 17 

Proposition 1 gives us the upper and lower bounds of the optimal objective function value of 18 

𝐿𝑅𝑛(𝛌), which enables us to propose a tailored B&B method to solve 𝐿𝑅𝑛(𝛌). This is elaborated 19 

below: 20 

Step 0:  (Initialize) Let ε  be the maximum tolerance; set the empty active problem as ℙ = ∅ 21 

and the incumbent problem as 𝑃𝑐 = 𝑁𝑈𝐿𝐿, the current solution as 𝐶𝑆 = 𝑁𝑈𝐿𝐿, the 22 

lower bound as 𝐿𝐵𝐿𝑅𝑛(𝛌) = −∞, and the upper bound as 𝑈𝐵𝐿𝑅𝑛(𝛌) = +∞. 23 

Step 1:  (Solve the root problem) Set the root problem, 𝑀𝐼𝐿𝑃𝐿𝑅𝑛
0(𝛌), defined in Eq. (32), and set 24 

the incumbent problem, 𝑃𝑐 = 𝑀𝐼𝐿𝑃𝐿𝑅𝑛
0(𝛌). Solve the incumbent problem using CPLEX 25 
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to obtain the optimal solution (𝐯𝑛
∗ , 𝐩̃𝑛

∗ , 𝐱̃𝑛
∗ , 𝐲̃𝑛

∗) and the corresponding optimal objective 1 

function value 𝑃𝑐
𝑜𝑏𝑗∗

. Set 𝑈𝐵𝐿𝑅𝑛(𝛌) = 𝑃𝑐
𝑜𝑏𝑗∗

 and substitute the optimal solution to 2 

𝐿𝑅𝑛(𝛌), then set 𝐿𝐵𝐿𝑅𝑛(𝛌) = 𝐿𝑅𝑛(𝛌)|(𝐯𝑛
∗ ,𝐩̃𝑛

∗ ,𝐱̃𝑛
∗ ). Set 𝐶𝑆 = (𝐯𝑛

∗ , 𝐩̃𝑛
∗ , 𝐱̃𝑛

∗ ). 3 

Step 2:  (Stop for criteria check) If 
𝑈𝐵𝐿𝑅𝑛(𝛌)−𝐿𝐵𝐿𝑅𝑛(𝛌)

𝑈𝐵𝐿𝑅𝑛(𝛌)
< ε, stop and output the current solution CS 4 

and lower bound 𝐿𝐵𝐿𝑅𝑛(𝛌). Otherwise, go to Step 3. 5 

Step 3:  (Branch the problem) We adopt the branching strategy for the port pair with the largest 6 

gap between the lower and upper bounds of the profit of shipping ad hoc containers. The 7 

rationale for the branching strategy is that the upper bound of 𝐿𝑅𝑛(𝛌) is obtained by 8 

solving the mixed-integer linear model 𝑀𝐼𝐿𝑃𝐿𝑅𝑛(𝛌) in which the over-estimators are 9 

used to replace the bilinear terms 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

× 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

 in the objective function of 𝐿𝑅𝑛(𝛌). It 10 

should be noted that we branch the domain of ad hoc freight rate 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

, but not the 11 

number of ad hoc containers, 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)

. Let (𝑖∗, 𝑗∗), 𝑠∗, and 𝑡∗ be the port pair, container 12 

type, and booking time, respectively, with the largest contribution to the gap between the 13 

lower and upper bounds of the profit of shipping ad hoc containers, namely,  14 

 ((𝑖∗, 𝑗∗), 𝑠∗, 𝑡∗) ∈ argmax
(𝑖,𝑗)∈𝒲,𝑠∈ℱ∪ℛ,𝑡∈𝒯

{𝑦̃𝑠𝑡𝑛
(𝑖,𝑗)∗

− 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)∗

× 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)∗

} (37) 15 

where 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)∗

, 𝑥̃𝑠𝑡𝑛
(𝑖,𝑗)∗

𝑦̃𝑠𝑡𝑛
(𝑖,𝑗)∗

 represents the corresponding optimal solution for 𝑃𝑐. Next, 𝑃𝑐 16 

is branched into two sub-problems by dividing the domain of 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

 into two sub-intervals, 17 

such that  18 

𝑃𝑠𝑢𝑏1: 19 
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𝑃𝑠𝑢𝑏2: 23 
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s.t.:  25 
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Step 4:  Solve each sub-problems 𝑃𝑠𝑢𝑏𝑞 to obtain the optimal solution (𝐯𝑛
∗ , 𝐩̃𝑛

∗ , 𝐱̃𝑛
∗ , 𝐲̃𝑛

∗ )𝑃𝑠𝑢𝑏𝑞
, and 2 

the optimal objective function value, 𝑃𝑠𝑢𝑏𝑞
𝑜𝑏𝑗∗

, for 𝑞 = 1,2. Substitute (𝐯𝑛
∗ , 𝐩̃𝑛

∗ , 𝐱̃𝑛
∗ , 𝐲̃𝑛

∗)𝑃𝑠𝑢𝑏𝑞
 3 

into 𝐿𝑅𝑛(𝛌) to obtain the objective function value, 𝐿𝑅𝑛(𝛌)|(𝐯𝑛
∗ ,𝐩̃𝑛

∗ ,𝐱̃𝑛
∗ ,𝐲̃𝑛

∗ )𝑃𝑠𝑢𝑏𝑞
, 𝑞 = 1,2. 4 

Step 5:  (Update the lower bound) For each sub-problem 𝑃𝑠𝑢𝑏𝑞 , if 𝐿𝑅𝑛(𝛌)|(𝐯𝑛
∗ ,𝐩̃𝑛

∗ ,𝐱̃𝑛
∗ )𝑃𝑠𝑢𝑏𝑞

>5 

𝐿𝐵𝐿𝑅𝑛(𝛌), then set 𝐿𝐵𝐿𝑅𝑛(𝛌) = 𝐿𝑅𝑛(𝛌)|(𝐯𝑛
∗ ,𝐩̃𝑛

∗ ,𝐱̃𝑛
∗ )𝑃𝑠𝑢𝑏𝑞

 and 𝐶𝑆 = (𝐯𝑛
∗ , 𝐩̃𝑛

∗ , 𝐱̃𝑛
∗ )𝑃𝑠𝑢𝑏𝑞

. 6 

Step 6:  (Fathom the problem) For each subproblem 𝑃𝑠𝑢𝑏𝑖, if 𝑃𝑠𝑢𝑏𝑞
𝑜𝑏𝑗∗

>
𝐿𝐵𝐿𝑅𝑛(𝛌)

1−ε
, add this to set ℙ 7 

and go to Step 3; if 𝐿𝐵𝐿𝑅𝑛(𝛌) < 𝑃𝑠𝑢𝑏𝑞
𝑜𝑏𝑗∗

≤
𝐿𝐵𝐿𝑅𝑛(𝛌)

1−ε
, then the sub-problem is fathomed and 8 

go to Step 2; if 𝑃𝑠𝑢𝑏𝑞
𝑜𝑏𝑗∗

≤ 𝐿𝐵𝐿𝑅𝑛(𝛌), then discard the sub-problem. 9 

Step 7:  (Select the incumbent problem) Select the problem from set ℙ with the largest optimal 10 

objective function value 𝑃𝑐
𝑜𝑏𝑗max

. Set 𝑈𝐵𝐿𝑅𝑛(𝛌) = 𝑃𝑐
𝑜𝑏𝑗max

, and set this problem as the 11 

incumbent problem 𝑃𝑐. Remove this question from set ℙ. Go to Step 2. 12 

Proposition 2: The tailored B&B algorithm gives an optimal solution within the relative tolerance ε 13 

in a finite number of iterations for any ε > 0 (see the proof in the appendix). 14 

5.5 Heuristic algorithm to estimate lower bound 𝒁 15 

Note that any feasible solution to the SAA problem (21) yields a lower bound of 𝐿𝐷 denoted 16 

by 𝑍. Hence, we can split the SAA problem into two sub-problems. We first solve the first-stage 17 

optimization problem subject to Constraints (4)-(10) to obtain the optimal solutions of the first-stage 18 

decision variables, denoted by 𝐯∗ . We then substitute 𝐯∗  into the second-stage optimization 19 

problem to define a new second-stage optimization problem, in which 𝑝̃𝑠𝑡𝑛
(𝑖,𝑗)

= 𝑝̂𝑠
(𝑖,𝑗)

, subject to 20 

Constraints (12)-(15) and (18). We solve the new second-stage optimization problem using the 21 

given 𝐯∗ , denoted by 𝑄𝐃̅
′ (𝐯∗, 𝐃̅𝑛(ω)) . Finally, 𝑍  is computed as 𝑍 = 𝐜′𝐯∗ +22 

1

𝑁
∑ 𝑄𝐃̅

′ (𝐯∗, 𝐃̅𝑛(ω))𝑁
𝑛=1 . 23 

6. Computational Experiments 24 

6.1 Case study description 25 
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In this section, we take the trans-Pacific route from Asia to Pacific North West (APNW) shown 1 

in Figure 2 as a case study, which is operated by OOCL—a global liner container shipping company 2 

with headquarters in Hong Kong (www.oocl.com). We report the process and results of the case 3 

study to assess the applicability of the developed model and solution algorithm. Route APNW calls 4 

at 10 ports, Qingdao → Hong Kong → Yantian → Kaohsiung → Shanghai → Ningbo → 5 

Tacoma →  Vancouver →  Tokyo →  Osaka →  Qingdao, and provides a container shipping 6 

service for these ports. A round-trip voyage on this route takes 28 days, and a fleet of four 7 

full-container ships is deployed on the route for the weekly shipping service, with each 8 

containership holding a capacity of 13,208 TEUs and a maximum available deadweight of 144,131 9 

tons. In our case study, we assume that each containership has 1,000 reefer plugs and that there are 10 

eight types of containers with different weights and volumes (see Table 1).  11 

 12 

Figure 2. Port rotation of the APNW service 13 

Table 1 Data of container weight and volume 14 

Type code 20’D 20’R 40’D 40’R 40’HC 40’HCR 20’E 40’E 

Container type 20’ dry 20’ reefer 40’ dry 40’ reefer 40’ high cube 40’ high cube reefer 20’empty 40’empty 

Weight (ton) 17 17 23 23 23 23 2 4 

Volume (TEU) 1 1 2 2 2.25 2.25 1 2 

Real freight rates and costs are unavailable because they are confidential. For the purposes of 15 

this paper, we consider the freight rate of a 20’D contract container for each port pair as the 16 

http://www.oocl.com/
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benchmark, assuming that its freight rate is charged to shippers by US$ 0.30/nautical mile. The 1 

freight rate of a 20’D contract container for each port pair in route APNW is shown in Table 2. The 2 

freight rates of 40’D contract containers and 40’HC contract containers are assumed to be 1.5 times 3 

and 2 times those of 20’D contract containers, respectively. The cost of an empty container of each 4 

type is assumed to be 50% of that of a corresponding laden contract container, given that an empty 5 

container has no insurance, commission, or weighting fees. We also assume that the freight rate of a 6 

reefer contract container is 5% higher than that of a corresponding dry contract container, due to the 7 

refrigeration requirement.  8 

Table 2 Freight rate of a 20’D container for each port pair in Route APNW 9 

 Qingdao Hong Kong Yantian  Kaohsiung Shanghai Ningbo Tacoma Vancouver Tokyo Osaka 

Qingdao 0 324 323 260 98 121 1537 1520 341 255 

Hong Kong  324 0 12 104 241 218 1722 1702 486 422 

Yantian  323 12 0 102 239 217 1720 1700 485 421 

Kaohsiung 260 104 102 0 176 154 1652 1628 412 350 

Shanghai 98 241 239 176 0 38 1517 1500 309 234 

Ningbo 121 218 217 154 38 0 1533 1513 314 246 

Tacoma 1537 1722 1720 1652 1517 1533 0 47 1283 1360 

Vancouver 1520 1702 1700 1628 1500 1513 47 0 1259 1343 

Tokyo 341 486 485 412 309 314 1283 1259 0 110 

Osaka 255 422 421 350 234 246 1360 1343 110 0 

Note: Freight rates are obtained by rounding up the resulting figures from the calculation 0.3$/nautical mile×distance. The distance of 10 

each port pair is obtained from the website: https://www.searates.com/reference/portdistance. 11 

In terms of uncertain spot demand, we assume that it follows a log-normal distribution, which is 12 

suitable for modeling uncertain demand (Kamath and Pakkala, 2002). Specifically, 13 

ln 𝐷̅𝑠
(𝑖,𝑗)

~𝑁 (𝜇𝑠
(𝑖,𝑗)

, σ𝑠
(𝑖,𝑗)2

) ((𝑖, 𝑗) ∈ 𝒲, 𝑠 ∈ ℱ ∪ ℛ) , where 𝜇𝑠
(𝑖,𝑗)

 and σ𝑠
(𝑖,𝑗)

 are the mean and 14 

standard deviation of a normal distribution, respectively (note that the mean and variance for 𝐷̅𝑠
(𝑖,𝑗)

 15 

are 𝑒𝜇𝑠
(𝑖,𝑗)

+σ𝑠
(𝑖,𝑗)2

2⁄  and (𝑒σ𝑠
(𝑖,𝑗)2

− 1) 𝑒2𝜇𝑠
(𝑖,𝑗)

+σ𝑠
(𝑖,𝑗)2

, respectively). To simplify our presentation, we 16 

consider the values of 𝜇𝑠
(𝑖,𝑗)

 for the 20’D container type between each port pair as the benchmark, 17 

https://www.searates.com/reference/portdistance
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which are randomly generated by a uniform distribution on the interval [3,5]. We also assume that 1 

the coefficients of variations, i.e. the ratios σ𝑠
(𝑖,𝑗)

/𝜇𝑠
(𝑖,𝑗)

, all follow a uniform distribution over 2 

interval [0,0.05]. Once the values of 𝜇𝑠
(𝑖,𝑗)

 and σ𝑠
(𝑖,𝑗)

 are given, we can use them to randomly 3 

generate a data-set that follows a normal distribution. Finally, we calculate the exponents with 4 

respect to these generated values to obtain the corresponding values of 𝐷̅𝑠
(𝑖,𝑗)

 for the 20’D container 5 

type between each port pair. In addition, we assume that the values of 𝐷̅𝑠
(𝑖,𝑗)

 for 20’R, 40’D, 40’R, 6 

40’HC, and 40’HCR containers are 50%, 40%, 30%, 20%, and 10% of the corresponding values for 7 

the 20’D container, respectively. Note that the values of 𝐷̅𝑠
(𝑖,𝑗)

 may not be integers; hence we round 8 

these values to the nearest integer. In general, early bookings of slots are more frequent than 9 

bookings at a later time. Therefore, we assume that the value of the decreasing rate 𝛼𝑡 at 𝑡 =10 

1, … , 𝑇 follows a uniform distribution over the interval [𝑡, 𝑇]. Here, we set the booking period as 7 11 

days (𝑇 = 7), and spot shippers can book slots on each of the 7 days.  12 

6.2 Computational performance analysis 13 

We set the stop tolerance as 𝛿 = 10−3 in the surrogate sub-gradient method and as 𝜀 = 10−6 14 

in the B&B algorithm, and the number of samples is 𝑀 = 20, with a sample size N (𝑁 ∈15 

{20,30,40,50,60})  and 𝑁̂ = 1000  in the SAA method. All programs are coded in the 16 

programming language Lua calling CPLEX 12.6, to solve linear optimization models and 17 

mixed-integer linear optimization models, on a PC with an Intel (R) Core TM2 T9600 @ 2.8 GHz 18 

processor and 4.0 GB of RAM. 19 

We first examine the performance of the surrogate sub-gradient method for each sample size 20 

𝑁 ∈ {20,30,40,50,60}, as shown in Figure 3. Here, it can be seen that for each sample size 𝑁 ∈21 

{20,30,40,50,60}, the surrogate sub-gradient method fulfills the stopping criteria with a given 22 

tolerance of 𝛿 = 10−3 after 60 iterations. The computation time for each iteration is about 24 23 

seconds, meaning that with the given tolerance 𝛿 = 10−3, the surrogate sub-gradient method stops 24 

within 24 minutes. 25 
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 1 

Figure 3. Convergence rates of the surrogate sub-gradient method with different sample sizes 2 

We now present our investigation of the sensitivity of the sample size on the lower bound, upper 3 

bound, gap, and confidence interval of the gap obtained from SAA. Table 3 provides the lower 4 

bound, upper bound, gap, and 90% confidence interval of the gap, for each sample size. As can be 5 

seen, the confidence interval of the optimality gap generally becomes narrower as the sample size 6 

increases. We thus use 𝑁 = 60 as the sample size in the subsequent analysis based on the 7 

acceptable confidence interval obtained with this sample size. 8 

Table 3 Statistics for SAA with M = 20 and 𝑁̂ = 1000 (unit: million US dollars) 9 

N LB 𝜎𝐿𝐵 UB 𝜎𝑈𝐵 Gap 𝜎𝑔𝑎𝑝 90% Confidence interval of gap 

20 45.4622 2.4764 55.3548 4.9732 9.8926 5.5557 (0.7536,19.0316) 

30 46.4876 2.2315 51.4713 3.8145 4.9837 4.4193 (−2.286,12.2534) 

40 48.3286 1.7641 50.2516 2.5516 1.923 3.1021 (−3.1799,7.0259) 

50 49.0521 1.1832 52.8851 1.5162 3.833 1.9232 (0.6693,6.9967) 

60 48.6623 0.6148 50.6053 0.7069 1.943 0.9369 (0.4019,3.4841) 

6.3 Model analysis 10 

We now present our analysis of the effect of demand uncertainty for ad hoc containers. First, we 11 

replace the uncertain parameters in the 2SSMINP model with their mean value, to obtain the 12 

expected value problem, and then solve this problem to obtain its optimal first-stage solutions, called 13 

expected value solutions (EV solutions). Next, we compute the expected result by implementing the 14 

EV solutions for a large number of realizations of shipping demand for ad hoc containers, and 15 

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

20 40 60 80 100

D
e
lt
a

Iterations

N=20

N=30

N=40

N=50

N=60



 

24 

 

denote the expected result by EEV (see Birge and Louveaux, 1997). Then, we compare the average 1 

profit obtained from the proposed 2SSMINP model with that obtained from the EEV, to explore the 2 

superiority of the 2SSMINP model over the EEV in terms of average profit.  3 

To compare the 2SSMINP model and the EEV model, three levels (low, medium, and high) of 4 

the standard deviation of random demand variables are considered, where “low” and “high” indicate 5 

20% below and above the standard deviations of demand at the medium level, respectively. Figure 4 6 

depicts the EEV values and the expected profits from the 2SSMINP model associated with low, 7 

medium and high standard deviations. From this, it can be seen that the 2SSMINP models 8 

corresponding to the three levels of variance all yield a higher profit than the EEV model, indicating 9 

the superiority of the 2SSMINP model over the EEV model. 10 

Figure 4 also illustrates that the ratios between the values of the 2SSMINP and EEV models 11 

increase as the variance level increases (as expected). However, we have to acknowledge that the 12 

average profit resulting from the 2SSMINP model is moderate because we can only set appropriate, 13 

but not precise, values of the SAA parameters M, N, and 𝑁̂. In addition, although 𝐿𝑅(𝛌) → 𝐿𝐷 in 14 

the dual decomposition method was theoretically proved by Shore (1985), it is quite difficult to 15 

reach the convergence point in practice. We can only set the tolerance as 𝛿 to find a relatively good 16 

solution with an acceptable level of precision (here, we set 𝛿 = 10−3). 17 

 18 

Figure 4. Average profits of 2SSMINP model and EEV for different levels of variance 19 

6.4 Sensitivity analysis 20 

We now perform a sensitivity analysis of the parameters of contract shippers 21 
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(𝑀𝑄𝐶𝑠
(𝑖,𝑗)

 and 𝑈̅𝑠
(𝑖,𝑗)

), empty containers (𝑁𝑠
𝑖  and 𝑁̃𝑠

𝑗
), and spot shippers (𝐷̅𝑠

(𝑖,𝑗)
), separately, as 1 

they affect slot allocation, further affecting the total expected profit of shipping containers. For the 2 

sake of presentation, we follow the methodology used in Section 6.1 to generate the values of these 3 

parameters. We first let the value of each parameter for the 20’D container type between each port 4 

pair be the benchmark, and then, set three levels (low, medium, and high) for the benchmark values. 5 

Once the values of all parameters are obtained, we use the factorial design to explore their 6 

interaction.  7 

To be specific, the benchmark values of 𝑀𝑄𝐶𝑠
(𝑖,𝑗)

 at the low, medium, and high levels are 8 

randomly generated from the three intervals [0,50], [50,100], and [100,150] , respectively. 9 

Similarly, the values of 𝑈̅𝑠
(𝑖,𝑗)

 are randomly generated from the three intervals 10 

[50,100], [100,150], and [150,200], respectively. Regarding the values of 𝑁𝑠
𝑖  and 𝑁̃𝑠

𝑗
 at the three 11 

levels, they are randomly generated from the three intervals [0,50], [50,150], and [150,400], 12 

respectively. For the values of 𝐷̅𝑠
(𝑖,𝑗)

, we first set three intervals [1,3], [3,5], and [5,7] for the 13 

means 𝜇𝑠
(𝑖,𝑗)

, and then use the same method described in Section 6.1 to generate the values of 𝐷̅𝑠
(𝑖,𝑗)

. 14 

As mentioned earlier, we set three levels for each parameter, and thus have 27 combinations of 15 

different levels in the factorial design. The corresponding results of each combination are shown in 16 

Table 4. 17 

Table 4 Results in the factorial design for the sensitivity analysis (unit: million US dollars) 18 

Levels for different types of containers Profit/cost of different containers 

Contractual 

container 

Empty 

container 

Ad hoc 

container 

Profit of 

contractual 

container 

Cost of empty 

container 

Expected 

profit of ad 

hoc container 

Total Profit 

L L L 21.6352 0.0706 3.2343 24.7989 

L L M 30.3662 0.0823  20.2356 50.5195 

L L H 25.7832 0.0941  28.1604 53.8495 

L M L 24.7217 0.2352  4.2185 28.7050 

L M M 28.9421 0.2940  21.9792 50.6273 

L M H 27.8325 0.1764  22.6975 50.3536 

L H L 22.4382 0.4704  3.4875 25.4553 
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L H M 18.3267 0.7644  26.4582 44.0205 

L H H 20.7264 0.5880  30.3665 50.5049 

M L L 26.4328 0.0621 3.9872 30.3579 

M L M 29.9327 0.0761 18.4517 48.3083 

M L H 32.3347 0.0893 20.6543 52.8997 

M M L 39.1036 0.2214 4.0213 42.9035 

M M M 37.8821 0.2517 14.6892 52.3196 

M M H 36.4231 0.1932 16.8825 53.1124 

M H L 28.9357 0.5321 3.5267 31.9303 

M H M 35.5512 0.7572 15.8845 50.6785 

M H H 34.7365 0.6887 18.3428 52.3906 

H L L 45.6781 0.0598 3.8762 49.4945 

H L M 43.2316 0.0625 7.7348 50.9039 

H L H 44.2836 0.0777 6.8935 51.0994 

H M L 46.8215 0.1983 3.6764 50.2996 

H M M 47.1025 0.2432 3.4704 50.3297 

H M H 44.2374 0.2337 6.7509 50.7546 

H H L 48.5691 0.6712 2.5212 50.4191 

H H M 42.7423 0.7323 8.4563 50.4663 

H H H 43.6426 0.6012 7.7845 50.8259 

Note: “L” “M” and “H” denote the low, medium and high level, respectively.  1 

Based on Table 4, we have the following observations: 1) With the increase in levels from low to 2 

high, the contract and ad hoc containers generally generate more profits and the empty containers 3 

incur more costs, which is obvious and reasonable. The mean and variance of the profit of contract 4 

and ad hoc containers and the cost of empty containers are calculated and shown in Table 5. 2) 5 

However, as can be seen in Table 4, the values of the expected profit of ad hoc containers generally 6 

decrease with the increase in the levels of contract and empty containers. This can be easily 7 

explained by our modeling, because the numbers of accepted contract and repositioned empty 8 

containers are the decision variables in the first stage, while the numbers of accepted ad hoc 9 
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containers are the decision variables in the second stage, which indicates that the numbers of 1 

accepted ad hoc containers are determined after the determination of the first-stage decision 2 

variables. Therefore, with the levels of contract and empty containers increasing from low to high, 3 

the remaining vacant slots for ad hoc containers become increasingly limited, and so are for the 4 

accepted ad hoc containers even when the spot demand is high. 3) The expected profits of ad hoc 5 

containers fluctuate differently under different levels of contract and empty containers. For example, 6 

when the contract and empty containers are at a low/medium/high level, the maximum fluctuations 7 

in the expected profit of ad hoc containers range from 3.4875 to 30.3665, from 3.9827 to 20.6543, 8 

and from 2.5212 to 8.4563, respectively. The fluctuations also show a tendency to become relatively 9 

calm. This is rational because the number of accepted ad hoc containers not only depends on the 10 

number of remaining vacant slots but also on the demand for ad hoc containers. When the levels of 11 

contract and empty containers are low, and the number of remaining vacant slots is sufficiently large, 12 

the number of accepted ad hoc containers mainly depends on the demand for ad hoc containers. 13 

Therefore, if the demand for ad hoc containers at different levels fluctuates significantly, the 14 

expected profit of ad hoc containers fluctuates intensely (e.g. from 3.4875 to 30.3665). When the 15 

levels of contract and empty containers increase, the number of remaining vacant slots decreases, 16 

but the impact on the number of accepted ad hoc containers increases, which means that the 17 

expected profit of ad hoc containers at different levels of demand fluctuates less intensely. 18 

Simultaneously, for different levels of ad hoc containers, contract containers have different effects 19 

on the expected profit of ad hoc containers. For example, when ad hoc containers are at a low level, 20 

although their expected profit of ad hoc containers varies under different levels of contract and 21 

empty containers, their values always fluctuate around 3.6166, and therefore the variance is also 22 

small (see Table 5). However, when ad hoc containers are at a medium/high level, the impacts of the 23 

contract and empty containers on the expected profit of ad hoc containers are much larger, resulting 24 

in fluctuations from 3.4704 to 26.4582 and from 6.7509 to 28.1604, respectively. Similarly, when 25 

the demand for ad hoc containers is low, or even lower than the number of remaining vacant slots, 26 

the number of ad hoc containers mainly depends on demand, and consequently, the expected profit 27 

of ad hoc containers shows slight fluctuations regardless of the levels of contract and empty 28 



 

28 

 

containers. However, when the demand for ad hoc containers is medium/high, the number of ad hoc 1 

containers is constrained by the number of remaining vacant slots and their demand, and 2 

consequently, the expected profits of ad hoc containers show intense fluctuations. 4) Although an ad 3 

hoc container has a higher freight rate than a contract container, this does not mean that leaving 4 

more slots for ad hoc containers is always the best choice for the container shipping company. As 5 

can be seen from Table 4 that the maximum total profit of the container shipping company is 6 

53.8495, when the levels of contract, empty, and ad hoc containers are low, low, and high, 7 

respectively. However, the variance in the total profit at low levels of contract and empty containers 8 

is quite large (see Table 6). Therefore, this slot allocation strategy is not the best for a risk averse 9 

container shipping company.  10 

Table 5 Average profit/cost and variance in each level of different containers (unit: million US dollars) 11 

 Contractual container 

Mean      Variance 

Empty container 

Mean      Variance 

Ad hoc container 

Mean      Variance 

Low 24.5302 16.4682 0.0658 0.0007 3.6166 0.2631 

Medium 33.4814 18.7178 0.2275 0.0011 15.2622 56.0151 

High 45.1454 3.9885 0.6451 0.0095 17.6148 79.9449 

Table 6 Mean and variance of total profit at different levels of different types of containers 12 

Types  Contractual container Empty container Ad hoc container 

Levels Low Medium High Low Medium High Low Medium High 

Mean 42.0927 46.1001 50.5103 45.8035 47.7117 45.1879 37.1516 49.7971 51.7546 

Variance 147.4883 82.2895 0.2225 111.3816 59.1331 95.4765 121.0602 5.7366 1.7206 

6.5 Demand Information Analysis 13 

The uncertainty of spot market demand is the basis for us to formulate the proposed slot 14 

allocation problem as a two-stage stochastic programming model. That is, the proposed slot 15 

allocation model is lacks perfect information on spot demand, which indicates that spot demand 16 

information has a significant impact on modeling. Therefore, we now analyze the value of spot 17 

demand information and compare the expected shipping profits with and without perfect spot 18 

demand information. We first compute the expected shipping profit without perfect spot demand 19 

information. Consequently, we still assume that spot demand follows a log-normal distribution. 20 
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Then, we obtain the corresponding expected profit by implementing the solution algorithm, denoted 1 

by 𝑍𝑁𝑃𝐼.  2 

As for the expected shipping profit with perfect spot demand information, we first set three 3 

levels for spot demand: high, medium, and low, where spot demand at medium level is equal to the 4 

mean of the log-normal distribution, and “low” and “high” indicate that spot demand is one standard 5 

deviation below and above the mean of the log-normal distribution, respectively. The spot demand at 6 

each level is known. Then, we can solve the slot allocation model with the known spot demand at 7 

each level to obtain the corresponding shipping profits. Finally, we can obtain the expected profit by 8 

averaging these shipping profits, denoted by 𝑍𝑃𝐼. Consequently, the expected value of perfect 9 

information, denoted by 𝐸𝑉𝑃𝐼, is given by 𝐸𝑉𝑃𝐼 = 𝑍𝑃𝐼 − 𝑍𝑁𝑃𝐼, as depicted in Figure 5. 10 

 11 

Figure 5. Expected value of depot demand information 12 

Perfect spot demand information is expected to have a positive impact on shipping profit. Figure 13 

5 specifically validates this expectation, and we can see that perfect spot demand information can 14 

increase shipping profit at a rate of 5.5%, which reflects the value of perfect information. If ad hoc 15 

demand is known and certain, the container shipping company will obtain maximum profit. Therefore, 16 

information about ad hoc containers can significantly help the container shipping company to increase 17 

its shipping profit. 18 

7. Conclusions 19 

This paper proposes an interesting container slot allocation problem arising from liner container 20 

shipping services. The proposed problem is formulated as the 2SSMINP model. The greatest 21 
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difficulty in solving the 2SSMINP model lies in dealing with the expected recourse function, which 1 

is only implicitly defined and depends on the first-stage decisions, typically involving optimization 2 

problems embedded in expectations. To solve the model efficiently, we develop a solution algorithm 3 

integrating the SAA method, the Lagrangian relaxation and dual decomposition techniques, the 4 

surrogate sub-gradient, and the B&B algorithm. The devleoped model and solution algorithm are 5 

assessed using a case study, and a series of numerical experiments with different parameter values 6 

are implemented to analyze their sensitivity. The gaps between the lower and upper bounds emerge 7 

as small, indicating that these methods are effective. It is also found that the variability of the 8 

uncertain parameters has a significant effect on the solutions. In particular, the value of demand 9 

information is tested and the results show that knowledge of the spot market can increase the profit 10 

of the shipping company. 11 

We intend to extend the container slot allocation problem from a specific route to a network, in 12 

addition to considering container transshipment. The models and solution algorithms involved are 13 

expected to be much more complex when considering container transshipment operations. Another 14 

possible extension is considering other RM strategies in the context of the slot allocation problem, 15 

such as overbooking control strategies to manage container booking acceptance and slot allocation. 16 
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APPENDIX 25 

Proof of Proposition 2. For any problem P in set ℙ defined in the B&B algorithm, let 𝜗𝑃 =26 

min {𝑝̃𝑠∗𝑡∗𝑛

(𝑖∗,𝑗∗)
− 𝑝̃𝑠∗𝑡∗𝑛

(𝑖∗,𝑗∗)∗

, 𝑝̃𝑠∗𝑡∗𝑛
(𝑖∗,𝑗∗)∗

− 𝑝̃𝑠∗𝑡∗𝑛
(𝑖∗,𝑗∗)

} , where (𝑖∗, 𝑗∗) , 𝑠∗ , and 𝑡∗  satisfy Eq. (37), 𝑝̃𝑠∗𝑡∗𝑛
(𝑖∗,𝑗∗)∗

 27 

belongs to the optimal solution of problem P, and 𝑝̃𝑠∗𝑡∗𝑛

(𝑖∗,𝑗∗)
 and 𝑝̃𝑠∗𝑡∗𝑛

(𝑖∗,𝑗∗)
 are the upper and lower 28 
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bounds of 𝑝̃𝑠∗𝑡∗𝑛
(𝑖∗,𝑗∗)

, respectively. Then, according to Eq. (33) and Eq. (34), we have the following 1 

inequalities: 2 
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and 4 
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Therefore, it follows that 6 
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From Eq. (37), we know that 8 
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Consequently, for problem P, we have 10 
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For the root problem 0P  in problem set P , the B&B algorithm ensures that 12 
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Combining Eq. (44) and Eq. (45), we have 14 
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Therefore, the longest times for problem branching can be estimated as 16 
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As the branching times are finite, the B&B algorithm must terminate after a finite number of 1 

iterations. □ 2 
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Statement of Contribution/Potential Impact 

This paper studies a slot allocation problem for a liner shipping service. A liner containership 

provides a regular shipping service on a fixed itinerary and at a fixed schedule for shippers. 

The liner containership may be not fully loaded, in which case it loses the revenue of potential 

shippers. This paper thus divides shippers into two classes: contractual shippers and spot 

shippers. Contractual shippers sign contracts with a liner container shipping company and 

promise Minimum Quantity Commitments, so that the liner container shipping company can 

obtain steady revenue. The remaining slots of the containership are open to spot shippers, so 

that the liner container shipping company can obtain ad hoc revenue. We formulate the slot 

allocation problem proposed in this paper as a two-stage stochastic nonlinear integer-

programming model. We then use the sample average approximation based on Lagrangian 

relaxation and dual decomposition to solve the model. Finally, we use a case study to evaluate 

the applicability of the proposed model and the performance of the proposed solution 

algorithm. 

The contributions of this study are summarized as follows: 

1) This paper contributes to the literature by proposing a new slot allocation problem 

integrating the issues of uncertainty of shipping demand, empty container repositioning, and 

pricing of freight rate. 

2) The proposed slot allocation problem for a liner container shipping service is formulated as 

a two-stage stochastic nonlinear integer-programming (2SSNIP) model. As this model is 

intractable by the solution methods proposed in the existing literature, this paper designs a 

solution algorithm to solve the proposed 2SSNIP model, and its convergence has been 

mathematically proved. The methodology used in the solution algorithm is the most 

significant contribution of this paper. 

3) A number of experiments have been implemented on the proposed model and solution 

algorithm. The computational results verify the applicability of the proposed model and the 

efficiency of the solution algorithm, and evaluate the effect on profit increase of the proposed 

model. 
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