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Abstract 11 

Maritime transportation is the backbone of global supply chain. To improve 12 

maritime safety, protect the marine environment, and set out seafarers’ rights, port state 13 

control (PSC) empowers ports to inspect foreign visiting ships to verify them comply 14 

with various international conventions. One critical issue faced by the port states is how 15 

to optimally allocate the limited inspection resources for inspecting the visiting ships. 16 

To address this issue, this study first develops a state-of-the-art XGBoost model to 17 

accurately predict ship deficiency number considering ship generic factors, dynamic 18 

factors, and inspection historical factors. Particularly, the XGBoost model takes 19 

shipping domain knowledge regarding ship flag, recognized organization, and company 20 

performance into account to improve model performance and prediction fairness (e.g., 21 

for two ships that are different only in their flag performances, the one with a better flag 22 

performance should be predicted to have a better condition than the other). Based on 23 

the predictions, a PSC officer (PSCO) scheduling model is proposed to help the 24 

maritime authorities optimally allocate inspection resources. Considering that a PSCO 25 

can inspect at most four ships in a day, we further propose and incorporate the concepts 26 

of inspection template and un-dominated inspection template in the optimization 27 

models to reduce problem size as well as improve computation efficiency and model 28 

flexibility. Numerical experiments show that the proposed PSCO scheduling model 29 

with the predictions of XGBoost as the input is more than 20% better than the current 30 

inspection scheme at ports regarding the number of deficiencies detected. In addition, 31 

the gap between the proposed model and the model under perfect-forecast policy is only 32 

about 8% regarding the number of deficiencies detected. Extensive sensitivity 33 

experiments show that the proposed PSCO scheduling model has stable performance 34 

and is always better than the current model adopted at ports. 35 
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1. Introduction 39 
Maritime transport is the backbone linking global supply chains, supporting trade 40 

and enabling participation in global value chains (Chang et al., 2020; Zhen et al., 2020; 41 

Wu et al., 2021). Maritime safety is one of the most essential prerequisites for running 42 

a successful business. It is a broad term ranging from ship construction to operation and 43 

management, and to how professional the crews are. In recent years, shipping pollution 44 

has been receiving wide attention as the greenhouse gas and pollutants produced by 45 

ships significantly contribute to global climate change and acidification (Christodoulou 46 

et al., 2019; Bell et al., 2020). To enhance maritime safety and protect the marine 47 

environment, global and regional conventions are implemented by the International 48 

Maritime Organization (IMO) and local governments (Zhang et al., 2020).  49 

Generally, a ship is regarded as substandard if its hull, machinery, equipment, or 50 

operational safety is substantially below the standards required by the relevant 51 

conventions or if the crew is not in conformance with the safe manning document (IMO, 52 

2017). Effective identification and rectification of substandard ships is essential, as it 53 

guarantees efficient implementation of various conventions. As a complement of flag 54 

state control, which is the first line of defense against substandard shipping, port state 55 

control (PSC) renders port authorities the right to inspect foreign visiting ships. During 56 

PSC inspections, a condition found not to be in compliance with the requirements of 57 

the relevant convention is called a ship deficiency. If fatal deficiencies are found 58 

onboard, an intervention action, which is also called detention, can be taken by the port 59 

state (IMO, 2017). Ship deficiency and detention are seemed as the most crucial 60 

outcomes of PSC inspection (Akpinar and Sahin, 2020). 61 

The general process of PSC inspections is as follows. In the morning of a working 62 

day, the port state authority selects the foreign visiting ships with high risk regarding 63 

ship safety and marine pollution for inspection based on the selection criteria adopted 64 

in the region. Then, available qualified inspectors, who are also called PSC officers 65 

(PSCOs), are assigned and scheduled to inspect the selected high risk ships. It is 66 

generally believed that accurate identification of high-risk visiting ships is a pre-67 

requirement while effective assignment and scheduling of available PSCOs is a 68 

foundation for effective PSC inspections. The reasons are as follows. First, it is not 69 

possible to inspect all visiting ships as port inspection resources, especially the number 70 

of available PSCOs, are quite limited. Second, among all visiting ships, only a small 71 

portion of ships need to be inspected. The annual report of Tokyo Memorandum of 72 
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Understanding (MoU) in Asia-Pacific region shows that only 60% of the inspections 73 

conducted between 2009 and 2019 identified deficiencies, and no more than 6% 74 

inspections were with detention (Tokyo MoU, 2020). Third, the proportion of ships 75 

inspected is crucial in port management. If too few substandard ships are inspected at a 76 

port, ship owners may lack the motivation to intensively maintain ship conditions, 77 

which in return attracts more substandard ships to the port. On the contrary, if too many 78 

qualified ships are inspected, the competitiveness of the port may be reduced and 79 

consequently leads ship owners to turn to other destinations with relaxed inspection 80 

policy (Yang et al. 2018b). Therefore, accurate identification of high-risk ships and 81 

rational allocation of inspection resources guarantee effective PSC inspections by 82 

picking out which ships are most worthy of inspection and finishing the inspection tasks 83 

efficiently without putting too much delay in shipment. They also help the port states 84 

to find a balance between stringent inspections of substandard ships and reducing un-85 

necessary inspections of qualified ships and thus to better fulfill their responsibilities 86 

and enhance their competitiveness.  87 

One of the widely adopted ship selection scheme at the port states is the new 88 

inspection regime (NIR). It calculates ship risk profile (SRP) based on ship generic 89 

parameters including ship type, ship age, flag performance, recognized organization 90 

(RO) performance, and company performance, and inspection historical factors 91 

including deficiency and detention conditions (Paris MoU, 2010; Tokyo MoU, 2014). 92 

It is noted that all the parameters are objective except for flag, RO, and company 93 

performance, which is calculated by the MoUs. More specifically, ship flag 94 

performance is established annually by taking its ships’ inspection and detention 95 

conditions over the preceding three calendar years into account. Black-grey-white ship 96 

flag lists are published in an MoU’s annual report, where flag performance gets worse 97 

from white to grey and to black. RO is a qualified organization which has been assessed 98 

and authorized by the flag state to provide necessary statutory services and certification 99 

of ships entitled to fly its flag (IMO 2017). The performance of all ROs is established 100 

annually considering their ships’ inspection and detention history over the preceding 101 

three calendar years. The RO performance list is published in an MoU’s annual report, 102 

where the performance of ROs gets worse from high, to medium, to low, and to very 103 

low. Ship company is the International Safety Management (ISM) company of a ship, 104 

and its performance is determined by their ships’ detention and deficiency history 105 

calculated daily on the basis of a running 36-month period. Similar to ship RO 106 
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performance, company performance gets worse from high, to medium, to low, and to 107 

very low.  108 

As ship flag, RO, and company play an important role in ship management, 109 

operation, and maintenance, they are taken into account in the popular SRP ship 110 

selection scheme applied at ports. In return, a ship’s performance in PSC inspection can 111 

influence the reputation of its flag, RO, and company and their performance evaluated 112 

by PSC MoUs. Under this condition, it is justifiable to conclude that given all other 113 

conditions being equal, a ship should be estimated to have worse performance in PSC 114 

inspection (e.g. more deficiencies and higher probability of detention) if the 115 

performance of its flag/RO/company gets worse. However, such domain knowledge is 116 

seldom considered in current literature of high-risk ship selection mainly because 117 

combining domain knowledge with machine learning models is not a trivial task as it 118 

requires modifications of the prediction models or finding good properties of them. 119 

Besides, PSCO assignment and scheduling models, which require allocating the 120 

available and scarce inspection resources as well as arranging the starting and ending 121 

time of the required activities, are also rarely proposed in current research. This study 122 

aims to bridge this gap with the contributions summarized as follows.  123 

First, from a theoretical point of view, we first develop a machine learning 124 

prediction model considering proper and adequate domain knowledge to solve 125 

problems in maritime transportation. Specifically, a state-of-the-art tree-based model 126 

called XGBoost is developed to predict ship deficiency number in PSC inspection. In 127 

the XGBoost model, we combine the shipping domain knowledge regarding ship flag, 128 

RO, and company performance in a natural way. Based on the predictions, a PSCO 129 

scheduling model for ship inspection is then proposed considering a PSCO’s work and 130 

rest time to guarantee inspection effectiveness. By taking the properties of the 131 

optimization model for PSCO scheduling into account, we propose the concepts of 132 

inspection template, un-dominated inspection template, and strengthened constraints to 133 

reduce problem size as well as improve model flexibility and solving efficiency. 134 

Second, from a practical point of view, a practical problem in PSC inspection, 135 

which is one of the most important shipping policies, is addressed in this study. 136 

Numerical experiments show that the proposed combined model for ship deficiency 137 

number prediction and PSCO scheduling is more than 20% better than the current 138 

PSCO scheduling strategy at ports regarding the number of deficiencies identified. 139 

Meanwhile, the gap between the proposed model and the perfect-forecast policy is only 140 
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about 8% regarding the number of deficiencies identified. The proposed model can help 141 

port state authorities to identify higher risk ships and schedule inspection resources 142 

more efficiently. Especially, it contributes to assisting the port states to achieve a 143 

balance between effectively identifying and inspecting substandard ships and reducing 144 

un-necessary inspections of qualified ships and consequently frightening them from 145 

choosing this port in future shipment. Therefore, the main objectives of PSC to 146 

eliminate substandard shipping, to promote maritime safety and security, to protect the 147 

marine environment, and to safeguard seafarers’ working and living conditions on 148 

board ships can be enhanced. 149 

 150 

2. Literature review 151 

As PSC is critical for promoting maritime safety, guaranteeing the marine 152 

environment, and protecting seafarers’ rights, there has been a large body of literature 153 

on PSC inspection. Yan and Wang (2019) classified the studies on PSC into four main 154 

categories, namely studies on exploring factors influencing PSC inspection results, 155 

studies on developing ship selection models, studies on exploring the effects of PSC, 156 

and studies on proposing suggestions for MoU management. In this study, we focus on 157 

the studies on improving PSC efficiency, which develop models for ship selection and 158 

onboard inspection efficiency improvement. 159 

Both abstract ship risk level and concrete ship detention or deficiency condition 160 

have been used as the prediction targets in models for high-risk ship identification. For 161 

prediction models with abstract targets, Li (1999) proposed the concept of ship risk 162 

score and identified ship risk level considering several factors including ship age, flag, 163 

insurer, classification, and operator. Degré (2007) also adopted the concept of ship risk 164 

to select high-risk vessels for inspection. The risk concept in this study was evaluated 165 

by the probability of the occurrence of casualties and its potential consequences. Based 166 

on the method to generate black-grey-white flag performance list in Paris MoU, Degré 167 

(2008) derived the black-grey-white ship category risk list with regard to the observed 168 

casualties over a given period. Information of past incidents and accidents was also 169 

used by Heij and Knapp (2019) and Knapp and Heij (2020), where combined models 170 

considering such information together with historical detentions were used to target 171 

high-risk vessels and prioritize inspection areas. Dinis et al. (2020) adopted parameters 172 

from the NIR used in Paris MoU as risk variables to assess individual ship and maritime 173 

traffic risk level using Bayesian network (BN) models.  174 
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Ship detention or deficiency serves as the concrete prediction target in more current 175 

studies, as both of them are the main outcomes of PSC inspections. Xu et al. (2007) 176 

proposed one of the pioneer machine learning-based models to predict ship detention 177 

by developing support vector machine (SVM). In recent years, more advanced models 178 

are developed for accurate selection of high-risk ships. BN is a type of popular model 179 

for ship condition prediction. Yang et al. (2018a) developed a BN for bulk carrier 180 

detention prediction at the ports in Paris MoU. Key factors influencing ship detention, 181 

such as the number of deficiencies, inspection type, RO, and ship age were identified. 182 

Based on the output of the BN, a game model was developed to determine the optimal 183 

inspection rate at the ports to improve inspection efficiency. BN model was also 184 

developed by Wang et al. (2019) to predict ship deficiency number using the real 185 

inspection records at the Hong Kong port. To match ship deficiency condition with the 186 

expertise of PSCOs, Yan et al. (2020a) proposed three two-step models for ship 187 

condition prediction and PSCO assignment. The structure of the PSCO assignment 188 

model was partially considered in some ship condition predictions models, which were 189 

based on random forest consisting of several multi-target regression trees. It is noted 190 

that the PSCO assignment model is quite different from the one proposed in this study 191 

as it aimed to match various ship conditions with the expertise of the PSCOs. Yan et al. 192 

(2020b) developed a balanced random forest model to predict ship detention probability, 193 

which addressed the problem of highly unbalanced distribution of inspection records 194 

with and without detention. A combined ship risk prediction model considering ship 195 

deficiency and detention simultaneously was developed by Yan et al. (2021a) to address 196 

different needs of the port states.  197 

To improve the efficiency of onboard inspection, association rule mining 198 

technologies are adopted to figure out the relationship between various factors. The 199 

generated rules can offer meaningful insights to onboard deficiency and detention 200 

identification. Tsou (2019) explored the detention database of Tokyo MoU using 201 

association rule mining techniques. The author identified the correlations between 202 

detention deficiencies and the correlations between deficiencies and ship-/inspection-203 

related factors. Chung et al. (2020) analyzed the historical PSC inspection records in 204 

Taiwan Provence of China using Apriori algorithm. The correlations between ship 205 

characteristics and PSC deficiencies were identified. Yan et al. (2021b) also adopted 206 

Apriori algorithm to identify the relationship between ship deficiencies based on the 207 

inspection records at the Hong Kong port. Onboard inspection schemes were then 208 
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proposed according to the rules identified. Fu et al. (2020) analyzed the correlations 209 

between ship generic properties and ship deficiency and detention conditions using 210 

Apriori algorithm based on the inspection records in Tokyo MoU. 211 

Although there are various studies proposing models for ship condition prediction 212 

and inspection efficiency improvement, there are several limitations in current research. 213 

First, current studies of high-risk ship selection have failed to consider shipping domain 214 

knowledge in ship risk prediction, including the monotonicity regarding ship 215 

flag/RO/company performance in ship risk prediction. It is likely that the prediction 216 

models ignoring such domain knowledge give opposite prediction results due to model 217 

inaccuracy and noises in training data (Sill, 1997; Duivesteijn and Feelders, 2008; 218 

Daniels and Velikova, 2010; Pei et al., 2016). This indicates that only by taking such 219 

shipping domain knowledge into account in ship risk prediction models can fair and 220 

reasonable prediction results be generated. Here regarding such prediction results to be 221 

“fair” is because for ship flag/RO/company which adopt more effective management 222 

measures on their ships, it can be expected that their ships’ performance in PSC 223 

inspection should be better than other flags/ROs/companies adopting worse 224 

management strategies. In return, reducing the inspection frequency of their ships can 225 

promote them to better fulfill their maintenance and operational duties and attract more 226 

shippers to choose their services. The reason to regard such prediction results to be 227 

“reasonable” is that considering monotonicity into a machine learning model “can be 228 

an important model requirement with a view toward explaining and justifying decisions” 229 

(Duivesteijn and Feelders, 2008) to the decision makers. It is also reported by Pazzani 230 

et al. (2001) that the learned rules with monotonicity constraints were significantly 231 

more acceptable to experts than rules learned without the monotonicity restrictions 232 

when experts expect certain monotonicity based on their experience.  233 

Second, there is little literature aiming to design tailored PSCO assignment or 234 

scheduling schemes for ship inspection, and thus to validate the superiority of the 235 

proposed ship risk prediction models over the current schemes at ports. Indeed, 236 

prediction model accuracy is figured out in many current studies, and their superiority 237 

over current ship selection scheme is also presented. However, port inspection 238 

resources (e.g. the number of available PSCOs) are scarce and the arrival and departure 239 

time of ships are not fixed. This indicates that not all ships can be inspected in practice, 240 

and the gap between the proposed and current schemes in practice remains to be 241 

validated. Formulation and solution techniques for assignment and scheduling models 242 
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are proposed in current literature, and typical modeling approaches include column 243 

generation (Van Den Akker et al., 2005; Huisman, 2007; Janacek et al., 2017; Kulkarni 244 

et al., 2018) and Dantzig-Wolfe decomposition (Janacek et al., 2017; Kulkarni et al., 245 

2018; Muñoz et al., 2018). Nevertheless, there is no tailored modelling approach 246 

considering the problem structure and the corresponding properties of PSC inspection 247 

as well as proposing intuitive solving strategies that are comprehensible to the decision 248 

makers at port authorities. Therefore, it is of vital importance to develop tailored and 249 

easy-to-understand PSCO assignment and scheduling modeling approach based on ship 250 

risk prediction models to figure out their superiority in practice and improve the 251 

efficiency of PSC inspection. 252 

To address these issues, this study develops a highly accurate XGBoost model for 253 

ship deficiency number prediction considering shipping domain knowledge. It then 254 

proposes PSCO scheduling models based on the predictions which are consistent with 255 

the actual situation at the ports. Extensive computational experiments and sensitivity 256 

analysis are conducted to validate the model performance. 257 

 258 
3. Data and model validation metrics 259 
3.1 Data description 260 

The case dataset of this study contains 1,974 PSC initial inspection records and the 261 

corresponding ship related factors at the Hong Kong port from January 2016 to 262 

December 2018. Especially, PSC inspection records are downloaded from the public 263 

database provided by Tokyo MoU1, and ship related factors are searched from World 264 

Shipping Register database. The prediction target is the number of deficiencies detected 265 

in the current PSC inspection. We consider 14 features that are regarded to be highly 266 

related to ship deficiency number in the current literature and by domain knowledge, 267 

namely ship age, gross tonnage (GT), length, depth, beam, type, flag performance, RO 268 

performance, and company performance in Tokyo MoU, last PSC inspection date in 269 

Tokyo MoU, the number of deficiencies in last inspection in Tokyo MoU, the number 270 

of total detentions in all historical PSC inspections, the number of flag changes, and 271 

whether the ship has a casualty in last 5 years. Moreover, as required by the Tokyo MoU, 272 

from the best to the worst, the states of ship flag performance are white, grey, and black, 273 

the states of ship RO and company performance are high, medium, low, and very low, 274 

                                                      
1 http://www.tokyo-mou.org/inspections_detentions/psc_database.php 
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respectively. After data preprocessing, the whole dataset contains 1,926 samples. The 275 

explanation, method of feature encoding, and the descriptive statistics of the prediction 276 

target and the 14 features in the whole dataset are shown in Appendix A. 277 

3.2 Model validation metrics 278 

The deficiency number prediction models are validated using two common metrics 279 

for regression problems in machine learning: mean squared error (MSE) and mean 280 

absolute error (MAE). Given a total of n  samples in the dataset, the real output iy  281 

and the predicted output ˆiy  for sample i , 1,...,i n= , the definitions of MSE and MAE 282 

are as follows: 283 

 2

1

1 ˆMSE ( )
n

i i
i

y y
n =

= −∑ , (1) 284 

 
1

1 ˆMAE
n

i i
i

y y
n =

= −∑ . (2) 285 

 286 

4. Introduction and construction of XGBoost model 287 

4.1 The structure of XGBoost model 288 

Ensemble models in machine learning combine the predictions of multiple simpler 289 

base models to improve the overall model prediction performance (Friedman et al., 290 

2001). Two main ensemble models are bagging (bootstrap aggregating) and boosting. 291 

Bagging builds several base models independently and then average their predictions. 292 

Boosting builds sequential and dependent base models in the way that one base model 293 

is built considering the errors of the base models built so far and then produces a 294 

powerful ensemble (Friedman et al., 2001). In boosting models, a base model is also 295 

called a weak learner which may be only slightly better than random guessing. 296 

Meanwhile, the main idea of boosting is to add new weak learners to the ensemble 297 

sequentially, and in each iteration, the weak learner is trained with respect to the error 298 

of the whole ensemble learned so far (Natekin and Knoll, 2013). As boosting is purely 299 

algorithm-driven, a gradient-descent based formulation of boosting methods is derived 300 

which is called gradient boosting machine (GBM) (Freund and Schapire, 1997; 301 

Friedman et al., 2000). The principal idea of GBM is to construct new weak learners to 302 

be maximally correlated with the negative gradient of the loss function associated with 303 

the whole ensemble.  304 

XGBoost (short for eXtreme Gradient Boosting) is an implementation of GBM that 305 

uses tree-structured weak learners (Chen and Guestrin, 2016). It is highly effective 306 

(which allows parallel and distributed computing) and scalable (which is able to handle 307 
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datasets containing billions of examples in distributed or memory-limited settings). Due 308 

to limited space, the detailed process to construct XGBoost model is presented in 309 

Appendix B. 310 

4.2 Feature monotonic constraints in XGBoost  311 

Apart from the state-of-the-art prediction performance, XGBoost also has the nice 312 

property to enforce monotonic constraint on the feature(s) regarding the prediction 313 

target (Chen, 2016). Suppose we have a total of m  features and the feature vector is 314 

denoted by 1 '( ,..., ,..., )m mx x x=x . We put a monotonically increasing constraint on feature 315 

m  , which means that for two samples 1i   and 2i   that have the same feature values 316 

except for mx , i.e. 
1 2

' 'm m
i ix x= , ' 1,..., 1m m= − , 1,...,m m+  and 

1 2

m m
i ix x< , the predicted target 317 

for 1i   should be no more than that for 2i  , i.e. 
1 2

ˆ ˆi iy y≤  . As the monotonic constraint 318 

works in the context that all the features are equal in the samples except for the feature 319 

which is enforced to be monotonic (denote the set of samples by I ′ ), the prediction 320 

process of the samples in I ′  in a tree can be simplified to only contain the splits on the 321 

monotonic feature (as using all other features and values will always lead the samples 322 

to the same tree nodes and thus have the same output). In this context, the working 323 

process to impose monotonic constraint on a feature can be illustrated as follows.  324 

We still use feature m  which we put a monotonically increasing constraint on as 325 

an example. An illustration of the tree structure is shown in Figure 1. The output of all 326 

samples in the root node is 0W  . From splitting the root node, we would expect the 327 

weight assigned to the right child not to be lower than the weight assigned to the left 328 

child while using the monotonic feature for splitting. When feature m  is picked to split 329 

the root node, if a candidate value of m  leads to a higher weight in the left child than 330 

that in the right child, this candidate value will be abandoned for the current node 331 

splitting. That is, when enumerating all possible values of feature m  to split the root 332 

node, only the values leading to no lower weights in right child than in left child will 333 

be retained for further comparison. If all possible splits lead to higher output in the left 334 

child than in the right child, the node would not be split any more. If feasible splits exist 335 

and the optimal splitting point is found, we could have L RW W≤ , where LW  is the output 336 

of the left child node while RW  is the output of the right child node. When splitting 337 

node L  to left child LL  and right child LR , only the splits that lead to LL LRW W≤  will 338 

be considered, where LLW  is the output of LL  and LRW  is the output of LR . As the 339 
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weight of LR  should be no more than the weight of node R , we further impose an 340 

upper bound for LRW  as mean( , )
2

L R
LR L R R

W WW W W W+
≤ = ≤ . Similarly, apart from ensuring 341 

RL RRW W≤  , where RLW   is the output of RL   and RRW   is the output of RR  , we also 342 

impose a lower bound for RLW  as mean( , )
2

L R
RL L R L

W WW W W W+
≥ = ≥ . Consequently, in this 343 

tree level we can guarantee mean( , )LL LR L R RL RRW W W W W W≤ ≤ ≤ ≤  . As a tree is split in a 344 

recursive manner, the monotonicity of the whole tree can be guaranteed. A more 345 

detailed explanation of the situations if more than one feature is imposed by monotonic 346 

constraints is given in Appendix C. 347 

Root node
weight=W0

mx a≤

Node L
weight=WL

Node R
weight=WR

Node LL
weight=WLL

Node LR
weight=WLR

Node RL
weight=WRL

Node RR
weight=WRR

mx a>

mx b≤ mx b> mx c≤ mx c>

L RW W≤

LL LRW W≤ RR RLW W≥mean( , )LR L RW W W≤ mean( , )RL L RW W W≥
 348 

Figure 1. Illustration of feature monotonicity on XGBoost 349 

It should also be noted that as XGBoost allows for feature subsampling when 350 

constructing each tree, the monotonic feature may not be included in some trees. For 351 

those trees, as the samples in I ′  have the same feature values except for the feature 352 

with monotonic constraint, all the samples will be assigned to the same leaf node and 353 

thus have the same output. As XGBoost is an additive model, the predicted output of 354 

each sample is the sum of the outputs in all the trees where the monotonicity constraints 355 

are preserved. Therefore, the feature monotonicity of the final output in the whole 356 

model can be preserved.  357 

4.3 Construction of monotonic XGBoost  358 

The whole dataset is randomly divided into training set (80% samples) and test set 359 

(20% samples, denoted by test set i), which contain 1,524 samples and 384 samples, 360 

respectively. The XGBoost model with monotonic constraints enforced on three 361 

features, i.e. ship flag, RO and company performance, is constructed using the training 362 

set (which we call monotonic XGBoost). Hyperparameters contained in XGBoost are 363 
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in three categories: a. general parameter, which guides the overall functioning; b. 364 

booster parameters, which guide the individual booster at each iteration; and c. learning 365 

task parameter, which guides the optimization performed. We use regression decision 366 

tree as the weak learner in XGBoost model. The hyperparameters tuned in this study 367 

are summarized in Table 1.  368 

Table 1. Hyperparameters in XGBoost model* 369 

Hyperparameter  Meaning 
learning_rate (c**) Step size shrinkage used to update the predicted values after each boosting 

step to prevent overfitting which can be applied to Eq. (B4). 
n_estimators (a) The number of weak learners (decision trees) in the XGBoost model (i.e. K  

in Eq. (B1)). 
max_depth (b) The maximum depth of each tree. 
min_child_weight (b) The minimum sum of sample weight (Hessian) (i.e. t

jH ) needed in a child 
node. In a regression tree with loss function as MSE, the sum of sample 
weight in a node equals the number of samples contained in the node. 

delta (b) The minimum loss reduction required to make a split for a node. 
sub_sample (b) The fraction of samples to be randomly sampled for each tree. 
colsample_bytree (b) The fraction of columns (features) to be randomly sampled for each tree. 
reg_gamma (b) L1 regularization term on tree complexity (i.e. γ  in Eq. (B9)). 
reg_lambda (b) L2 regularization term on tree complexity (i.e. λ  in Eq. (B9)). 

Note*: to avoid ambiguity, we have renamed some hyperparameters. For example, in the XGBoost Module for Python , ‘delta’ is 370 
called ‘lambda’, and ‘reg_gamma’ is called ‘reg_alpha’.  371 
Note**: this indicates the hyperparameter category. 372 

Table 1 shows that there are totally nine hyperparameters that need to be tuned in 373 

an XGBoost model, which can be a huge burden if we apply cross validation with grid 374 

search to tune the hyperparameter tuple directly. To address this issue, we propose a 375 

three-step hyperparameter tuning method after giving the initial values of the 376 

hyperparameters based on experience. In the first step, the hyperparameters are tuned 377 

in turns according to their categories using grid search based on 5-fold cross validation 378 

with MSE as the metric, and their initial tuned values can be found. In the second step, 379 

an extended searching space for all the hyperparameters consisting of the initial tuned 380 

value and two more candidate values near the tuned value for each hyperparameter is 381 

formed. Then, grid search based on 5-fold cross validation with MSE as the metric is 382 

conducted on all hyperparameters simultaneously. In the third step, ‘learning_rate’ is 383 

further reduced and ‘n_estimators’ is further increased to improve model generalization 384 

ability. The finally adopted values for the hyperparameters are shown in Table 2. 385 

Table 2. Finally adopted hyparameter values in monotonic XGBoost 386 
Hyperparameter n_estimators learning_rate max_depth min_child_weight delta 
value 200 0.02 5 4 0.15 
Hyperparameter sub_sample colsample_bytree reg_gamma reg_lambda  
value 0.75 0.4 0.1 0.1  

After hyperparameter tuning using cross validation on the training set, the final 387 

monotonic XGBoost model is constructed using the whole training set with the optimal 388 
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hyperparameter values presented in Table 2. Its performance is validated by test set i. 389 

The MAE of the monotonic XGBoost model is 2.372 and the MSE is 12.470.  390 

4.4 Analysis of monotonic XGBoost  391 

We form another test set (denote by test set ii) as an extension of test set i to validate 392 

the monotonicity in the output of the monotonic XGBoost model regarding the three 393 

monotonic features: flag performance, RO performance, and company performance. 394 

For each sample in test set i, we form 10 variant samples by setting the values for flag 395 

performance from 1 to 3 (i.e. from white to black), RO performance from 1 to 3 (i.e. 396 

from high to low), and company performance from 1 to 4 (i.e. from high to very low) 397 

respectively while keeping the other features and their values unchanged. Totally we 398 

can have 3,840 samples ( 3,840 384 10= × ) in test set ii. We use a random sample in test 399 

set i as an example to show the construction process and the predicted results using the 400 

normal XGBoost model and the monotonic XGBoost model. The sample features 401 

except for flag, RO, and company performance are shown in Table 3. The flag, RO and 402 

company performance together with the prediction results are shown in Table 4. 403 

 Table 3. Features of an example in test set i except for flag, RO, and company 404 
performance 405 

Feature Value 
age 12 
GT 6813 
length 132.6 
depth 9.2 
beam 19.2 
type container ship 
last inspection date 4.3 
last deficiency number 6 
total detentions 0 
the number of flag changes 0 
casualty in the last 5 years 0 

 406 
Table 4. An example of construction variant samples and the prediction results 407 

Sample flag  
 

RO company Output of 
monotonic 
XGBoost 

Increase 
between  
consecutive 
values 

Output of 
normal 
XGBoost 

Increase 
between  
consecutive 
values 

Original sample 1 1 3 5.3443 
(true: 5) 

\ 5.6563 
(true: 5) 

\ 

variant sample 1 1 1 3 5.3443  \ 5.6563  \ 
variant sample 2 2 1 3 5.9879  0.6437  5.9409  0.2846  
variant sample 3 3 1 3 6.3320  0.3441  5.8450  -0.0959  
variant sample 4 1 1 3 5.3443  \ 5.6563  \ 
variant sample 5 1 2 3 5.5915  0.2473  5.6383  -0.0180  
variant sample 6 1 3 3 5.5915  0 5.6383  0 
variant sample 7 1 1 1 3.9397  \ 3.9384  \ 
variant sample 8 1 1 2 4.6101  0.6703  4.4111  0.4728  
variant sample 8 1 1 3 5.3443  0.7342  5.6563  1.2452  
variant sample 10 1 1 4 7.2423  1.8981  7.5755  1.9192  

Table 4 indicates that in the monotonic XGBoost model, the predicted deficiency 408 
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number increases as the performance of flag, RO and company gets worse, respectively. 409 

Moreover, increase between consecutive states of company performance is most 410 

significant in this example: on average, 1.1009 more deficiencies can be detected if it 411 

gets worse by one state. Meanwhile, change in RO performance is the least obvious: 412 

when its RO performance change from 1 (high) to 2 (medium), only 0.2473 more 413 

deficiencies will be detected; the number of detected deficiencies remains unchanged 414 

while the RO performance changes from 2 (medium) to 3 (low). Meanwhile, it can also 415 

be seen in Table 4 that in a normal XGBoost model, the monotonicity of the three 416 

features cannot be fully guaranteed: when flag performance changes from medium to 417 

low, and when RO performance changes from high to medium, the predicted deficiency 418 

number decreases instead, which is against domain knowledge.  419 

We further calculate the average increase between consecutive states of each 420 

feature over the whole test set as shown in Table 5. 421 

Table 5. Increase in predicted deficiency number of consecutive states in test set ii 422 
State change Flag performance RO performance Company 

performance 
1->2 0.8030 0.2530 0.5312 
2->3 0.2236 0 0.7787 
3->4 \ \ 1.4919 

Table 5 indicates that when the states of flag performance change from high to medium 423 
and from medium to low, the increase of deficiency number gets smaller. While the 424 
state values increase by 1 in company performance, the increase of deficiency number 425 
gets larger. On the contrary, when RO performance gets from 2 (medium) to 3 (low), 0 426 
more deficiency number will be detected as suggested by the monotonic XGBoost 427 
model. This is because there is only one sample in the training set with RO performance 428 
as low, which makes it hard for the model to capture the change in deficiency number 429 
when RO performance gets from medium to low. It should also be noted that although 430 
in Tokyo MoU the worst performance for RO is “very low”, as there are no such 431 
inspection records between 2016 and 2018, we only form variant samples with RO 432 
performance to be high, medium, and low. 433 
4.5 Comparison with other popular machine learning models 434 

We compare the performance of the other popular machine learning models with 435 

the monotonic XGBoost model using test set i and the same training set. Especially, we 436 

compare the performance of normal XGBoost, CART based regression decision tree 437 

(DT) (Breiman et al., 1984), random forest (RF) (Breiman, 2001), gradient boosting 438 

decision tree (GBDT) (Friedman, 2001), monotonic light gradient boosting machine 439 

(LightGBM) (Ke et al., 2017), least absolute shrinkage and selection operator (LASSO) 440 
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regression (Santosa and Symes, 1986), ridge regression (Hoerl and Kennard, 1970), and 441 

support vector machine (SVM) (Drucker et al., 1996) with the monotonic XGBoost 442 

model. It should be noted that apart from LightGBM, none of the other machine 443 

learning models can guarantee the monotonic constraints of the three features. For SVM, 444 

DT, RF, LASSO regression and ridge regression, grid search with 5-fold cross 445 

validation is applied directly for hyperparameter tuning as they have fewer 446 

hyperparameters. For normal XGBoost, GBDT and monotonic LightGBM, the 447 

hyperparameter tuning method is similar to that used in the monotonic XGBoost model. 448 

The MSE and MAE in test set i are shown in Table 6.  449 

Table 6. MSE and MAE in test set i of the machine learning models 450 
Model monotonic 

XGBoost* 
normal 
XGBoost 

DT RF GBDT monotonic 
LightGBM* 

LASSO 
regression 

ridge 
regression 

SVM 

MSE 12.470 12.779 15.625 13.612 13.322 12.747 15.089 15.765 13.421 
Rank 1 3 8 6 4 2 7 9 5 
MAE 2.372 2.422 2.672 2.459 2.461 2.475 2.806 2.909 2.411 
Rank 1 3 7 4 5 6 8 9 2 

Note*: monotonicity of the three features can be preserved. 451 
Table 6 shows that the prediction performance of monotonic XGBoost ranks first 452 

regarding both MSE and MAE among all the machine learning models considered. 453 

Regarding MSE, monotonic LightGBM ranks second, followed by normal XGBoost. 454 

Regarding MAE, SVM is slightly worse than monotonic XGBoost, followed by normal 455 

XGBoost. Ridge regression has the worst performance regarding both metrics. 456 

Especially, the monotonic XGBoost performs better than the normal XGBoost whose 457 

hyperparameter values are tuned by the same hyperparameter tuning method regarding 458 

both MSE and MAE, which is in line with the comment that if reasonable monotonic 459 

constraints on certain features are enforced, model prediction performance should be 460 

improved, meaning that the constrained models may generalize better (Sill, 1997; 461 

Duivesteijn and Feelders, 2008; Daniels and Velikova, 2010; Pei et al., 2016).  462 

To conclude, a tree-based gradient boosting machine called XGBoost, where 463 

shipping domain knowledge regarding ship flag/RO/company performance for ship risk 464 

prediction in PSC inspection can be incorporated in a natural and rational way, is 465 

developed and validated in this section. The structure of XGBoost and detailed steps to 466 

develop an XGBoost model, especially how to incorporate monotonic constraints in the 467 

model are first introduced. The performance of the developed XGBoost model is then 468 

validated and compared with other popular machine learning models. It is shown that 469 

the XGBoost model considering domain knowledge has the best performance among 470 

all the machine learning models concerned. 471 
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5. PSC officer scheduling Problem 472 
The PSC officer (PSCO) scheduling model aims to assign the available PSCOs to 473 

inspect the foreign visiting ships that need to be inspected as required (i.e. ships with 474 

no previous inspection records and ships out of/within the inspection time window). 475 

Human and time inspection resources, the predicted deficiency condition of the ships, 476 

and the berthing time of the ships at port should be considered in the model. As there 477 

are many foreign ships visiting a port for each day while the inspection resources are 478 

scarce, the PSCO scheduling model aims to decide the set of ships to be inspected and 479 

assign the selected ships to the PSCOs so as to maximize the inspection benefit, which 480 

is represented by the total number of deficiencies that can be identified.  481 

Denote the set of foreign ships that need to be inspected on one day as S  and one 482 

ship as s S∈ . Denote the set of PSCOs on duty for this day as P  and one PSCO as 483 

p P∈ . The work time for the PSCOs is stable for each day: they work from 8:00 to 11:00 484 

in the morning, and 14:00 to 17:00 in the afternoon. They spend one hour for lunch 485 

break during 11:00 to 14:00, and the other two hours for working. For example, if PSCO 486 

p  has lunch break during 12:00 to 13:00, his/her work time should be from 8:00 to 487 

12:00 and from 13:00 to 17:00. A typical PSC inspection takes about 2 hours, and thus 488 

we assume the duration of a PSC inspection to be two hours for all ships. For ship s S∈ , 489 

its deficiency number sd  is predicted by the monotonic XGBoost model which should 490 

be treated as a parameter. Each ship berths at the port for a period in each day, and the 491 

available time for ship s  during 8:00 to 17:00 (i.e. the daily work time for PSCOs) for 492 

PSC inspection is reported to the port state in advance. We divide the work hours from 493 

8:00 to 17:00 for PSCOs into 18Τ =  time units with each time unit as 0.5 hour, indexed 494 

by τ . The relationship between the time periods and the time units is illustrated in 495 

Table 7. 496 

Table 7. Relationship between time periods and units 497 
Time period Time unit Time period Time unit Time period Time unit 

8:00 to 8:30 1 11:00 to 11:30 7a 14:00 to 14:30 13 
8:30 to 9:00 2 11:30 to 12:00 8 14:30 to 15:00 14 
9:00 to 9:30 3 12:00 to 12:30 9b 15:00 to 15:30 15 
9:30 to 10:00 4 12:30 to 13:00 10 15:30 to 16:00 16 

10:00 to 10:30 5 13:00 to 13:30 11c 16:00 to 16:30 17 
10:30 to 11:00 6 13:30 to 14:00 12 16:30 to 17:00 18 

a: The latest time unit to start inspection before lunch break. 498 
b: The earliest time unit to start inspection after lunch break. 499 
c: The latest time unit to start lunch break. 500 

Based on the ship berthing information reported in advance, we further introduce a 501 

parameter seτ  which is set to 1 if ship s  stays at the port in the whole period of time 502 
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unit τ . For example, if ship s  stays at the port from 01:00 to 12:00, we should set 503 

1seτ = , 1,2,...,8τ =  and 0seτ = , 9,10,...,18τ = . We assume that the inspection starting time of 504 

a ship and the lunch break starting time of a PSCO are at the beginning of one time unit. 505 

The PSCO scheduling problem aims to select the ships for inspection, to decide the 506 

inspection starting time of the selected ships, to assign the selected ships to the PSCOs, 507 

and to decide the lunch break starting time of the PSCOs to maximize the inspection 508 

benefits. The notation used in the PSCO scheduling problem is listed in Table 8. 509 

Table 8. Notation used in the problem 510 
Sets 
S  The set of foreign ships that need to be inspected for one day. 

P   The set of PSCOs on duty for that day. 

Η  The set of inspection templates. An inspection template is a set of ships which is feasible to be 
inspected by one PSCO while guaranteeing his/her lunch break within the daily work time. 

Η% The set of un-dominated inspection templates. 
Indices 
s   The index for a ship in S . 
p  The index for a PSCO in P . 
τ  The index for a time unit. 

η  The index of an inspection template in Η . 
Parameters 
Τ   The total number of time units for a working day. 

s
d  The predicted deficiency number of ship s  using the XGBoost model. 

Dη   The number of deficiencies that can be detected if inspection template η  is adopted. 
seτ  Binary parameter indicating whether ship s  is available for inspection in time unit τ . 

s

ηδ  Binary parameter indicating whether ship s  is contained in inspection template η .  

' '' | | | |[ ]s s S SB b ×=  Binary matrix indicating the relationship between each of the two ships that need to be 
inspected. 

 511 

5.1 PSCO scheduling model M1 512 

To formulate the PSCO scheduling problem, we define two types of main binary 513 

decision variables: spx τ , which is set to 1 if ship s  is inspected by PSCO p  in time 514 

unit τ  and 0, otherwise; and prτ , which is set to 1 if PSCO p  has lunch break in time 515 

unit τ  and 0, otherwise. Besides, we also introduce three types of auxiliary binary 516 

decision variables: spy , which is set to 1 if ship s  is inspected by PSCO p  and 0, 517 

otherwise; sp
τσ , which is set to 1 if ship s  starts to be inspected by PSCO p  from 518 

time unit τ  and 0, otherwise; and p
τθ , which is set to 1 if PSCO p  starts to have 519 

lunch break from time unit τ  and 0, otherwise. To maximize the inspection benefit by 520 

maximizing the estimated total number of deficiencies that can be detected, an integer 521 

linear optimization model M1 is proposed as follows. 522 
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 0, , [1,6] [12,18]p p Pτθ τ= ∀ ∈ ∈ ∪   (16) 537 

 {0,1}, , , 1,...,spx s S p P Tτ τ∈ ∀ ∈ ∀ ∈ =   (17) 538 
 {0,1}, ,spy s S p P∈ ∀ ∈ ∀ ∈   (18) 539 
 {0,1}, , , 1,...,sp s S p P Tτσ τ∈ ∀ ∈ ∀ ∈ =   (19) 540 
 {0,1}, , 1,...,pr p P Tτ τ∈ ∀ ∈ =   (20) 541 
 {0,1}, , 1,..., .p p P Tτθ τ∈ ∀ ∈ =   (21) 542 

Objective function (3) maximizes the inspection benefits by maximizing the 543 

estimated total number of deficiencies that can be detected. Constraints (4) ensure that 544 

each ship can only be inspected by at most one PSCO. Constraints (5) and (6) 545 

guarantee that a ship can only be inspected when it is at port and when the 546 

corresponding PSCO does not have lunch break. Constraints (7) ensure that a PSCO 547 

can only inspect one ship in one time unit. Constrains (8) to (11) guarantee that if a 548 

ship is inspected, it should be inspected during 4 consecutive time units, and the start 549 

inspection time unit is between 1 and 15. Constraints (12) to (16) guarantee that each 550 

PSCO can have a one-hour consecutive lunch break between time units 7 and 12. 551 

Constraint (17) to (21) ensure the domain of the decision variables. 552 

 553 
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5.2 PSCO scheduling model M2 554 

As the PSCOs are indifferent from each other, there will be an exponential number 555 

of optimal solutions to mathematical model M1, which will reduce the efficiency to 556 

solve M1. A possible approach is dynamic programming. For example, Wang et al. 557 

(2018) applied dynamic programming for the selection of waste disposal ports in cruise 558 

shipping; Yi and Sutrisna (2021) proposed a novel dynamic programming method that 559 

elegantly addresses the drone scheduling problem for construction site surveillance. 560 

However, after examination, we find that our problem suffers from the “curse-of-561 

dimensionality” and cannot use dynamic programming. As the total work time of a 562 

PSCO for one day is 8 hours and an inspection would take 2 hours, a PSCO can inspect 563 

0, 1, 2, 3, or 4 ships for one day. Therefore, the PSCO scheduling problem can be 564 

reformulated as identifying and assigning the sets of ships that can be inspected by one 565 

PSCO to the available PSCOs. Define L   as the number of ships inspected by one 566 

PSCO, 0,1,2,3,4L = . Given the value for L , the total number of combinations of L  567 

ships from the total S  ships is | |
L
SC , | |

| | | | !
!(| | )!

L
S

S SC
L L S L

 
= =  − 

. Given a combination of 568 

L   ships, denoted by set 'S  , 'S S⊂  , 'S L=  . we examine whether it is feasible to 569 

inspect all the ships in 'S   by one PSCO. If it is feasible, then we call set   an 570 

inspection template and our aim is to choose P  inspection templates (each template 571 

is assigned to one PSCO) that maximize the total number of deficiencies that can be 572 

detected while ensuring a ship is included in at most one chosen template (i.e. a ship is 573 

inspected at most once). Here the concept of “template” is similar with the concept of 574 

berth template (Zhen, 2015) and yard template (Zhen 2016), which have been widely 575 

used in some pioneering work such as Zhen et al. (2011) in the field of port and shipping 576 

management. 577 

To examine whether it is feasible to inspect all the ships in 'S   by one PSCO, 578 

'S L= , we note that a PSCO has to carry out 1L +  activities to inspect all the ships in 579 

'S  between time unit 1τ =  (8:00) and 18τ =  (17:00), that is, inspecting each of the 580 

L  ships and having lunch break. We define α  as an activity, and each activity has a 581 

duration tα , an earliest start time αω , and a latest completion time αϖ . If an activity 582 

α   is inspecting a ship, denoted by ship s  , then 4tα =  , αω   is the start time of the 583 

ship’s berthing between 1τ =  and 18τ =  of the day, i.e., min{ 1,...,18 | 1}seα τω τ= = = , αϖ  584 

is the ship’s departure time if it departs before 18τ =   and otherwise 18αϖ =  , i.e., 585 

'S
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max{ 1,...,18 | 1}seα τϖ τ= = =  ; if an activity α   is having lunch break, then 2tα =  , 7αω =  , 586 

12αϖ = . There are a total of ( 1)!L +  different sequences for the PSCO to conduct the 587 

activities (note that some, or even all of the sequences may be infeasible). For a 588 

particular sequence, we denote the activities carried out by 1 2 1... Lα α α +→ → → , that is, 589 

α l   is the thl   activity, tα l
 , αω l

 , αϖ
l
  are the duration, earliest start time, and latest 590 

completion time of activity α l , respectively. To check whether the 1L +  activities can 591 

be carried out in the above sequence, we define lT  as decision variable representing 592 

the start time of carrying out activity α l , then the 1L +  activities can be carried out in 593 

the above sequence by one PSCO if and only if there is a solution lT , 1,..., 1L= +l , that 594 

satisfies the following constraints: 595 

 1, ,..., 1Lαω = +≥
ll lT   (22) 596 

 1 , 1,..., 1Ltα αϖ+ − ≤ = +
l ll lT   (23) 597 

 1 1,...,Ltα+ ≥ + =
ll l lT T .  (24) 598 

Note that if an activity α l  with duration tα l
 starts at the beginning of time unit lT , 599 

its completion time should be at the end of time unit 1tα+ −
llT . 600 

Proposition 1: For an activity sequence, whether constraints (22)–(24) have a feasible 601 

solution can be checked below: for activity 1α , let its start time 
1

*
1 αω=T ; for activity 602 

lα , 2,..., 1l L= + , let its start time 
1

* *
1max{ , }tα αω−−= +

l ll lT T , 2,..., 1L= +l ; if * 1tα αϖ − +≤
l llT ,603 

1,..., 1l L= + , then the activity sequence is feasible; otherwise it is infeasible. 604 

Proof: 605 

The “if” part of the proposition is straightforward because it is easy to check that 606 
*( , 1,..., 1)L= +l lT  is indeed feasible to constraints (22)–(24). To prove the “only if” part, 607 

suppose that constraints (22)–(24) have a feasible solution 608 
# *( , 1,..., 1) ( , 1,..., 1)L L= + ≠ = +l ll lT T . Denote by l̂  the index of the first different elements 609 

of vectors #( , 1,..., 1)L= +l lT   and *( , 1,..., 1)L= +l lT  , that is # *=l lT T  , ˆ1,..., 1= −l l   and 610 

# *
ˆ ˆ≠l lT T  . If ˆ 1=l  , we define a new vector &( , 1,..., 1)L= +l lT   such that 

1

&
1 αω=T   and 611 

& #=l lT T  , 2,..., 1L= +l  . If ˆ 2,..., 1L= +l  , we define a new vector &( , 1,..., 1)L= +l lT   such 612 

that & #=l lT T , ˆ1,..., 1= −l l , 
ˆ ˆ1

& &
ˆ ˆ 1

max{ , }tα αω−−
= +

l ll lT T  and & #=l lT T , ˆ 1,..., 1L= + +l l . In both 613 

cases, it is easy to check that &( , 1,..., 1)L= +l lT  is feasible to constraints (22)–(24). We 614 

can now set * &( , 1,..., 1) ( , 1,..., 1)L L= + ← = +l ll lT T  and repeat the above procedure. It can 615 
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be seen that by repeating the above procedure at most 1L +  times, we will generate a 616 

feasible solution &( , 1,..., 1)L= +l lT  that is identical to *( , 1,..., 1)L= +l lT . In other words, 617 

constraints (22)–(24) have a feasible solution only if *( , 1,..., 1)L= +l lT  is feasible. This 618 

concludes the proof of the proposition. □ 619 

We use the following example to illustrate the steps to decide whether an activity 620 

sequence 1 2 1... Lα α α +→ → →  is feasible. 621 

Example 1. Given 3L =   and 1 2 3' { , , }S s s s=   for activity sequence 1 2 3 4α α α α→ → →  . 622 

Particularly, activities 1α  , 2α  , and 4α   are ship inspections for 1s  , 2s  , and 3s  623 

respectively and activity 3α  is lunch break. The berthing periods of 1s , 2s , and 3s  624 

are during 8:00 to 13:00, 9:00 to 18:30, and 13:00 to 17:30, respectively. Therefore, we 625 

have 
1

1αω =   and 
1

10αϖ =   for activity 1α  , 
2

3αω =   and 
2

18αϖ =   for activity 2α  ,  626 

3
7αω =   and 

3
12αϖ =   for activity 3α  , and 

4
11αω =   and 

4
18αϖ =   for activity 4α  . The 627 

earliest start time of each activity should be 
1

*
1 1αω= =T  , 

2

* *
2 1max{ 4, } 5αω= + =T T  , 628 

3

* *
3 2max{ 4, } 9αω= + =T T  , and 

4

* *
4 3max{ 2, } 11αω= + =T T  . The earliest start time of each 629 

activity satisfies 
1

*
1 4 1 7αϖ − +≤ =T  , 

2

*
2 4 1 15αϖ − + =≤T  , 

3

*
3 2 1 11αϖ − + =≤T  , and 630 

4

*
4 4 1 15αϖ − + =≤T , and thus the activity sequence is feasible and 'S  is an inspection 631 

template.□ 632 

Proposition 2: Given a combination of 1,2,3L =  ships denoted by S , if it is not an 633 

inspection template, any set of 1L +  ships (denoted by Ŝ ) containing all ships in S , 634 

i.e. ˆS S⊂  cannot be an inspection template.  635 

Proposition 3: Given an inspection template containing 2,3, 4L =  ships denoted by S , 636 

all subsets of S  containing ' 1L L= −  ships are inspection templates.  637 

Proposition 2 and Proposition 3 are the basis of inspection template construction. 638 

They are intuitive and thus we omit their proof. Based on the two propositions, the 639 

following two properties of inspection templates can be derived to reduce the trials and 640 

the total number of generated inspection templates.  641 

Property 1: If there is a combination with 1L =  ship associated with berthing period 642 

smaller than 4 time units or from time unit 8 to time unit 11, or with zero predicted 643 

deficiency number, we can simply ignore it as it cannot be inspected during its berthing 644 

period or inspecting the ship will not bring benefits. 645 

Property 2: Candidate 2L ≥  inspection templates can be formulated by combining all  646 
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pairs of 1L −  inspection templates with the first 2L −  items the same. 647 

Property 1 and Property 2 can highly improve the efficiency of inspection 648 

templates generation. The overall procedure to generate the set of all inspection 649 

templates (denoted by Η ) is shown in Procedure 1.  650 

Procedure 1: generation of the set of inspection templates Η  
Input: the set of foreign ships that need to be inspected S , duration of a PSC inspection, 
ship berthing information seτ , s S∈ , 1,...,τ = Τ , the duration and period of PSCO lunch 
break, the total number of time units Τ . 
Output: the set of all feasible inspection templates Η  , binary parameter 

s

ηδ  , Ss∈  , 
η ∈Η  indicating whether ship s  is contained in inspection template η . 
Initialize Η =∅ , 

s

ηδ , Ss∈ , η ∈Η . 
for 0,1,2,3,4L =  do 

if 2L < : 
Formulate all combinations containing L   ships that can be inspected based on 
Property 1 from S  denoted by ¤ . 

else: 
Formulate the combinations containing L  ships as denoted by ¤  such that each 
combination contains two items of 1L −  ships from Η  and they have the same 

2L −  ship based on Property 2. 
end if 
for each combination Q̂∈¤  do 

Initialize feasibility = False. 
Formulate set Q   that contains all permutations (i.e. activity sequences) of the 
activities of inspecting the ships in Q̂  and having lunch break. 
for each activity sequence q Q∈  do 

Test the feasibility of q  using Proposition 1.   
if q  is feasible: 

Add Q̂  to Η  by updating Q̂Η = Η∪ . 
Update parameter 1

s

ηδ = , ˆs Q∈ , η ∈Η .  
Update feasibility = True. 
break 

else: 
continue 

end if 
end for 
if feasibility = True: 

break 
else: 

continue 
end for 

end for 
Return Η  and 

s

ηδ . 
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After obtaining Η  and 
s

ηδ , Ss∈ , η ∈Η  by executing Procedure 1, the estimated 651 

number of deficiencies that can be detected in inspection template η  is s s
s S

D dηη δ
∈

=∑ , 652 

η∈Η . To assign the inspection templates to the PSCOs, we introduce binary decision 653 

variable zη  which is set to 1 if inspection template η∈Η  is adopted and 0, otherwise. 654 

The PSCO scheduling problem aiming to maximize the total number of detected 655 

deficiencies based on inspection templates can be formulated by mathematical model 656 

M2. 657 

[M2]           max D zη η
η∈Η
∑                         (25) 658 

s.t. 659 

 z Pη
η∈Η

≤∑   (26) 660 

 1,s z s Sη
η

η

δ
∈Η

≤ ∀ ∈∑   (27) 661 

 {0,1},zη η∈ ∀ ∈Η .  (28) 662 

Objective function (25) maximizes the estimated total number of deficiencies that 663 

can be detected. Constraint (26) ensures that the total number of adopted inspection 664 

templates should be no more than the total number of PSCOs. Constraints (27) 665 

guarantee that each ship can only be inspected at most once. 666 

5.3 PSCO scheduling model M3 667 

Model M2 considers all the inspection templates in Η   indifferently, which is 668 

time-consuming when | |Η   is large. Meanwhile, it is noted that if we reformulate 669 

constraints (27) which require that a ship can only be inspected at most once, we can 670 

only consider the inspection templates that are not contained in any other inspection 671 

template(s), which we denote by un-dominated inspection templates, as inspecting them 672 

can always detect more deficiencies than inspecting the inspection templates contained 673 

in them according to Property 1. In this way, the number of inspection templates 674 

considered in the PSCO scheduling optimization model can be reduced largely. 675 

However, one problem is that the number of deficiencies of one ship might be calculated 676 

several times in the objective function of M2 as it can be contained in several inspection 677 

templates selected by a solution. To overcome this issue, we further introduce binary 678 

decision variables sξ , s S∈  which is set to 1 if ship s  is inspected and 0, otherwise. 679 

In addition, we form set Η%  which contains all un-dominated inspection templates 680 
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using Procedure 1 by adding only the inspection templates with 1,2,3L =  that cannot 681 

be further combined with others to generate larger valid inspection templates and all 682 

the inspection templates with 4L = . Mathematical model M3 is developed based on 683 

inspection template set Η%  and decision variables sξ  , s S∈   and zη  , η ∈Η   to 684 

reduce the number of inspection templates considered in the master problem as follows. 685 

[M3] 
 max s s

s S
d ξ

∈
∑   (29) 686 

s.t. 687 

 ,s s z s Sη
η

η

ξ δ
∈Η

≤ ∀ ∈∑ 




 (30) 688 

 z Pη
η∈Η

≤∑ %
%%

 (31) 689 

 {0,1},zη η∈ ∀ ∈Η%
%%   (32) 690 

 {0,1},s s Sξ ∈ ∀ ∈ .  (33) 691 

Like Eq. (25), objective function (29) also maximizes the total estimated number 692 

of deficiencies that can be detected. Constraints (30) indicate the relationship between 693 

sξ  and zη%. Constraints (31) require the maximum number of un-dominated inspection 694 

templates that can be selected. Constraints (32) and (33) guarantee the domain of the 695 

decision variables. It should be noted that although M3 does not require that each ship 696 

can only be inspected at most once, the objective function only calculates its estimated 697 

deficiency number once it is inspected and thus model M3 is equivalent to model M2.  698 

To further improve the efficiency of model M3, we propose the following 699 

proposition: 700 

Proposition 4: For two ships 1s   and 2s  , if 
1 2s sd d>   and 701 

2 2 1 1{ | 1, } { | 1, }s s s se e e eτ τ τ ττ τ= ∀ ∈Τ ⊆ = ∀ ∈Τ  , i.e. ship 1s   has larger estimated number of 702 

deficiencies than ship 2s  and the set of berthing period of ship 2s  is a sub-set of that 703 

of ship 1s  (we denote the relationship between 1s  and 2s  by “ 1s  dominates 2s ”), 704 

we must have 
1 2s sξ ξ≥  in an optimal solution. 705 

Proof: 706 

Consider two ships 1s   and 2s   with 
1 2s sd d>   and 707 

2 2 1 1{ | 1, } { | 1, }s s s se e e eτ τ τ ττ τ= ∀ ∈Τ ⊆ = ∀ ∈Τ  , i.e. 1s   dominates 2s  . If an optimal solution 708 

chooses a set of ships 'S  for inspection, there can be several situations regarding ships 709 



26 
 

1s  and 2s : 710 

Situation 1: if 1 's S∈  and 2 's S∈ , 
1 2s sξ ξ≥  is satisfied. 711 

Situation 2: if 1 's S∉  and 2 's S∉ , 
1 2s sξ ξ≥  is satisfied. 712 

Situation 3: if 1 's S∈  and 2 's S∉ , 
1 2s sξ ξ≥  is satisfied. 713 

Situation 4: if 1 's S∉  and 2 's S∈ , we can expect that another feasible set of ships 'S  714 

formulated by substituting ship 2s   by 1s   in 'S   can increase the value of the 715 

objective function by 
1 2s sd d−  and thus 'S  should not be an optimal solution, which 716 

is contradictory to the given conditions. Therefore, Situation 4 cannot be a case in any 717 

optimal solution, and 
1 2s sξ ξ≥  can always be satisfied in the optimal solution(s).□ 718 

To incorporate Proposition 4 into model M3, we introduce a binary matrix 719 

' '' | | | |[ ]s s S SB b ×=   which can be derived directly from ship visiting information and 720 

deficiency condition to indicate whether ship 's S∈   dominates ''s S∈  . If 's  721 

dominates ''s  , we set ' '' 1s sb =  ; otherwise, ' '' 0s sb =  . Especially, we require ' '' 0s sb =   if 722 

' ''s s= . The following strengthened constraints based on B  can be added to M3 to 723 

improve its efficiency: 724 

 ' '' ' '' 1, ' , ''s s s sb s S s Sξ ξ− ≥ − ∈ ∈ .  (34) 725 

 726 

6. Computational experiments 727 

We take the port of Hong Kong as an example to validate the proposed PSCO 728 

scheduling models M1, M2, and M3. Particularly, we first compare the computing 729 

performance of the three models in section 6.1. Then, comparisons between the current 730 

and proposed PSCO scheduling models are conducted in section 6.2. In section 6.3, 731 

results of extensive sensitivity analysis are presented to further validate the proposed 732 

models.  733 

6.1 Comparison of computing performance of M1, M2, and M3 734 

To compare the computing performance of M1, M2, and M3 (including generation 735 

of all inspection templates, un-dominated inspection templates, and binary matrix 736 

' '' | | | |[ ]s s S SB b ×= ), we set the number of PSCOs to 4, 6, 8 and 10, and the number of ships 737 

that need to be inspected to 30, 40, 50, and 60 and combine them one by one in several 738 

scenarios. Ships for inspection are selected from test set i and the number of deficiencies 739 

of them is predicted by the XGBoost model developed in Section 3. We assume that a 740 

ship can arrive at a port at any time during a day, and their staying period ranges from 741 
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0 to 18 consecutive time units from 8:00 to 17:00. As all the PSCO scheduling models 742 

M1, M2, and M3 are integer linear programming (ILP) models, they are solved by the 743 

off-the-shelf optimization solver CPLEX. In addition, we compare the performance of 744 

PSCO scheduling decisions generated by M1, M2, and M3 with the current greedy 745 

PSCO scheduling strategy applied at the Hong Kong port, whose detailed description 746 

is presented in Appendix D. We call the current scheduling strategy “random scheduling 747 

case”, and it aims to assign as many ships as possible to each available PSCO for 748 

inspection in a greedy manner. Besides, we present the performance of the proposed 749 

PSCO scheduling model utilizing the predicted deficiency number from a perfect-750 

foresight prediction which knows the actual deficiency number of all ships in advance 751 

(denoted by “perfect-forecast policy”). The identified deficiency number based on the 752 

perfect-foresight policy is an upper bound in theory which cannot be achieved. 753 

All experiments are conducted on a laptop (Intel Core i7, 3.40 GHz, 16GB RAM) 754 

using programming language Python. The inspection templates in M2 are generated 755 

using Procedure 1, and the un-dominated inspection templates in M3 are generated 756 

based on Procedure 1. Table 9 summarizes the computing performance of the three 757 

models, including the average computation time (in CPU seconds), the standard 758 

deviation of computation time, the number of inspection templates generated, the 759 

number of un-dominated inspection templates generated, the reduction in percentage of 760 

the number of un-dominated inspection templates compared to that of all the inspection 761 

templates, the average improvement of M1/M2/M3 over random scheduling case, and 762 

the average gap between M1/M2/M3 and the perfect-forecast policy in all cases of each 763 

scenario. 764 
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Table 9. Comparison of computing performance of M1, M2, and M3  765 
No. of 
PSCOs 

Scenarios Model Number of ships 
30 40 50 60 

4 Average total computation time* M1 5.75  7.80  10.18  13.35  
M2 0.48  2.30  9.11  25.47  
M3 0.46  2.09  7.95  23.89  

Standard deviation of computation time* M1 4.21  2.69  7.98  7.51  
M2 0.18  0.74  3.52  8.65  
M3 0.16  0.64  2.87  8.01  

The number of inspection templates in Η   M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in Η   

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100%Η − Η Η ×   \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 
random scheduling case 

\ 22.10% 34.57% 35.56% 43.72% 

Average gap between M1/M2/M3 and the 
perfect-forecast policy 

\ 9.64% 11.24% 16.28% 17.52% 

6 Average total computation time M1 19.16  30.85  36.26  47.98  
M2 0.47  2.32  8.58  25.06  
M3 0.46  2.07  7.83  23.25  

Standard deviation of computation time M1 10.74  13.49  23.90  28.24  
M2 0.18  0.70  3.37  8.13  
M3 0.15  0.63  3.16  6.61  

The number of inspection templates in Η   M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in Η   

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100%Η − Η Η ×   \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 
random scheduling case 

\ 13.93% 20.17% 24.57% 29.81% 

Average gap between M1/M2/M3 and the 
perfect-forecast policy 

\ 5.88% 7.83% 10.90% 12.95% 

8 Average total computation time M1 31.97  64.18  102.95  195.14  
M2 0.52   2.21  8.22  24.78  
M3 0.49  2.00  7.66  24.04  

Standard deviation of computation time M1 57.54  48.71  70.15  257.11  
M2 0.23  0.67  3.08  7.39  
M3 0.23  0.62  2.83  8.03  

The number of inspection templates in Η   M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in Η   

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100%Η − Η Η ×   \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 
random scheduling case 

\ 6.04% 13.74% 18.32% 24.73% 

Average gap between M1/M2/M3 and the 
perfect-forecast policy 

\ 4.19% 5.94% 7.52% 8.97% 

10 Average total computation time M1 89.53  614.45  295.13  377.39  
M2 0.49  2.24  8.53  25.22  
M3 0.43  2.05  7.46  22.36  

Standard deviation of computation time M1 195.82  1492.04  340.93  366.52  
M2 0.19  0.67  3.39  7.80  
M3 0.17  0.64  2.73  6.44  

The number of inspection templates in Η   M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in Η   

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100%Η − Η Η ×   \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 
random scheduling case 

\ 1.21% 8.07% 13.90% 18.55% 

Average gap between M1/M2/M3 and the 
perfect-forecast policy 

\ 1.40% 3.94% 5.74% 6.47% 

Note*: the computation time of M2 includes the time to generate all inspection templates, and the 766 
computation time of M3 includes the time to generate matrix B   and all un-dominated inspection 767 
templates. 768 
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For the average computation time, it is indicated in Table 9 that in almost all the 769 

cases, much less time is required to solve M2 and M3 compared to the time used to 770 

solve M1, except when the number of PSCOs is 4 and the number of ships is 60. The 771 

difference of the computation time between M1 and M2/M3 becomes larger as the 772 

number of PSCOs increases. Meanwhile, the difference of the computation time 773 

between M2 and M3 shows an increasing trend when there are more visiting ships. To 774 

be more specific, when the number of PSCOs is fixed and the number of ships increases, 775 

i.e. from left to right in each row of the table, the computation time of all the three 776 

models shows an increasing trend as expected. When the number of ships is fixed and 777 

the number of PSCOs increases, i.e. from top to bottom in each column of the table, the 778 

model computation time increases faster and faster in M1. Meanwhile, there are only 779 

some minor fluctuations in the model computation time of M2 and M3. This is because 780 

the number of PSCOs has no influence on the generation of inspection templates and 781 

un-dominated inspection templates, which occupies most of the computation time of 782 

M2 and M3, respectively.  783 

The standard deviation of model computation time of M1 is much larger than that 784 

of M2 and M3 in most of the cases listed in Table 9, and M2 is a little bit larger than 785 

M3 in most cases. Particularly, in M1, when the number of ships is fixed and the number 786 

of PSCOs increases, the standard deviation of computation time shows a rapid upward 787 

trend. There is also a general upward trend in the standard deviation of computation 788 

time when the number of ships increases while the number of PSCOs remains 789 

unchanged in M1. Meanwhile, in M2 and M3 with similar pattern, the standard 790 

deviation of computation time increases dramatically when the number of ships 791 

increases given a certain number of PSCOs. When the number of PSCOs increases with 792 

a fixed number of ships, there are many fluctuations in the standard deviation of 793 

computation time of both M2 and M3.  794 

When the number of visiting foreign ships increases from 30 to 60, the numbers of 795 

inspection templates and un-dominated inspection templates grow, while the difference 796 

between them decreases. On average, the number of un-dominated inspection templates 797 

considered in M3 is about 72% of the inspection templates considered in M2. In 798 

addition, M1/M2/M3 perform better than the currently implemented random PSCO 799 

scheduling strategy at the ports in all cases. When the number of PSCOs increases given 800 

a certain number of visiting ships, the advantage of M1/M2/M3 over random scheduling 801 

and the advantage of perfect-forecast policy over M1/M2/M3 are reduce. When there 802 
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are more visiting ships while the number of PSCOs is fixed, both the gap between 803 

M1/M2/M3 and random scheduling and the gap between perfect-forecast policy and 804 

M1/M2/M3 increase. 805 

To summarize, the average model computation time and its standard deviation of 806 

M2 are much smaller than those of M1 in most cases, and the average total model 807 

computation time and its standard deviation of M3 are smaller than those of M2 in most 808 

cases as shown in Table 9. Besides, model computation time of M2 and M3 is less 809 

sensitive to the increase of the number of PSCOs given a fixed number of ships, as the 810 

process to generate inspection templates and un-dominated inspection templates is not 811 

influenced by the number of PSCOs. In all scenarios, the proposed M1/M2/M3 perform 812 

better than the current random scheduling strategy, and the gap between M1/M2/M3 813 

and the perfect-forecast policy decreases when there are more PSCOs or fewer visiting 814 

ships. We can therefore conclude that M3 is the most efficient, stable, and flexible 815 

model among M1, M2, and M3. Especially, M3 is more suitable to be applied to the 816 

ports where there are a larger number of available PSCOs or more visiting ships.  817 

6.2 Comparison of current and the proposed PSCO scheduling strategies 818 
We compare the performance of current PSCO scheduling strategy applied at port 819 

and the proposed models in this section. For each day, we randomly select 20 ships 820 

from test set i as the visiting ships that need to be inspected at the Hong Kong port. We 821 

further assume that the number of PSCOs on duty for that day is 3, and their daily work 822 

time is fixed as mentioned in section 3. As M1, M2 and M3 are equivalent and section 823 

6.1 shows that M3 is more efficient than M1 and M2, the following experiments are 824 

only conducted on M3. We randomly generate 30 groups of ships from test set i in the 825 

experiment. The performance of random scheduling case (average of 100 runs), M3, 826 

and the perfect-forecast policy solved by M3 and their comparisons are presented in 827 

Table 10. 828 
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Table 10. Performance and comparison of PSCO scheduling models 829 
Group Actual identified 

deficiency number 
of random 
scheduling case 

Actual identified 
deficiency number 
of M3 

Identified deficiency 
number under perfect-
forecast policy as 
solved by M3 

Improvement of M3 
over random 
scheduling case 

Gap between 
M3 and the 
perfect-forecast 
policy 

1 16  24 30 46.6% 20.0% 
2 59  68 71 15.4% 4.2% 
3 36  37 43 4.0% 14.0% 
4 46  74 78 61.8% 5.1% 
5 56  57 65 2.3% 12.3% 
6 53  58 62 10.4% 6.5% 
7 27  41 41 51.5% 0.0% 
8 65  73 78 12.6% 6.4% 
9 55  71 72 29.6% 1.4% 
10 37  41 51 9.9% 19.6% 
11 43  57 65 33.8% 12.3% 
12 17  25 31 46.6% 19.4% 
13 59  75 79 27.0% 5.1% 
14 42  47 63 12.5% 25.4% 
15 42  54 56 29.6% 3.6% 
16 60  69 75 15.2% 8.0% 
17 59  66 66 11.6% 0.0% 
18 41  48 55 15.9% 12.7% 
19 39  55 59 39.8% 6.8% 
20 55  66 67 20.8% 1.5% 
21 61  64 68 5.4% 5.9% 
22 46  49 54 7.2% 9.3% 
23 34  48 49 42.5% 2.0% 
24 33  45 46 36.2% 2.2% 
25 32  36 37 11.6% 2.7% 
26 63  77 78 22.1% 1.3% 
27 29  39 47 35.4% 17.0% 
28 47  55 58 18.3% 5.2% 
29 51  56 65 9.5% 13.8% 
30 50  61 72 22.2% 15.3% 
Average 45.0067  54.5333  59.3667  21.2% 8.1% 

Table 10 shows that the average improvement of M3 with the prediction of 830 

XGBoost as the input over the random PSCO scheduling case is over 20%. This implies 831 

that the combination of XGBoost model for ship deficiency number prediction and the 832 

mathematical models M1/M2/M3 for PSCO scheduling can identify 20% more 833 

deficiencies than the current PSCO scheduling scheme with the same inspection 834 

resources. Besides, the gap between the proposed model and the perfect-forecast policy 835 

is about 8%, which indicates that the proposed combined model can identify about 92% 836 

of all existing deficiencies.  837 

6.3 Sensitivity analysis 838 
In this section, we analyze how the number of ships to be inspected, the number of 839 

available PSCOs for conducting inspection, and ship berthing duration and period will 840 

influence the performance of M3 (and M1, M2). Four groups of sensitivity analysis 841 

(SA) are performed: SA1: different numbers of ships for inspection; SA2: different 842 

numbers of available PSCOs; SA3: different berthing durations of ships; SA4: different 843 

berthing periods of ships. In each group of SA, the number of deficiencies identified is 844 

calculated based on 10 runs.  845 
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6.3.1. SA1: different numbers of ships for inspection 846 
First, we analyze how the number of ships that need to be inspected would influence 847 

the performance of M3. We set the number of ships to 15, 20, 25, 30, 35, 40, 45, and 848 

50, respectively while fixing the number of PSCOs to 3 in SA1G1 to SA1G8. The 849 

performance of random scheduling case (based on 100 runs), M3, and the perfect-850 

foresight policy and their comparison are presented in Table 11. 851 

Table 11. Performance of the groups in SA1 852 
Group SA1G1 SA1G2 SA1G3 SA1G4 SA1G5 SA1G6 SA1G7 SA1G8 
Number of ships 15 20 25 30 35 40 45 50 
Random scheduling case 34.1  44.4  48.3  52.9  54.5  55.7  55.9  57.4  
M3 41.2 54.4 58.0 66.8 71.5 78.8 81.2 84.0 
Perfect-foresight policy 44.3 59.1 66.1 76.6 82.9 91.4 97.7 104.8 
Superiority of M3 over 
random scheduling case 

20.9% 22.5% 20.0% 26.2% 31.2% 41.4% 45.3% 46.3% 

Gap between M3 and the 
perfect-foresight policy  

7.5% 8.6% 14.0% 14.7% 15.9% 16.0% 20.3% 24.8% 

Table 11 shows that when the number of ships increases from 15 to 50 while the 853 

number of PSCOs remains unchanged, the numbers of deficiencies identified in random 854 

scheduling case, M3, and the perfect-foresight policy increase. This can be explained 855 

as follows. In random scheduling case which aims to assign as many ships to each 856 

PSCO as possible, a larger number of ships can be inspected by one PSCO as the total 857 

number of visiting ships increases. For M3 and the perfect-foresight policy, although 858 

the inspection resources are fixed, more ships with larger number of deficiencies can 859 

be selected for inspection when the total number of visiting ships grows. Meanwhile, 860 

Table 11 also indicates that both the superiority of M3 over random scheduling case 861 

and the gap between M3 and the perfect-foresight policy show an increasing trend. This 862 

is because as the perfect-foresight policy can capture the ships with more deficiencies 863 

more efficiently than M3, the gap between them became larger as the number of visiting 864 

ships increases. This explanation can also be applied for the changes in the gap between 865 

M3 and random scheduling case.  866 

6.3.2. SA2: different numbers of available PSCOs 867 
Second, we analyze how the number of available PSCOs to carry out PSC 868 

inspection would influence the performance of M3. We set the number of ships for 869 

inspection to 30, and the number of PSCOs to 2, 3, 4, and 5 in SA2G1 to SA2G4, 870 

respectively. The performance of random scheduling case (based on 100 runs), M3, and 871 

the perfect-foresight policy and their comparison are presented in Table 12. 872 

  873 
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Table 12. Performance of the groups in SA2 874 
Group SA2G1 SA2G2 SA2G3 SA2G4 
Number of PSCOs 2 3 4 5 
Random scheduling case 37.4  53.1  63.9  70.5  
M3 51.8 66.8 77.8 86.4 
Perfect-foresight policy 61.6 76.6 86.1 92.9 
Superiority of M3 over random 
scheduling case 

38.5% 25.8% 21.8% 22.6% 

Gap between M3 and the perfect-
foresight policy  

18.9% 14.7% 10.7% 7.5% 

Table 12 indicates that when the number of ships that need to be inspected remains 875 

to be 30 while the number of PSCOs increases from 2 to 5, the total number of 876 

deficiencies that can be detected grows as expected. In addition, both the superiority of 877 

M3 over random scheduling case and the gap between M3 and the perfect-foresight 878 

policy show a decreasing trend. Particularly, such decreasing trend is more obvious in 879 

the gap between M3 and the perfect-foresight policy. This can be explained by the fact 880 

that as the number of available PSCOs increases, more ships can be assigned for 881 

inspection and thus to reduce the superiority of models with better performance as more 882 

ships with large number of deficiencies can be captured. Especially, for M3 which is 883 

based on the prediction given by XGBoost, more ships with larger real deficiency 884 

number can be captured for inspection although the XGBoost model is not perfect. As 885 

a consequence, the gap between M3 and the perfect-foresight policy gets closer more 886 

quickly than the superiority of M3 over random scheduling case as the number of 887 

inspected ships grows.  888 

6.3.3. SA3: different berthing durations of ships 889 
Third, we analyze model performance when the berthing duration of ships varies. 890 

We assume that the number of ships for inspection is 30 and the number of available 891 

PSCOs is 3. As only when a ship berths at a port for no less than two hours can the ship 892 

be inspected, we consider eight groups where the berthing duration of all ships is 2, 893 

3, …., 8, 9 hours respectively denoted by SA3G1 to SA3G8. The consecutive berthing 894 

time units are randomly generated for all ships in each group. The performance of 895 

random scheduling case (based on 100 runs), M3, and the perfect-foresight policy and 896 

their comparison are presented in Table 13. 897 
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Table 13. Performance of the groups in SA3 898 
Group SA3G1 SA3G2 SA3G3 SA3G4 SA3G5 SA3G6 SA3G7 SA3G8 
Berthing duration of all 
ships 

2 hours  3 hours  4 hours  5 hours  6 hours  7 hours  8 hours  9 hours  

Random scheduling case 38.3  42.8  48.4  50.7  52.2  45.9  48.8  51.3  
M3 58.9 62.6 66.4 72.4 74.4 72.0 74.2 75.0 
Perfect-foresight policy 71.8 82.9 89.3 94.5 96.0 90.7 95.1 95.0 
Superiority of M3 over 
random scheduling case 

53.6% 46.1% 37.2% 42.9% 42.4% 56.8% 52.0% 46.1% 

Gap between M3 and 
the perfect-foresight 
policy 

21.9% 32.4% 34.5% 30.5% 29.0% 26.0% 28.2% 26.7% 

Table 13 shows that as the berthing duration of all ships increases, the total number 899 

of deficiencies detected also shows an upward trend although there are fluctuations due 900 

to the randomness in ship conditions. Meanwhile, there is no obvious pattern in the 901 

change of the gap between random scheduling case and M3 and the gap between M3 902 

and the perfect-foresight policy when ship berthing duration increases. The superiority 903 

of M3 over random scheduling case is maximized at 56.8% when the berthing duration 904 

of all ships is 7 hours. The gap between M3 and the perfect-foresight policy is 905 

maximized at 34.5% when the berthing duration of all ships is 4 hours. 906 

6.3.4. SA4: different berthing periods of ships 907 
Fourth, we analyze how ship berthing period (during the work time of PSCOs) can 908 

influence the model performance. We set the number of ships for inspection to be 30 909 

and the number of available PSCOs to be 3. We consider four groups of berthing periods 910 

as denoted by SA4G1 to SA4G4, respectively. In SA4G1, the berthing period of all 911 

ships is only in the morning (from 8:00 to 12:30). In SA4G2, the berthing period of all 912 

ships is only in the afternoon (from 12:30 to 17:00). In SA4G3, the berthing period of 913 

one-third of the ships is in the morning, in the afternoon, and both in the morning and 914 

in the afternoon, respectively. In SA4G4, the berthing period of half of the ships is in 915 

the morning and the other half is in the afternoon. The berthing duration is randomly 916 

generated for all ships. The performance and comparison of random scheduling case 917 

(based on 100 runs), M3, and the perfect-foresight policy are presented in Table 14. 918 

Table 14. Performance of the groups in SA4 919 
Group SA4G1 SA4G2 SA4G3 SA4G4 
Distribution of berthing 
period 

All ships in 
the morning  

All ships in 
the afternoon 

1/3 ships in the morning, 
1/3 ships in the afternoon, 
and 1/3 ships in the 
morning and afternoon 

1/2 ships in the 
morning and 1/2 ships 
in the afternoon 

Random scheduling case 23.1  22.2  47.1  50.5  
M3 41.4 40.8 69.5 66.2 
Perfect-foresight policy 61.1 59.1 88.2 87.1 
Superiority of M3 over 
random scheduling case 

79.4% 83.5% 47.7% 31.0% 

Gap between M3 and the 
perfect-foresight policy 

47.6% 44.9% 26.9% 31.6% 

Table 14 shows that the number of deficiencies identified is smaller when there is 920 
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more overlap in ship berthing period (i.e. in SA4G1 and SA4G2) than less overlap (i.e. 921 

in SA4G3 and SA4G4). Meanwhile, the average gaps between random scheduling case 922 

and M3 as well as between M3 and the perfect-foresight policy in SA4G1 and SA4G2 923 

are much larger than those in SA4G3 and SA4G4. This is also because more ships can 924 

be inspected when their berthing period is more scattered, which would reduce the 925 

superiority of prediction models with better performance.  926 

 927 

7. Conclusion 928 

PSC inspection is a safeguard of maritime safety, the marine environment, and the 929 

rights of seafarers. To improve ship selection efficiency, this study first proposes an 930 

accurate XGBoost model to predict ship deficiency number. Particularly, domain 931 

knowledge regarding ship flag, RO, and company performance is considered in the 932 

XGBoost model, which improves its accuracy and fairness. Based on the predictions, 933 

an initial PSCO scheduling model is proposed to assign the PSCOs to inspect the 934 

predicted high-risk ships which also considers the number of available PSCOs and their 935 

work and rest time. To reduce problem size and improve model computation efficiency 936 

and flexibility, concepts of inspection template and un-dominated inspection template 937 

are further proposed and incorporated in the PSCO scheduling models.  938 

In numerical experiments, we use the real PSC inspection records at the Hong Kong 939 

port from January 2016 to December 2018 as the case dataset to construct and validate 940 

the proposed models. Numerical experiments show that the MSE and MAE of the 941 

XGBoost model is 12.5 and 2.4 in the test set, respectively, which are better than the 942 

other popular machine learning models compared in this study. Moreover, when ship 943 

flag performance gets worse from white to grey and from grey to black, 0.8 and 0.2 944 

more deficiency will be detected on average, respectively. When RO performance gets 945 

worse from high to medium, 0.3 more deficiency will be detected on average. When 946 

company performance gets worse from high to medium, from medium to low, and from 947 

low to very low, 0.5, 0.8, and 1.5 more deficiencies will be detected on average, 948 

respectively. When combining the predictions with PSCO scheduling models, it is 949 

shown that the superiority of the proposed PSCO scheduling models over the current 950 

inspection scheme regarding the number of deficiencies identified is more than 20%. 951 

The gap between the proposed model and the model under perfect-forecast policy is 952 

about 8% regarding the number of deficiencies identified. Meanwhile, computation 953 

efficiency and flexibility of the PSCO scheduling model with inspection templates are 954 
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higher than the initial PSCO scheduling model. Problem size can be reduced and the 955 

computation efficiency can be further improved in the PSCO scheduling model which 956 

takes un-dominated inspection templates and the relationship between each of the two 957 

ships into consideration. Extensive sensitivity analysis shows that when changing the 958 

numbers of ships for inspection, the numbers of available PSCOs, the berthing 959 

durations of ships, and the berthing periods of ships, the performance of the proposed 960 

PSCO scheduling model is stable and it is always better than the current model used at 961 

ports.  962 

This study addresses an important practical problem in maritime industry. 963 

Theoretically, it proposes the first ship risk prediction model for PSC inspection 964 

considering domain knowledge. It also develops the first PSCO scheduling models 965 

based on the predictions to efficiently allocate scarce inspection resources for ship 966 

inspection. Moreover, the concepts of inspection template and un-dominated inspection 967 

template are proposed and incorporated in the PSCO scheduling model to improve 968 

computation efficiency and model flexibility. Practically, it helps port states to identify 969 

high-risk ships and assign the PSCOs more efficiently. Therefore, the main objectives 970 

of PSC to eliminate substandard shipping and safeguard the sea can be enhanced.971 
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Appendix A. Introduction of prediction target and features 972 
Table A1. Variable explanation, encoding method, and descriptive statistics 973 

Variable 
name 

Explanation   Encoding Mean 
value 

Min 
value 

Max 
value 

deficiency 
number 

The number of deficiencies identified in the current PSC 
initial inspection. 

No encoding 4.31 0 51 

age The time interval (in years) between the keel laid date 
and the current PSC inspection date. 

No encoding 10.8 0 47 

GT A nonlinear measure of a ship’s internal volume, with 
100 cubic feet as the unit. 

No encoding 44,908 497 266,681 

length The overall maximum length of a ship (in meters). No encoding 214.88 32.29 400 
depth The vertical distance (in meters) measured from the top 

of the keel to the upper deck at side measured inside the 
plating. 

No encoding 17.79 4.28 36.02 

beam The width of ship hull (in meters). No encoding 31.93 7.38 60.05 
type Ships in the dataset are classified into the following 

types: bulk carrier, container ship, general 
cargo/multipurpose, passenger ship, tanker, and other. 

One-hot encoding: 
is_bulk_carrier: 1 for bulk carrier and 0, otherwise; 
is_container_ship: 1 for container ship and 0, otherwise; 
is_ general cargo/multipurpose: 1 for general cargo/multipurpose and 
0, otherwise; 
is_ passenger_ship: 1 for passenger ship and 0, otherwise; 
is_tanker: 1 for tanker and 0, otherwise; 
is_other: 1 for other ship types and 0, otherwise. 

\ \ \ 

flag 
performance 

Ship flag performance is calculated based on the flag 
Black-Grey-White list provided by Tokyo MoU (Tokyo 
MoU, 2018). 

Label encoding: 
white->1*; grey->2; black->3. 

\ \ \ 

RO 
performance 

Ship RO performance is calculated based on RO 
performance list provided by Tokyo MoU (Tokyo MoU, 
2018). 

Label encoding: 
high->1; medium->2; low->3. 

\ \ \ 
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company 
performance 

Ship company performance is calculated based on 
company performance matrix provided by Tokyo MoU 
(Tokyo MoU, 2018) 

Label encoding: 
high->1; medium->2; low->3; very low->4. 

\ \ \ 

last 
inspection 
date 

The time interval between the last and current PSC 
initial inspections within Tokyo MoU (in months). For 
ships that are inspected for the first time (i.e. with no 
previous inspection records), the state of this variable is 
set to be “−1”. 

No encoding. 10.2 0 180.7 
  

last 
deficiency 
number 

The number of deficiencies identified in last PSC initial 
inspection within Tokyo MoU. For ships that are 
inspected for the first time, the state of this variable is 
set to be “−1”. 

No encoding. 2.46 0 38 

total 
detentions 

The total number of detentions of a ship in all previous 
PSC inspections since the keel laid date. 

No encoding. 0.59 0 18 

the number 
of flag 
changes 

The total number of times of ship flag change from keel 
laid date to the current PSC inspection date. 

No encoding. 0.66 0 8 

casualty in 
last 5 years 

A binary variable indicating whether a ship was 
involved in casualties in the last five years. 

One-hot encoding: 
casualty-in-5-years: 1 for any casualty occurs in the last 5 years and 0, 
otherwise. 

\ \ \ 

Note *: this indicates that the state of “white” is encoded to be “1”.974 
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Appendix B. Detailed construction process of a XGBoost model 975 
The detailed procedure of constructing a XGBoost model is as follows (Chen, 2014; 976 

Chen and Guestrin, 2016). Given a dataset with n  samples and m  features, denoted 977 

by {( , ), 1,..., }i iD y i n= =x  , m
i R∈x  , iy R∈  , a tree ensemble model uses K   additive 978 

functions to predict the target iy  (the predicted value is denoted by ˆiy ) is 979 

 
1

ˆ ( ),
K

i i k i k
k

y f f Fφ
=

= ( ) = ∈∑x x , (B1) 980 

where F   is a space of functions that contains all CART based regression trees. In 981 

XGBoost, the learning objective function to be minimized, which aims to draw a 982 

balance between model accuracy and complexity, is as follows: 983 
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The first term in Eq. (B2) is the training loss regarding all training samples, and the 985 

second term is the tree complexity. In regression problems, a common choice for the 986 

training loss function is half of the MSE, which is given by 987 
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where the multiplication of 1 / 2  is for the ease of calculation. Eq. (B3) is also the loss 989 

function used in this study. As XGBoost is developed based on additive training, the 990 

prediction value after finishing 0 to 1,...,t K=  iterations can be written as 991 
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By combining Eqs. (B2) to (B4), the objective function in the tht  iteration can 993 

be given by 994 
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Eq. (B5) contains three terms. The first term is the loss function of the tht  iteration. 996 

The second term is the penalty for tree complexity in the tht  iteration. The last term is 997 

the sum of penalties for tree complexity of all the first 1t −   iterations. Define 998 

( 1)
( 1)

ˆ
ˆ( , )t

i

t t
i i iy

g l y y−
−= ∂  and ( 1)

2 ( 1)
ˆ

ˆ( , )t
i

t t
i i iy

h l y y−
−= ∂  as the first and second order gradients of the 999 

loss function in Eq. (B5). The concrete expressions for t
ig  and t

ih  can be given if the 1000 

loss function is explicitly defined. As we choose Eq. (B3) as the loss function in this 1001 
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study, we can have ( 1)
( 1) ( 1)

ˆ
ˆ ˆ( , )t

i

t t t
i i i i iy

g l y y y y−
− −= ∂ = −   and ( 1)

2 ( 1)
ˆ

ˆ( , ) 1t
i

t t
i i iy

h l y y−
−= ∂ =  . It should be 1002 

mentioned that the values for t
ig  and t

ih  for sample i  of the tht  iteration are fixed 1003 

as they are only related to the output generated in the ( 1)tht −  iteration. The second 1004 

order Taylor expansion at ( 1)ˆ t
iy −  of Eq. (B5) should be  1005 
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In the first term of Eq. (B6), ( 1) 2

1

1 ˆ( )
2

n
t

i i
i

y y −

=

−∑  is the loss of the ( 1)tht −  iteration and 1007 

thus it is a constant. The last term of Eq. (B6), i.e. 
1

1
( )

t

k
k

f
−

=

Ω∑  , is the penalty of tree 1008 

complexity of all the first 1t −  iterations and thus is also a constant. All the constants 1009 
can be removed. Therefore, we represent the objective function in the tht  iteration as  1010 
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The goal of the tht  iteration is to construct a tree to minimize Eq. (B7), which requires 1012 

to decide the outputs of the leaf nodes and the structure of the tree. We first assume that 1013 

the tree structure is fixed and discuss the way to determine the outputs of the leaf nodes. 1014 

Define a tree by a vector of outputs (which are also called weights) in leaves, and a leaf 1015 

index mapping function that maps a sample to a leaf as  1016 

 ( )
( ) , , : {1,2,..., }t

t
Tt t t m

t tq
f w R q R T= ∈ →

x
x w ,  (B8) 1017 

where tT  is the number of leaves in the tree, tw  is the vector of outputs in all the 1018 

leaves, and tq  is the function assigning each sample to the corresponding leaf in the 1019 

tht  iteration. We use the following toy example to exemplify the notations used in Eq. 1020 

(B8).  1021 

 1022 
Figure B1. A toy regression tree in the t th iteration of a XGBoost model 1023 

Suppose that we have a total of six samples in a toy training set, and the developed 1024 

regression tree in the t th iteration is shown in Figure B1. The notations in Eq. (10) can 1025 

be exemplified as follows: 3tT =  , {2, 1,0.5}t = −w  , (ship1) 1tq =  , (ship 2) 1tq =  , 1026 
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(ship3) 1tq = , (ship 4) 2tq = , (ship5) 2tq = , and (ship 6) 3tq = . It should be noted that the 1027 

leaf output in XGBoost is different from the leaf output in traditional CART regression 1028 

tree: the leaf output in XGBoost is calculated by optimization models whereas the leaf 1029 

output in CART regression tree is simply the mean of the output of the samples in that 1030 

leaf node in regression problems. The tree complexity in the objective function of 1031 

XGBoost is defined as  1032 
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where the first term is the penalty on the total number of leaves and the second term is 1034 

the penalty on the sum of squares of the weights in the leaves in the tht  iteration. γ  1035 

and λ  are two hyperparameters that need to be tuned and are used to balance model 1036 

accuracy and complexity. Define the sample set in leaf j   on the tree of the tht  1037 

iteration as { | ( ) }t t
j iI i q j= =x , 1,...,i n= , we can regroup the objective function in Eq. (B7) 1038 

by leaf and combine with Eq. (B9) to be  1039 
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For simplicity, we define 
t
j

t t
j i

i I

G g
∈

= ∑  and 
t
j

t t
j i

i I

H h
∈

= ∑ , Eq. (B10) can be written as  1041 
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As we have assumed that the tree structure (i.e. tq ) is fixed, and thus t
jG , t

jH , and tT  1043 

are all fixed. The optimal output t
jw  (denoted by *t

jw ) can be found by letting the first 1044 

derivative of ( )tobj  with respect to t
jw  be 0, which is  1045 
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t
jt

j t
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G
w
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= −

+
.  (B12) 1046 

The optimal value of the objective function is  1047 
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After the outputs in the tree leaves are determined by assuming the tree structure is 1049 

given, the last question is how to decide the tree structure (i.e. split a node into two 1050 

child nodes) in an XGBoost tree. In practice, we grow the tree in a greedy manner by 1051 

splitting nodes from the tree root by enumerating all values (or quantiles of values) of 1052 

all features (or a subset of features) and calculating the reduction in objective function 1053 
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after adding a candidate split by 1054 
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where ( )t
L Robj + , ( )t

Lobj , and ( )t
Robj  are the objective functions of the node for splitting, the 1056 

objective function of the left child node if adding this candidate split, and the objective 1057 

function of the right child node if adding this candidate split, respectively. gain   is 1058 

calculated for each candidate split of the current node. As t
LG  and t

RG  ( t
LH  and t

RH ) 1059 

are the sum of first (second) derivative of the samples contained in left and right child 1060 

leaf respectively, different splits would lead to different values for t
LG  and t

RG  ( t
LH  1061 

and t
RH ). If 0gain < , the candidate split is not considered. For all positive values for 1062 

gain , we choose the feature and value corresponding to the maximum value of gain  to 1063 

split the node as it could reach the maximum reduction of the objective function after 1064 

the splitting. 1065 
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Appendix C. Monotonic constraints imposed on multiple features 1066 

We also present the situation where we have more than one feature imposed by 1067 

monotonic constraint. Suppose we have a total of m  features, and opposite monotonic 1068 

constraints are imposed on two features, namely 1m  (monotonically increasing) and 1069 

2m  (monotonically decreasing). As mentioned in Section 4.2, for each feature imposed 1070 

by monotonic constraint, it works in the context that all the features (including other 1071 

features imposed by monotonic constraint, if any, and normal features) are with the 1072 

same value respectively except for this monotonic feature in the samples. This means 1073 

that although we put monotonic properties on two features, they can be viewed as 1074 

independent of each other. To be more specific, for 1m , it works in the samples with 1075 

feature 2m  and all the other 2m −  features the same; for 2m , it works in the samples 1076 

where feature 1m   and all the other 2m −   features are the same. In this way, to 1077 

illustrate the splitting process using either of the two features imposed by monotonic 1078 

constraint, we can simplify the tree structure to only contain the nodes using the 1079 

monotonic features concerned for splitting and their child nodes. Then, we can further 1080 

split the tree into two sub-trees where each tree containing nodes using either monotonic 1081 

feature for splitting and their child nodes like that presented in Figure 1. We further use 1082 

the following example to present the process. Suppose we have a total of 3m =  1083 

features, and we have a total of 7n =  samples as shown as follows. 1084 

 1085 

Table C1. Samples used to show model monotonicity 1086 
Sample ID 
/Feature value 

1m  
(monotonically 
increasing) 

2m   
(monotonically 
decreasing) 

3m   
(no 
constraint) 

1 1 1 0 

2 2 1 0 

3 3 1 0 

4 4 1 0 

5 1 2 0 

6 1 3 0 

7 1 4 0 

 1087 
For samples 1 to 4, monotonically increasing constraint on 1m  should be followed. 1088 

For samples 1 and 5 to 7, monotonically decreasing constraint on 2m   should be 1089 

followed. Suppose the developed tree structure as well as the splitting point and samples 1090 
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contained in each node is shown in Figure C1. 1091 

 1092 
Figure C1. Tree structure to demonstrate monotonicity 1093 

It is indicated in Figure C1 that as the tree grows, 1m  and 2m  are interactively 1094 

used as the splitting feature. As 1m   and 2m   are independent, we can divide the 1095 

developed tree into two sub-trees with each sub-tree only containing the nodes and their 1096 

child nodes using 1m  or 2m  as the splitting feature as shown as Figure C2 and Figure 1097 

C3.  1098 

 1099 
Figure C2. Structure of sub-tree containing nodes use 1m  as splitting feature  1100 

 1101 
Figure C3. Structure of sub-tree containing nodes use 2m  as splitting feature 1102 
 In Figure C2, we can expect that the predicted target value of sample 1 is the 1103 

smallest, followed by sample 2 and sample 3, and finally sample 4 if the monotonic 1104 

constraints shown in Figure 1 are imposed. Similarly, if we apply the opposite 1105 
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monotonic constraints shown in Figure 1 to Figure C3, we can expect that the predicted 1106 

outputs of samples 1 and 5 are the largest, followed by sample 6, and then by sample 7. 1107 

If three or more features are imposed by monotonic constraints, and no matter if they 1108 

are opposite, they can be processed in the above way to guarantee their respective 1109 

monotonicity. 1110 
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Appendix D. Current PSCO scheduling strategy 1111 

The current PSCO scheduling strategy adopted at the Hong Kong port is in a greedy 1112 

manner: it aims to assign as many ships as possible to one PSCO for inspection on the 1113 

morning of each workday. The set of ships assigned to one PSCO should satisfy that (a) 1114 

they are berthing at the port when inspecting. (b) The PSCO can only inspect one ship 1115 

in a time unit. (c) The lunch break and off work time of the PSCO should be guaranteed. 1116 

Denote the number of PSCOs on duty for that day by | |P . The procedure of the current 1117 

scheduling strategy is presented in Figure D1. 1118 

Collect the information 
of all visiting ships 

start

If there is a set of four 
unassigned ships satisfying 

conditions (a) to (c)?

Assign the set of 
ship(s) to PSCO p', 

p'=p'+1 

p'=0

Yes

Yes

No

p'<|P|?

end

No

If there is a set of three 
unassigned ships satisfying 

conditions (a) to (c)?

If there is a set of two 
unassigned ships satisfying 

conditions (a) to (c)?

If there is a set of one 
unassigned ship satisfying 

conditions (a) to (c)?
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