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Air emissions from ships have become an important issue in sustainable shipping because of the low quality

of the marine fuel consumed by ships. To reduce sulfur emissions from shipping, the International Maritime

Organization has established Emission Control Areas (ECAs) where ships must use low-sulfur fuel with at

most 0.1% sulfur or take equivalent emission reduction measures. The use of low-sulfur fuel increases the

costs for liner shipping companies and affects their operations management. This study addresses a holistic

liner shipping service planning problem that integrates fleet deployment, schedule design, and sailing path

and speed optimization, considering the effect of ECAs. We propose a nesting algorithmic framework to

address this new and challenging problem. Semi-analytical solutions are derived for the sailing path and

speed optimization problem, which are used in the schedule design. A tailored algorithm is applied to solve

schedule design problems, and the solutions are used in fleet deployment. The fleet deployment problem is

then addressed by a dynamic programming-based pseudo-polynomial time algorithm. Numerical experiments

demonstrate that considering the effect of ECAs in liner shipping operations management can reduce over

2% of the costs, which is significant considering that the annual operating cost of a shipping company’s

network can be as high as several billion dollars.

Key words : Liner shipping operations management; Emission Control Area; Fleet deployment; Schedule

design; Ship routing; Dynamic programming
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1. Introduction17

Shipping is the backbone of international trade. The United Nations Conference on Trade and18

Development (UNCTAD 2019) estimated the global volume of seaborne shipments in 2018 to be19

11 billion tons, accounting for over 80% of trade worldwide. These shipments are carried by ocean-20

going vessels, which burn bunker fuel with a sulfur content of up to 3.5% before 31 December21

2019 and 0.5% since 1 January 2020. Zis and Psaraftis (2019) estimated that vessels accounted22
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for 3.5% of global anthropogenic sulfur oxide (SOx) emissions in 20151. SOx from shipping causes23

environmental and health problems, particularly in densely populated coastal areas.24

The International Maritime Organization (IMO) and governments around the world have25

implemented various measures to curb SOx emissions from shipping, such as limiting the use of26

high-sulfur fuel when ships are at berth (European Maritime Safety Agency 2017, Hong Kong27

Environmental Protection Department 2017) and reducing port fees for vessels that use28

low-sulfur fuel (Maritime and Port Authority of Singapore 2016). The strictest SOx emission29

rules are enforced by the IMO in sulfur emission control areas (ECAs), which include the Baltic30

Sea, the North Sea, the North American region, and the United States Caribbean Sea area, as31

shown in Figure 1. Ships sailing in ECAs must use fuel with a sulfur content of at most 0.1% or32

take equivalent measures. The price of marine fuel with a maximum of 0.1% sulfur, e.g., Maritime33

Gas Oil (MGO)2, is much higher than that of very low-sulfur fuel oil (VLSFO) which has at most34

0.5% of sulfur. Thus, shipping lines must pay a much higher fuel bill than before3. An alternative35

approach to complying with the ECA rules is to use SOx scrubbers, which are onboard exhaust36

gas cleaning systems (EGCS) that remove SOx from ships’ exhaust gases by chemical reaction.37

Ships equipped with scrubbers can still burn high-sulfur fuel oil (HSFO) which has at most 3.5%38

of sulfur, but the average installation cost is as high as US$2.5 million (Bockmann 2020).39

Figure 1 ECAs designated by the IMO

1 This proportion will significantly be lower since 2020 because of the more strict sulfur limit on marine fuel starting
from 1 January 2020

2 Ships that burn other types of clean fuel rather than MGO, such as liquefied natural gas, are also allowed to sail in
ECAs.

3 For example, Maersk Line spent around US$300 million a year to comply with ECA rules (Hand 2015) when the
maximum sulfur content of marine fuel outside ECAs was 3.5%.
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The focus of this study is on liner shipping operations management that considers ECAs. We40

first discuss the following key terms used in liner shipping.41

(i) Route: As shown in Figure 2, a liner route has a fixed sequence of ports of call, similar to a42

bus route. The ports of call on a route form a loop, which means ships visit the first again after43

visiting the last. A liner shipping company operates a number of liner routes.44

Figure 2 A liner route

(ii) Leg: The sailing from one port of call to the next is called a leg. A route consists of two or45

more legs.46

(iii) Trajectory (path): Ships sailing on the same leg may follow different trajectories (also47

called paths), as shown in Figure 3. A navigable path on a leg must meet a number of requirements,48

for instance, there must be no obstacles (e.g., islands) along it and the water along the path must49

be sufficiently deep. A scrubber-equipped ship always sails along the shortest navigable path. A50

traditional ship (without scrubbers) may follow a navigable path that may not be the shortest in51

total but whose distance within ECAs is the shortest.52

(iv) Fuel consumption rate: the fuel consumption rate (ton/nautical mile, or ton/nm) of a ship53

is a convex increasing function of the sailing speed (Notteboom and Vernimmen 2009, Fagerholt54

and Psaraftis 2015). Therefore, when a traditional ship sails along a path that crosses the boundary55

of an ECA, its speed within the ECA should be lower than when outside the ECA; this speed56

differentiation saves fuel costs by burning less MGO within the ECA, which is more expensive than57

VLSFO burned outside the ECA.58

(v) Weekly service frequency: Each route provides a weekly service frequency, that is, each59

port of call is visited on the same day every week. This frequency is achieved by deploying a string60

of ships on each route and the number of ships in the string is equal to the round-trip journey61

time (unit: week), defined as the duration between two consecutive visits at the first port of call.62

For example, if the round-trip journey time is three weeks, then three ships must be deployed63

to provide a weekly service frequency; if the average sailing speed of the ships increases and the64

round-trip journey time is reduced to two weeks, then only two ships will be deployed to maintain65

the frequency.66
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Figure 3 Navigable paths for the sailings from Halifax to Barcelona, Rotterdam, and Jacksonville

We examine the joint fleet deployment, schedule design, and path and speed optimization67

decisions for a liner shipping company that operates a set of liner routes with fixed sequences of68

ports of call.69

(i) The fleet deployment decision faced by the company is how many of each type of70

ship to deploy on each liner route. The fixed cost of a scrubber-equipped ship is higher than71

that of a traditional ship, but it burns HSFO, which is cheaper than VLSFO and MGO. As the72

company has a finite number of ships of each type in its fleet, the assignment of ships to different73

routes must be examined holistically. The fuel costs of a route are related to the numbers of ships74

of each type deployed. Deploying more ships on a route means the round-trip journey time will75

be longer because of the weekly service frequency, and the fuel consumption will be lower because76

of the lower average sailing speed. Therefore, the fixed costs of ships and the fuel costs must be77

balanced in fleet deployment.78
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(ii) The exact fuel costs of a route, which are the total fuel costs of all the legs of the route,79

depend on the schedule design, which establishes the sailing time of each leg. In other80

words, schedule design allocates the total sailing time of the route (the round-trip journey time81

minus the total time spent at ports) to its legs. The optimal allocation depends on the sensitivity82

of the fuel consumption of each leg to its sailing time. Different types of ships must follow the same83

schedule if they are operated on the same route.84

(iii) The relation between fuel consumption of a leg and its sailing time can be obtained by85

optimizing the sailing paths and speeds of ships, that is, given a set of navigable paths for86

the leg, identifying the one with the lowest fuel cost and deciding the speed on the path within87

ECAs and the speed on the path outside ECAs for each type of ship.88

This study addresses a holistic liner shipping service planning problem that integrates fleet89

deployment, schedule design, and path and speed optimization in which the effect of ECAs is90

considered. The ECA rules result in a fleet of different types of ships being operated by shipping91

companies, including traditional ships and scrubber-equipped ships, and the rules also lead to the92

path and speed optimization for traditional ships. We integrate the use of different types of ships,93

and path and speed optimization under the ECA rules, into the traditional fleet deployment and94

schedule design problem. The interlinked decisions of fleet deployment, schedule design, and path95

and speed optimization complicate the problem. We propose a nesting algorithmic framework to96

address this new and challenging problem, and find that deploying multiple types of ships on one97

route is generally undesirable. The methodology proposed in this study can help liner operations98

managers develop optimal liner service plans under ECA regulations. Extensive numerical99

experiments have demonstrated that incorporating the effect of ECA rules into liner shipping100

service planning decisions can save over 2% of the costs, and as the annual operating cost of a101

shipping company’s network can be up to several billion dollars, this is a significant amount,102

particularly due to the low profit margins (UNCTAD 2018). For example, the largest container103

shipping company, Maersk Line, had a profit margin of 3.2% in 2017 (Maersk 2017). Under the104

dual pressure of the long-term market downturn and the increasingly stringent environmental105

regulations on shipping, global shipping companies urgently need to optimize their shipping106

services to improve efficiency, reduce cost, and enhance competitiveness (UNCTAD 2018).107

The remainder of the paper is organized as follows. The related literature is reviewed in Section 2.108

Section 3 presents the algorithmic framework. Section 4 addresses the path and speed optimization109

problem for traditional ships which switch to MGO when entering ECAs. Section 5 elaborates the110

schedule design problem. In Section 6, the fleet deployment problem is solved. Section 7 reports111

the computational results. The conclusions are presented in the last section. The proofs of lemmas,112

propositions, and theorems with the exception of Proposition 4 are presented in §EC.1.113
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2. Literature Review114

Routing and scheduling problems are key concerns in the operations management of shipping115

(Christiansen et al. 2004, ?, 2013, Fransoo and Lee 2013, Meng et al. 2014, ?, ?, Lee and Song116

2017) and land transportation (Cordeau et al. 1998, Legros et al. 2019). In this section, we describe117

how our work is related to the following areas of study: (i) fleet management and scheduling, (ii)118

sailing path and speed optimization, (iii) sustainable shipping operations management, and (iv)119

multi-stage decision making.120

Liner ship fleet deployment problems have been extensively studied in the literature. They are121

mainly formulated as mixed-integer linear programs and solved by optimization solvers (Meng122

and Wang 2011, Ng 2014). Wang and Wang (2016) examined the deployment of a fleet of123

identical ships and proposed a polynomial-time bi-section search-based algorithm, which takes124

advantage of the convexity of the fuel cost of a liner route in the number of ships deployed. Under125

the ECA rules, shipping companies operate both traditional and scrubber-equipped ships.126

Traditional ships may follow a longer path to reduce fuel costs, and as will be shown in Section 6,127

the fuel cost of a route is no longer convex in the number of ships deployed. We propose a128

dynamic programming-based pseudo-polynomial time algorithm for the deployment of multiple129

types of ships. Liner route schedule design problems are often solved by exact algorithms that130

take advantage of the convexity of fuel cost functions of speed (Hvattum et al. 2013, Wang 2016).131

These algorithms are not applicable to our problem because, as will be shown in Section 4, the132

fuel cost functions are in general non-convex and discontinuous under ECA rules. In the context133

of ECAs, multiple types of ships are deployed on one route and they follow the same schedule,134

which contrasts with the heterogeneous fleet settings in vehicle routing problems (Baldacci et al.135

2008), surface and air shipments of humanitarian goods (Park et al. 2018), and planning the136

number of advanced life support and basic life support ambulances in emergency medical service137

systems (Chong et al. 2015).138

The literature on sailing path and speed optimization between two ports has mainly focused on139

weather routing, that is, determining the sailing path that minimizes the fuel consumption or140

minimizes the sailing time while considering different weather conditions at different locations at141

sea (Perakis and Papadakis 1989, Papadakis and Perakis 1990, Lo and McCord 1998). The sailing142

path is usually determined by dynamic programming approaches over discretized longitudes and143

latitudes of the sea. Like those for sailing paths, Chen and Solak (2015) proposed an optimized144

profile descent procedure for aircraft landing that reduces fuel consumption compared with the145

conventional stair-step approach. The above weather routing and aircraft landing settings,146

however, only include one type of fuel. In contrast, the ECA rules mandate the switch of fuel147

before a traditional ship enters an ECA. Doudnikoff and Lacoste (2014), Fagerholt et al. (2015),148
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and Fagerholt and Psaraftis (2015) contributed fundamental breakthroughs in ship routing and149

scheduling under ECA rules and developed numerical algorithms to compute the speeds within150

and outside the ECAs. We complement these studies by deriving analytical properties that shed151

light into the trade-off associated with sailing distances within and outside ECAs.152

Air emissions from ships are an important issue in the sustainable operations management of153

liner shipping. Shipping air emission reduction measures have been widely discussed (???). We154

pay attention to the after-treatment technology, scrubbers, which is closely related to this study.155

Jiang et al. (2014) and Zis et al. (2016) performed a net present value analysis to examine whether156

a ship that often sails within ECAs should install a scrubber. They focused on one ship whose157

speed and path are assumed to be fixed before and after installing the scrubber. Abadie et al.158

(2017) also conducted a net present value analysis to compare whether a ship should install a159

scrubber or switch to MGO within ECAs. They considered factors such as spot and future fuel160

prices, the time that the ship sails within ECAs, the remaining lifespan of the ship, and the cost of161

scrubber installation. Gu and Wallace (2017) investigated factors that affect the economic viability162

of retrofitting traditional ships with scrubbers. They considered a route with a fixed schedule that163

is serviced by a traditional ship. This ship will follow an optimized path and speeds on each leg164

of the route to minimize the total fuel costs, instead of sailing along the shortest navigable path165

at the average speed. If the traditional ship is retrofitted with scrubbers, the resulting scrubber-166

equipped ship will sail along the shortest navigable path at the average speed, burning HSFO.167

The traditional ship should thus be retrofitted with scrubbers if the fuel cost difference between168

it adhering to the optimized path and speeds and the scrubber-equipped ship is greater than the169

retrofitting cost. They concluded that the benefit of retrofitting a traditional ship with scrubbers170

without considering that the ship may optimize its path and speeds is likely to be significantly171

overestimated, and the overestimation is less severe when the density of ports of call inside ECAs172

is higher. As the schedule of the route is fixed, Gu and Wallace (2017) has essentially addressed173

the path and speed optimization problem numerically. Building on their work, we derive semi-174

analytical results for the path and speed optimization problem and further consider the joint fleet175

deployment, schedule design, and sailing path and speed optimization problem for multiple routes,176

and that multiple types of ships can be deployed on each of them.177

Multi-stage models are often used for problems in which decisions are made in each period of178

a multi-period horizon (Papageorgiou et al. 2014), in which decisions are made both before and179

after uncertain factors are realized and observed (Mak et al. 2013), and in which decisions are in180

neither of the above categories but can still be decomposed into several stages, such as in multi-181

echelon inventory management (Angelus and Zhu 2017). The holistic planning problem in this182

paper belongs to this final category because it consists of three stages of decisions: fleet deployment183
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(stage 1), schedule design (stage 2), and sailing path and speed optimization (stage 3). Unlike most184

multi-stage decision problems, the problem in this study has the nice properties that the decision185

process in stage 1 includes many independent decision processes in stage 2 and a decision process186

in stage 2 includes many independent decision processes in stage 3. Based on these two properties,187

we can design a nesting algorithmic framework.188

3. Modeling and algorithmic framework189

In this section, we first describe the joint fleet deployment, schedule design, and path and speed190

optimization problem considering ECAs. We then formulate a mathematical model for the problem.191

Finally, a nesting algorithmic framework is proposed. The main notation used in the paper is listed192

below.193

Sets, parameters and known functions194

R Total number of liner routes195

Ir Total number of ports of call on liner route r, which is equal to the total number of
legs on the route

196

Pri Set of navigable paths for leg i of liner route r197

K Set of types of ships to deploy on the routes198

K1 Set of types of ships that consume different types of fuel within and outside ECAs199

K2 Set of types of ships that consume the same type of fuel within and outside ECAs;
K1 ∪K2 =K

200

Z+ Set of nonnegative integers201

αEk Price (US$/ton) of fuel consumed within ECAs by type-k ships, k ∈K202

αNk Price (US$/ton) of fuel consumed outside ECAs by type-k ships, k ∈K203

∆ Unit time (hour) for sailing time discretization in schedule design204

akri,
bkri

Conversion factors between fuel consumption per unit distance and sailing speed of
ships: fuel consumption rate (ton/nm) of a type-k ship sailing on leg i of route r is
akri · speedbkri

205

ck Fixed cost (US$/week) of a ship of type k ∈K206

Γri Time (hours) spent at the ith port of call on liner route r207

Γr Total time (hours) spent at all ports of call on liner route r; Γr :=
∑Ir

i=1 Γri208

LErip Sailing distance (nm) within ECAs on path p∈ Pri of leg i of liner route r209

LNrip Sailing distance (nm) outside ECAs on path p∈ Pri of leg i of liner route r210

Lmin
ri Total sailing distance (nm) of the shortest navigable path for leg i of liner route r;

Lmin
ri := minp∈Pri

(LErip +LNrip)
211

W Number of hours in a week, W = 168 (hours/week)212

mmin
r Minimum number of ships required to be deployed on liner route r; mmin

r = d(Γr +∑Ir
i=1 t

min
ri )/W e

213
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Qk Number of ships of type k ∈K in the fleet214

V max Maximum sailing speed (knots) of a ship215

tmin
rip Minimum sailing time (hours) on path p ∈ Pri of leg i of liner route r; tmin

rip = (LErip +
LNrip)/V

max216

tmin
ri Minimum sailing time (hours) on leg i of liner route r; tmin

ri =Lmin
ri /V

max = minp∈Pri
tmin
rip

217

dxe Smallest integer greater than or equal to x218

bxc Largest integer smaller than or equal to x.219

Decision variables and values to be calculated220

mkr Number of ships of type k ∈K deployed on liner route r221

mr Vector of mkr, k ∈K, for route r222

m Vector of mr, r= 1, ...,R223

Cr(mr)Minimum fuel cost (US$/week) of liner route r when mkr ships of type k ∈ K are
deployed on the route

224

tri Sailing time (hours) on leg i of liner route r225

tr Vector of tri, i= 1, ..., Ir, for route r226

ckri(tri)Minimum fuel cost function for a ship of type k ∈K that sails on leg i of liner route r
with sailing time tri

227

gkrip(tri)Minimum fuel cost function for a ship of type k ∈K that sails on path p ∈ Pri of leg
i of liner route r with sailing time tri

228

vEkrip Sailing speed (knots) of a ship of type k ∈K within ECAs on path p ∈ Pri of leg i of
liner route r

229

vNkrip Sailing speed (knots) of a ship of type k ∈K outside ECAs on path p ∈ Pri of leg i of
liner route r

230

zkrip Binary variable, equal to one if ships of type k ∈K sail on path p∈ Pri of leg i of liner
route r, and zero otherwise.

231

A liner shipping company operates a total of R routes. Route r= 1, ...,R has Ir ports of call. For232

example, the route in Figure 2 has five ports of call. Route r has Ir legs, in which leg i= 1, ..., Ir is233

the sailing from the ith port of call to the (i+ 1)th (the (Ir + 1)th port of call is defined as the 1st234

one). Note that index i= 1, ..., Ir is used to refer to either a port of call or a leg. A set of navigable235

paths, denoted by Pri, is given for leg i = 1, ..., Ir of route r = 1, ...,R, as shown in Figure 3.236

The distances of path p ∈ Pri within and outside ECAs are LErip and LNrip (nm), respectively (the237

superscript “E” means “ECA” and “N” means “non-ECA”). The shortest navigable path for leg238

i of route r has a total sailing distance denoted by Lmin
ri := minp∈Pri

(LErip +LNrip). The sailing time239

on leg i of route r, denoted by tri, is to be designed by the shipping company. Once a ship arrives240

at the ith port of call on liner route r, it will stay there for Γri (hours) to allow cargo to be loaded241

and unloaded, and it will then sail to the next port of call. Define Γr =
∑Ir

i=1 Γri as the total port242



Wang et al.: Liner Shipping Service Planning under Sulfur Emission Regulations

10

time of route r. We assume fixed time Γri is spent at each port of call but our model can also243

handle random port times, which will be discussed in Section 4.3.244

In view of the ECA rules, the company operates a fleet of different types of ships that can be245

deployed on the R routes. The set of ship types is denoted by K. The number of type-k ships in246

the fleet is Qk, k ∈K. A type-k ship has a weekly fixed cost ck. We assume all ships have the same247

maximum sailing speed V max (knots)4; hence, the minimum sailing time (hours) by a ship on path248

p ∈ Pri of leg i of liner route r is tmin
rip = (LErip +LNrip)/V

max and the minimum sailing time on leg i249

is tmin
ri = Lmin

ri /V
max = minp∈Pri

tmin
rip . The fuel consumption rate (ton/nm) of a type-k ship sailing250

on leg i of route r is a convex power function of speed akri · vbkri , where akri > 0 and bkri > 1 are251

parameters and v (knots) is the sailing speed (Notteboom and Vernimmen 2009, Fagerholt et al.252

2010, Ronen 2011, Wang and Meng 2012). The prices of fuel consumed within and outside ECAs253

by type-k ships are represented by αEk and αNk (US$/ton), respectively. αEk ≥ αNk , and they are the254

same for scrubber-equipped ships. When multiple types of ships are deployed on a route r, they255

must follow the same schedule, that is, they have the same sailing time tri on each leg i= 1, ..., Ir,256

whereas they may follow different paths to save fuel costs.257

Ship deployment on the R liner routes, i.e., the number of type-k ships to deploy on route258

r= 1, ...,R, denoted by mkr, is a tactical decision. Once a ship is deployed on a route, it will operate259

on it for three to six months. The decisions on the number of ships to deploy and the sailing speeds260

of the ships must ensure each route provides a weekly service frequency. This means each port of261

call on the route is visited on the same day every week (but it may be visited by different ships)262

and the headway between two consecutive ships is one week. We define W = 168 (hours/week).263

Given a total of
∑

k∈Kmkr ships deployed on route r, the speeds of the ships must guarantee that264

the round-trip journey time is
∑

k∈Kmkr weeks (W ·
∑

k∈Kmkr hours). The round-trip journey265

time of route r = 1, ...,R is the sum of the port time Γr on the route and the total sailing time266

on all of the legs. The minimum number of ships required to be deployed on route r, denoted by267

mmin
r , can be derived by mmin

r = d(Γr +
∑Ir

i=1 t
min
ri )/W e, where dxe returns the smallest integer not268

less than x.269

The objective of the overall planning problem is to minimize the total average cost per week of all270

routes, which consists of the fixed costs of ships and the fuel costs5. Reducing the fuel costs means271

reducing the sailing speed, which increases the round-trip journey time and requires more ships272

to be deployed, and vice versa. Therefore, the overall planning problem is to balance the trade-off273

4 We make this assumption to simplify the notation. If different maximum sailing speeds V max
k for different types of

ships k ∈K are considered, we can define V max := max{V max
k , k ∈K} and the fuel consumption per unit distance by

a ship of type k ∈K is infinity when its speed is greater than V max
k and smaller than or equal to V max.

5 The fuel costs of a route in different weeks may be different when multiple types of ships are deployed on it.
Therefore, we minimize the total average cost per week of all routes.



Wang et al.: Liner Shipping Service Planning under Sulfur Emission Regulations

11

Figure 4 Framework of the decisions of the joint fleet deployment, schedule design, and path and speed

optimization problem considering ECAs

between fuel costs and the fixed costs of ships. The decisions of the joint problem are shown in274

Figure 4. The company first makes the fleet deployment decisions, represented by vector m. The275

fixed costs of ships depend on the number of ships of each type deployed on the R routes. The fuel276

costs depend on the schedule design and path and speed optimization decisions. For each route277

r = 1, ...,R, given fleet deployment decision mr, the company designs the schedule, that is, the278

sailing time on every leg i= 1, ..., Ir, denoted by tri. Once the sailing time vector tr is determined,279

the company makes decisions for each type of ship regarding its optimal sailing path and optimal280

speeds within and outside the ECAs on the sailing path, to minimize the fuel cost for the leg. To281

formulate path and speed optimization decisions, we denote zkrip as a 0–1 variable that equals 1282

if and only if type-k ships sail on path p ∈ Pri of leg i of route r. We define continuous variables283

vEkrip and vNkrip that represent the speeds of type-k ships within and outside ECAs on the path,284

respectively.285

3.1. Model286

The joint planning problem can be formulated as287

[P0] min
R∑
r=1

{∑
k∈K

ck ·mkr

+
∑
k∈K

mkr∑
k′∈Kmk′r

Ir∑
i=1

∑
p∈Pri

[
αEk L

E
ripakri · (vEkrip)bkri +αNk L

N
ripakri · (vNkrip)bkri

]
zkrip︸ ︷︷ ︸

total fuel cost for a ship of type k to complete a round-trip journey of route r

}
(1)
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subject to288

Γr +

Ir∑
i=1

tri = W ·
∑
k∈K

mkr, r= 1, ...,R (2)∑
p∈Pri

zkrip = 1, r= 1, ...,R, i= 1, ..., Ir, k ∈K (3)

∑
p∈Pri

(
LErip
vEkrip

+
LNrip
vNkrip

)
zkrip = tri, r= 1, ...,R, i= 1, ..., Ir, k ∈K (4)

R∑
r=1

mkr ≤ Qk, k ∈K (5)∑
k∈K

mkr ≥ mmin
r , r= 1, ...,R (6)

zkrip ∈ {0,1}, r= 1, ...,R, i= 1, ..., Ir, p∈ Pri, k ∈K (7)

0< vEkrip, v
N
krip ≤ V max, r= 1, ...,R, i= 1, ..., Ir, p∈ Pri, k ∈K (8)

tri ≥ tmin
ri , r= 1, ...,R, i= 1, ..., Ir (9)

mkr ∈ Z+, r= 1, ...,R, k ∈K, (10)

where Z+ denotes the set of nonnegative integers. The objective function (1) minimizes the total289

average cost per week of all the R routes, which includes the fixed costs of ships and fuel costs. When290

mkr ships of type k ∈K are deployed on route r to provide a weekly service frequency, the round-trip291

journey time is equal to
∑

k∈Kmkr weeks. In a period of
∑

k∈Kmkr consecutive weeks, a deployed292

ship will sail on all the legs of route r; hence, the average fuel cost per week for one type-k ship on293

route r is 1∑
k′∈Kmk′r

∑Ir
i=1

∑
p∈Pri

[
αEk L

E
ripakri · (vEkrip)bkri +αNk L

N
ripakri · (vNkrip)bkri

]
zkrip. Given that294

mkr ships of type k ∈ K are deployed on route r, the average fuel cost per week of route r is295 ∑
k∈K

mkr∑
k′∈Kmk′r

∑Ir
i=1

∑
p∈Pri

[
αEk L

E
ripakri · (vEkrip)bkri +αNk L

N
ripakri · (vNkrip)bkri

]
zkrip. Eqs. (2) ensure296

that the number of ships deployed on each route can provide a weekly service frequency: the round-297

trip journey time (hour) W ·
∑

k∈Kmkr is equal to the sum of the fixed total port time Γr and298

the total sailing time
∑Ir

i=1 tri. Eqs. (3) require that exactly one path for each leg is chosen for299

each type of ship. Eqs. (4) ensure that all types of ships have the same sailing schedule, i.e., the300

same sailing time tri on each leg. Constraints (5) define the maximum number of each type of ship301

that can be used. Constraints (6) enforce a minimum number of mmin
r ships deployed on route r.302

Note that Constraints (6) are redundant for model [P0] due to Constraints (2), however, they will303

be useful when we break down model [P0] into submodels. Constraints (7) define zkrip as binary304

variables. Constraints (8) define the sailing speeds as nonnegative variables with the upper bound305

V max. Constraints (9) define tri as continuous variables and their lower bounds. Constraints (10)306

define mkr as nonnegative integer variables.307
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3.2. Algorithmic framework308

The joint fleet deployment, schedule design, and path and speed optimization problem has the309

following nice properties. First, the decisions for different routes are coupled only by Constraints (5).310

Once the value of m is determined, the problem can be decomposed for each route. Specifically, for311

a route r, the design of its schedule tr solely depends on mr and is independent of the decisions312

for the other routes. Second, the decisions for different legs of a route r are coupled only by313

Constraints (2). Once schedule tr is determined, the optimal path and speed optimization decision314

for leg i of route r is independent of the decisions for the other legs.315

Thus, we can design a nesting algorithmic framework, which proceeds in the opposite direction316

to the decision process shown in Figure 4. We first examine the path and speed optimization317

problem for ships sailing on leg i of route r. We represent by ckri(tri) the minimum fuel cost318

function for a type-k ship that sails on leg i of route r with sailing time tri, tri ≥ tmin
ri , k ∈ K.319

Let K1 be the set of types of ships that consume different types of fuel within and outside ECAs,320

and K2 be the set of types of ships that consume the same type of fuel within and outside ECAs;321

K1 ∪K2 =K. The fuel consumption rate of a ship is a convex function of speed, so a ship of type322

k ∈K2, e.g., a scrubber-equipped ship, simply sails along the shortest navigable path at the average323

speed (Hvattum et al. 2013); therefore,324

ckri(tri) = αNk L
min
ri akri ·

(
Lmin
ri

tri

)bkri
, tri ≥ tmin

ri , k ∈K2. (11)

To calculate ckri(tri) for a ship of type k ∈ K1, for example a traditional ship, we first define325

gkrip(tri) as the minimum fuel cost for a ship of type k ∈K1 to sail on path p∈ Pri of leg i of route326

r with sailing time tri, tri ≥ tmin
ri . For each p∈ Pri, we define vEkrip and vNkrip as the decision variables327

representing the speeds within and outside ECAs, respectively. Then,328

gkrip(tri) = min
[
αEk L

E
ripakri · (vEkrip)bkri +αNk L

N
ripakri · (vNkrip)bkri

]
(12)

subject to329

LErip
vEkrip

+
LNrip
vNkrip

= tri (13)

0< vEkrip, v
N
krip ≤ V max. (14)

The value of ckri(tri), k ∈K1, tri ≥ tmin
ri , can then be obtained by the following path and speed330

optimization model, which optimizes the choice of path and the speed within ECAs and the331

speed outside ECAs on the chosen path:332

[P1] ckri(tri) = min
p∈Pri

gkrip(tri), tri ≥ tmin
ri , k ∈K1. (15)
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The solution to [P1] is elaborated in Section 4.333

The results of ckri(tri) for legs 1, ..., Ir and ship types k ∈K are then treated as input334

for the schedule design problem for each route r = 1, ...,R, which aims to find the tr335

that minimizes the fuel costs for the route. We denote by Cr(mr) the minimum average fuel336

costs of route r per week when the number of type-k ships deployed on it is mkr, k ∈K. Given mr,337

we formulate the following schedule design model for route r:338

[P2] Cr(mr) = min
∑
k∈K

mkr∑
k′∈Kmk′r

Ir∑
i=1

ckri(tri) (16)

subject to339

Γr +

Ir∑
i=1

tri = W ·
∑
k∈K

mkr (17)

tri ≥ tmin
ri , i= 1, ..., Ir. (18)

The solution to [P2] is elaborated in Section 5.340

The outcomes of Cr(mr) for all the routes r= 1, ...R and all possible values of mr will341

be the input for the fleet deployment. The fleet deployment problem minimizes the total342

average cost per week (the sum of fixed costs of ships and fuel costs) of all routes by deciding the343

number of ships of each type k to deploy on each route r, denoted by mkr, r = 1, ...,R, k ∈K. We344

formulate the following fleet deployment model:345

[P3] min
R∑
r=1

[∑
k∈K

ck ·mkr +Cr(mr)

]
(19)

subject to Constraints (5), (6) and (10). The solution to model [P3] is elaborated in Section 6.346

4. Path and speed optimization model [P1]347

In this section, the path and speed optimization model [P1] is examined. We discuss the solution348

for model (12) in Section 4.1 and the solution for model [P1] in Section 4.2. We extend the models349

to account for random port times in Section 4.3.350

4.1. Speed optimization model for a given path351

To characterize the function gkrip(tri) in Eq. (12) for a navigable path p∈ Pri and a particular ship352

type k ∈K1, we define two critical values of tri as follows.353

The first critical value is the smallest feasible value, which is denoted by tmin
rip and is achieved354

when the ship sails at V max both within and outside ECAs, i.e.,355

tmin
rip =

LErip +LNrip
V max

. (20)
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The domain of gkrip(tri) is [tmin
rip ,∞).356

For the second critical value, denoted by t̂krip, the constraints vEkrip ≤ V max and vNkrip ≤ V max in357

(14) are unbinding if and only if tri > t̂krip. To calculate t̂krip, we first define a coefficient:358

Definition 1. Given the ship fuel consumption parameter bkri and the fuel prices αEk and αNk ,359

γkri :=

(
αEk
αNk

) 1
1+bkri

(21)

is called the “conversion coefficient” and γkriL
E
rip+LNrip is called the “converted” non-ECA distance360

of path p for type-k ships.361

The value of t̂krip is the ratio of the converted non-ECA distance of the path and the maximum362

speed:363

t̂krip =
γkriL

E
rip +LNrip
V max

. (22)

We denote by vE∗krip and vN∗krip the optimal speeds within and outside ECAs, respectively, for364

model (12). Then,365

Proposition 1. When tri ∈ (t̂krip,∞),366

vE∗krip =
LErip + 1

γkri
LNrip

tri
(23)

vN∗krip =
γkriL

E
rip +LNrip
tri

(24)

vE∗krip
vN∗krip

=
1

γkri
; (25)

when tri ∈ [tmin
rip , t̂krip],367

vE∗krip =
LErip

tri−
LN
rip

Vmax

(26)

vN∗krip = V max. (27)

Eq. (25) shows that when tri > t̂krip, v
E∗
krip < v

N∗
krip as γkri > 1; for example, if bkri = 2 and αEk = 2αNk ,368

then vE∗krip ≈ 0.8vN∗krip. Eq. (27) shows that when tri ≤ t̂krip, vE∗krip ≤ vN∗krip (vE∗krip = vN∗krip only when369

tri = tmin
rip ). Therefore, the ship should slow down within ECAs to save fuel costs.370

We have the following property for model (12):371

Proposition 2. gkrip(tri) is a two-piece continuous function:372

gkrip(tri) =

αEk · akri · (tri−
LN
rip

Vmax )−bkri · (LErip)1+bkri +αNk ·LNrip · akri · (V max)bkri , tmin
rip ≤ tri ≤ t̂krip

αNk · akri · (tri)−bkri · (γkriLErip +LNrip)
1+bkri , tri > t̂krip.

(28)
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In Eq. (28), when tri > t̂krip, the expression αNk ·akri · (tri)−bkri · (γkriLErip+LNrip)
1+bkri shows that,373

in terms of fuel cost, 1 nm of sailing distance within ECAs is equivalent to γkri nm of sailing374

distance outside ECAs for tri ∈ (t̂krip,∞). Thus we call γkriL
E
rip + LNrip the converted non-ECA375

distance of the path in Definition 1. An example of gkrip(tri) is shown in Figure 5.376

Figure 5 Curve of function gkrip(tri)

Proposition 3. The minimum fuel cost function gkrip(tri) shown in Eq. (28) is convex in tri.377

Proposition 3 shows that in the presence of only one navigable path for a leg, the minimum fuel378

cost is still convex, even with the speed differentiation within and outside ECAs.379

4.2. Path and speed optimization model [P1] over multiple navigable paths380

We now discuss the calculation of ckri(tri) in model [P1]. Eq. (15) and Proposition 3 show that381

ckri(tri) is the minimum of a set of convex functions, and we have the following proposition:382

Proposition 4. ckri(tri) is generally non-convex and discontinuous.383

Proof. We give an example of a leg i of route r to show that ckri(tri) can be non-convex and384

discontinuous. The leg has two navigable paths, path 1 and path 2. For path 1, LEri1 = 2,000 and385

LNri1 = 18,000. For path 2, LEri2 = 3,000 and LNri2 = 16,980. The conversion factors akri and bkri are386

set to 7.81×10−4 and 2, respectively, the fuel prices αEk and αNk are 700 US$/ton and 600 US$/ton,387

respectively, and the maximum speed V max is 23 knots. Then, tmin
ri1 = 870h and tmin

ri2 = 869h. It388

can then be calculated that gkri2(tri) > gkri1(tri) over [tmin
ri1 ,∞) but only gkri2(tri) is defined over389

[tmin
ri2 , t

min
ri1 ). Therefore, ckri(tri) is non-convex and discontinuous, as shown in Figure 6.390

Given a sailing time tri, we can calculate the fuel cost for each path p in Pri with Eq. (28) and391

select the one with the lowest cost. For leg i of route r, we can numerically evaluate ckri(tri) at392

many discretized points of sailing time tri. The results of ckri(tri) for all legs of a route will be used393

in the schedule design model for the route.394



Wang et al.: Liner Shipping Service Planning under Sulfur Emission Regulations

17

Figure 6 Fuel cost curves of two navigable paths

4.3. Minimum fuel cost functions with random port times395

We have assumed that a ship spends a fixed time at each port of call. In practice, the time a396

ship spends at a port depends on the volume of cargo handled, the productivity of the port, and397

whether the port is congested, which cannot be known beforehand (Lee et al. 2015). Li et al. (2016)398

defined two types of uncertainties that lead to random port times: regular uncertainties, which399

are recurring probabilistic activities, and disruptive events, which are occasional or one-off events,400

and pointed out that in the tactical planning stage, regular uncertainties can be factored in. Our401

focus is on tactical-level liner shipping service planning, so we consider how our model can handle402

regular uncertainties assuming that ships must arrive at each port of call on the scheduled time403

even with random port times. We denote by Γ̃ri the random time spent at the ith port of call on404

route r. Suppose that Γ̃ri can take a total of Θri values, denoted by Γriθ, θ = 1, ...,Θri. Without405

loss of generality, we assume Γri1 < Γri2 < ... < ΓriΘri
. We define priθ := Pr(Γ̃ri = Γriθ). priθ > 0,406

θ= 1, ...,Θri, and
∑Θri

θ=1 priθ = 1. We define Γ̄ri as the average time a ship spends at the ith port of407

call on route r, that is, Γ̄ri =
∑Θri

θ=1 priθΓriθ. We denote by t̄ri the scheduled average sailing time on408

leg i of route r. Despite the randomness of port time, the ships must provide liner shipping services,409

which means they have to adjust their speeds to make sure they arrive at the next port of call at410

the scheduled time. Therefore, when the ship leaves the ith port of call of route r, the actual time411

it spends at the port is observed, denoted by Γriθ, and the actual sailing time is t̄ri + Γ̄ri − Γriθ.412

To ensure the actual sailing time is at least tmin
ri under all scenarios θ = 1, ...,Θri, we must have413

t̄ri ≥ tmin
ri + ΓriΘri

− Γ̄ri. We define c̄kri(t̄ri) as the expected fuel costs for a ship of type k ∈K to sail414

on leg i of route r when the average sailing time is t̄ri. Then,415

c̄kri(t̄ri) =

Θri∑
θ=1

priθ · ckri(t̄ri + Γ̄ri−Γriθ), t̄ri ≥ tmin
ri + ΓriΘri

− Γ̄ri,
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r= 1, ...,R, i= 1, ..., Ir, k ∈K. (29)

The values of c̄kri(t̄ri) can be used in place of ckri(tri) in the schedule design and fleet deployment416

models. As the path and speed optimization decision of a leg is independent of the decisions for417

the other legs, Eqs. (29) are valid even when the random variables Γ̃ri, r= 1, ...,R, i= 1, ..., Ir, are418

correlated.419

5. Schedule design model [P2]420

The fuel cost functions for legs ckri(tri) derived in Section 4 for k ∈K1 and in Eq. (11) for k ∈K2 are421

the key inputs for the schedule design. Once the value of mr is determined, the optimal schedule of422

a route r is independent of the decisions for the other routes. Therefore, the design of the schedule423

can be carried out for each route separately. We address model [P2] with the given mr in this424

section.425

Despite the non-convexity of ckri(tri), the optimal schedule for a route can be obtained using426

dynamic programming, because given the total sailing time W
∑

k∈Kmkr −Γr on all the legs, the427

optimal allocation of sailing time for a leg i depends only on
∑i−1

i′=1 tri′ , i.e., the total sailing time428

allocated for legs 1, ..., i−1, rather than on tri′ for each of the legs i′ = 1, ..., i−1. To apply dynamic429

programming, we discretize the sailing time for each leg into units of ∆ hours (e.g., ∆ = 1) and430

replace the total sailing time W
∑

k∈Kmkr − Γr for the route by ∆ · bW
∑

k∈Kmkr−Γr

∆
c, where bxc431

returns the largest integer not greater than x. Then, the dynamic programming approach has Ir432

stages, where the state of a stage i represents the total sailing time allocated to legs 1, ..., i− 1,433

and the decision at a state of stage i is the sailing time tri allocated to leg i. —The details of the434

dynamic programming approach are presented in §EC.2. — Dear Prof Lee, since reviewer 2 said ’I435

consider the Appendices as not very interesting’, we deleted EC.2436

We define Î := maxr=1,...,R Ir and P̂ := maxr=1,...,R, i=1,...,Ir |Pri|. Then, the number of stages in437

the dynamic programming approach for route r = 1, ...,R is at most Î, the number of states of438

each stage is bounded by O
(∑

k∈K Qk

∆

)
, and the number of feasible decisions at each state of each439

stage is bounded by O
(∑

k∈K Qk

∆

)
. Each decision involves the evaluation of the functions ckri(tri)440

at one value of tri. For k ∈K1, evaluating ckri(tri) involves calculating the fuel cost for |Pri| paths441

and calculating the fuel cost for a path requires time bounded by O(1). For k ∈K2, ckri(tri) can be442

obtained by Eq. (11). Therefore, using the dynamic programming approach, the value of Cr(mr) for443

a given route r= 1, ...,R and a given fleet deployment vector mr can be obtained in time bounded444

by O

(
Î · (|K1|P̂ + |K2|) ·

(∑
k∈K Qk

∆

)2
)

. Given that the number of ship types |K| does not increase445

with the size of the problem, the computational time is bounded by O

(
Î · P̂ ·

(∑
k∈K Qk

∆

)2
)

.446
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6. Fleet deployment model [P3]447

The values of Cr(mr) for all of the routes r = 1, ...,R and all possible vectors mr for each route448

r, m1,r = 0, ...,Q1, ...,m|K|,r = 0, ...,Q|K|,
∑

k∈Kmkr ≥mmin
r , are obtained by the schedule design449

model [P2] and are the key inputs for the fleet deployment model [P3].450

6.1. Model property451

We first analyze the properties of function Cr(mr). We define the convexity of a function over452

integer variables as discrete convexity.453

Proposition 5. The function Cr(mr) is not necessarily convex or concave in any component mkr454

of mr, k ∈K.455

The intuition behind Proposition 5 is Proposition 4.456

We then examine the property of Cr(mr) when fixing the total number of ships
∑

k∈Kmkr457

deployed on route r. We define ek as a |K|-dimensional vector whose kth element is 1 and whose458

other elements are all 0. Then Cr(mr) has the following property:459

Lemma 1. Consider a route r with mkr type-k ships deployed, k ∈ K. Then, for any two ship460

types k1 ∈K, k2 ∈K, k1 6= k2, if mk1r ≥ 2, we have Cr(mr)−Cr(mr − ek1 + ek2)≤Cr(mr − ek1 +461

ek2)−Cr(mr− 2ek1 + 2ek2).462

Lemma 1 suggests that if replacing a type-k1 ship on route r by a type-k2 ship can reduce fuel costs,463

i.e., Cr(mr)−Cr(mr − ek1 + ek2) > 0, then replacing a second type-k1 ship by a second type-k2464

ship will lead to a more significant reduction in fuel cost. Thus, the marginal fuel cost reduction by465

replacing a type-k1 ship on a route by a type-k2 ship increases as more type-k1 ships are replaced466

by type-k2 ships. The intuition is as follows: as more type-k2 ships are deployed on route r, the467

optimal schedule will be more in favor of type-k2 ships, that is, the total fuel cost for a type-k2 ship468

to complete a round-trip journey of r, as shown in Eq. (1), will be lower. Thus, the marginal fuel469

cost reduction by replacing a type-k1 ship on a route by a type-k2 ship increases as more type-k1470

ships are replaced.471

Based on Lemma 1, we have the following theorem:472

Theorem 1. The fleet deployment model [P3] has an optimal solution, denoted by m∗, in which473

any two routes have at most one common type of ship deployed. Thus, there does not exist two474

routes r1, r2 = 1, ...,R, r1 6= r2 and two types of ships k1, k2 ∈ K, k1 6= k2 such that m∗k1,r1 ≥ 1,475

m∗k2,r1 ≥ 1, m∗k1,r2 ≥ 1, and m∗k2,r2 ≥ 1.476

The managerial insight of Theorem 1 is that deploying multiple types of ships on one route is477

generally undesirable. The rationale is that different types of ships deployed on the same route have478

to compromise to follow the same schedule. The intuition behind Theorem 1 can be understood479

by the following corollary and example.480
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Corollary 1. If |K|= 2 in the fleet deployment model [P3], then there exists an optimal solution481

in which at most one route has both types of ships deployed and each of the other routes has only482

one type of ship deployed.483

Corollary 1 can be illustrated by the following example.484

Example 1. Suppose that there are two types of ships: traditional ships and scrubber-equipped485

ships. Suppose that routes 1 and 2 have the same sequence of ports of call. All legs have the same486

fuel consumption rate functions: akri = a and bkri = b for k= 1,2, r= 1,2, i∈ Ir. Consider two fleet487

deployment options: in option A, both route 1 and route 2 have three traditional ships and three488

scrubber-equipped ships deployed; in option B, six traditional ships are deployed on route 1 and489

six scrubber-equipped ships on route 2. Then in option B, all ships on route 1 sail at lower speeds490

on legs that are fully covered by ECAs and at higher speeds on legs that are not covered by ECAs,491

and all ships on route 2 sail at a constant speed on all of the legs. In contrast, in option A, the492

two types of ships have to follow the same schedule and thus the fuel costs in option A are higher493

than those in option B.494

6.2. Pseudo-polynomial time algorithm495

To solve model [P3], we enumerate all possible fleet deployment decisions for each route r= 1, ...,R,496

i.e., all possible combinations of m1,r = 0, ...,Q1, ...,m|K|,r = 0, ...,Q|K|,
∑

k∈Kmkr ≥mmin
r , and solve497

the schedule design model [P2] for each r and each mr. The results are used as inputs for model498

[P3].499

We note that the optimal fleet deployment for a route r depends on the total number of ships500

of each type deployed on the other routes, rather than the number of ships of each type deployed501

on each of the other routes. Based on this property, we design a dynamic programming algorithm.502

We define f(s, q1, ..., q|K|), s= 1, ...,R, and qk = 0, ...,Qk, k ∈K as the minimum total average cost503

per week of routes 1, ..., s when a total of qk ships of type k ∈K can be deployed on them (not all504

ships must be used). Then, f(s, q1, ..., q|K|) has the recursive relation505

f(s, q1, ..., q|K|) = (30)

min
m1,s=0,...,q1

...

m|K|,s=0,...,q|K|∑
k∈Kmks≥mmin

s

[∑
k∈K

ck ·mks +Cs(m1,s, ...,m|K|,s) + f(s− 1, q1−m1,s, ..., q|K|−m|K|,s)

]
,

s= 2, ...,R, q1 = 0, ...,Q1, ..., q|K| = 0, ...,Q|K|,
∑
k∈K

qk ≥
s∑

s′=1

mmin
s′ (31)

and the boundary conditions are506

f(1, q1, ..., q|K|) = min
m1,1=0,...,q1

...

m|K|,1=0,...,q|K|∑
k∈Kmk,1≥mmin

1

[∑
k∈K

ck ·mk,1 +C1(m1,1, ...,m|K|,1)

]
, (32)
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q1 = 0, ...,Q1, ..., q|K| = 0, ...,Q|K|,
∑
k∈K

qk ≥mmin
1 . (33)

We aim to obtain f(R,Q1, ...,Q|K|). To this end, we must try all the values of s in {1, ...,R}507

and qk in {0, ...,Qk}, k ∈ K. For each combination (s, q1, ..., q|K|), we need to evaluate at most508 ∏
k∈K(Qk + 1) decisions. Therefore, the fleet deployment problem can be solved in time bounded509

by O
(
R ·
(∏

k∈K(Qk + 1)
)2
)

, which is equivalent to the complexity of O
(
R ·
(∏

k∈KQk

)2
)

(note510

that the number of ship types |K| does not increase with the size of the problem).511

Proposition 6. Given the known values of Cr(mr), r = 1, ...,R, m1,r = 0, ...,Q1, ..., m|K|,r =512

0, ...,Q|K|,
∑

k∈Kmkr ≥mmin
r , the fleet deployment problem [P3] can be solved in time bounded by513

O
(
R ·
(∏

k∈KQk

)2
)

, which is pseudo-polynomial in complexity.514

Our problem [P3] nests the multiple-choice knapsack problem (Pisinger 1995) as a special case.515

This problem is known to be NP-hard, and the best known algorithm for finding an optimal solution516

requires pseudo-polynomial computation time. Our algorithm for [P3] is also pseudo-polynomial.517

6.3. Extension to fleet deployment with ship retrofitting518

We can extend the fleet deployment model [P3] to consider retrofitting traditional ships with519

scrubbers (converting a traditional ship into a scrubber-equipped ship). Let k′ ∈K be a particular520

type of ship that can be converted to another type of ship denoted by k′′ ∈K at a retrofitting cost521

U . The retrofitting cost U occurs once. As we use weekly costs in the calculation, we convert the522

retrofitting cost U into an equivalent weekly cost, denoted by u. The company must decide the523

number of type-k′ ships to convert into type-k′′ ships, denoted by y ∈Z+, and the numbers of ships524

of each type k ∈K to deploy on the routes after the conversion. This problem can be formulated525

as model [P3’]:526

[P3’] min u · y+
R∑
r=1

[∑
k∈K

ck ·mkr +Cr(mr)

]
(34)

subject to527

R∑
r=1

mk′r ≤ Qk′ − y (35)

R∑
r=1

mk′′,r ≤ Qk′′ + y (36)

R∑
r=1

mkr ≤ Qk, k ∈K \ {k′, k′′} (37)∑
k∈K

mkr ≥ mmin
r , r= 1, ...,R (38)

mkr ∈ Z+, r= 1, ...,R, k ∈K (39)

y ∈ Z+. (40)

Based on Lemma 1, we prove that problem [P3’] has the following nice property:528
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Proposition 7. If the optimal value of y in [P3’] is greater than 0, there exists an optimal solution529

in which no route has both type-k′ and type-k′′ of ships deployed.530

The rationale behind Proposition 7 is as follows. If in an optimal solution a route r̂ has both531

types of ships deployed, one of its type-k′′ ships deployed can be considered as a newly retrofitted532

ship because the optimal value of y is greater than 0. Thus, it is worthwhile retrofitting a type-k′533

ship on route r̂. Then Lemma 1 implies it is worthwhile retrofitting all type-k′ ships on route r̂.534

7. Numerical experiments535

This section reports the computational results of randomly generated instances based on realistic536

parameter settings. A laptop computer (Intel Core i7, 2.5GHz; Memory, 8G) is used to conduct537

these experiments with the programming language C# (Visual Studio 2012).538

7.1. Computational time of the nesting algorithmic framework539

We first report the computational time of the proposed nesting algorithmic framework. The testing540

instances are generated as follows. We investigate three experimental groups with different numbers541

of liner routes R ∈ {10,20,30} involving the North Sea, the North America, and the United States542

Caribbean Sea ECAs. The boundaries of the ECAs are given in IMO (2019). Each experimental543

group comprises five test instances, and each instance has a different number of ports of call, which544

are selected from real ports within or outside ECAs. For a leg covering ECAs, we will discretize the545

boundaries of the ECAs into intervals of 10 nm and treat each discretization point as a candidate546

location for crossing the ECA boundaries. The navigable paths of the leg can be constructed as547

shown in Figure 3. The paths with longer total sailing distances and longer distances within ECAs548

than others will be removed, and the remaining paths comprise the path set of the leg. For a549

leg without ECAs, the path set contains only its shortest path. We assume all sailing paths are550

navigable. The time spent at each port of call is randomly generated and is between 12 hours and 60551

hours (Qi and Song 2012). Suppose that ships with the capacity of 18,000 20-ft containers (TEUs)552

will be deployed on the routes. The maximum speed of these ships is set to 23 knots (Seatrade-553

ShipTech-Middle-East 2019). The ships are divided into two types: traditional ships (type 1) and554

scrubber-equipped ships (type 2). The total number of ships of the two types is generated based555

on the roundtrip journey distances of the routes and the maximum speed of the ships. Specifically,556 ∑2

k=1Qk is obtained by a uniform distribution (
∑R

r=1m
min
r × 1.1,

∑R

r=1m
min
r × 2). The number of557

ships of type 1, i.e., Q1, is randomly generated between 1 and
∑2

k=1Qk, and Q2 is produced by558 (∑2

k=1Qk

)
−Q1. The fixed costs of a traditional 18,000-TEU ship and a scrubber-equipped ship559

are set to 271,700 US$/week and 283,500 US$/week, respectively (MI-News-Network 2017, Gu and560

Wallace 2017, Seatrade-ShipTech-Middle-East 2019). Referring to MI-News-Network (2017), the561

conversion factors akri and bkri between fuel consumption rate and sailing speed for an 18,000-TEU562
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ship are set to 7.81×10−4 and 2, respectively, for both types of ships and all legs of all routes. The563

0.5% global sulfur limit put into force from 1 January 2020 may cause the fluctuation of fuel prices,564

while the outbreak of novel coronavirus since early 2020 also has a significant impact on bunker565

prices. It is difficult to find representative prices, i.e., the fuel prices have not been influenced by566

the COVID-19 crises, after the implementation of the new global sulfur limit. Therefore, we will567

set the fuel prices based on the data in late 2019, and some sensitivity analyses on fuel prices will568

be conducted in Section 7.4. According to the global average fuel prices from October to December569

in 2019 (?), the prices of HSFO, VLSFO and MGO are set to 410 US$/ton, 600 US$/ton and 700570

US$/ton, respectively.571

Each instance is solved by the nesting algorithmic framework to obtain the optimal solution572

through the following process. We use the algorithms in Section 5 to design the optimal schedule573

for each route with given numbers of the two types of ships deployed (∆ = 1). Then, the dynamic574

programming-based pseudo-polynomial time algorithm is applied to assign ships to the routes. The575

optimal objective value (“OBJECA”) and the computation time (“CPU time”) for the three groups576

of test instances are reported in Table 1.577

7.2. Effectiveness of the proposed integrated model considering ECAs578

To test the effectiveness of the proposed integrated model, we solve each instance without579

considering ECAs and compare the resulting solutions with the optimal ones for the integrated580

model. —The solutions without considering ECAs are obtained by the algorithm in §EC.3. —581

Dear Prof Lee, since reviewer 2 said ’I consider the Appendices as not very interesting’, we582

deleted EC.3 The comparison between the solutions considering and not considering ECAs for583

the three groups of instances is reported in the “Gap” column of Table 1. This shows that584

considering ECAs in service planning can reduce over 2% of the costs. As the annual operating585

cost of a shipping company’s network can be as high as several billion dollars, a 2% cost saving is586

significant for these companies. Therefore, the proposed model considering ECAs will be of587

benefit to liner shipping operations management.588

7.3. Performance for speed optimization for comment 1-13589

We have investigated the effectiveness of the proposed model considering ECAs, where the path590

and speed optimization makes a significant contribution on cost savings. It is interesting to further591

analyze the performance of speed optimization only. For each instance, we will choose the shortest592

paths for all routes first and then generate the solution by optimizing the speed, schedule and593

fleet deployment considering ECAs (called solution not optimizing path). Comparing between the594

solutions not optimizing path and not considering ECAs, we can obtain the cost savings that come595

from speed optimization. We can see the computational results in Table 1.596
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Table 1 Computational time of the nesting algorithmic framework and comparison between solutions

Instances
Consider ECAs Not consider ECAs Not optimize path

OBJECA CPU time (s) OBJNECA Gap1 OBJNpath Gap2

10-1

10-2

10-3

10-4

10-5

20-1

20-2

20-3

20-4

20-5

30-1

30-2

30-3

30-4

30-5

Notes:

(i) Instance “10-1” means the first instance of the group of 10 routes.

(ii) “OBJECA” is the total average cost per week of the optimal decisions

considering ECAs, “OBJNECA” is the total average cost per week

of the decisions without considering ECAs, and “OBJNpath” is the

total average cost per week of the decisions without optimizing path.

(iii) “Gap1” is calculated as (OBJNECA−OBJECA)/OBJECA and “Gap2” is

calculated as (OBJNECA−OBJNpath)/OBJNpath.

7.4. Sensitivity with fuel price for comments 1-2 and 2-2597

The prices of MGO, VLSFO and HSFO have fallen sharply since January 2020. Considering the598

uncertainty of fuel price, we analyze the sensitivity of the gaps for the first five instances in Table 1599

with the decrease of fuel prices to further validate the effectiveness of the proposed model. Based600

on the global average bunker prices in the first four months of 2020, we design six groups of fuel601

prices on MGO, VLSFO and HSFO. A figure similar with Figure 7 will be reported here.602

7.5. Sensitivity with the fixed cost of scrubber-equipped ships for comment 1-14603

The fixed cost of a scrubber-equipped ship is set to be 11,800 US$/week (283,500 minus 271,700604

US$/week) higher than that of a traditional ship in the experiments in Sections 7.1 and 7.2. The605

cost of scrubbers is expected to decrease with the maturity of technology and economy of scale, due606

to their wider adoption. Therefore, we examine the effectiveness of the integrated model considering607
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Table 2 Prices of MGO, VLSFO and HSFO

Groups MGO VLSFO HSFO

1 395 265 200

2 460 345 240

3 525 425 280

4 590 505 320

5 655 585 360

6 720 665 400

ECAs when the fixed cost of scrubber-equipped ships decreases. We test the first five instances in608

Table 1. For each instance, we set the fixed cost (c2) of a scrubber-equipped ship at a value from609

283,500 (11,800 US$/week higher than that of a traditional ship), 282,320 (90%×11,800 US$/week610

higher), 281,140, 279,960, 278,780, and 277,600 (50%×11,800 US$/week higher) US$/week. We611

study two cases as follows: when the total number of available ships is less than or equal to the total612

optimal number of ships deployed on all routes (case 1), we report the gaps between the total costs613

considering ECAs and those without considering ECAs for the five instances with 10 routes shown614

in Figure 7 by solid lines; when the total number of available ships is more than the total optimal615

number of ships deployed on all routes (case 2), the gaps for the five instances are shown with616

dotted lines in Figure 7. The figure indicates that the cost savings brought by the integrated model617

are still significant even when the fixed costs of scrubber-equipped ships significantly decrease. In618

case 1, all ships will be deployed on routes. With the decrease of the fixed cost of scrubber-equipped619

ship, the optimal solution on path and speed, schedule design and fleet deployment is constant,620

and the decrease of the total cost considering ECAs will lead to the slightly increase of the gap621

between the total costs considering and not considering ECAs. In case 2, ***622

7.6. Effect of ECAs on fleet deployment for comment 1-15623

We will analyze the solutions on fleet deployment when ECAs are considered and not considered.624

The number and type of ships deployed on each route for the first instance in Table 1 are reported625

in Table 3.626

8. Conclusions627

In this study we explore a sustainable liner shipping operations management problem. We628

address holistic liner shipping service planning that integrates fleet deployment, schedule design,629

and ship routing, considering the effect of ECAs. The objective is to minimize the costs for liner630

shipping companies while complying with the ECA rules. The interlinked decisions of fleet631

deployment, schedule design, and ship routing and the ECA regulations complicate the problem.632

We propose a nesting algorithmic framework to address this new and challenging problem. In our633
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Figure 7 Sensitivity of the gaps between considering ECAs and not considering ECAs with the fixed cost of a

scrubber-equipped ship

Table 3 Number and type of ships deployed in the solutions considering and not considering ECAs

Routes
Consider ECAs Not consider ECAs

Type 1 Type 2 Type 1 Type 2

1

2

3

4

5

6

theoretical analysis of the framework, we find that the minimum fuel cost of a ship on a leg is634

generally not convex in the sailing time (Proposition 4) and the minimum fuel cost of a route is635

not necessarily convex or concave in the number of ships deployed (Proposition 5). We show that636

deploying multiple types of ships on one route is generally undesirable because different types of637

ships have to compromise to follow the same schedule (Theorem 1 and Corollary 1). We prove638

that the fleet deployment problem with multiple types of ships can be solved in639

pseudo-polynomial time (Proposition 6). When considering retrofitting traditional ships with640

scrubbers, we prove either all traditional ships on a route should be converted into641

scrubber-equipped ships or no traditional ship should be converted (Proposition 7). Extensive642

numerical experiments are conducted to validate the effectiveness of the proposed models. The643

computational results show that considering the effect of ECAs in liner shipping operations644
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management can reduce over 2% of the costs. In addition, the computation time for instances645

with 60 routes does not exceed three hours.646
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