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Abstract 26 

The lack of multi-stakeholder cooperation is one of the main challenges faced by emergency medical services 27 

(EMS). Especially in the ambulance routing process, inactive traffic operators fail to provide coordination 28 

to prioritize the ambulance, while ignoring the choice of hospitals will lead to inevitable patient transfer 29 

between hospitals. To provide efficient decision support for EMS, this paper considers daily ambulance 30 

routing problems in a network with high spatial resolution in which two advanced technologies are 31 

introduced: pre-hospital screening that provides patient injury diagnosis and lane pre-clearing that ensures 32 

the pre-defined driving speed of ambulances.  Three different types of ambulances are used to transport and 33 

offer first aids to patients based on the screened results. To manage the ambulance fleet properly, a mixed-34 

integer linear programming (MIP) model is proposed to assign vehicles to the injured and plan routes with 35 

the shortest travel time. A semi-soft time window constraint is incorporated to reflect the late arrival penalty 36 

on-site and at hospitals. Since high-quality EMS responds to the call in seconds, a real-world case in 37 

Shenzhen, China, is presented to validate the computational performance by a commercial solver GAMS. In 38 

the case study, we further analyzed the effect of different stakeholders’ involvement, like the hospitals and 39 

traffic operators. This information proves the efficiency of multi-stakeholder participation in ambulance 40 

routing. 41 
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1. Introduction 45 

1.1. Motivations 46 

When life-threatening incidents occur, the efficacy of response actions would mean the difference between 47 

life or death (Berkoune et al., 2012). Sánchez-Mangas et al. (2010) reported that a 10-min reduction of 48 

treatment waiting time reduces mortality by one-third. Motivated by this, the Emergency Medical Service 49 

(EMS) responsible for the logistics plan and operations must respond quickly and launch the most effective 50 

rescue (Jung and Qin, 2020).  A systematic EMS covers phases from pre- to post-disaster. For disaster 51 

preparedness concerned with risk-mitigation processes, measures such as infrastructure reinforcement, 52 

resource prepositioning, and request prediction are planed (Lee et al., 2013). In the response phase, the post-53 

disaster actions are taken immediately, such as care facilities relocations, resource dispatching (such as 54 

ambulances, EMS personnel, and hospital), patients’ transportation and treatment (Wang et al., 2012). In the 55 

recovery phase,  reconstruction activities are taken to return a specific area to ‘normality’ after being 56 

devastated (Salum et al., 2020, Iliopoulou et al., 2020).  Among the three stages in the EMS environment, 57 

only the disaster response actions are required to be decided within a few seconds or even less (Dimitriou et 58 

al., 2018), which raises a strong need for real-time decision support, especially for the ambulance 59 

management in the aftermath of accidents.     60 

Several studies tackle ambulance locating (Knight et al., 2012), dispatching (Schmid, 2012), and routing 61 

problems (Talarico et al., 2015) as ambulance management. But the suggested methods lack a holistic and 62 

integrated methodological framework that coordinates all relevant stakeholders, including emergency 63 

medical services providers (EMSP), traffic operators, and hospitals.  For ambulance routing problem (ARP), 64 

much research emphasizes solving ARP by mathematical models focusing on the collaboration between 65 

hospitals and EMSP or by simulation methods with joint consideration of EMSP and traffic operators. 66 

However, the absence of any one of the above three decision-makers cannot guarantee the effectiveness of 67 

response actions. In the case of ignoring traffic operators, few responses would be provided to prioritize 68 

ambulances and ensure the driving speed. When hospitals are inactive, EMSP may select the nearest hospital 69 

that lacks the expertise to treat the patients, leading to inevitable transfer (Gao et al., 2020). 70 

The EMSP has to design a rescue plan to cope with the dynamic traffic condition and the scarce resources 71 

such as hospitals and ambulances while guaranteeing the shortest transport time and proper resource 72 

allocation. Thus, traffic operators and hospitals must be involved in the planning process. It offers an 73 

underexplored opportunity to consider both hospitals’ expertise and traffic conditions in ARP. 74 

1.2. Literature review 75 

In this section, we present a literature review of earlier work in both disaster preparedness and response 76 

phases, focusing on the ambulance (re)locating, dispatching, and routing problems.  77 



1.2.1. Ambulance locating problem 78 

Ambulance locating problem is a branch of resource location design that is of a tactical nature and often 79 

based on static information (Li et al., 2019).It aims to find the deployment sites for the ambulance fleet in a 80 

certain area to support the EMS. A review of methodologies and algorithms for ambulance locating problem 81 

in a coverage notion is summarized by Farahani et al. (2012). The coverage can be defined as response time 82 

(Erdemir et al., 2010), total service time (Jagtenberg and Mason, 2020), and the expected survival possibility 83 

(Knight et al., 2012). The selected locations ensure that the estimated demand can be satisfied within a given 84 

time.  85 

During daily operations, the ambulance that has been assign to an emergency request can be reallocated 86 

to improve the coverage. Lam et al. (2015) proposed a system status management based method to 87 

reassign ambulance deployment locations on a daily basis. This problem was formulated as a double 88 

coverage model and solved using CPLEX solver. To further consider the dynamic and uncertain behavior of 89 

EMS, Acar and Kaya (2019) constructed the integrated location and relocation model for mobile hospitals 90 

using a two-stage stochastic programming model. The stochasticity reflects the possibility of the hospital 91 

being damaged and the possibility of passenger transfer. The multi-objective function consisted of the total 92 

travel time, penalization of capacity shortage, the unused capacity, the hospital transfer time, and the mobile 93 

hospital relocating time. The proposed model was solved by GAMS solver. Other models have been 94 

introduced to include stochastic travel times (Schmid and Doerner, 2010) and service time (Goldberg and 95 

Paz, 1991). 96 

1.2.2. Ambulance dispatching problem 97 

The ambulance dispatching model allocates emergency calls to the vehicle based on its location. Some 98 

commonly used dispatching policies are assigning the task to the nearest resource, first-come-first-serve 99 

policy and fixed plan (Kuisma et al., 2004). Comparing with these strategies, the benefit of dispatching 100 

model is discussed  by Jagtenberg et al. (2017).   101 

When making the deployment policy, some studies considered the urgency of the call. McLay and 102 

Mayorga (2013) introduced a Markov Decision Process model to dispatch ambulances to prioritized patients 103 

considering the classification errors. This model maximized the expected coverage of true high-risk patients. 104 

Bandara et al. (2014) developed a simulation model that incorporates the severity of the request to implement 105 

the suggested dispatching policies in EMS. They aim to maximize the patients’ survival probability. A 106 

heuristic algorithm is customized to solve the large-scale problem. Andersson and Värbrand (2007) allocated 107 

the ambulance based on the priority of the request and the travel distance. They combined the dispatching 108 

and relocating of the ambulance fleet to ensure the coverage of patients.  109 

1.2.3. Ambulance routing problem 110 

The ambulance routing problem seeks to find the shortest path to pick-up and drop-off casualties in a 111 

network with high or low spatial resolution.  112 

https://www.sciencedirect.com/topics/medicine-and-dentistry/ambulance


For high spatial resolution, the physical road network and traffic conditions are formulated in the model. 113 

Jotshi et al. (2009) proposed a method to search for the shortest path considering the patient priorities, 114 

clustering criteria, distance, road congestion, and hospital availability. Network partition is introduced to 115 

reduce the computation complexity.  116 

 In contrast, more researches are based on low spatial resolution network. In general, the specific physical 117 

path between the hospital and the wounded is simplified into one link. Based on the simplified network, 118 

Talarico et al. (2015) consider patient classification. They divided the patients into two categories: red and 119 

green. The red should be driven directly from the spot to the assigned hospital, while the green can be taken 120 

care of at the accident scene. Accordingly, a MIP model was constructed based on the multi-commodity 121 

model to minimize the worst-case patient waiting time. A large neighborhood search metaheuristic was 122 

applied to solve the problem.   Based on this research,  Tikani and Setak (2019) further increased the patient 123 

categories to three and classified the ambulance fleet. They added the late arrival penalty cost in the 124 

objective function by setting a soft time window. The genetic algorithm is introduced to solve the problem. 125 

When an ambulance is allowed to serve a list of patients at different locations, patient clusters are introduced. 126 

Similarly, (Zidi et al., 2019) proposed a cluster-first route-second algorithm to tackle the ARP.  127 

These researches formulized the compatible constraints between patients and hospitals as the capacity 128 

limitation. Assumptions are made for hospitals’ expertise where hospitals can treat all kinds of injuries, 129 

which is not realistic. 130 

1.2.4. Joint studies 131 

The interaction among the sub-problems are considered in some studies.  132 

In the field of location-dispatching problems, Toro-Díaz et al. (2013) proposed a joint location and 133 

dispatching integer programming model for EMS. The model aims to minimize the response time and 134 

maximize the coverage considering queuing elements and congestion phenomena in the dispatching process. 135 

A genetic algorithm was introduced to solve the problem. Ibri et al. (2012) developed a decentralized 136 

distributed solution approach based on multi-agent systems to jointly locate and dispatch emergency vehicles. 137 

They aim to coordinate agents to reach reasonable quality solutions. 138 

For ambulance location-routing problems, Oran et al. (2012) introduced a formulation of emergency 139 

facility locating and vehicle routing with time windows that consider the priority of emergency calls. A MIP 140 

solver and tabu search algorithm were introduced for problem-solving. Further, Caunhye et al. (2016) 141 

presented a two-stage location-routing model with recourse under uncertainty. The objective function is to 142 

minimize the total preparedness cost and the worst-case response time with uncertainty consideration. The 143 

ambulance location-allocation-routing problem is designed for temporary EMS. Memari et al. (2020) 144 

proposed a bi-objective dynamic model to minimize the operational costs and the critical time spent before 145 

being treated. Two meta-heuristic algorithms are developed for problem-solving. 146 

1.3. Contribution 147 

The contributions of the present study can be summarized as follows. 148 



(i) This paper focuses on the ambulance routing problem, which strives to involve EMSP, traffic operators, 149 

and hospitals in the planning process. In detail, the pre-hospitals screening and lane pre-cleaning are 150 

implemented as input to speed up the first aid and avoid inefficient delivery.  151 

(ii) The MIP optimization model is proposed for ambulance dispatching and vehicle routing based on a 152 

high-spatial-resolution network to reduce the transport time, the dispatching cost, and the late arrival penalty. 153 

Patients with different severity will be allocated to the hospital with the proper expertise, while ambulance 154 

allocation to patients depends on travel time after lane clearing.  155 

(iii) The semi-soft time windows constraint is formulated to reflect the urgency of rescue, and a late arrival 156 

penalty on-scene and at hospitals is introduced in the objective function. 157 

(iv) A real-world case in Shenzhen, China, is studied to validate the efficiency in rescue time and 158 

computational time. The exact optimal solution can be generated within a short computational time by 159 

commercial solvers. The comparison with cases with inactive stakeholders is made to verify the resulting 160 

efficiency.    161 

The remainder of the paper is as follows. In Section 2, the problem is defined in detail, and notations are 162 

explained. Moreover, two advanced technologies are presented to involve the crucial stakeholders. The high-163 

spatial resolution-based MIP model is illustrated and described in section 3. Section 4 provides a real-world 164 

case study in Shenzhen, China, to test the proposed mathematical model and evaluate the performance 165 

compared with inactive stakeholder cases. In section 5, the main conclusions and further remarks are 166 

summarized. 167 

2. Problem statement 168 

The ambulance routing problem aims to plan routes to pick up patients and drop them off at the hospitals. 169 

This problem will be fundamentally different from the traditional vehicle routing problem by taking into 170 

account two advanced technologies: pre-hospital screening and lane pre-clearing, as shown in Fig. 1. 171 

Typically, the ambulance routing problem can be categorized into two classes: hospital-based and depot-172 

based. For the depot-based system, ambulances belong to hospitals and are initially located at their hospitals. 173 

In some cases, ambulance together with other emergency vehicles, will be positioned at a depot, which is 174 

defined as a depot-based system. In this research, we focus on the hospital-based one. By customizing the 175 

initial location for the ambulance fleet, the proposed method can be implemented in depot-based scenarios. 176 

We formalize the problem using the notation shown in Table 1.  177 

Fig.1 Ambulance routing process. (a) Pre-hospital screening. Patients are diagnosed by screen infrastructures 178 

and further divided into different injury levels. The patients will be assigned to the nearest qualified hospital 179 

to be treated based on the disanose result. Ambulances are classified into three types according to their on-180 

board equipment. They can serve patients at different injury levels. (b) Ambulance routing. The ambulance 181 

from the hospital with the shortest pick-up time will be allocated to help the patients and drop them off at 182 

the pre-defined hospital. (c) Lane pre-clearing. To ensure the driving speed of the ambulance, the preceding 183 



vehicles will switch to another lane to clear one specific lane following the suggestion given by the traffic 184 

operator.     185 

2.1. Pre-hospital screening 186 

After receiving an emergency call, remote screening of the injured helps allocate resources accurately, 187 

such as ambulance and hospitals. When there are more than patients, it is necessary to differentiate those 188 

with severe injuries acutely requiring specialized care. A minor delay in receiving treatment may cause the 189 

difference between lifelong disablement and independent life. Thus, the implementation of pre-hospital 190 

screening in EMS becomes popular recently. Persson et al. (2014) tested the accuracy of the brain diagnostic 191 

devices based on microwave technology for pre-hospital stroke screening. This equipment comprised 192 

triangle patch antennas fitted on the head that transmits signals for measurement and analysis. The signals 193 

were processed by a supervised learning algorithm based on training data from patients with the known 194 

condition. Two clinical tests were conducted to prove the efficiency of the equipment. Based on this research,  195 

Fhager et al. (2018) further summarized the promising microwave-based devices for pre-hospital diagnosis, 196 

including the diagnostic ability, methodologies, world-wide progress, and challenges. They claimed that, 197 

with the help of microwave devices, the clinical evaluations of trauma and stroke could be performed by 198 

research nurses and physicians without the need for technical measurements in the hospital. 199 

Fig. 1(a) shows the simplified result of pre-hospital screening, where patients are classified into different 200 

injury levels. In practice, patients’ severity is diagnosed based on their specific symptoms, such as abdominal 201 

pain, allergic reactions, animal bites, violence, burns, cardiac or respiratory arrest. Besides, the figure 202 

indicates that the available ambulance fleet is divided into three types:   203 

(i) Type I, these ambulances are designed for patient transport. The on-board equipment is basic ones for 204 

first aid and nursing care. 205 

(ii) Type II, this type is for basic life support. A certain number of medical equipment should be provided. 206 

Patients require medical transportation, and continuous medical supervision will be assigned to it. 207 

(iii) Type III serves as a mobile Intensive care unit (ICU). The well-trained professionals and stretchers are 208 

on-board. The equipment provided is sufficient to stabilize, treat and transport the injured to the target 209 

hospital. This ambulance will be allocated to patients who are severely injured and require ongoing 210 

care. 211 

The ambulance fleet located in a hospital is composed of vehicles of different types. The injury screening 212 

would match the patient with a list of compliant vehicles but not the exact one. We assume that patients at 213 

each injury level will be treated by an exact hospital according to its expertise to determine the destination 214 

for each patient.  215 

In this research, we assume that the pre-hospital screening is included in ARP. It helps assign proper 216 

ambulance and hospital to the patients following the time limitation and the hospital’s expertise. We include 217 

the result of screening as one of the inputs. To be specific, a set 𝐾𝐾𝑙𝑙 is defined for the vehicles that satisfied 218 

the rescue requirement, and a two-dimension parameter 𝑛𝑛𝑙𝑙ℎ′ shows the compatibility between patients and 219 

hospitals in detail. To understand the specific meaning of the input, let set 𝐾𝐾 denote the fleet of ambulances 220 

available to provide aid to patients. Each ambulance has its unique ID and can handle different levels of 221 



injuries according to the on-board equipment. We denote by 𝐾𝐾𝑙𝑙 ∈ 𝐾𝐾, a subsite of the whole ambulances set 222 

𝐾𝐾 that can provide appropriate aids for patients at injury level 𝑙𝑙. Each element in the set 𝐾𝐾𝑙𝑙  may locate 223 

differently to cope with random calls and reduce the response time. The set 𝑛𝑛𝑙𝑙ℎ′ contains the result after 224 

diagnosing, which illustrates the exact number of patients detected as injury level 𝑙𝑙 and should be taken care 225 

of at hospital ℎ′. This setting determines the injury level and the destination (hospital) of each patient. 226 

We allow multiple ambulances to visit the same incident scene at the same time to serve a group of 227 

patients.  But these patients are supposed to be dropped off at the pre-defined hospital without any 228 

transfer.  229 

2.2. Lane pre-clearing 230 

Lane pre-clearing is a strategy based on cooperative control designed for intelligent connected vehicles 231 

(CV). It aims to arrange the trajectories for proceeding vehicles to clear one lane for each ambulance, as 232 

shown in Fig. 1(c). The lane clearing request will be sent to the CVs within a communication range through 233 

vehicle-to-vehicle or vehicle-to-infrastructure communication. The communication range determines when 234 

to conduct the sorting trajectories for the proceeding CVs. In this case, ambulances can drive at the pre-235 

desired speed without congestion and avoid impact on the CVs to some extent.  236 

An ambulance sorting algorithm, developed by Wu et al. (2020), solved the lane pre-clearing problem on 237 

normal road segments ensuring the desired speed of ambulances while reducing the disturbances on CVs. 238 

They introduced the ambulance speed and real-time locations as decision variables. Based on the A* 239 

algorithm, a customized EV sorting algorithm was proposed to decide the optimal communication range and 240 

the merging trajectories for CVs. Besides, a linear relationship between the results and road density was 241 

calibrated. It provides possibilities for simplifying travel time uncertainties by converting the stochastic 242 

travel time into a deterministic equation, which will be discussed in Section 3.2.  243 

3. Emergency vehicle routing problem 244 

3.1. Model formulation 245 

Based on the two technics mentioned above, we propose a mathematical formulation of ambulance routing. 246 

Some assumptions are made as follows: 247 

(i) The ambulances are initially located at the hospitals to which they belong. The available ambulances 248 

are uniformly dispatched by the EMS. After delivering the injured, ambulances will return to the 249 

hospitals from which they depart. But this deadhead trip will not be scheduled in this research.  250 

(ii) The hospital allocation to patients is known after the pre-hospital screening. The nearest hospital that 251 

satisfies the treatment requirements will be selected as the patients’ destination without any transfer. 252 

But the hospital that dispatches ambulance is not pre-determined. The selection of an ambulance will 253 

further depend on the pick-up time and distance. 254 

(iii) There is only one accident at a time, and an accident scene may have several patients. We allow more 255 

than one ambulance to visit the scene and pick-up the injured. The patients at the same injury level can 256 

be served by the same ambulance when the capacity allows.  257 



(iv) We consider three types of ambulances. The capacity of the same ambulance is different when it serves 258 

patients at different injury levels. Type III ambulance can provide treatment for all injury levels and 259 

accommodate more patients compared with Type I and II. 260 

    The ambulance routing problem is modeled as follows: 261 

min ∑ �∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁 +∑ ∑ 𝜏𝜏𝑘𝑘𝑥𝑥ℎ𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁ℎ∈𝐻𝐻 + 𝑓𝑓𝑘𝑘�𝑘𝑘𝑘𝑘𝑘𝑘   
 

(1) 

subject to:  262 

∑ 𝑥𝑥ℎ𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁 ≤ 𝑜𝑜ℎ𝑘𝑘     ∀ℎ ∈ 𝐻𝐻, ∀𝑘𝑘 ∈ 𝐾𝐾 (2) 
 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁      ∀𝑖𝑖 ∈ 𝑁𝑁\𝐻𝐻, ∀𝑘𝑘 ∈ 𝐾𝐾  
 

(3) 

∑ ∑ 𝑐𝑐𝑙𝑙𝑘𝑘𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖𝑘𝑘𝑁𝑁 𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙 ≥ ∑ 𝑛𝑛𝑙𝑙ℎ′ℎ′∈𝐻𝐻     ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑝𝑝 ∈ 𝐻𝐻 
 

(4) 

∑ ∑ 𝑐𝑐𝑙𝑙𝑘𝑘𝑥𝑥𝑖𝑖ℎ′𝑘𝑘 ≥ 𝑛𝑛𝑙𝑙ℎ′𝑖𝑖𝑘𝑘𝑁𝑁𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙      ∀𝑙𝑙 ∈ 𝐿𝐿, ∀ℎ′ ∈ 𝐻𝐻 
 

(5) 

𝑠𝑠𝑖𝑖𝑘𝑘 + 𝑒𝑒𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 � ≤ 𝑠𝑠𝑖𝑖𝑘𝑘     ∀𝑖𝑖 ∈ 𝑁𝑁, ∀𝑗𝑗 ∈ 𝑁𝑁, ∀𝑘𝑘 ∈ 𝐾𝐾 
 

(6) 

𝑠𝑠𝑖𝑖𝑘𝑘 − 𝜀𝜀𝑖𝑖  ≥ 𝑇𝑇𝑖𝑖     ∀𝑖𝑖 ∈ 𝑃𝑃 ∪ 𝐻𝐻, ∀𝑘𝑘 ∈ 𝐾𝐾 
 (7) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1}  ∀𝑖𝑖 ∈ 𝑁𝑁, ∀𝑗𝑗 ∈ 𝑁𝑁, ∀𝑘𝑘 ∈ 𝐾𝐾 
 

(8) 

  
The objective function (1) is to minimize the total cost, including the expenses on traveling, ambulance 263 

allocation, and delay penalty that will be discussed in Section 3.3. Constraints (2) ensures that each selected 264 

ambulance should start from the hospital, where it is initially located. Constraints (3) denotes the flow 265 

balance for intermediate nodes. Constraints (4) ensures that all patients detected as injury level 𝑙𝑙  at node 𝑝𝑝 266 

must be picked up by the ambulances that can provide aids to this level. Similarly, Constraints (5) limits 267 

that patients at injury level 𝑙𝑙 assigned to hospital ℎ′ should be dropped off at the same hospital. Constraint 268 

(6) describes the visit time at each node along the route of ambulance 𝑘𝑘. Constraint (7) describes the delay 269 

when arriving at the patient’s node or the hospital based on a semi-soft time window. Constraint (8) defines 270 

the binary decision variable.  271 

3.2. Travel time calculation 272 

    To integrate traditional traffic planning and emergency response methods, innovative technologies such 273 

as CVs have enabled new solutions. Transport operators can take actions to prioritize the ambulances, and 274 

drivers of other CVs will correspond to give way to ambulances through clear interaction. Thus, ambulances 275 

take advantage of real-time traffic information in routing to minimize the delivery time. 276 

    In this section, the travel time based on connectivity is generated in Constraint (9) using the method 277 

proposed by Wu et al. (2020), which provides a linear relationship between communication range and 278 

designed speed. 279 



𝑟𝑟 = (𝑎𝑎𝜎𝜎 + 𝑏𝑏)
𝑣𝑣 −𝑚𝑚𝜎𝜎 − 𝑛𝑛
𝑣𝑣0 − 𝑚𝑚𝜎𝜎 − 𝑛𝑛

 (9) 

where 𝑟𝑟 is the communication range between the ambulance and the proceeding CVs; 𝑎𝑎 and 𝑏𝑏 are the linear 280 

regression coefficients, 𝑎𝑎𝑘𝑘 + 𝑏𝑏 denotes the simulated communication range. 𝑚𝑚 and 𝑛𝑛 are the coefficients in 281 

the fundamental diagram, 𝑚𝑚𝑘𝑘 + 𝑛𝑛 represents the average speed of the proceeding CVs. 𝑣𝑣0 is the speed of 282 

ambulance used in the simulation, and 𝑣𝑣 is the real-time designed speed. We assume the communication 283 

range 𝑙𝑙 is pre-assigned, the travel time of the emergency vehicle in the proceeding node can be calculated in 284 

Constraint (10) with only traffic density 𝜎𝜎𝑖𝑖𝑖𝑖 which denote the density between nodes 𝑖𝑖 and 𝑗𝑗:  285 

𝑡𝑡𝑖𝑖𝑖𝑖  =
𝐷𝐷𝑖𝑖𝑖𝑖(𝑎𝑎𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑏𝑏)

𝑣𝑣0𝑟𝑟 + (𝑎𝑎𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑏𝑏 − 𝑟𝑟)(𝑚𝑚𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑛𝑛)
 (10) 

where 𝐷𝐷𝑖𝑖𝑖𝑖 represents the distance between two nodes. 286 

3.3. Late arrival penalty 287 

    We consider the late arrival at the accident scene and the hospital. The on-site delay affects the efficacy 288 

of the first aid while the arrival delay at the hospital might be more fatal for the injured. Based on the semi-289 

soft time window introduced in Constraint (7), the delay calculation can be presented as follow:  290 

(i) To describe the on-site delay when ambulance 𝑘𝑘 picks up the patient(s) at the accident scene 𝑝𝑝 ∈ 𝑃𝑃, we 291 

set the penalty coefficient as 𝜓𝜓1 to depict the degree of impact. The detailed delay can be calculated as 292 

 𝜎𝜎𝑘𝑘 = max�𝑠𝑠𝑗𝑗𝑘𝑘 − 𝑇𝑇𝑗𝑗, 0�. When the arrival time 𝑠𝑠𝑗𝑗𝑘𝑘 is earlier or equals the preferred arrival time 𝑇𝑇𝑗𝑗, the 293 

penalty is 0. Otherwise, the time equals 𝑠𝑠𝑗𝑗𝑘𝑘 − 𝑇𝑇𝑗𝑗. 294 

(ii) Similarly, when the ambulance drop off the patient(s) at injury level 𝑙𝑙 at hospital node  ℎ′ ∈ 𝐻𝐻, the 295 

penalty coefficient is set as is set as 𝜓𝜓2, the delay at the hospital is denoted by  𝜃𝜃𝑘𝑘 =  max�𝑠𝑠ℎ′𝑘𝑘 − 𝑇𝑇ℎ′, 0�. 296 

    The late arrival penalty for each ambulance 𝑘𝑘 at two import places can be formulated as: 297 

 𝑓𝑓𝑘𝑘 =  𝜓𝜓1𝜎𝜎𝑘𝑘 + 𝜓𝜓2𝜃𝜃𝑘𝑘 (11) 

   The objective function can be rewritten as: 298 

𝑚𝑚𝑖𝑖𝑛𝑛 ∑ �∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁 + ∑ ∑ 𝜏𝜏𝑎𝑎𝑘𝑘𝑥𝑥𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖∈𝑁𝑁𝑎𝑎∈𝐻𝐻 + 𝜓𝜓1𝜎𝜎𝑘𝑘 + 𝜓𝜓2𝜃𝜃𝑘𝑘�𝑘𝑘𝑘𝑘𝑘𝑘   (12) 

3.4. Applications for disaster response 299 

In addition to serving a single accident point, the proposed model can also be used in large-scale multi-300 

accident scenarios to support disaster response. In consideration of this, we extend the pre-hospital screening 301 

parameter 𝑛𝑛𝑙𝑙ℎ
′ to 𝑛𝑛𝑙𝑙,𝑗𝑗ℎ

′  which indicates the number of patients who are diagnosed as injury level 𝑙𝑙 and assigned 302 

to hospital ℎ′ calling from accident scene  𝑝𝑝. We modified the patient pick-up and delivery constraints (4-5) 303 

as follows: 304 

∑ ∑ 𝑐𝑐𝑙𝑙𝑘𝑘𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖𝑘𝑘𝑁𝑁 𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙 ≥ ∑ 𝑛𝑛𝑙𝑙,𝑗𝑗ℎ′ℎ′∈𝐻𝐻     ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑝𝑝 ∈ 𝐻𝐻 (13) 

∑ ∑ 𝑐𝑐𝑙𝑙𝑘𝑘𝑥𝑥𝑖𝑖ℎ′𝑘𝑘 ≥ ∑ 𝑛𝑛𝑙𝑙,𝑗𝑗ℎ′𝑗𝑗∈𝑃𝑃𝑖𝑖𝑘𝑘𝑁𝑁𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙      ∀𝑙𝑙 ∈ 𝐿𝐿, ∀ℎ′ ∈ 𝐻𝐻 (14) 



Constraint (13) ensures that the level 𝑙𝑙 patients at scene 𝑝𝑝 will be picked up by the ambulances that can 305 

serve patients at level 𝑙𝑙. Similarly, Constraint (14) indicates that all level 𝑙𝑙 patients that are assigned to 306 

hospital  ℎ′ will be delivered to the hospital without transfer.  307 

After substituting constraints (4-5) with constraints (13-14), the proposed model makes it possible to 308 

solve the ambulance routing problem for disaster response. 309 

4. Real-world case study 310 

4.1. Description 311 

This section focuses on a central part of Shenzhen in southern China, as shown in Fig. 2, where 6 312 

hospitals are surrounded, including one emergency medical center with the largest ambulance fleet. The 313 

point of interest (POI) is marked in dark grays such as commercials, residential, hospitals, schools, and 314 

parking. We further sketch the road network in Fig. 3 to simplify overpasses, small intersections, and 315 

roads within residential areas. The travel time after lane pre-cleaning is calculated based on Constraint 316 

(10) in minutes and is shown above each link in Fig. 3. In this case study, we made two assumptions: 317 

(i) Patients will be diagnosed and divided into four levels: 1, 2, 3 and 4. Ambulances can serve patients 318 

at different levels. For example, a type III ambulance can pick up the wounded at all injury levels; 319 

a Type II ambulance is capable for patients at level 1,2 and 3, and a Type I ambulance can only 320 

serve patients at injury level 1 and 2.  321 

(ii) The on-site service time for patient picking up is around 1 minute, and is 0 at the intersection nodes 322 

where patients remain on-board. 323 

Fig. 2 Physical road network. The red cross represents the hospitals’ location, and the dark gray shows 324 

the points of interest in this area. 325 

Fig. 3. A sketch network. This sketch abstracts the physical network and ignores internal roads and 326 

small intersections within residential areas. The red dot shows the hospitals’ location, and the dark 327 

orange one represents the emergency medical center where locates the largest number of ambulances. 328 

The hollow dot shows the simplified intersection, and the blue one is where the accident happened. 329 

Like other worldwide cities, in Shenzhen, the ambulance fleet located differently belongs to the 330 

EMSP and is uniformly dispatched after receiving the request.  As mentioned before, the ambulances 331 

are classified into three types according to their on-board equipment. The detailed inventory is 332 

summarized in Table 2 according to the statistical data provided by Shenzhen EMSP. 333 

One real-world incident is introduced as an example. In a residential area, node 11, a medium-sized 334 

traffic accident, sent a request to EMS at 9:00 am. Two drivers were seriously injured when cars collided, 335 

and two passengers and two pedestrians were wounded to varying degrees. After the pre-hospital 336 



screening, the wounded are classified into different levels and assigned to the hospitals with the proper 337 

expertise. The screening results are shown in Table 3. 338 

To balance the weights of the three components of the objective function (1), we convert both the 339 

dispatch cost and the delay penalty into time units.  We set the ambulance allocation price 𝜏𝜏𝑘𝑘  as 10,20, 340 

and 30 for type I, II, and III, respectively. Besides, the set the coefficient of late arrival as 10 for both 341 

on-site 𝜓𝜓1 and at hospitals 𝜓𝜓2. To ensure the service level, the preferred on-site pick-up time is 10 mins 342 

after the call, and the preferred delivery time is 20 mins after the request. 343 

4.2. Computational result 344 

The incident is implemented in the General Algebraic Modeling System (GAMS) 33.1.0, called by 345 

Python 3 installed on a Dell laptop with a 1.9-GHz Intel Core i7 CPU and 8-GB, running on Windows 346 

10. The calculation time for this case is 6.909s.  347 

The ambulance allocation and route plan are generated with detailed departing and arriving time 348 

shown in Fig. 4. Hospital 27 dispatches all available ambulances to serve patients at injury levels 2, 3, 349 

and 4, respectively. Hospital 3 allocates the type I ambulance to pick-up the patient at injury level 1. It 350 

is clear to conclude that the hospital with the shortest travel time are selected to dispatch ambulances. 351 

When the ambulance fleet is fully assigned, or the ambulance type is inappropriate, the second nearest 352 

hospital will be responsible for serving the patients left that are of relatively low severity and priority.   353 

Fig.4. Ambulance allocation and route plan. (a) Type I ambulance initially located at hospital 3 serves 354 

patients at injury level 1 at 9:11 and delivers them to hospital 3 at 9:20. (b) Type I ambulance located 355 

at hospital 27 helps patients at injury level 2 at 9:08 and back to hospital 27 at 9:16. (c) Type II 356 

ambulance departs from hospital 27 to pick-up the injured at level 3 at 9:08 and delivers them to hospital 357 

7 at 9:24. (d) Type III ambulance from hospital 27 serves one patient at injury level 4 at 9:08 and drop 358 

off at hospital 29 after 16 minutes.  359 

    Fig. 5 describes the total cost and the detailed cost of each component. The travel time, dispatch price, 360 

and delay penalty are shown in blue. The expenses on each passenger list are described in red. It can be 361 

observed that the higher injury level leads to a higher rescue cost. This is mainly because the severe 362 

casualty requires a better-equipped ambulance, which is more expensive to dispatch. Besides, some 363 

patients with fatal injuries or uncommon illnesses are difficult to be treated in the nearest hospital, so a 364 

long transport distance will also cause relatively high rescue costs. Conversely, patients at lower injury 365 

levels can be treated nearby. 366 

Fig. 5 Rescue cost breakdown 367 



4.3. Method comparison 368 

To validate the efficiency of multi-stakeholder consideration, we take patient list 3 as an example of 369 

2 patients waiting to be treated. We compare the generated result with cases that have inactive hospitals 370 

and traffic operators, respectively.  In the first case, traffic operators are involved in decision making. 371 

Thus, the real-time traffic condition could be included in route choice. For the hospital involvement, 372 

each patient’s destination is precisely determined by pre-hospital screening equipment, and the nearest 373 

qualified hospital will be assigned to the patient. In two cases, we assume that the proper type of 374 

ambulance will be assigned to serve the patients.  The route plans are illustrated in Fig. 6.    375 

Fig.6. Ambulance routing under different strategies. (a) Route generation with inactive hospitals. (b) 376 

Route generation without traffic operators.  377 

When the hospitals are excluded in route planning, EMS will assign patients to the nearest hospital 378 

regardless of its expertise, as shown in Fig. 5(a). If the assigned hospital is a comprehensive one with 379 

diverse expertise, there will be little difference between active and inactive hospital involvement. But 380 

suppose this hospital is not qualified for providing a specific treatment. In that case, it takes several 381 

minutes (e.g., 5 mins in this case) to figure out that the patient should be transferred and costs more 382 

than 25 minutes for the additional transport.   383 

Fig. 7 compares the breakdown cost in each case. The scenario where hospitals are excluded expenses 384 

the most. Followed by the cases with inactive traffic operators, which is three times the baseline cost. 385 

Since we assume the proper ambulance allocation, the dispatch fee remains the same for three cases. 386 

The largest difference drive from the arrival delay due to the high penalty cost. The on-site delay under 387 

the three strategies are 0, 0, and 1 minute respectively, and the hospital arrival delay is 4, 21, and 17 388 

minutes respectively. A few minutes of arrival delay has a tremendous difference in the treatment effect 389 

that determines life or death for the wounded. Therefore, the comparative analysis of the three cases 390 

fully illustrates the huge advantages of collaboration among EMSP, the hospital, and the traffic operator 391 

in planning and dispatching. 392 

Fig. 7 breakdown cost under different strategies 393 

If the traffic operators are excluded in route planning, empirical-based travel time will be adapted for 394 

route choice. As pre-hospital screening is considered, the destination for the ambulance is determined. 395 

Intuitively, there are two differences from the baseline. First, the ambulance cannot travel at the pre-396 

defined speed for the entire journey because the operators do not coordinate the lane pre-clearing. If 397 

some road sections are congested, the travel time will accordingly increase. Second, the exact shortest 398 

path may not be assigned to the ambulance based on empirical data, as shown in Fig.5(b). The dynamic 399 

traffic conditions will largely influence the travel time.  400 



5. Conclusion 401 

In this paper, the ambulance routing problem with multi-stakeholder cooperation is investigated. 402 

Traffic operators respond to provide traffic management strategies to pre-clear the lane and prioritize 403 

the incoming ambulance. Hospitals play roles in remote screening to ensure the hospital assigned to the 404 

specific patient has sufficient expertise. We have proposed an MIP model to minimize the cost of 405 

traveling, ambulance allocation, and delay penalty. The proposed planning method can be used to 406 

support EMS decisions regarding the professions of hospitals and ambulance types, and fleet size. The 407 

exact solution of the optimization model takes only seconds that enables coordination among 408 

stakeholders within a short response time. Despite daily EMS, the scenarios of multiple accidents 409 

occurring at the same time can be solved based on the customized model by extending the dimension 410 

of the pre-hospital screening parameter. Therefore, the proposed model is sufficient to deal with 411 

different emergencies and provide practical rescue plans. Moreover, this method provides possibilities 412 

to dispatches the heterogeneous ambulance flee and matches the passengers with the most appropriate 413 

one to avoid scarce resource waste. 414 

Future research may aim to incorporate further aspects such as stochastic service time and demand 415 

uncertainty (Legato and Mazza, 2020). This model could be further extended for large scale disaster 416 

response with considerations of patient priority and ambulance rerouting for picking up the injured with 417 

higher severity.    418 
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Tables 522 

Table 1. Notations used for the ambulance routing representations 523 

Symbol Notation 
Set 
𝑁𝑁  Set of all nodes 
𝐻𝐻 Set of hospital nodes  𝐻𝐻 ⊆ 𝑁𝑁 
𝑃𝑃 Set of patient nodes 𝑃𝑃 ⊆ 𝑁𝑁 
𝐾𝐾 Set of the ambulances  
𝐿𝐿 Set of injury levels 
Index  
ℎ, ℎ′ Indices of the hospitals that dispatch ambulances or give treatment  
𝑖𝑖, 𝑗𝑗 Indices of nodes 
𝑝𝑝 Index of patient nodes 
𝑘𝑘 Index of ambulances 
𝑙𝑙 Index of injury level 
Parameter  
𝜏𝜏𝑘𝑘 Ambulance allocation cost  
𝑜𝑜ℎ𝑘𝑘      Binary parameter indicates whether vehicle 𝑘𝑘 is located at hospital ℎ 
𝑛𝑛𝑙𝑙ℎ′ The number of patients at injury level 𝑙𝑙 should be treated by hospital ℎ′ 
𝑐𝑐𝑙𝑙𝑘𝑘 The capacity of ambulance 𝑘𝑘 when serving patients at injury level 𝑙𝑙 
𝑒𝑒𝑖𝑖 Service time at node 𝑖𝑖  
𝑡𝑡𝑖𝑖𝑖𝑖 The simulated travel time between nodes 𝑖𝑖 and 𝑗𝑗 
𝑇𝑇𝑖𝑖 The preferred arrival time at node 𝑖𝑖 
𝑟𝑟 Communication range between ambulance and the proceeding CVs 
𝐷𝐷𝑖𝑖𝑖𝑖 Distance between nodes 𝑖𝑖 and 𝑗𝑗 
𝜎𝜎,𝜎𝜎𝑖𝑖𝑖𝑖 Traffic density on a road segment, or between two nodes 𝑖𝑖 and 𝑗𝑗 
𝑣𝑣0 Ambulance velocity used in simulation planned for real-time cases 
𝑣𝑣 Real-time ambulance velocity  
𝑎𝑎,𝑏𝑏,𝑚𝑚,𝑛𝑛 Linear regression parameters for communication range or traffic density 
𝜓𝜓1,𝜓𝜓2 Weights of late arrival penalty on-site or at hospitals. 
Variable  
𝑓𝑓𝑘𝑘 The penalty cost of late arrival  
𝜀𝜀𝑖𝑖 The buffer time at node 𝑖𝑖, its value can be negative or positive 
𝑠𝑠𝑖𝑖𝑘𝑘 Arrival time at node 𝑖𝑖 of emergency vehicle 𝑘𝑘 
𝜎𝜎𝑘𝑘,𝜃𝜃𝑘𝑘 Delay of vehicle 𝑘𝑘 on-site or at hospital 
Decision Variable  
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  = 1, if ambulance 𝑘𝑘 traveling from node i to j; = 0, otherwise 

 524 

Table 2.  Available ambulance inventory 525 

Node ID Ambulance fleet 
Type I Type II Type III 

2 0 0 1 
3 1 1 1 
7 0 1 1 
27 1 1 1 
28 0 1 1 
29 3 4 3 

 526 

 527 



Table 3. Pre-hospital screening528 

Patient list Patient number Accident scene Level Hospital 
1 2 11 1 3 
2 1 11 2 27 
3 2 11 3 7 
4 1 11 4 29 

529 
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