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Abstract 4 
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ships from a set of candidate ships together with their sequences, schedules, and sailing speeds 12 

in the shipping route to minimize the total cost. A tailored solution algorithm is subsequently 13 

developed to calculate the global optimal solution very efficiently. A series of numerical 14 

experiments demonstrate that this algorithm significantly outperforms the classical branch-15 

and-cut algorithm in solving the model. In addition, by applying our model in a real-case 16 

shipping route, we find that the model is able to reduce the total cost by 3% compared with the 17 

model considering homogenous vessels. Finally, several managerial insights are obtained to 18 

guide the operations of a liner shipping route. 19 
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1. Introduction 1 

Container shipping is the backbone of the global logistics system that connects the 2 

trades between different continents. It is reported by UNCTAD (2019) that the volume of 3 

containerized cargo has seen a 5.8% annual growth in the past two decades and the total 4 

container trade volume reached 152 million TEUs (20-foot equivalent units) in 2018. Liner 5 

shipping provides container shipping service by a fleet of container ships that follow fixed 6 

routes and schedules. In a shipping route, the container ships call a sequence of ports with a 7 

fixed frequency, usually once a week (Agarwal and Ergun, 2008), to transport the containers. 8 

To achieve an efficient shipping service, the liner operators must deploy the most appropriate 9 

ships in the route and determine their visit schedules for all ports of call. For ease of modeling 10 

and solving the fleet deployment and scheduling (FDS) problem, current studies usually 11 

assume identical container ships in the same route (Wang and Meng, 2017). However, in real 12 

operations, this assumption does not hold because these ships cannot be identical considering 13 

the distinct capacities, cost structures, ages, etc. in different ships. Here we identify the 14 

following two important factors that distinguish these ships. 15 

First, the capacities may vary for ships in the same route. This may be because these 16 

ships are built at different times or come from different shipping companies in an alliance. Take 17 

the Asia-Europe service AEU1 operated by COSCO as an example. This service has ten ships 18 

deployed with their capacities ranging between 13300 TEUs and 21413 TEUs (COSCO, 2020), 19 

a variation of 37.9%. In general, larger ships can transport more containers but incur higher 20 

operating costs. On the contrary, deploying smaller ships leads to lower operating costs, but 21 

the shipping company has to purchase more third-party slots from other shipping companies 22 

for the unsatisfied shipping demand and thus has higher slot purchase costs. Therefore, given 23 

a set of container ships that differ in capacities and operating costs, a wise selection of ships to 24 

deploy in the shipping route has a significant effect on the operating cost and the freight revenue 25 

of the shipping route.  26 

Second, these ships also differ in bunker fuel consumption rates. Fig. 1 depicts the 27 

bunker consumption functions of two ships belonging to the same shipping route with respect 28 

to sailing speeds that are calibrated on actual ship log data. We can see that these two functions 29 
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have quite different trends in terms of the variations in sailing speed. The difference in the 1 

bunker consumption rates can be as large as 48.1% (when the sailing speed is 10 knots). There 2 

exist several reasons accounting for different bunker consumptions among the ships in the same 3 

route. First, as mentioned above, these ships may have different capacities. In general, the 4 

larger the ship size, the higher the bunker consumption. Second, ships may be built with 5 

different manufacturing techniques and thus have different mechanical performance and 6 

bunker consumption efficiency. Third, even the fuel consumption rate of the same ship may 7 

vary in operation. This is, the ship may wear out as time goes by, which increases the fuel 8 

consumption rate. At the same time, the scheduled maintenance of the ship, on the contrary, 9 

could improve fuel efficiency and reduce fuel consumption. As the bunker consumption cost 10 

takes up the largest part of the total ship operating cost (Ronen, 2011), the variation of sailing 11 

speed can significantly change the operating cost of these ships and thus influence the ship 12 

selections. Therefore, it is vital for the liner operators to consider the optimal ship sailing speed 13 

and the ship schedules when deploying heterogeneous ships in order to reduce the operating 14 

cost of the shipping route.  15 

 16 

Fig. 1 Fuel consumption function of two ships in the same shipping route 17 
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In addition, extant studies usually consider fixed container shipping demand across the 1 

planning horizon when solving the FDS problem. However, in reality, due to factors such as 2 

the global economy, the production plan of the manufacturers, and seasonality factors (e.g., 3 

Christmas, Chinese New Year), remarkable variations of the shipping demand volume exist 4 

across the planning horizon. Fig. 2 below can be viewed as evidence that indicates considerable 5 

fluctuations of container shipping demand of four origin-destination (OD) pairs across a whole 6 

year. Given the weekly-dependent shipping demand, there is a need to optimize the sequence 7 

of the ships with different capacities in the shipping route. This is because large ships are 8 

preferable when the shipping demand is high in some weeks while small ships are more 9 

appropriate for low shipping demand in other weeks. Therefore, arranging these ships with 10 

different capacities to match these weekly-dependent demands can increase the utilization of 11 

the ship capacity and thus improve the profitability of a shipping company.  12 

 13 

Fig. 2. Container shipping demand variations for 4 OD pairs (Wang, 2015) 14 

Based on the above considerations, this paper investigates how to deploy, schedule, and 15 

sequence a fleet of heterogeneous ships under weekly-dependent shipping demand to minimize 16 

the total cost which is the sum of the ship operating cost, the bunker consumption cost, and the 17 

penalty cost for the unsatisfied shipping demand. This problem can be referred to as the 18 
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deploying, scheduling, and sequencing (DSS) problem for the heterogeneous liner shipping 1 

vessels. The DSS problem simultaneously deals with the following three issues: 2 

i) (Deployment) Given a set of candidate ships that differ in capacity, operating cost, and 3 

bunker fuel consumption, the DSS problem needs to select and deploy optimal ships in 4 

the shipping route through balancing the containers transported by the ships and the 5 

corresponding operating costs.  6 

ii) (Scheduling) The DSS problem needs to determine the optimal sailing speeds in all 7 

shipping legs and the visit schedules for the ports of call in the route. For a stable service 8 

with fixed service frequency, the sailing speeds of all ships deployed in the route should 9 

be identical in each shipping leg.  10 

iii) (Sequencing) Considering the variations of container shipping demand in the planning 11 

horizon, the DSS problem needs to determine the sequence of these heterogeneous ships 12 

deployed in the shipping route so that the capacities of the ships can match the weekly-13 

dependent container shipping demands.  14 

The above three issues are interrelated. That is, scheduling ships relates to the 15 

optimization of sailing speed and the bunker consumption cost, which further affects the 16 

selection and deployment of ships in the shipping route from the candidate set. In addition, the 17 

deployment of heterogeneous ships also induces the need to determine the sequence of these 18 

ships to accommodate the weekly-dependent shipping demand. To tackle the DSS problem, 19 

this paper first formulates this problem as a mixed integer linear programming (MILP) model. 20 

Due to the large size of this model, it cannot be solved by the classical branch-and-cut (B&C) 21 

algorithm implemented in commercial solvers in a short time. Hence, a tailored solution 22 

algorithm is developed in this study that is able to solve the model efficiently in a short time. 23 

A series of numerical experiments are conducted to compare the efficiency of the algorithm 24 

with that of the B&C. Results demonstrate that this algorithm can be dramatically faster than 25 

the B&C to solve real-sized problems.  26 

 27 
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2. Literature Review 1 

The topic of this paper is related to two research areas in liner shipping that have been 2 

extensively discussed in the literature, that is, fleet deployment and vessel scheduling. We first 3 

review studies on fleet deployment and then turn to vessel scheduling. Please note that 4 

considering the length of this paper, we cannot provide an exhaustive literature review but 5 

select some typical studies in these two areas. The detailed review can be seen in Wang and 6 

Meng (2017) and Dulebenets et al. (2019).  7 

The fleet deployment problem considers how to assign ships of different types to 8 

shipping routes in order to minimize the total ship operating cost. To the authors’ knowledge, 9 

the earliest studies on fleet deployment date back to Benford (1981) and Perakis (1985). 10 

Benford (1981) develops a simple procedure to select the best mix of ships and the speeds for 11 

a shipping route with only two ports to maximize the profit of the shipowner. Perakis (1985) 12 

further formulates the problem in Benford (1981) as a programming model and solves it by the 13 

Lagrange multiplier method. Inspired by these two pioneering works, many subsequent studies 14 

discuss fleet deployment as a standalone problem (e.g., Powell and Perakis, 1997; Meng and 15 

Wang, 2010; Ng, 2014; Ng, 2015) or together with other problems such as container routing 16 

(e.g., Fagerholt et al, 2009; Meng et al., 2012; Wang and Meng, 2012a; Monemi and Gelareh, 17 

2017; Zhen et al, 2019), sailing speed optimization (e.g., Gelareh and Meng, 2010; Pasha et al., 18 

2020), network design (e.g., Agarwal and Ergun, 2008; Alvares, 2009; Song and Dong, 2013; 19 

Brouer et al, 2014; Xia et al., 2015; Wang et al., 2019), and green shipping (e.g., Zhu et al., 20 

2018; Cheaitou and Cariou, 2019; Zhen et al., 2020). For example, Alvares (2009) considers 21 

the joint routing and deployment of container vessels that service several ports to minimize the 22 

operating costs of a liner shipping company over a planning horizon. A tabu search algorithm 23 

embedded with a column generation technique is developed to solve this problem. A mixed 24 

integer programming model is formulated in Gelareh and Meng (2010) to determine the 25 

optimal ship type deployed and the sailing speed in each route of the shipping network. Meng 26 

and Wang (2010) solve the short-term liner ship fleet deployment problem under the uncertain 27 

container shipping demand. Chance constraints are adopted to guarantee that the deployed 28 

ships should satisfy the shipping demand with a predetermined probability. Considering that 29 
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the shipping demand may vary significantly during the planning horizon, Meng and Wang 1 

(2012) investigate the ship fleet deployment with the weekly-dependent container shipping 2 

demand. A time-space network is constructed to help model the routing of container shipping 3 

demand in each week of the planning horizon. This paper also takes into account the weekly-4 

dependent demand to reflect the shipping demand fluctuations in the planning horizon. Song 5 

and Dong (2013) design a long-haul liner service route with the joint consideration of fleet 6 

deployment and empty container repositioning. Ng (2014) considers the liner shipping vessel 7 

deployment with the distribution-free uncertain shipping demand. In that paper, only the mean, 8 

standard deviation, and upper bound are needed for the uncertain demand, which can be easy 9 

to obtain in practice. Pasha et al. (2020) consider the holistic tactical-level planning in liner 10 

shipping that jointly optimizes service frequency, fleet deployment, ship sailing speed, and 11 

schedule. As the environmental impacts of maritime shipping are attracting more and more 12 

attention in both academia and industry, some studies discuss the fleet deployment problem in 13 

the context of green shipping. For example, Zhu et al. (2018) investigate the impact of the 14 

emission trading system on the container ship fleet deployment. By examining real data from 15 

the industry, they find that the trading system can motivate shipping companies to deploy more 16 

“energy-carbon-efficient” ships and lay up energy-inefficient ships. Zhen et al. (2020) optimize 17 

the green technology adoption strategy for a container ship fleet in response to the 18 

establishment of emission control areas (ECAs). Two potential technologies are considered, 19 

i.e., the gas scrubbers and the shore power.   20 

Another research area that this paper is related to is the liner shipping vessel scheduling 21 

problem that aims to determine the sailing speed in each shipping leg and the arrival and/or 22 

departure time at each port of call. Considerable studies have been conducted to discuss this 23 

problem in recent decades (e.g., Fagerholt, 2001; Ronen 2011; Wang and Meng, 2012b; Song 24 

et al., 2015; Fagerholt et al., 2015; Wang et al., 2015; Aydin et al., 2017; Dulebenets and 25 

Ozguven, 2017; Tan et al., 2018; Wang et al., 2018; Giovannini and Psaraftis, 2019; Gürel and 26 

Shadmand, 2019; Wang et al., 2019; Abioye et al. 2020; Wang and Meng, 2020). Fagerholt 27 

(2001) designs the ship schedules that allow ships to violate the port time windows at the 28 

expense of violation inconvenience costs. A number of feasible routes and schedules are first 29 
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enumerated for a number of ships. A set partitioning problem is then constructed to select the 1 

optimal routes and schedules for these ships to minimize the total route cost. Ronen (2011) 2 

shows that the bunker consumption cost could constitute more than 75% of the total operating 3 

costs. Reducing the sailing speed leads to a lower operating cost but increases the round-trip 4 

time of the route and thus the fleet size in the route to maintain the fixed service frequency. A 5 

nonlinear programming model is constructed to analyze this trade-off and a simple procedure 6 

is provided to solve the model to obtain the optimal sailing speed and fleet size. Song et al. 7 

(2015) jointly plan the fleet size, ship sailing speed, and the service schedule in order to 8 

optimize three objectives, i.e., expected cost, service reliability, and ship emissions considering 9 

the port time uncertainty. This problem is solved by a simulation-based non-dominated sorting 10 

genetic algorithm. Fagerholt et al. (2015) examine the effects of the ECAs on the ship sailing 11 

speed, schedule, and ship route. Results show that with the establishment of the ECAs, a ship 12 

will choose to sail a longer distance away from the ECAs and the sailing speed within the ECAs 13 

is generally lower than that outside. Aydin et al. (2017) optimize the ship sailing speed under 14 

uncertain port times and time windows to minimize the total fuel consumption while 15 

maintaining schedule reliability. Dulebenets and Ozguven (2017) design the vessel schedule in 16 

a liner shipping route with perishable assets. A mixed integer nonlinear programming model is 17 

constructed and then linearized by a piece-wise linear secant approximation method. The 18 

linearized model is solved by CPLEX. Tan et al. (2018) design the schedule of an inland river 19 

liner shipping service by considering the stochastic dam transit time. A Pareto optimization 20 

model is constructed that optimizes the total round-trip time and fuel consumption 21 

simultaneously. Wang et al. (2019) consider a single intercontinental liner shipping service 22 

design problem that simultaneously determines the shipping route, the ship sailing speed and 23 

schedule, and the container routing for each OD pair to maximize the total profit. A tailored 24 

branch-and-cut-and-Benders algorithm is developed to solve this problem. Different from 25 

previous papers that assume weekly service frequency, Giovannini and Psaraftis (2019) 26 

optimize ship sailing speed and service frequency for a shipping route to maximize the average 27 

daily profit. Results show that allowing variable service frequency leads to lower operating 28 

costs and CO2 emissions. Gürel and Shadmand (2019) solve the scheduling problem for the 29 
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heterogenous ship types considering uncertainties in port time. Abioye et al. (2020) consider 1 

the liner shipping schedule recovery problem through four strategies including adjusting sailing 2 

speed, adjusting vessel handling rate, skipping ports with/without container diversion. A 3 

nonlinear programming model is formulated for this problem and is solved by the nonlinear 4 

optimization solver BARON.  5 

 Despite considerable articles addressing the liner shipping fleet deployment and 6 

scheduling, most of them assume that the container ships deployed in a shipping route are 7 

identical. As far as the authors are concerned, there are only two studies considering the 8 

heterogeneous fleet, i.e., Wang (2015) and Dulebenets (2018). Wang (2015) investigates how 9 

to arrange ships in a route that differ in capacities considering the fluctuations of weekly 10 

shipping demand. Three heuristic rules are given to determine the permutations of these ships 11 

that are quite close to the optimal permutation. However, that study only considers a shipping 12 

route with only two ports (one export port and one import port) which restricts its application 13 

in real operations. In addition, the ship deployment and sailing speed optimization are not 14 

considered in that study. Dulebenets (2018) considers the vessel scheduling problem with a 15 

heterogeneous fleet. In that paper, the shipping route allows container ships with different 16 

bunker consumptions, port handling costs, and operating costs. However, that paper assumes 17 

that the shipping demand does not change in the planning horizon and it cannot determine the 18 

exact sequence of these heterogeneous ships to accommodate the time-varying shipping 19 

demand in real operations. To fill this gap, this paper considers the DSS problem in a liner 20 

shipping route that simultaneously optimizes the deployment, schedule, and sequence of a fleet 21 

of heterogeneous ships under weekly-dependent shipping demand. Therefore, the problem in 22 

this paper is more general and applicable than those in Wang (2015) and Dulebenets (2018) as 23 

it incorporates more practical considerations.  24 

The contributions of this paper can thus be stated as follows. First, this paper considers 25 

the joint deployment, scheduling, and sequencing problem for a fleet of heterogeneous ships in 26 

a shipping route under weekly-dependent shipping demand, which has never been discussed in 27 

the literature. Second, to tackle this problem, a mixed integer linear programming model is 28 

developed to select the optimal ships from the candidate set of ships and determine the optimal 29 
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sailing speed, schedule, and sequence of these ships in order to minimize the total cost of the 1 

shipping route. Third, considering the large size of this programming model, a tailored solution 2 

algorithm is developed to obtain the global optimal solution in a short time. Numerical 3 

experiments show that this algorithm is much faster than the classical B&C algorithm in 4 

solving the model.   5 

The remainder of this paper is organized as follows. Second 3 elaborates the problem 6 

considered in this paper and constructs a mixed integer linear programming model for the 7 

problem. Section 4 develops a tailored solution algorithm to obtain the global optimal solution 8 

of the model. Numerical experiments are conducted in Section 5 to test the efficiency of the 9 

solution algorithm and the applicability of the model. Finally, Section 6 gives the conclusions 10 

of this paper and the recommendations for future research.  11 

 12 

3. Model Formulation 13 

Consider a liner container shipping company that operates a shipping route and has a 14 

set of candidate container ships that can be deployed in this route. The shipping company needs 15 

to determine which ships are selected to deploy in the route together with their schedules and 16 

sequences in the planning horizon. In this section, a mixed integer nonlinear programming 17 

model is first formulated for this problem. This model is then transformed into a mixed integer 18 

linear programming model which can be solved by the existing commercial solvers. The 19 

notations used in this paper are listed in Table 1.  20 

Table 1. Notations 21 

Sets 
D   Set of all OD pairs 
I   Set of all ports and legs, {1,2,..., }I N=  

ijI  Set of all ports and legs in the route from port i to port j. 
S   Set of all available vessels 

Parameters 
sCap   Capacity of ship s S∈  

bunkc   Bunker fuel price 
oper
sc   Weekly operating cost of ship s S∈  

odc   Penalty cost per TEU for unsatisfied shipping demand 
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il   Length of shipping leg i I∈  (nautical mile) 
T   length of the planning horizon in weeks 

p
it  Port stay time in port i I∈  
max min,i iv v   Maximum and minimum sailing speed in leg i I∈  

,s s
i iα β   Parameters of bunker consumption function of ship s S∈  in leg i I∈  
k
odξ   Container shipping demand in week k and ( , )o d D∈  

Variables 
m   Number of ships deployed in the service 
it   Vessel traveling time in leg i I∈   

iv   Vessel sailing speed in leg i I∈  

sx   Binary indicating whether ship s is deployed   
s
kx   Binary indicating whether ship s S∈   is deployed in week 

1,2,..., ,...,k T T m= +   
k
ody   Number of containers loaded in week k for demand ( , )o d D∈  
k
odz   Number of containers transported by third-party services in week k for demand 

( , )o d D∈  
ji
τθ   Binary indicating whether the ship visit port i from port j in τ  weeks 

Auxiliary Variables 
s
iB , s

iC  Auxilliary nonnegative variables to linearize objective function (17) 
ki
odg τ , ki

sq τ  Auxilliary nonnegative variables to linearize constraint set (7)  

in  Auxilliary integer variable to linearize constraint set (10) 

 1 

3.1 Ship Schedule and Weekly Service Frequency 2 

In this paper, we assume that the port rotations of the route are pre-determined. Denote 3 

by I the set of all ports of call in the route. The route is a cycle of all ports of call and can thus 4 

be expressed as 1 2 ... ... 1i I→ → → → → → , where 1 represents the first port of call, and 5 

I  is the number of ports of call in the route and also represents the last port of call. A shipping 6 

leg is defined as the voyage between two adjacent ports of call and, for ease of presentation, is 7 

also numbered by its starting port of call i I∈ . To keep a fixed service frequency, the sailing 8 

time in each shipping leg should be identical among all deployed ships. Denote by the decision 9 

variable it  (hour) the sailing time in leg i I∈  and the constant il  (nautical mile, nm) the 10 

leg distance. The sailing speed in the shipping leg i can be easily calculated as : / ,i i iv l t i I= ∀ ∈  11 

(knot). The sailing time should fall in a feasible range in practice:  12 
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 max min[ / , / ],i i i i it l v l v i I∈ ∀ ∈   (1) 1 

where max
iv  (knots) and min

iv  (knots) are the largest and smallest economic sailing speed in 2 

the shipping leg i respectively. We assume that the ships deployed in the route should maintain 3 

weekly service frequency for all ports of call in the route. Hence, the following constraint set 4 

should be satisfied: 5 

 ( ) 168p
i i

i I
t t m

∈

+ =∑   (2) 6 

where the term p
it  (hour) represents the port-stay time at port of call i I∈  including vessel 7 

waiting time, vessel pilotage in and out time, and cargo handling time, and is assumed to be 8 

constant in this paper; the decision variable m Z+∈  refers to the number of ships deployed in 9 

the shipping route; 168 is the number of hours in a week.  10 

3.2 Vessel Deployment and Sequencing Constraints 11 

Denote by S  the set of all candidate ships and T the total number of weeks in the 12 

planning horizon. For each ship s in the set S, we let the binary decision variable sx  indicate 13 

whether the ship s will be deployed in the route and the binary decision variable k
sx  indicate 14 

whether the ship s will start the voyage from the first port of call 1 in week {1,..., }k T∈ . We 15 

have the following constraints for the two variables: 16 

 
1

,
m

k
s s

k
x x s S

=

= ∀ ∈∑   (3) 17 

 1, {1,..., }k
s

s S
x k T

∈

= ∀ ∈∑ .  (4) 18 

Constraint set (3) indicates that if ship s is deployed in the route, it must start its voyage 19 

between week 1 and week m. Constraint set (4) indicates that there should be only one ship 20 

that starts its voyage in each week k. As a ship finishes the whole voyage in m weeks, it should 21 

start a new voyage every m weeks. Therefore, the following constraint set is valid. 22 
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 ( 1) mod 1, 1,..., ,k k m
s sx x k T s S− += ∀ = ∈   (5) 1 

where the operator “mod” calculates the remainder when k is divided by m.  2 

3.3 Weekly-dependent Shipping Demand and Ship Capacity Constraints 3 

In this paper, we assume that the shipping demand is classified by the OD pair and each 4 

type of shipping demand varies in different weeks. Denote by D the set of all OD pairs and 5 

k
odξ   (TEU) the number of containers of type ( , )o d D∈   to transport in week k which is 6 

assumed to be precisely predicted and thus fixed. We also let the nonnegative decision variable 7 

k
ody   (TEU) represent the number of containers to load onboard in week k for demand 8 

( , )o d D∈  . Due to the ship capacities, the shipping route may not be able to transport all 9 

containers. The unsatisfied shipping demand will be transported by other shipping routes of the 10 

shipping company itself or other companies, which is represented by a nonnegative decision 11 

variable k
odz  (TEU). We thus have the following constraint set. 12 

 , ( , ) , {1,..., }k k k
od od ody z o d D k Tξ+ ≥ ∀ ∈ ∈ .  (6) 13 

As the shipping route maintains weekly service frequency, there should be one and only 14 

one ship visiting port of call i and then sailing through the shipping leg i in each week k, which 15 

can be represented by the tuple ( , )i k . For each tuple ( , )i k , we have the following shipping 16 

capacity constraints 17 

 
min( , 1) min( , 1)

1

( , ) 0 0
, , {1,..., }

od

m k m k
k oi k i
od s s

o d D s S
i I

y x Cap i I k T mτ τ
τ τ

τ τ

θ θ
− −

− −

∈ = ∈ =
∈

≤ ∀ ∈ ∈ +∑ ∑ ∑ ∑   (7) 18 

where the function min( )⋅ ⋅， returns the minimum value of two numbers, and the variable ji
τθ  19 

is defined to be a binary variable that equals 1 if and only if a ship visits the port j in week k 20 

and then visits port i in week k τ+ . For example, if a ship visits port 1 in week 1 and visits 21 

port 2 in week 3, then the variable 12
2 1θ = . Also note that as there are m ships deployed in the 22 

route, it takes m weeks for a ship to finish the whole round-trip voyage of the route and thus 23 
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{0,1,..., }mτ ∈ . The left-hand side of (7) represents the total number of containers that are 1 

transported by the ship indicated by the tuple ( , )i k , i.e., visiting port of call i and sailing 2 

through the shipping leg i in each week k. For example, for the ship visiting port 2 and the leg 3 

2 in week 3, if 12
2 1θ = , we know that it should have loaded the containers originating in port 1 4 

in week 3 2 1− = . The term sCap  (TEU) refers to the capacity of ship s. The right-hand side 5 

calculates the capacity of such ship indicated by the tuple ( , )i k . Note that in constraint set 6 

(7), we extend the planning horizon to week T m+  to guarantee that the shipping demand 7 

near the end of the planning horizon T can be satisfied rather than simply ignored because of 8 

no ships considered beyond week T.  9 

1

j

i
...

 

1

i

j
...

 10 

 (a) (b)   11 

Fig. 3. Port rotations of a shipping route, (a) i ≥ j, (b) i < j 12 

It can be observed that the variable ji
τθ  exists in both sides of the constraint set (7). 13 

We now explain how to calculate its value. If i j≥  as shown in Fig. 3(a), the voyage from j 14 

to i does not contain the first port of call 1, that is 1 ...j j i→ + → → . We let jiI  represent 15 

the set of all ports and legs in the voyage from j to i. As we consider the time when a ship leaves 16 

the first port of call as the start of each voyage, the week differences for a ship to visit port j 17 

and port i can be calculated as 18 

 
1 1

( ) / 168 ( ) /168
i j

p p
h h h h

h I h I
t t t t

∈ ∈

  
+ − +  

    
∑ ∑   (8) 19 

where the first and second terms in (8) refer to the number of weeks it takes to visit ports of 20 
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call i and j from the first port of call 1 respectively. The operator a    represents the largest 1 

integer that is no larger than a. If i j<   as shown in Fig. 3(b), the voyage from j to i is 2 

... 1 ...j i→ → → → . That is, the ship must visit the port of call 1 before visiting i. Hence the 3 

week difference can be calculated as 4 

 
1 1

( ) / 168 ( ) /168
i j

p p
h h h h

h I h I
t t t t m

∈ ∈

  
+ − + +  

    
∑ ∑ .  (9) 5 

We thus have the following two constraint sets for the decision variable ji
τθ : 6 

 
1 1

1 1

0

( ) / 168 ( ) /168 ,

,

( ) / 168 ( ) /168 ,

i j

i j

p p
h h h h

m h I h Iji

p p
h h h h

h I h I

t t t t i j

i j I

t t t t m i j
τ

τ

τθ
∈ ∈

=

∈ ∈

   
+ − + ∀ ≥   

    = ∀ ∈
  

+ − + + ∀ <  
    

∑ ∑
∑

∑ ∑
  (10) 7 

 
0

=1 ,
m

ji i j Iτ
τ

θ
=

∀ ∈∑ ， .  (11) 8 

3.4 Mixed Integer Nonlinear Programming Model 9 

Denote by oper
sc  ($) the ship weekly operating costs except the bunker fuel cost, 10 

including the ship weekly maintenance cost, the salary of crews per week, the canal toll fee, 11 

the port-stay charge, etc. The total ship operating cost ($) except the bunker fuel cost can be 12 

calculated as 13 

 oper
s s

s S
T c x

∈
∑ .  (12) 14 

The bunker consumption rate (MT/day) is assumed to be a polynomial function of the sailing 15 

speed (knots) of each ship s in the set S, which has been widely adopted in previous studies 16 

(e.g., Wang and Meng, 2012b; Brouer et al., 2014; Wang et al., 2015; Meng et al, 2016; 17 

Reinhardt et al., 2016; Tierney et al., 2019; Reinhardt et al., 2020) 18 

 ( ) , ,
s
is s

i i i if v v i I s Sβα= ∀ ∈ ∈ .  (13) 19 
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Substituting : /i i iv l t= , the function (13) can be rewritten as  1 

 1( ) / 24,
s s
i is s

i i i i ig t l t i Iβ βα −= ∀ ∈ .  (14) 2 

Therefore, the total fuel consumption cost ($) of all ships in T weeks can be expressed as 3 

 1 / (24 )
s s
i ibunk s

i i i s
s S i I

Tc l t x mβ βα −

∈ ∈
∑∑   (15) 4 

where bunkc  ($/MT) is the bunker fuel price. Let odc  ($/TEU) represent the penalty cost for 5 

the unsatisfied shipping demand ( , )o d D∈  and is calculated as the inventory and storage 6 

cost, the opportunity cost, the loss of goodwill, and the marginal cost for the container to be 7 

transported by other shipping routes of the shipping company itself or other companies. The 8 

penalty cost ($) can be thus expressed as  9 

 
( , ) 1

T
k

od od
o d D k

c z
∈ =
∑ ∑ .  (16) 10 

We are now ready to give the mixed integer nonlinear programming model (MINLP) for the 11 

DSS problem.  12 

[MINLP] 1

( , ) 1
min / (24 )

s s
i i

T
oper bunk s k
s s i i i s od od

s S s S i I o d D k
T c x Tc l t x m c zβ βα −

∈ ∈ ∈ ∈ =

+ +∑ ∑∑ ∑ ∑   (17) 13 

Subject to constraint sets (1) ~ (7), (10), (11), and  14 

 , , 0, , ( , ) , {1,..., }k k
i od odt y z i I o d D k T≥ ∀ ∈ ∈ ∈   (18) 15 

 , , {0,1}, , {1,..., }, {0,1,..., }, ,k ji
s sx x s S k T m i j Iτθ τ∈ ∀ ∈ ∈ ∈ ∈   (19) 16 

 m Z+∈ .  (20) 17 

The above model is nonlinear because of the nonlinear terms in the objective function (17) 18 

and constraint sets (5), (7), and (10). In Section 3.5, we will linearize the nonlinear terms and 19 

transform the model to a mixed integer linear programming (MILP) model.  20 
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3.5 Model Linearization 1 

It can be easily observed that the decision variable m exists in the index system of 2 

constraint sets (5), (7), and (10), which makes the model very hard to deal with. Therefore, 3 

we consider enumerating the variable m and solving the MINLP model for all possible values 4 

of m. Now we have the following model for each value of m.  5 

[MINLP(m)] 1

( , ) 1
min / (24 )

s s
i i

T
oper bunk s k
s s i i i s od od

s S s S i I o d D k
T c x Tc l t x m c zβ βα −

∈ ∈ ∈ ∈ =

+ +∑ ∑∑ ∑ ∑   (21) 6 

Subject to constraint sets (1) ~ (7), (10), (11), (18), and (19).  7 

It should be noted that the following set indicates all possible values of m in the model 8 

MINLP(m). 9 

 max min[ ( / )] / 168 ,..., [ ( / )] / 168p p
i i i i i i

i I i I
t l v t l v

∈ ∈

    + +        
∑ ∑   (22) 10 

where the operator a    calculates the minimum integer that is no less than a.  11 

In the model MINLP(m), constraints in the constraint set (5) are linear given each 12 

value of m. By introducing two nonnegative continuous auxiliary variables ki
odg τ  and ki

sq τ , 13 

constraint set (7) can be linearized as follows. 14 

 
min{ , 1} min{ , 1}

( , ) 0 0
, , {1,..., }

od

m k m k
ki ki
od s s

o d D s S
i I

g q Cap i I k T mτ τ

τ τ

− −

∈ = ∈ =
∈

≤ ∀ ∈ ∈ +∑ ∑ ∑ ∑   (23) 15 

 - - -( 1) , ( , ) , , {0,...,min( , 1)}k oi k ki k
od od od od ody g y o d D i I m kτ τ τ τ

τθ ξ τ+ − ≤ ≤ ∀ ∈ ∈ ∈ −   (24) 16 

 -0 , ( , ) , , {0,...,min( , 1)}ki oi k
od od odg o d D i I m kτ τ

τθ ξ τ≤ ≤ ∀ ∈ ∈ ∈ −   (25) 17 

 0 , , {1,..., }, , {0,...,min( , 1)}ki k
s skq x i I k T m s S m kτ τ

τ τ−
−≤ ≤ ∀ ∈ ∈ + ∈ ∈ −   (26) 18 

 1 11 , , {1,..., }, , {0,...,min( , 1)}k i ki i
s sx q i I k T m s S m kτ τ

τ τθ θ τ− + − ≤ ≤ ∀ ∈ ∈ + ∈ ∈ − .  (27) 19 

By introducing the auxiliary variable Z ,in i I+∈ ∈ , constraint set (10) can be linearized as  20 
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0

,
,

,

m
i jji

i j

n n i j
i j I

n n m i jτ
τ

τθ
=

− ∀ ≥= ∀ ∈ − + ∀ <
∑   (28) 1 

 
1

1( ) / 168 1 / 1,
i

p
i h h i

h I
n t t M n i I

∈

≤ + + ≤ + ∀ ∈∑   (29) 2 

where 1M  is a very large number. By introducing two nonnegative auxiliary variables s
iB  3 

and s
iC , the objective function (17) can be linearized as follows. 4 

 
( , ) 1

min /
T

oper bunk s k
s s i od od

s S s S i I o d D k
T c x Tc B m c z

∈ ∈ ∈ ∈ =

+ +∑ ∑∑ ∑ ∑   (30) 5 

 2( -1) , ,s s
i i sB C x M i I s S≥ + ∀ ∈ ∈   (31) 6 

 1 / 24, ,
s s
i is s

i i i iC l t i I s Sβ βα −≥ ∀ ∈ ∈   (32) 7 

where the term 2M , a large number, can be set as 1max

,
max{ ( ) / 24}

s
is

i i ii s
l v βα −  here. Constraint 8 

set (32) is still nonlinear and can be linearized by the outer linear approximation method 9 

widely used in existing studies (e.g. Wang and Meng, 2013; Wang et al., 2019). The linear 10 

counterpart of constraint set (32) by this approximation method can be expressed as 11 

 , , ,s s s s
i ir ir i iC b a t r R i I s S≥ + ∀ ∈ ∈ ∈   (33) 12 

where s
ira  and s

irb  are parameters in the linear approximation constraints; the set s
iR  refers 13 

to all linear constraints to approximate the nonlinear constraints (32).  14 

Now the nonlinear model MINLP(m) can be transformed into the following mixed 15 

integer linear programming (MILP) model.  16 

[MILP(m)] 
( , ) 1

min /
T

oper bunk s k
s s i od od

s S s S i I o d D k
T c x Tc B m c z

∈ ∈ ∈ ∈ =

+ +∑ ∑∑ ∑ ∑   (34) 17 

subject to constraint sets (1) ~ (6), (11), (18), (19), (23) ~ (29), (31), (33), and 18 

 , , , 0, ( , ) , , {0,..., }, {1,..., },ki ki s s
od s i ig q B C o d D i I m k T m s Sτ τ τ≥ ∀ ∈ ∈ ∈ ∈ + ∈   (35) 19 
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 Z ,in i I+∈ ∀ ∈ .  (36) 1 

The above model can be solved by the classical B&C algorithm embedded in state-of-2 

the-art solvers (e.g., CPLEX, Gurobi, and Xpress). However, as will be shown in the numerical 3 

experiments in Section 5, due to the large size of the model, it usually takes a very long time 4 

to solve the model directly by the B&C for real-sized cases. In this regard, a tailored solution 5 

algorithm is developed in the next section to obtain the global optimal solution in a short time.  6 

4. Solution Algorithm 7 

In this section, we develop a tailored solution algorithm to solve the model efficiently. 8 

It can be seen that, in the model MILP(m), the number of the linearized constraints expressed 9 

by (23) ~ (27) for constraint set (7) is very large (i.e., ( ( ))o I T m D S+ ) which extremely 10 

increases the size of the model. Take a case with 10 ports of call and 24 ships as an example, 11 

the number of constraints expressed by (23) ~ (27) is 569000 while the number of other 12 

constraints in the model is 4983. In other words, the linearization of constraint set (7) greatly 13 

increases the solution difficulty of the model. At the same time, we can see that if we fixed ji
τθ  14 

in the model, (7) becomes linear and (23) ~ (27) are no longer needed, which will 15 

dramatically reduce the model size and solution difficulty. Based on the above observations, a 16 

tailored algorithm is developed to solve the model and can be sketched as follows. We first 17 

solve a lower bound (LB) model and obtain the LB value of the problem and a feasible solution 18 

of ji
τθ . Next, we evaluate the feasible solution ji

τθ  by solving the model MILP(m) by fixing 19 

this solution and update the upper bound (UB) value of the problem. Then the feasible solution 20 

is removed from the LB model and we resolve the model. This iteration continues until the LB 21 

value is larger than the UB value and we get the global optimal solution. This is because all 22 

remaining solutions should have objective values larger than the UB and thus do not need to 23 

evaluate. In this algorithm, the lower bound model and the model(m) with the fixed ji
τθ  are 24 

iteratively solved. Hence, if both can be solved in a short time, the algorithm will be very 25 

efficient to give the optimal solution. In Section 4.1, we will construct a model that is easy to 26 

solve and is able to provide a tight lower bound of the model MILP(m). In Section 4.2, we will 27 
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give the step-by-step description of the tailored solution algorithm, an acceleration method for 1 

the algorithm, and the overall algorithm to solve the DSS problem. 2 

4.1 Lower Bound Model 3 

This section constructs an LB model for the model MILP(m). We consider two new 4 

variables ody  and odz , and replace constraint sets (6) and (7) with the following ones:  5 

 , ( , )od od ody z o d Dξ+ ≥ ∀ ∈   (37) 6 

 
( , )

,

od

od
o d D

i I

y Cap i I
∈

∈

≤ ∀ ∈∑   (38) 7 

where 
{1,..., }
min { }k

od odk T
ξ ξ

∈
=   i.e., the lower bound of weekly shipping demand k

odξ  among all 8 

weeks, and max{ }ss S
Cap Cap

∈
= , i.e., the upper bound of capacities among all ships. Now we 9 

obtain the following model. 10 

[LB(m)] 
( , )

min /oper bunk s
s s i od od

s S s S i I o d D
T c x Tc B m T c z

∈ ∈ ∈ ∈

+ +∑ ∑∑ ∑   (39) 11 

subject to constraint sets (1) ~ (5), (11), (19), (28), (29), (31), (33), (35) ~ (38), and  12 

 , , 0, , ( , )i od odt y z i I o d D≥ ∀ ∈ ∈ .  (40) 13 

We can see that as the model LB(m) does not contain constraint sets (23) ~ (27), it can be 14 

efficiently solved by the B&C algorithm. In addition, we have the following proposition for 15 

the model LB(m). 16 

Proposition 1. The model LB(m) gives a lower bound of the model MILP(m). 17 

Proof: We first construct a model LB’(m) by simply replacing the two parameters k
odξ  and 18 

sCap  in the constraint sets (6) and (7) of the model MILP(m) with 
{1,..., }
min { }k

od odk T
ξ ξ

∈
=  and 19 

max{ }ss S
Cap Cap

∈
=  respectively and keep other parameters and constraints unchanged. It is 20 

easy to verify that the model LB’(m) gives a lower bound of the model MILP(m) because the 21 

two constraint set (6) and (7) are relaxed in LB’(m) and thus LB’(m) has a larger feasible 22 
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region for the decision variables k
ody  and k

odz . In addition, it can be observed that in the model 1 

LB’(m), the shipping demand and ship capacity do not change in all weeks. Therefore, the 2 

optimal volume of container shipping demand to satisfy in all weeks should be identical, that 3 

is 1k k
od ody y −=  and 1k k

od odz z −= , {2,..., }k T∀ ∈ . Therefore, we can equivalently replace the two 4 

variables k
ody  and k

odz  with ody  and odz , and obtain the model LB(m). This completes the 5 

proof.□ 6 

4.2 Tailored Solution Algorithm  7 

The step-by-step description of the tailored algorithm to solve the model MILP(m) is 8 

shown in Algorithm 1.  9 

Algorithm 1. Tailored solution algorithm for the model MILP(m) 

Input: m 

Step 1. (Initialize) Set the upper bound UB = ∞  , the lower bound LB = −∞  , and the 

incumbent solution incum NULL= . 

Step 2. (Lower bounding) Solve the model LB(m). Set the lower bound as its objective value 

LBLB Obj=  and obtain its optimal solution *{ , 0,..., ; , }ji m i j Iτθ τ= = ∈θ* . 

Step 3. (Upper bounding) Solve the model MILP(m) with the solution θ* . If the model is 

infeasible, set LB = ∞  and go to Step 5. Otherwise, if MILPUB Obj> , set the upper 

bound MILPUB Obj=  and the incumbent solution incum = θ* . 

Step 4. (Solution removal) Add the following constraints to the model LB(m) to exclude the 

solution θ*  

 
( , , ) ( ) ( , , ) ( )

(1 ) 4( 1)ji ji

i j A i j A
Iτ τ

τ τ

θ θ
∈ ∉

− + ≥ −∑ ∑
θ* θ*

  (41) 

where *( ) : {( , , ) | , ; 0,..., ; 1}jiA i j i j I m ττ τ θ= ∈ = =θ* . 

Step 5. (Convergence check) If LB UB≥ , stop and output the incumbent solution incum  

as the optimal solution and the upper bound UB as the optimal objective value; 

otherwise, go to Step 2.  

 10 
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It is worthwhile to mention that the solution algorithm above can be accelerated. We 1 

can see that the lower bound model LB(m) is iteratively solved in Step 2. When solving the 2 

model LB(m) in each iteration, we usually obtain a series of feasible solutions of θ  on the 3 

way to the optimal solution. Therefore, a solution pool can be kept to record these feasible 4 

solutions solving the model LB(m) in Step 2 so that we can evaluate and cut off all of them in 5 

Step 3 and Step 4 to expedite the solution process. This makes sense because some feasible 6 

solutions in one iteration may be the optimal solutions of the model LB(m) in subsequent 7 

iterations. Therefore, both the UB and LB can be strengthened if these solutions are evaluated 8 

and cut off in only one iteration. In addition, another merit of this acceleration method is that 9 

only a solution pool is needed to record solutions, which does not increase any computational 10 

burden in solving the model LB(m). Moreover, evaluating different solutions in the pool in 11 

Step 3 can be done in parallel by different processors, which further reduces the solution time. 12 

Numerical experiments in Section 5 show that the above acceleration method is able to 13 

significantly improve the solution efficiency.  14 

Also, Algorithm 1 shows that this algorithm excludes at least one feasible solution of 15 

θ  in each iteration. As the feasible region of θ  defined by constraint sets (10) and (11) is 16 

bounded, the number of feasible solutions is finite. Therefore, we have the following 17 

proposition for the algorithm.  18 

Proposition 2. Algorithm 1 gives the global optimal solution in a finite number of iterations.  19 

Now we are ready to give the solution algorithm to solve the DSS problem with weekly-20 

dependent shipping demand in a shipping route.  21 

Algorithm 2. Algorithm to solve the DSS problem 

Step 1. (Initialize) Set the incumbent solution incum NULL= , the incumbent value of the 

decision variable m _opt m NULL= , and the objective value Obj = ∞ . 

Step 2. (Enumerating) For each value of m in the set defined by (22): 

Step 2.1. Solve the model MILP(m) by Algorithm 1. Record the objective value 

MILPObj  and the optimal solution θ*.  
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Step 2.2. If MILPObj Obj> , set MILPObj Obj= , incum = θ*  and _opt m m= .  

Step 3. (Retrieving solution) Solve the model MILP(m) with _opt m  and the incumbent 

solution incum  . Return the optimal solution *
it  , * *: /i i iv l t=  , *

sx  , *s
kx  , *k

ody  , *k
odz  

together with incum , _opt m  and the optimal objective value Obj .  

 1 

5. Numerical Experiments 2 

In this section, numerical experiments based on the real shipping route AEU9 operated 3 

by COSCO Shipping are conducted to examine the applicability of the model and the solution 4 

efficiency of the tailored solution algorithm developed in this paper. As is shown in Fig. 4, the 5 

AEU9 has a total of 10 ports of call, 7 in Asia and 3 in Europe. In these experiments, the 6 

capacities of the ships sCap  are randomly generated in the range [8000,10000] and weekly 7 

operating costs oper
sc  in the range [150000,250000] . The maximum and minimum allowed 8 

sailing speeds are max 25iv = knots and min 10iv = knots respectively. The two parameters s
iα  9 

and s
iβ  in the bunker consumption function (13) are generated in the ranges [0.3,0.7] and 10 

[1.7, 2.3] respectively. In addition, 42 OD pairs of shipping demand are considered. For each 11 

OD pair, the number of containers to transport in each week is generated according to actual 12 

data and the slot purchase cost is generated as 100 [0.2,0.4]od ic l= + ×  $/TEU. The bunker 13 

price is set to be 300 $/MT. 14 

In Section 5.1, the efficiency of the algorithm with and without the acceleration method 15 

proposed in Section 4.2 is compared to the B&C algorithm in Gurobi. In Section 5.2, the 16 

applicability of the model is tested by solving the DSS problem in a real-sized case. Several 17 

managerial insights are also obtained to guide shipping operations.  18 
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 1 

Fig. 4. COSCO AEU9 shipping route 2 

5.1 Efficiency of the tailored solution algorithm 3 

In this section, 35 test instances are generated to examine the efficiency of the tailored 4 

solution algorithm. These instances are categorized into 7 groups according to the length of the 5 

planning horizons {14,18,22,26}T ∈   and the number of vessels in the candidate set 6 

{12,16,20,24}S ∈  . In addition, the fleet size, m, is set to be 12. To compare the solution 7 

efficiencies of the tailored algorithm and the B&C algorithm, these test instances are solved by 8 

the following three specifications: 9 

(i) directly solved by B&C algorithm in the solver Gurobi; 10 

(ii) solved by the tailored algorithm without the acceleration method in this paper; 11 

(iii) solved by the tailored algorithm with the acceleration method (i.e., evaluate and remove 12 

multiple solutions in one iteration). 13 



25 
 

Table 2. Results of 35 test instances 

   

 

MILP model size  B&C/benchmark  

Tailored 
algorithm (w/o 
acceleration)  

Tailored 
algorithm (with 

acceleration) 

T |S| ID 
 # 

constrs 
# cont 

vars 
# int 
vars  Gap Time(s)  Gap Time(s)  Gap Time(s) 

14 12 1  239171 80206 1634  0.00% 1404.57  0.00% 6.35  0.00% 3.37 
  2  239171 80206 1634  0.00% 1557.70  0.00% 6.12  0.00% 2.71 
  3  239171 80206 1634  0.00% 200.48  0.00% 7.71  0.00% 3.74 
  4  239171 80206 1634  0.28% 3600.00  0.00% 7.00  0.00% 2.66 
  5  239171 80206 1634  0.00% 227.70  0.00% 3.06  0.00% 1.88 
Average in this group  0.06% 1398.09   0.00% 6.05   0.00% 2.87 
18 12 1  290907 97702 1682  0.00% 1706.26  0.00% 8.13  0.00% 3.50 
  2  290907 97702 1682  0.00% 1914.94  0.00% 6.97  0.00% 2.97 
  3  290907 97702 1682  0.00% 187.81  0.00% 0.76  0.00% 0.47 
  4  290907 97702 1682  1.17% 3600.00  0.00% 7.69  0.00% 3.28 
  5  290907 97702 1682  0.00% 1712.42  0.00% 8.45  0.00% 3.29 
Average in this group  0.23% 1824.28   0.00% 6.40   0.00% 2.70 
18 16 1  338263 113382 1806  0.00% 488.01  0.00% 16.27  0.00% 7.52 
  2  338263 113382 1806  1.17% 3600.00  0.00% 43.38  0.00% 13.58 
  3  338263 113382 1806  0.00% 2118.68  0.00% 8.93  0.00% 6.34 
  4  338263 113382 1806  0.00% 609.13  0.00% 1.65  0.00% 1.31 
  5  338263 113382 1806  1.59% 3600.00  0.00% 43.74  0.00% 17.15 
Average in this group  0.55% 2083.16   0.00% 22.79   0.00% 9.18 
22 16 1  396255 132958 1870  0.51% 3600.00  0.00% 18.83  0.00% 11.15 
  2  396255 132958 1870  0.00% 1864.45  0.00% 37.24  0.00% 14.17 
  3  396255 132958 1870  0.00% 421.78  0.00% 45.29  0.00% 12.72 
  4  396255 132958 1870  0.71% 3600.00  0.00% 8.61  0.00% 4.68 
  5  396255 132958 1870  4.46% 3600.00  0.00% 18.41  0.00% 12.90 
Average in this group  1.14% 2617.25   0.00% 25.68   0.00% 11.12 
22 20 1  449867 150718 2010  2.66% 3600.00  0.00% 113.88  0.00% 44.28 
  2  449867 150718 2010  0.00% 1492.97  0.00% 95.14  0.00% 30.70 
  3  449867 150718 2010  0.96% 3600.00  0.00% 21.22  0.00% 14.28 
  4  449867 150718 2010  3.35% 3600.00  0.00% 112.30  0.00% 60.61 
  5  449867 150718 2010  1.41% 3600.00  0.00% 61.80  0.00% 36.96 
Average in this group  1.68% 3178.59   0.00% 80.87   0.00% 37.36 
26 20 1  514115 172374 2090  4.13% 3600.00  0.00% 111.99  0.00% 53.48 
  2  514115 172374 2090  3.28% 3600.00  0.00% 91.34  0.00% 34.48 
  3  514115 172374 2090  0.57% 3600.00  0.00% 113.86  0.00% 45.33 
  4  514115 172374 2090  2.53% 3600.00  0.00% 128.97  0.00% 43.39 
  5  514115 172374 2090  2.12% 3600.00  0.00% 79.15  0.00% 34.40 
Average in this group  2.52% 3600.00   0.00% 105.06   0.00% 42.21 
26 24 1  573983 192214 2246  3.61% 3600.00  0.00% 151.41  0.00% 66.55 
  2  573983 192214 2246  2.41% 3600.00  0.00% 108.57  0.00% 32.19 
  3  573983 192214 2246  4.00% 3600.00  0.00% 105.78  0.00% 42.39 
  4  573983 192214 2246  3.01% 3600.00  0.00% 207.50  0.00% 77.39 
  5  573983 192214 2246  3.44% 3600.00  0.00% 117.09  0.00% 59.60 
Average in this group  3.29% 3600.00   0.00% 138.07   0.00% 55.62 
Average of all instances  1.35% 2614.48   0.00% 54.99   0.00% 23.01 
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The above algorithms are implemented by C++ and call the C++ API of Gurobi to solve the 1 

models MILP(m) and LB(m). The computational time limit is 3600 seconds (i.e. 1 hour) for 2 

each specification and the target optimality gap is 0. The algorithm stops when either of these 3 

two conditions is satisfied. 4 

The detailed results for the above three specifications are shown in Table 2. The 5 

columns “#constrs”, “#cont vars” and “#int vars” refer to the number of constraints, continuous 6 

variables, and integer variables respectively in the model MILP(m). The columns “Gap” and 7 

“Time” refer to the optimality gap ( ) /UB LB LB−   and the solution time used in each 8 

specification respectively. It can be seen that the tailored algorithm is much faster than the B&C 9 

algorithm in solving the DSS problem. The B&C algorithm is able to solve only 14 of 35 10 

instances to optimality in 3600 seconds while both the algorithm with and without acceleration 11 

are able to solve all 35 instances to optimality. Moreover, the average optimality gap and time 12 

used by the B&C of all instances are the largest among the three i.e., 1.35% in 2614.48 seconds 13 

while the other two have the average gap 0% in less than 55 seconds. Especially for large 14 

instances (e.g., 26T =  and 20,24S = ), the number of constraints in the model is larger than 15 

500000, making the model very difficult to be directly solved by the B&C algorithm (with the 16 

gap larger than 2% in 3600s). As a comparison, the tailored algorithm gets optimality in less 17 

than 210 seconds. This indicates that the tailored algorithm is able to dramatically reduce the 18 

solution difficulty and improve the solution efficiency. In addition, it can be observed that the 19 

tailored algorithm with the acceleration method gives a shorter solution time compared with 20 

that without acceleration (23.01s vs. 54.99s). This shows that evaluating more than one solution 21 

in one iteration is able to improve the upper and lower bounds significantly, thus expediting 22 

the convergence and reducing the solution time. At last, we can see that with the increase of 23 

the planning horizon, T, and the number of ships |S|, the solution times of all three specifications 24 

increase. This is because larger T and |S| lead to larger model size and a larger feasible region. 25 

Hence, a longer time is needed to calculate the optimal solution. However, we can also observe 26 

that the tailored algorithm with acceleration has the smallest increase of the solution time 27 

among the three (i.e., from 2.87s to 23.01s vs. from 6.05s to 54.99s and from 1398.09s to 28 
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3600s). This indicates that the tailored algorithm with acceleration is the most stable with the 1 

variation of the scale of instances.  2 

5.2 Model Application 3 

In this section, to examine the applicability of the model developed in this paper, we 4 

consider a real-sized case based on the shipping route AEU9. In this case, 18 candidate ships 5 

are available to be deployed and are numbered 1 ~ 18 with the increasing order of ship capacity 6 

as shown in Table 3. The planning horizon is 26 weeks (i.e., half a year) because a shipping 7 

company usually adjusts its shipping routes no more than half a year. All other parameters in 8 

the case are generated similarly to those in Section 5.1. 9 

Table 3. Specifications of 18 ships 10 

 
Ship 
No. 

Capacity 
(TEU) 

Weekly 
operating cost 

($) 

Average bunker consumption rate (the function 
(13)) with variations of sailing speed (MT/day) 

10 (knots) 15 (knots) 20 (knots) 25 (knots) 
1 8092 174015 40 87 152 236 
2 8278 178940 57 130 235 373 
3 8302 203968 52 122 223 355 
4 8409 222409 55 131 244 395 
5 8447 220916 54 125 227 361 
6 8577 156151 41 90 160 248 
7 8666 155261 43 100 181 288 
8 8682 207537 53 124 228 366 
9 8804 167414 49 109 195 307 

10 8881 219901 65 151 275 439 
11 8980 205391 66 155 284 456 
12 8984 246784 60 137 247 390 
13 9245 160263 40 89 158 247 
14 9621 162462 47 103 181 281 
15 9696 181265 65 154 283 455 
16 9739 206420 55 128 234 374 
17 9852 234172 74 179 335 546 
18 9861 246511 50 117 214 345 

 11 

We vary the fleet size, m, according to the set defined by (22) and solve the model 12 

MILP(m) by Algorithm 1 with acceleration because it has the best performance as shown in 13 

Section 5.1. The result is shown in Fig. 5. We can see that with the increase of m, the solution 14 
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time first increases and then decreases. This is because when m is very small or very large, the 1 

feasible region of the variable defined by constraint sets (2), (10), and (11) is small, leading 2 

to a smaller number of iterations in Algorithm 1. On the contrary, the optimal objective value 3 

first decreases and then increases. This is because, with the increase of the fleet size, the optimal 4 

sailing speed required for the weekly service frequency decreases. At first, the decrease of 5 

bunker consumption cost is larger than the increases of total ship operating cost, which leads 6 

to the decrease of the total cost. However, as the fleet size continues to increase, the sailing 7 

speed cannot reduce largely any more. Therefore, the decrease of bunker consumption cost is 8 

lower than the increases of total ship operating cost, which leads to the increase of the total 9 

cost. We can see that 9m =  leads to the lowest total cost and is the optimal fleet size. We can 10 

further determine the optimal ships deployed together with their sequence and sailing speeds 11 

by solving the model MILP(m) with 9m = . The optimal sequence of the deployed ships is 16 12 

→ 7 → 14 → 13 → 8 → 9 → 1 → 6 → 18. The schedule and sailing speeds of the first ship 13 

No.16 are shown in Table 4 and the schedules of other ships can be calculated based on their 14 

locations in the sequence. That is, the first ship No.16 starts its journey at Ningbo in time 0h. 15 

The second ship No.7 follows 1 week later (i.e., +168h), and then the third ship No. 14 2 weeks 16 

later (i.e., +336h ) and so forth. The last ship No.18 starts the journey 8 weeks later (i.e., 17 

+1344 h). After that, the first ship No. 16 returns to Ningbo and starts a new journey 9 weeks 18 

later (i.e., +1512 h). This continues until the end of the planning horizon. The schedules of 19 

other deployed ships at other ports can be calculated accordingly.  20 

 21 

Fig. 5. The optimal objective value and solution time of the model MILP(m) by Algorithm 1 22 
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Table 4. Schedule of the first ship (No.11)  1 

Port/Leg 
Arrival time 

(h) 
Departure time 

(h) 
Cumulative distance 

(nautical mile) 
Sailing speed 

(knots) 
Sailing 

time (h) 
Ningbo→ - 0 0 12 8 
Shanghai→ 8 28 93 13 43 
Kaohsiung→ 71 84 639 13 25 
Yantian→ 109 124 974 18 78 
Singapore→ 202 220 2405 15 104 
Colombo→ 325 339 3965 16 412 
Antwerp→ 750 767 10729 15 25 
Hamburg→ 792 804 11099 14 22 
Rotterdam→ 826 838 11399 17 492 
Port Kelang→ 1330 1344 19530 14 154 
Ningbo→ 1498 1512 21732 - - 

 2 

We also compare the performance of the model developed in this paper with the model 3 

that considers homogenous vessels. In the model with homogeneous vessels, the capacity 4 

sCap , the operating cost oper
sc  , and the bunker consumption parameters ,s s

i iα β  of all vessels 5 

are identical and equal to the average of the corresponding parameters in our model with 6 

heterogeneous vessels. Besides, the shipping demand for each OD pair in each week equals the 7 

average shipping demand k
odξ  across the planning horizon in our model. That is, that model 8 

considers the weekly independent shipping demand. The optimal solution is shown in Table 5. 9 

It can be seen that compared with the model with homogeneous vessels, considering 10 

heterogeneous vessels in our model gives a smaller fleet size (with the variation of 10%) and a 11 

much lower ship operating cost (with the variation of 17.04%). This indicates that our model 12 

is able to fully incorporate the uniqueness of different vessels to give a smart fleet deployment 13 

to reduce the ship operating cost. Moreover, due to the smaller fleet size, the sailing speed of 14 

ships in our model is higher, which leads to a higher bunker fuel consumption cost 15 

(5.2195×107$ vs. 5.0349×107$). In addition, our model transports slightly fewer containers 16 

than the model with homogenous vessels, and 2199-TEU containers should be transported by 17 

other sources. This can be explained that in our model, deploying smaller ships with a lower 18 

operating cost leads to a lower total cost. Finally, the total cost in our model is lower than that 19 

with homogenous vessels (with a variation of 3.08%). This shows the power of the model with 20 
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heterogeneous vessels. Considering the low profit margin of the shipping companies (usually 1 

less 5%), a 3% reduction of total cost indicates a significant improvement in their profitability.  2 

Table 5. Comparison between models with homogenous and heterogeneous vessels 3 

Model Fleet size 
Ship operating 

cost (×107$) 
Bunker fuel 
cost (×107$) 

Transported 
containers 

(×105TEU) 

Unsatisfied 
containers 

(TEU) 
Total cost 

(×107$) 
Homogenous vessels 10 5.1275 5.0349 4.3687 0 10.1624 
Heterogeneous vessels 9 4.2537 5.2195 4.3467 2199 9.8499 
Variation -10.00% -17.04% 3.67% -0.50% - -3.08% 

 4 

We turn to investigate the effects of the variations of some important parameters on the 5 

model solutions. We first vary the bunker price bunkc  from 100 $/MT to 600 $/MT and keep 6 

other parameters unchanged. The results are given in Table 6. It can be seen that with the 7 

increase of the bunker price, the optimal fleet size and the total ship operating cost increase 8 

from 7 to 13 and from 3.0920×107$ to 6.2949×107$ respectively. This is because the increase 9 

of the bunker price reduces the optimal sailing speed (from 21.16 knots to 11.68 knots) and 10 

thus increases the total round-trip time. To maintain fixed service frequency, more ships should 11 

be deployed in this route. In addition, the ships deployed and their sequences are also changed. 12 

For example, when bunker price increases from 100 $/MT to 200 $/MT, the ships No. 15 and 13 

No. 16 are replaced with ships No. 1 and No.18. This is because, with the increase of the bunker 14 

price, the operators need to deploy ships with higher fuel efficiency in the shipping route. 15 

Moreover, with the reduction of the sailing speed, the amount of bunker fuel consumed 16 

decreases (from 2.4463×105MT to 1.2465×105MT) but the total bunker fuel cost increases 17 

(from 2.4463×107$ to 7.4792×107$) due to the increase of the bunker price. It can be also 18 

observed that the variation of the bunker price seldom affects the number of containers 19 

transported. Finally, the increase of bunker price leads to an increase of the total cost from 20 

5.7217×107$ to 14.3349×107$.  21 

We now vary the shipping demand volume of each OD pair k
odξ  as 0.5, 0.8, 1.0, 1.5, 22 

and 2.0 times of the benchmark value. The effect of the shipping demand variations on the 23 

optimal solution is shown in Table 7. It can be observed that when the volume of shipping 24 
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demand increases, the fleet size decreases a little (from 9 to 8), but the ship operating cost 1 

increases (from 4.0716×107$ to 4.1738×107$). This is because, in order to satisfy the increasing 2 

container shipping demand, larger ships are deployed to transport more containers but with a 3 

larger operating cost and more bunker fuel consumption. For example, when the shipping 4 

demand increases from “×1.5” to “×2.0”, ship No. 6 with the capacity of 8577 TEUs and 5 

weekly operating cost of 156151$ is replaced with ship No. 12 with the capacity of 8984 TEUs 6 

and weekly operating cost of 246784$. In addition, with the reduction of fleet size, these 7 

remaining large ships complete more voyages in the planning horizon to transport more 8 

containers and a higher sailing speed (15.94 knots vs. 18.19knots) is needed to maintain fixed 9 

service frequency. Finally, with the increase of the shipping demand volume, the unsatisfied 10 

shipping demand also increases (from 0 to 362331 TEU), which leads to a higher total cost 11 

(from 9.3275×107$ to 92.5415×107$ 一般都是写成$92.5415×107，见 https://www.really-12 

learn-english.com/dollar-sign.html).  13 

At last, we explore the effect of the variations of the ship weekly operating cost oper
sc  14 

on the optimal solution. Similarly, we vary the weekly operating cost as 0.5, 0.8, 1.0, 1.5, and 15 

2.0 times of the benchmark value. It can be seen from Table 8 that the increase of the weekly 16 

operating cost leads to a smaller fleet size (from 12 to 7) but a higher total ship operating cost 17 

(from 2.9503×107$ to 6.3548×107$). For example, when the ship weekly operating cost 18 

increases from “×0.8” to “×1.0”, ship No. 15 is removed from the shipping route to hedge the 19 

increase of the total ship operating cost. Therefore, the sailing speed increases (from 11.64 20 

knots to 21.16 knots) to maintain weekly service frequency and also the bunker fuel cost 21 

(4.1671×107$ to 6.3848×107$). In addition, the unsatisfied shipping demand increases (from 22 

1508 TEU to 3317 TEU) due to the removal of large ships with high operating costs from the 23 

shipping route. Finally, we have a higher total cost (7.3763×107$ vs. 13.3116×107$) because 24 

of the increase of ship operating cost, bunker fuel cost, and the penalty cost for the unsatisfied 25 

demand.  26 
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Table 6. Effect of bunker price on the optimal solution 

Bunker 
price bunkc
($/MT) Fleet size 

Ship operating 
cost (×107$) 

Average 
sailing speed 

(knots) 

Bunker fuel 
amount 

(×105MT) 
Bunker fuel 
cost (×107$) 

Transported 
containers 

(×105TEU) 
Total cost 

(×107$) 

 

  Sequence of deployed ships → 
100 7 3.0920 21.16 2.4463 2.4463 4.3585 5.7217  15 14 6 13 9 16 7       
200 7 3.1774 21.16 2.1525 4.3051 4.3388 7.9940  7 18 1 13 9 6 14       
300 9 4.2537 15.94 1.7398 5.2195 4.3467 9.8499  16 7 14 13 8 9 1 6 18     
400 10 4.7840 14.19 1.5677 6.2710 4.3412 11.5268  16 6 9 7 13 1 3 18 14 8    
500 12 5.7205 12.64 1.3493 6.7464 4.3380 12.9883  18 2 6 13 3 7 14 15 1 8 9 16  
600 13 6.2949 11.68 1.2465 7.4792 4.3355 14.3349  2 15 3 5 14 16 9 8 6 18 13 1 7 

 

Table 7. Effect of shipping demand variations on the optimal solution 

Shipping 
demand

k
odξ  

Fleet 
size 

Ship 
operating 

cost (×107$) 

Average 
sailing speed 

(knots) 

Bunker 
fuel cost 
(×107$) 

Transported 
containers 

(×105TEU) 

Unsatisfied 
containers 

(TEU)  
Total cost 

(×107$) Sequence of deployed ships → 
× 0.5 9 4.0716 15.94 5.2559 2.1843 0 9.3275 9 8 7 3 1 14 2 6 13 
× 0.8 9 4.0716 15.94 5.2559 3.4949 0 9.3275 9 8 7 3 1 14 2 6 13 
× 1.0 9 4.2537 15.94 5.2195 4.3467 2199 9.8499 16 7 14 13 8 9 1 6 18 
× 1.5 8 3.9381 18.19 6.9916 5.0184 153461 41.7437 17 13 14 9 16 18 15 6  
× 2.0 8 4.1738 18.19 7.3744 5.1140 362331 92.5415 17 15 13 12 16 18 14 9  
 

Table 8. Effect of ship weekly operating cost variations on the optimal solution 

Weekly 
operating 
cost oper

sc  
Fleet 
size 

Ship operating 
cost (×107$) 

Average 
sailing speed 

(knots) 
Bunker fuel 
cost (×107$) 

Transported 
containers 

(×105TEU) 

Unsatisfied 
containers 

(TEU) 
Total cost 

(×107$)  Sequence of deployed ships → 
× 0.5 12 2.9503 11.64 4.1671 4.3536 1508 7.3763 14 1 6 18 16 11 13 15 7 8 9 12 
× 0.8 10 3.7800 14.20 4.8537 4.3493 1931 8.9662 13 6 9 7 14 1 15 18 16 8   
× 1.0 9 4.2537 15.94 5.2195 4.3467 2199 9.8499 16 7 14 13 8 9 1 6 18    
× 1.5 7 4.7661 21.16 6.3848 4.3355 3317 11.7229 14 13 1 18 9 6 7      
× 2.0 7 6.3548 21.16 6.3848 4.3355 3317 13.3116 14 13 1 18 9 6 7      
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6. Conclusions 1 

Most existing studies on the operation management of liner container shipping assume 2 

identical container ships in a shipping route. However, in real operations, these container ships 3 

deployed in a shipping route usually differ in the ship capacity, operating cost, bunker fuel 4 

efficiency, etc. The distinction among these ships can be so significant that a wise ship 5 

deployment and scheduling could lead to substantial cost savings. This paper thus considers 6 

the deployment, sequencing, and scheduling problem for the heterogeneous vessels in a liner 7 

container shipping route. To select the optimal ships from a set of candidate ships available to 8 

deploy in the route and determine their visit sequence, sailing speed, and schedule, a mixed 9 

integer programming model is constructed to minimize the total cost which includes the ship 10 

operating cost, the bunker fuel cost, and the penalty cost of unsatisfied shipping demand due 11 

to ship capacities. Because of the large size of the model, the classical B&C algorithm in 12 

existing solvers cannot calculate the optimal solution in a short time. Therefore, a tailored 13 

solution algorithm is developed in this paper that is able to obtain the global optimal solution 14 

efficiently in a finite number of iterations. This algorithm first constructs and solves a lower 15 

bound problem to obtain a feasible solution and the LB of the optimal solution of the original 16 

model. Then this feasible solution is evaluated in the original model to update the UB. This 17 

lower bound problem is resolved after the feasible solution is removed to obtain a new feasible 18 

solution. This continues until the LB exceeds the UB. A series of numerical experiments are 19 

conducted to examine the efficiency of the algorithm and the applicability of the optimization 20 

model. The experiment results can be summarized as follows: 21 

(i) The tailored solution algorithm outperforms the classical B&C algorithm in all test instances. 22 

The solution time of the tailored solution algorithm can be up to 2~3 orders of magnitude lower 23 

than that of the B&C algorithm. In addition, the acceleration technique considered in this paper 24 

is able to further improve the solution efficiency of the algorithm. 25 

(ii) The model considering heterogeneous vessels developed in this paper is compared with that 26 

considering homogenous vessels. Results show that this model leads to a cost saving of 3%, a 27 

significant reduction considering that the liner shipping industry is capital intensive.  28 
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(iii) The bunker fuel price, shipping demand volume, and ship weekly operating cost have 1 

significant effects on the optimal deployment strategy, sequence, and schedule of the 2 

heterogeneous vessels. In detail, we have the following results: 3 

a) The increase of the bunker price increases the fleet size and reduces the sailing speed. 4 

The fuel-efficient ships are adopted to hedge the rising of bunker fuel cost.  5 

b) The increase of the demand shipping volume leads the shipping company to adopt larger 6 

ships, resulting in the rise of the total ship operating cost. The ship sequence also 7 

changes significantly with the variation of the shipping demand volume.  8 

c) The increase of the ship weekly operating cost not only raises the total operating cost 9 

but also reduces the volume of satisfied shipping demand due to the removal of large 10 

ships with a high operating cost from the fleet.  11 

Future research can be conducted in the following two aspects. First, this paper 12 

considers the deterministic shipping demand. However, in actual shipping operations, the 13 

shipping demand may fluctuate and can be viewed as a stochastic variable. Hence, future 14 

research can consider the random shipping demand in each week and construct a multi-stage 15 

stochastic programming model to solve the DSS problem. Second, only a single route is 16 

considered in this paper. As a shipping company usually transport containers in a shipping 17 

network that consists of several routes, future research can consider the DSS problem in the 18 

shipping network level.  19 
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