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Image-based Visual Servoing of Rotorcrafts to
Planar Visual Targets of Arbitrary Orientation

Jianan Li1, Hui Xie2, Kin Huat Low3, Jianwen Yong3, Boyang Li4

Abstract—This paper for the first time extends the virtual
camera image-based visual servoing (IBVS) scheme to enable
an underactuated rotorcraft UAV to regulate its translational
motion and heading relative to a planar visual target of arbitrary
orientation. The conversion from real camera images to virtual
camera images of visual targets are proposed based on a set of
rotation matrices. Hence, image moment features can be reused
due to the simplicity and decoupled structure of the interaction
matrix, and satisfactory 3D Cartesian trajectory of UAVs. In the
design of the IBVS control law, the external disturbance and
model uncertainties are estimated by an integral-based filter.
In addition, to enable tracking of a moving visual target, a
velocity estimator is developed. The global asymptotic stability
of the error dynamics is proven. Both of the simulation and
experimental results of tracking of a tilted moving planar target
are provided to show the efficacy of the proposed IBVS scheme.

Index Terms—Visual Servoing, Aerial Systems: Mechanics and
Control, Image Moment, Nonlinear Backstepping Control.

I. INTRODUCTION

USING visual information from onboard cameras of rotor-
craft unmanned aerial vehicles (RUAVs) for closed-loop

pose control is referred to as visual servoing [1]. Approaches
for visual servoing are usually divided into two categories
which are position-based visual servoing (PBVS) and image-
based visual servoing (IBVS) [2]. In IBVS, kinematic errors
are estimated directly from image features. It removes the re-
quirement of pose reconstruction which needs precise camera
calibration, thus it is a computationally effective algorithm [3].
In addition, a coarse estimation of the interaction matrix in
IBVS will only cause perturbations in the robot trajectory but
has no effect on the pose reached, and IBVS is generally more
robust to image noise [2]. Considering these advantages, this
paper selects IBVS approach.

For an underactuated aerial vehicle like a traditional quadro-
tor whose translation is controlled by only a thrust force
along a body-fixed axis [4], the dynamics of that robot must
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be considered in visual servoing as suggested in [5]. IBVS
considering robot dynamics is referred to as dynamic IBVS,
or DIBVS [6]. In addition, compared to classical kinematics-
based visual servoing, DIBVS can help to achieve high speed
motion control [7]. In designing DIBVS laws, the challenge
is that the nonlinear perspective projection of the camera
will destroy the passivity-like property of the aerial vehicle’s
dynamics [6]. In [8] a DIBVS controller using first order
spherical image moments as image features is proposed. A
rigorous proof of closed-loop stability is provided but this
approach is insensitive to vertical motion due to the ill-
conditioned interaction matrix of the proposed features. After
the seminal work in [8], several improved DIBVS laws are
proposed based on the spherical image moments, such as
the works in [9]–[13]. However, the ill conditioning of the
spherical moment features still has not been completely solved
though some new image features based on spherical projection
are proposed to alleviate the ill conditioning [6], [14].

Alternatively, the work in [15] proposes a method based
on virtual camera philosophy where the roll and pitch motion
of the UAV is decoupled from the image feature kinematics.
Similarly, in [16] the innovative perspective image moments
proposed in [17] are adopted to form image features in a
virtual camera with zero roll and pitch for IBVS of RUAVs.
The changing rates of image moment features are linear to the
translational motion of the UAV and there is no ill conditioning
in the interaction matrix, and therefore satisfactory trajectories
in both image space and 3D Cartesian space can be achieved
as compared to the spherical projection-based approach [6].
Because of the above-mentioned benefits, in recent years
many virtual camera-based DIBVS laws are proposed [18]–
[29]. These works adopt the same perspective image moments
features as in [16] and propose various control laws to ad-
dress specific issues, such as system uncertainties [18]–[21],
removing the requirement of velocity estimation [19], [21]–
[24], field of view (FoV) constraint [25], disturbance rejection
[21], [26], tracking of moving targets [27], and global stability
of IBVS [28], [29]. These IBVS laws in [18]–[29] are based on
the assumption that the visual target lies on a horizontal plane.
Both simulation and experimental results in [22] show that the
proposed approach may also be applied to visual servoing of
a visual target in a tilted plane, but no theoretical proof is
given. To the authors’ knowledge, there is no existing results
of applying the virtual camera approach to visual servoing of
arbitrarily oriented visual targets. Other less popular DIBVS
methods include the homography-based method as shown in
[30] and the virtual spring method presented in [31] [32].
Among all above-mentioned approaches, the virtual camera
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approach is usually considered easier to implement due to its
simplicity and decoupled structure shown in the interaction
matrix [6].

This paper proposes a novel virtual camera IBVS control
scheme to an arbitrarily oriented planar visual target for
underactuated RUAVs. This scheme relies on the conversion of
real time images to virtual images of a virtual camera pointing
in the direction of normal vector of the visual target. To extend
the application of perspective moment features to IBVS of
non-horizontal targets, practical issues encountered in [18]–
[29] have to be addressed as well. In this paper, we focus
on addressing the issues caused by model uncertainties and
disturbance, tracking moving targets, and stability analysis.
The control law is designed using the adaptive backstepping
technique. An integral-based filter is introduced to estimate
the non-structured model uncertainties and constant external
disturbance. Another filter is also introduced to estimate the
velocity of the visual target that tracking of the moving target
can be achieved, while most existing virtual camera based
DIBVS approaches only consider static targets [18]–[26],
[28], [29]. The controller is proven to be able to uniformly
asymptotically stabilize the image feature errors to zeros. In
order to show the efficacy of the proposed scheme, numerical
simulation and experimental results of tracking a moving
target in a tilted plane are presented. To the best of authors’
knowledge, this paper for the first time presents a DIBVS
scheme for planar moving visual targets of arbitrary orientation
with both theoretical analysis and experimental results.

II. MODELING WITH VIRTUAL CAMERA

A. Notations

Throughout the paper, for a function f(x), its time deriva-
tive is denoted as ḟ(x(t)) = f ′(x(t))ẋ(t). For a quantity
x, its estimate is denoted as x̂, and the estimate error is
x̃ = x− x̂. A rotation matrix Ra(α) ∈ SO(3) means rotating
about a-axis by α. For instance, Rz(ψ) means rotating about
z-axis by ψ. The notation of a coordinate system is usually
enclosed in curly braces, for example, the navigation frame
{n}. The matrix Rβα ∈ SO(3) means a rotation matrix from
frame {α} to frame {β}. Vector e3 = [0, 0, 1]T . The map
S(·) : R3 7→ R3×3 yields a skew symmetric matrix that
verifies S(x)y = x× y, for x, y ∈ R3.

B. Frame Definition

A typical scenario of dynamic IBVS is shown in Fig. 1.
A navigation frame {n} is fixed rigidly on the ground with
its basis oriented north, east, and down. As in [18]–[29] for
IBVS of RUAVs {n} is assumed to be inertial considering the
Earth’s slow rotational motion. A body frame {b} is oriented
forward, right and down relative to the UAV with its origin
at the center of mass. The attitude of the UAV is described
by a set of conventional Euler angles in Z-Y-X sequence,
denoted as ψ, θ and φ for yaw, pitch and roll, respectively. A
camera frame {c} is with its origin at the optical center of the
onboard camera and basis oriented forward, right and down,
respectively. A virtual camera frame {v} is introduced with
its origin fixed at the optical center of the real camera, and

the virtual image plane parallel to the target plane. This means
{v} can only rotate about its own z-axis. The orientation of
the planar target is described by two angles, ψtg and αtg , thus
its attitude relative to {n} is Rntg = Rz(ψtg)Ry(αtg).

⊥ 

real camera virtual camera

feature point

moving target

{b}

{c}

{v}

{n}

αtg
vtg

Fig. 1. A typical scenario for dynamic IBVS for quadrotors. A quadrotor
tracks a tilted planar target moving with velocity vtg . Frame {c} and {v}
share the same origin, though they are depicted separately for clarity. The
x, y, z axes of the coordinates are in red, green and blue (RGB), respectively.

C. Image Feature and Kinematics

As shown in Fig. 2, a commonly used pinhole camera model
is used that the mapping between a point P ∈ R3 in {n} and
its pixel coordinate of p as [ux, uy]T is

Z
[
ux, uy, 1

]T
= K

[
Rnc

T −Rnc
T t
] [
PT , 1

]T
(1)

where Z is the depth, f is the focal length, K ∈ R3×3 is
the intrinsic matrix, Rnc is the rotation matrix from {c} to
{n} and t is the position of the camera in {n}. In Fig. 2, pv

{c}
{v}

f

virtual image plane

target plane

Ppv

{n}

Fig. 2. Pinhole camera model. A point P is projected onto the virtual image
plane with its projection pv . The real camera frame {c} is in light purple
with colored dots. The virtual camera frame {v} has the x, y and z axes in
red, green and blue (RGB) respectively. The frame {v} only rotates around
its z-axis, which is defined to be always perpendicular to the target plane.

is the projection point by P on the virtual image plane with
coordinates as [uxv, uyv]

T and the conversion from real image
pixel coordinates p to pv can be found in [20].

We make the following assumptions to facilitate the analy-
sis. First, the planar visual target is assumed to be composed
of N > 1 coplanar feature points with an inclination of
0 ≤ αtg < π/2 with respect to level ground plane. This
assumption is different from the ones made in [18]–[29]
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where the visual target is limited on a horizontal plane. The
angle αtg = π/2 is a critical point that the yaw of UAV
has no effect on the yaw motion of {v} resulting that the
virtual image plane has only translational motion. In the case
of α > π/2, the virtual camera concept is applicable in
the same way but the controller in section III needs slight
modification in frame transformations. Second, assume we
have obtained the orientation information of the target. The
orientation can be estimated through using various methods
such as homography decomposition [3] combining with the
onboard IMU measurement and extrinsic camera calibration.

Denote the image moment features for translational motion
as s = [s1, s2, s3]T ∈ R3, and for yaw motion as s4 ∈ R. The
expressions for s and s4 are [17]

s1 =s3xg (2a)
s2 =s3yg (2b)

s3 =
√
a∗/a (2c)

s4 = arctan(2µ11/(µ20 − µ02))/2 (2d)

where µij =
∑N
k=1(xk −xg)i(yk − yg)j , xg = m10/m00 and

yg = m01/m00, mij =
∑N
k=1 x

i
ky
j
k, a = µ02 + µ20 and a∗ is

the desired value of a, xk and yk are the x- and y-coordinates
of k-th point, respectively. Assume the desired centroid of
the feature points as the image origin without rotation, then
the desired values for s and s4 are sd = [0, 0, 1]T and
s4d = 0, respectively. Actually, the desired image moments
can be set at any constant value or even a function as in [24]
where the desired image moment in the height subsystem is
a function of the image moments in lateral subsystem. The
relation between the pixel coordinates of pv and [xk, yk]T is a
linear mapping defined by the camera intrinsic matrix K, that
is, [uxv, uyv, 1]T = K[xk, yk, 1]T .

By taking time derivatives of Eq. (2) and rearrange, the
image kinematics can be obtained as

ṡ =− S(ψ̇ve3)s− vv/Z∗ (3a)

ṡ4 =− ψ̇v (3b)

where Z∗ is the desired depth, ψv is the rotation of {v} around
its z-axis and vv is the velocity in {v}.

D. Dynamic IBVS Modeling

Combining the six degrees of freedom rigid body dynamics
of quadrotors [33] and Eq. (3), we have the DIBVS model as

ṡ =− S(e3)ψ̇vs− (vv − vvtg)/Z∗ (4a)

ṡ4 =− (ψ̇v − ψ̇vtg) (4b)

v̇v =− S(e3)ψ̇vvv +Rvnge3 + T v/m−RvbDvb

+Rvb b
b
1 +Rvnb

n
2 (4c)

where vv ∈ R3 and vvtg ∈ R3 are the velocities of the UAV
and the visual target expressed in {v}; ψvtg is the yaw angle
of the target in {v}; Rvn and Rvb are rotation matrices from
{n} and {b} to {v}, respectively; T v = −Rnb Te3 ∈ R3 is the
thrust vector in {v} where T is a non-negative scalar assumed
to be always in the negative z-axis direction of {b}; m is

the mass and J ∈ R3×3 is the moment of inertia; g is the
gravitation constant; D is the drag coefficient; bb1 ∈ R3 is the
model uncertainty of the UAV in {b} and bn2 ∈ R3 is the
constant external disturbance in {n}. The model in Eq. (4) is
similar to the ones in [18]–[29] whereas the difference is that
the input signals for the dynamics or kinematics in Eq. (4) are
expressed in {v}.

To extend DIBVS of rotorcraft to arbitrarily oriented planar
target, we need to convert the input signals in Eq. (4) into real
physical signals which is achieved by finding the relationship
between ψv and ψ. Recall the definition of {v} described in
section II-B that it can only rotate about its z-axis, therefore,
its orientation Rnv can be expressed as

Rnv = RntgRz(ψ
v) (5)

Now consider the following equality

Rz(∆ψ)Rntg = RntgRz(ψ
v)Ry(θv)Rx(φv) (6)

where ∆ψ = ψ − ψtg and θv and φv are the Euler angles.
The pre-multiplication of Rz(∆ψ) in the left-hand-side of
Eq. (6) represents a rotation about z-axis of {n} which can
be decomposed to three sequential rotations as shown in the
right-hand-side. The relation between ψ and ψv are thus built.
By rearranging Eq. (6), we can define a new rotation matrix
Re as

Re = Rntg
TRz(∆ψ)Rntg

and ψv can be obtained as the ’Z’ element of the Z-Y-X Euler
angles of Re.

In practice, we first obtain the pixel coordinates of the target
in the real image plane and then convert it into {v} as[

uxv, uyv, 1
]T

= KRnv
TRnbR

b
cK
−1kz

[
ux, uy, 1

]T
where kz is the depth ratio, and the fact Rnv

T =
Rnv

TRncR
n
c
T = Rnv

TRnbR
b
cR

n
c
T is used. The matrix Rbc

denotes the rotation from {c} to {b}. For a rigidly fixed
camera, Rbc is a constant matrix during IBVS. For a pan-tilt
camera, Rbc can be easily obtained through the roll and pitch
angles of the camera or from the gimbal system.

III. DYNAMIC IBVS CONTROL

Two main control loops are adopted for the dynamic IBVS
system including the outer visual servoing loop and the inner
attitude control loop as shown in Fig. 3. The outer loop

Visual 
Servoing

System
DynamicsAttitude

Control

Real
Camera

Virtual
Camera

T

v,R, ω

Rd
τ

p,R

ux, uy

R

s, s4

Fig. 3. Control Structure.

receives the image moment features s and s4, and outputs
the thrust command T to the quadrotor and attitude reference
Rd to the inner loop. The inner loop takes Rd and outputs the
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desired torque τ to the quadrotor. The real camera captures
the image of the target and exports the coordinates of the
feature points [ux, uy]T to the virtual camera. Combined with
the attitude of the quadrotor, we compute the image moment
features on the virtual image plane, and finally transmit it to
the visual servoing controller.

The outer-loop controller is designed using adaptive back-
stepping technique based on Lyapunov stability criterion. Set
the first error as the image moment feature error in transla-
tional direction denoted as z1, thus we have z1 = s− sd with
its time derivative given by ż1 = ṡ, where sd = [0, 0, 1]T .
Assume the target velocity is vtg in {n} with its estimate
denoted as v̂tg , then the estimate error is ṽtg = vtg − v̂tg .
Define the first Lyapunov function as V1 = zT1 z1/2. By
substituting the kinematics of image features in Eq. (4a) and
the estimate error, the time derivative of V1 can be obtained
as V̇1 = zT1 z2 − zT1 k1z1 + zT1 R

v
nṽtg/Z

∗ where k1 ∈ R3×3

is a positive definite gain matrix, z2 is the new backstepping
error defined as z2 = k1z1 − S(e3)ψ̇vs − (vv − Rvnv̂tg)/Z∗.
Employing Eq. (4a), the time derivative of z2 is

ż2 =(k1 − S(e3)ψ̇v) [z2 − k1z1 +Rvnṽtg/Z
∗]

− (v̇v + S(e3)ψ̇vRvnv̂tg −Rvn ˙̂vtg)/Z
∗ − S(e3)ψ̈vs (7)

The second Lyapunov function is defined as V =

V1 +
(
zT2 z2 + b̃T1 k

−1
b1 b̃1 + b̃T2 k

−1
b2 b̃2 + ṽTtgk

−1
tg ṽtg

)
/2, where

kb1, kb2, ktg ∈ R3×3 are gain matrices defined to be posi-
tive definite. Applying Eq. (7) and the dynamic equation in
Eq. (4c), the time derivative of V2 is obtained as

V̇ =− zT1 k1z1 − zT2 k2z2 − b̃T1 (k−1b1
˙̂
b1 +Rvb

T z2/Z
∗)

+ zT2

{
z1 + k2z2 − S(e3)ψ̈vs

+ (k1 − S(e3)ψ̇v)(z2 − k1z1)

−
[
−S(e3)ψ̇vvv +Rvnge3 + T v/m−RvbDvb

+Rvb b̂1 +Rvnb̂2 + S(e3)ψ̇vRvnb̂tg

−Rvn ˙̂vtg

]
/Z∗

}
− b̃T2 (k−1b2

˙̂
b2 +Rvn

T z2/Z
∗)

+ ṽTtg

[
Rvn

T z1R
v
n
T (k1 − S(e3)ψ̇v)T z2

Z∗
− k−1tg ˙̂vtg

]
(8)

where again k2 ∈ R3×3 is a positive definite gain matrix.
At this stage, we can set the control law of the virtual thrust
vector T vd and the integral-based estimators for v̂tg , b̂1 and
b̂2 to render V̇2 negative semi-definite, so as to stabilize the
error system. By applying the Lyapunov-like analysis using
Barbalat’s lemma [34], we can prove the uniform asymptotic
stability of the error system. This is summarized in the
following theorem.

Theorem 1 The origin of the system described in Eq. (4)
is uniformly asymptotically stable with the following desired
thrust in the virtual camera frame {v}:

T vd =m
{
Z∗
[
z1 + k2z2 + (k1 − S(e3)ψ̇v)(z2 − k1z1)

]
+S(e3)ψ̇vvv −Rvnge3 +RvbDv

b −Rvb b̂1 −Rvnb̂2
}

− S(e3)ψ̇vRvnv̂tg +Rvn
˙̂vtg (9)

and the integral-based estimators :

˙̂vtg =ktgR
v
n
T
[
z1 + (k1 − S(e3)ψ̇v)

]
/Z∗ (10a)

˙̂
b1 =− kb1Rvb

T z2/Z
∗ (10b)

˙̂
b2 =− kb2Rvn

T z2/Z
∗ (10c)

Proof. Consider the lower bounded Lyapunov function, V =(
zT1 z1 + zT2 z2 + b̃T1 k

−1
b1 b̃1 + b̃T2 k

−1
b2 b̃2 + ṽTtgk

−1
tg ṽtg

)
/2. The

time derivative of V is obtained as in Eq. (8). Apply the
actuation law in Eq. (9) and the estimators in Eq. (10), we
have V̇ in the the closed-loop as V̇ = −zT1 k1z1−zT2 k2z2 ≤ 0,
which is a negative semi-definite function of error states
and estimation errors. As long as there exist errors z1 and
z2, V̇ is strictly negative definite. Since the non-autonomous
property of the whole system, we apply Lyapunov analysis
using Barbalat’s lemma to analyze the stability. The positive
semi-definiteness of V and negative semi-definiteness of V̇
imply that V (t) ≤ V (0), and therefore, the error states z1
and z2, and the estimate errors b̃1, b̃1 and ṽtg are bounded. To
check the uniform continuity of V̇ , we take the time derivative
of V̇ which is V̈ = −zT1 (kT1 + k1)ż1 − zT2 (kT2 + k2)ż2. This
implies V̈ is bounded since z1 and z2 are shown above to be
bounded. Therefore, V̇ is uniformly continuous. Together with
the properties of V and V̇ , we apply the Barbalat’s lemma to
prove the convergence of V̇ to zero as t→∞. Observing that
V̇ is a function of the error states, consequently, we conclude
the error states z1 and z2 tend to the origin.

The control law in Theorem. 1 gives the desired thrust in
{v}, which needs to be further transformed into {b} as

T bd = −Te3 = RbvT
v
d = Rnb

TRnvT
v
d (11)

where Rnv is obtained from Eq. (5). Rearranging Eq. (11), the
desired attitude of the quadrotor (Rnb )d can be obtained as

(Rnb )de3 = −RnvT vd /T (12)

Note the Eq. (12) only constrains the desired attitude (Rnb )d
to two degrees of freedom. To fully constrain the attitude, we
add the desired yaw angle to the constraints. The controller
for yaw angle is in Eq. (13). Together with the orthogonal
property of the rotation matrix we are able to find the desired
attitude through the value of (Rnb )de3.

To control the yaw motion, we define the image feature
error in yaw subsystem as zψ = s4 − s4d, where s4d = 0.
Denote ψ̇vtg as h, and the controller for yaw motion is

ψv =

∫ (
−kψzψ − ĥ

)
dt (13)

with the estimator as ˙̂
h = khzψ where kψ ∈ R and kh ∈ R

are positive gains. This can be proved by simply using the
Lyapunov theory. The Lyapunov function is constructed as
V = (1/2)z2ψ+(1/2kh)h̃2 and its time derivative is computed

as V̇ = zψ żψ + (1/kh)h̃
˙̃
h. Substituting the controller for yaw

motion in Eq. (13) and its estimator, we can have V̇ ≤ 0.
Applying the Barbalat’s lemma, it can be proved similarly to
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Theorem 1 that the error dynamics of zψ and h̃ are uniformly
asymptotically stable.

IV. SIMULATION RESULTS

A simulation system is built to validate the proposed control
algorithm. To make the simulation environment closer to
reality, the following major points are considered. (i) Elec-
tric motor hysteresis is modeled by a first order transfer
function as 1/(Tms + 1) where Tm is a time constant. (ii)
The thrust for each rotor is saturated and the total thrust
cannot exceed 1.5 times the gravity. (iii) Drag, mainly coming
from the blade flapping and induction, is represented by
an effective lumped parameter model as −TKrv

b where
Kr = diag(c̄, c̄, 0) and c̄ is a linear drag coefficient [35]. (iv)
Target orientation estimate noise is added, thus, Rntg becomes
Rntg = Rz(ψtg + σψ)Ry(αtg + σα) where the estimate noise
is assumed to be normally distributed as σψ, σα ∼ N (0, 0.1).
(v) Noise is also added in the feedback of quadrotor’s velocity
as σv ∼ N (0, 0.05). The controller gains are kept the same
for all the simulations to show the robustness of the algorithm.
The performance of the controller can be improved if the gains
are finely tuned.

A. For Constant Moving Target

In this scenario, the quadrotor is commanded to fol-
low a constant moving visual target with velocity vtg =
[
√

3/2, 1/2, 0]T m/s starting from the origin. The heading of
the target is ψtg = π/6 and the inclination is αtg = π/6. The
quadrotor’s initial position is [−5,−3,−4] m with velocity
and attitude both being zeros. The desired depth is set to be
Z∗ = 2 m. The gain matrices for the IBVS controller are
k1 = 0.5I , k2 = 3I , kb1 = I , kb2 = 0.5I , ktg = 0.5I , where
I ∈ R3×3 is an identity matrix.

The trajectories for the target and the UAV are shown in
Fig. 4(a). As expected, the UAV has successfully tracked
behind and above the target and the path is sufficiently smooth.
Quantitatively, from the desired depth Z∗ we can compute the

Fig. 4. Trajectories of dynamic IBVS for (a) constant moving target and (b)
maneuvering target. The symbol * represents starting positions.

desired relative position using simple trigonometric function
as Z∗[sinαtg cosψtg, sinαtg sinψtg, cosαtg]

T . Thus, we can
compute the difference between the desired relative position
and the actual ones as shown in Fig. 5(a). The UAV has
almost reached the desired relative position after 5 s. The
time evolution of the image moments is shown in Fig. 5(b).
The variables s1, s2 and s4 gradually converge to zero and

Fig. 5. Time evolution of the variables in dynamic IBVS for a constant
moving target: (a) relative pose errors; (b) image moments; (c) estimation
errors of target velocity and (d) constant disturbance estimation error.

s3 converges to 1 which validates the IBVS law in Eq. (9)
and shows the stability of the IBVS system. The jitter of the
curves are mainly caused by the target orientation estimation
errors. Figure. 5(c) and (d) show the estimation errors of target
velocity and disturbance, respectively, where the disturbance
is set as 0.2 N in x-axis of {n}. The convergence to zeros
implies the efficacy and accuracy of the estimators. Note for
high-speed tasks the target velocity estimator may absorb part
of the aerodynamic drag modeled in Eq. (4c) whereas for low
speed tasks, such absorption can be neglected. Finally, the
paths of the four image points in {v}-frame are depicted in
Fig. 6. The image resolution is set as 1024 × 1024 pixel. At

Fig. 6. Paths for the four image feature points in dynamic IBVS for a constant
moving target. The blue and red dots represent starting and ending points,
respectively.

the beginning, the feature points are very close to each other
because the UAV is far away from the target. Meanwhile, the
feature points seem rotated due to the misalignment of the
headings. At the end, the aircraft reaches the desired relative
pose, thus the four feature points are almost at the center of
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the image.
To show the robustness of the algorithm, an array of sim-

ulations were conducted using varying standard deviation of
noise of target orientation estimation and quadrotor’s velocity
feedback, as shown in Fig. 7. The norm of the position error

Fig. 7. Robustness analysis with varying standard deviation of noise.

|ep| from 40 to 50 s is selected as performance index. As
expected, larger noise results in larger tracking error but the
position error is within 0.2m even with noise with 0.25 rad
standard deviation. Also, |ep| is less sensitive to the accuracy
of velocity estimate.

B. For Maneuvering Target

The scenario for tracking a maneuvering target is shown
in Fig. 4(b). In this scenario, the target is assumed to be a
nonholonomic ground vehicle with the same initial velocity but
a lateral acceleration with a magnitude of 0.2 m/s2 is applied
to the normal to the velocity from 5 to 10 s. Then the vehicle
turns right with the same acceleration from 10 to 15 s behaving
like an ”s” maneuver. The yaw of the vehicle is in the same
direction as the velocity. The simulation result reveals that
though the IBVS controller is designed for constant moving
target, it endows UAVs the ability to track a maneuvering
target. Even when the acceleration of the target is larger than
0.2 m/s2, the quadrotor is still able to track as long as the
target is in the FoV of the camera.

C. For Arbitrarily Tilted Target

Finally, we demonstrate the efficacy of the controller for
arbitrarily oriented targets. Two more cases are shown in
Fig. 8 where the scenario is the same as in section IV-A
except for the tilt angles being 0 and π/3, respectively. The

Fig. 8. Time evolution of the relative pose errors in dynamic IBVS for con-
stant moving tilted planar targets with tilt angles of 0 and π/3, respectively.

convergence pattern for the relative pose errors are similar to
the ones shown in Fig. 5(a) where the tilt angle is set as π/6,

and similar behaviors can be observed for other cases. These
results validate the proposed algorithm in the perspective of
adaptation to the change of tilt angles.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the efficacy of the proposed IBVS scheme, we
have built a quadrotor UAV and a UGV as shown in Fig. 9.
The quadrotor has a motor-to-motor distance of 450 mm with

Odroid XU4

Camera

Pixhawk 2

Vicon marker
ArUco code

Turtlebot

Tilted target plane

Fig. 9. Built-up quadrotor system and the tilted planar target (ArUco marker).

weight of 1.75 kg. A Pixhawk with PX4 firmware [36] is
selected as the autopilot. A monocular camera is mounted at
the lower front of the quadrotor with a focal length of 3.67
mm and FoV of 70.42◦ horizontally and 43.3◦ vertically. The
Odroid XU4 is selected as the companion computer of the
autopilot as it is lightweight and has sufficient computational
power. The visual target is an ArUco marker placed on a
ground robot known as the Turtlebot with a tilt angle of 30◦.
An industrial standing fan is used to generate wind disturbance
during the motion of the quadrotor in order to evaluate the
robustness of the system. The whole experiment scenario is
shown in Fig.10.

Industrial fan
Quadrotor

Tilted planer visual target

Fig. 10. Experiment scenario.

The graphical representation of the overall architecture is
illustrated in Fig. 11. The whole system is implemented in
ROS framework. The companion computer plays a role as an
agent to disseminate the UAV state information and visual
information from the camera to the ground control computer.
At the same time, it sends the control commands including
the reference attitude and thrust computed in the ground
control computer to the autopilot. The position information
of the UAV and UGV from the motion capture system are
used as ground truth for evaluating the performance of the
proposed algorithm. It is also used to replace the GPS to
aid linear velocity estimation of the quadrotor through an
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Flight Control Unit

Camera
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Computer
Motion 

Capture 

System
Ground Control Unit

Fig. 11. Experiment architecture.

extended Kalman filter, which is required for implementing the
controller in Eq. (9). Actually, the velocity estimation using
a motion capture system can be replaced by other velocity
estimation methods, such as monocular visual-inertial state
estimation [37] and dynamics-inertial state estimation [38],
that the proposed visual servoing scheme can be implemented
purely based on an onboard inertial measurement unit and a
monocular vision sensor.

B. Experimental Results

The task of the UAV is to track a 30◦ tilted planar target
with a relative distance of 1 m. The corresponding desired
pixel coordinates of the four feature points are selected as

(uxuy)d =

[
293 292 341 341
215 264 264 216

]
where each column represents the pixel coordinate of one
feature point. The desired relative position can be calculated
by trigonometry which is [−0.5, 0, 0.5

√
3]T m. The positive

definite gain matrices are tuned to be k1 = 0.1I , k2 = 3I ,
kb1 = kb2 = 0.1I and ktg = 0.5I . The gains in the yaw
subsystem are kψ = 0.5 and kh = 0.1.

The trajectories of the positions of the UGV (Turtlebot),
the UAV, and their relative position are shown in Fig. 12.
From the time period of 0-14 s, the quadrotor is manually
controlled to a random position such that the UAV is able
to capture the visual target. At the time of t = 14 s, the
quadrotor enters a fully autonomous mode where the dynamic
IBVS controller is activated . The target is kept stationary
from 14-29 s, the quadrotor gradually moves to the desired
relative position. At t = 29 s, the Turtlebot starts to move
mainly in x-direction with a speed around 7.5 cm/s which
can be roughly estimated from the first sub-figure of Fig. 12.
The low speed of the Turtlebot is to ensure it always stays in
the limited FoV. Nevertheless, this issue can be mitigated by
using omnidirectional cameras. The last sub-figure of Fig. 12
shows the relative position. Comparing with the desired one
[−0.5, 0, 0.5

√
3]T m, the error is within around 13 cm. The

velocity estimate of the target in x- and y-direction is shown
in Fig. 13. The estimated velocity in x-direction v̂tg converges
to around 7.5 cm/s and that in y-direction stays around zero
which is close to the ground truth shown in Fig. 12.

The time evolution of the image moments s and s4 are
shown in Fig. 14. In the time period of 0-8 s, the camera does
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0

1

-4
-3
-2
-1
0
1
2

0 14 29 40 60 80
-1

-0.5

0

0.5

1

1.5

Fig. 12. Time evolution of the Turtlebot’s position, UAV’s position and their
relative position. IBVS controller is activated at time t = 14 s. The visual
target (Turtlebot) starts to move at time t = 29 s.

0 14 29 40 60 80
-0.1

-0.05

0

0.05

0.1

Fig. 13. Estimate of the target velocity in x and y direction.

not catch the view of the target because UAV stays on the
ground and with a large horizontal distance from the target.
Thus the image moment features does not exist and are not
shown in Fig. 14. After the IBVS controller is activated at
time t = 14 s and later at t = 29 s when the target starts
to move, the image moments are evolving as expected where
for s3 it converges to one, and for s1, s2 and s4 they stay
around zero. Hence, we can conclude that the motion control
objective has been achieved for a moving target despite a

0

1

2

0 8 14 29 40 60 80

-0.2

0

0.2

0.4

Fig. 14. Time trajectory of the image moment s = [s1, s2, s3]T and s4
where the desired values are sd = [0, 0, 1]T and s4d = 0.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021

noisy environment. The video of the experiment is available
at https://youtu.be/22V6hpXLhJ0.

VI. CONCLUSION

By introducing a conversion of real images to virtual camera
images, for the first time the perspective image moment
features have been extended to visual servoing of underactu-
ated rotorcraft UAVs to arbitrarily oriented planar target with
theoretical analysis. The proposed visual servoing method is
robust to system uncertainties and also able to track moving
targets with integral-based filters. The proposed IBVS scheme
has been applied in tracking a visual planar target. Expected
performance has been observed both from the simulation
and experimental results. Future works include robust visual
feature detection and tracking, aggressive motion control by
using the proposed virtual camera concept, and image feature
path planning in the 2-D virtual image space to enable the
aerial vehicle to fly in a designed 3D motion profile, for
example, obstacle avoidance motion profile.
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