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Compliance and containment in social distancing: mathematical modeling of COVID-19 across 

townships

Abstract: In the early development of COVID-19, large-scale preventive measures, such as border 

control and air travel restrictions, were implemented to slow international and domestic transmissions. 

When these measures were in full effect, new cases of infection would be primarily induced by 

community spread, such as the human interaction within and between neighboring cities and towns, 

which is generally known as the meso-scale. Existing studies of COVID-19 using mathematical models are 

unable to accommodate the need for meso-scale modeling, because of the unavailability of COVID-19 

data at this scale and the different timings of local intervention policies. In this respect, we propose a 

meso-scale mathematical model of COVID-19, named the meso-scale Susceptible, Exposed, Infectious, 

Recovered (MSEIR) model, using town-level infection data in the state of Connecticut. We consider the 

spatial interaction in terms of the inter-town travel in the model. Based on the developed model, we 

evaluated how different strengths of social distancing policy enforcement may impact epi curves based 

on two evaluative metrics: compliance and containment. The developed model and the simulation 

results help to establish the foundation for community-level assessment and better preparedness for 

COVID-19.

Keywords: COVID-19; social distancing; epidemic model; spatial interaction; mobility

The year 2020 was deemed to be unprecedented in human history because of the outbreak of 

the novel and infectious coronavirus (COVID-19). As of early December 2020, the virus has led to over 67 

million infections, over 1.5 million deaths, and echoes of economic depression around the globe (Dong, 

Du, and Gardner 2020). With over 18 million infections and over 300 thousand deaths, the United States 

has become the largest victim of this public health calamity. The effect of the virus latency, coupled with 

Page 1 of 36

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The following publication Xiang Chen, Aiyin Zhang, Hui Wang, Adam Gallaher & Xiaolin Zhu (2021) Compliance and containment in social distancing: 
mathematical modeling of COVID-19 across townships, International Journal of Geographical Information Science, 35:3, 446-465 is available at  
https://dx.doi.org/10.1080/13658816.2021.1873999.

This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Geographical Information Science on 22 Jan 2021 
(Published online), available online: http://www.tandfonline.com/10.1080/13658816.2021.1873999.

This is the Pre-Published Version.



For Peer Review Only

the lack of clinical interventions, was further amplified by the understatement of the disease’s severity 

in its early development in the country. After COVID-19 was declared by the presidential proclamation 

as a national emergency on March 1, 2020 (White House 2020), many state and local governments 

started to enforce strict preventive measures to mitigate the community spread (Parmet and Sinha 

2020).

These preventive measures, known as social distancing (e.g., closure of non-essential 

businesses, stay-at-home orders), aim to minimize interpersonal interactions (Gostin and Wiley 2020). It 

has been found that these measures have been effective in delaying the spread of the virus by flattening 

the epidemic curve (epi curve) through the observation of transmission (Anderson et al. 2020). While 

early discussion of social distancing revolved around social impacts such as the economic consequences 

(Atkeson 2020; Yang, Zhang, and Chen 2020) and ethical paradoxes (Lewnard and Lo 2020), many recent 

studies have integrated social distancing into mathematical epidemic models, attempting to simulate 

and predict scenario-based future outbreaks (Chen et al. 2020; Kissler et al. 2020). These models, 

however, have been largely focused on the macro-scale using a relatively large geographic unit, such as 

country (Gilbert et al. 2020; Kissler et al. 2020), state (Chen et al. 2020), or county (Lai et al. 2020). To 

the authors’ knowledge, there have been no epidemic models investigating the COVID-19 development 

at the meso-scale with a smaller geographic unit, such as town or census tract. 

1. The scale issue in modeling COVID-19

The meso-scale, by comparison with the macro-scale (e.g., states) and the micro-scale (e.g., 

individuals), is of critical importance in the effective containment of the epidemic growth. This 

significance can be justified by the mechanism of the preventive strategies implemented over the 

different phases of epidemic development. In the early development of COVID-19, large-scale 

preventive measures, such as border control and air travel restrictions, were implemented to slow 
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international and domestic transmissions. When these measures were in effect, new cases of infection 

would be primarily induced by community spread, such as the human interaction within and between 

neighboring cities, towns, and communities. Existing macro-scale studies using classical epidemic 

models, notably the Susceptible, Exposed, Infectious, Recovered (SEIR) model, are unable to 

accommodate the need for meso-scale modeling, because of three existing limitations in COVID-19 

research. 

First, in the United States, the timing of the COVID-19 outbreak differs by the state as do their 

regulatory countermeasures, such as the enforcement of stay-at-home orders. It is relatively intractable 

to model COVID-19 at a macro-scale while considering the heterogeneity in the timing of local policies 

and the strength of their enforcement. Second, when long-distance travel via flight is restricted, the 

transmission will be dictated by short-distance travel, such as daily commuting trips via public transit or 

private automobiles. In this context, individual mobility and the likelihood of travel are largely driven by 

compliance with social distancing rules. Therefore, modeling COVID-19 at the meso-scale should 

articulate how social distancing affects people’s travel activities or the willingness to travel as 

parameters to model the process of transmission. This gap has not been fulfilled by the status quo 

macro-scale models. Third, while COVID-19 data (e.g., infection, death, and recovery) on a daily basis 

has become largely available in the public sector, data with finer spatial granularities, such as across 

townships or census tracts, are extremely lacking. These three tiers of research gaps fuel the need to 

develop a meso-scale epidemic model that simulates past COVID-19 cases while projecting the local, 

community-level spread in preparing for a pandemic resurgence.

In this paper, we propose a meso-scale epidemic model using town-level COVID-19 infection 

data in the state of Connecticut. Because the local infection is largely subject to the effects of social 

distancing, the model development follows two evaluative metrics in social distancing: compliance, 

which represents the strength of the policy enforcement, and containment, which represents individual 

Page 3 of 36

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

mobility. By incorporating these two metrics into the SEIR model, we have proposed a meso-scale SEIR 

model and have performed model fitting and sensitivity analysis under ten different social distancing 

scenarios. Using the developed model, we have evaluated how different social distancing strategies (i.e., 

minimal, moderate, and substantial) would shape the COVID-19 epi curve. Most importantly, we have 

conducted a field survey to understand people’s travel patterns shortly after the outbreak. The survey 

results have been incorporated as a mobility parameter into the developed model for simulating 

epidemic development. The simulation results could inform both epidemiologists and stakeholders 

about the risk of COVID-19 resurgence and has the potential to help identify the etiology of the 

transmission across communities.

The paper is organized as follows. Following the background, Section 2 introduces the 

methodological development of the model based on the classical SEIR model and the guiding principle 

of social distancing. Section 3 applies the new model to the early outbreak in Connecticut, performs the 

model fitting, and simulates epi curves at the town level based on different social distancing scenarios 

and a proprietary travel survey. Based on the fitted model, the section further simulates the epi curves 

and the spatial patterns of town-level infections for the second-wave outbreak. Section 4 discusses the 

major findings and insights shed by the modeling results. Lastly, Section 5 concludes the study with long-

term public health impacts.

2. A Meso-scale SEIR model (MSEIR)

2.1 Introduction to SEIR model

Our proposed model stems from the classical SEIR model, a deterministic mathematical model 

to simulate epidemiologic dynamics, as shown in Equations (1) through (4). The SEIR model is composed 

of four variables: S (susceptible population), E (exposed population), I (infectious population), and R 

(recovered population). It explicitly quantifies a four-stage cycle of the disease spreading among a 
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population in terms of differential equations. Each stage is formulated as a derivate of the population 

(i.e., S, E, I, R) with respect to time (t), representing the change of the stage-specific population. 

{
𝑑𝑆
𝑑𝑡 = ―

𝛽𝑆𝐼
𝑁 (1)

𝑑𝐸
𝑑𝑡 =

𝛽𝑆𝐼
𝑁 ― 𝜎𝐸 (2)

𝑑𝐼
𝑑𝑡 = 𝜎𝐸 ― 𝛾𝐼 (3)

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 (4)

In the equations,  denotes the total population (N = S + E + I + R); β, σ, and γ are the daily 𝑁

transmission rate, daily incubation rate, and daily recovery rate, respectively. The basic reproduction 

rate can be derived as R0 = β/γ. This classical SEIR model, along with its many extensions, has been 

widely applied to epidemic modeling of COVID-19 (Chen et al. 2020, Kissler et al. 2020, Lai et al. 2020).

2.2 A Conceptual model of social distancing

Adapting the SEIR model to the meso-scale should emphasize the effectiveness of social 

distancing in communities. This evaluation follows the Centers for Disease Control and Prevention 

(CDC)’s social distancing guidelines for COVID-19 given in three aspects: operations of public facilities, 

restrictions on businesses, and restrictions on personal movement (Gostin and Wiley 2020). For the 

restrictions on personal movement, the guidelines impose limitations on people’s travel and social 

behaviors in terms of prohibiting mass gatherings, requiring physical distancing in face-to-face 

interaction, and enforcing stay-at-home orders (Gostin and Wiley 2020). The CDC also calls for legal and 

community efforts to enhance compliance with these social distancing measures.

Under this guiding principle, we propose a conceptual model in measuring the effectiveness of 

social distancing with an emphasis on travel activities as part of the personal movement. The model 
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comprises two metrics, compliance and containment, that evaluate the effectiveness of the policy 

enforcement, as shown in Figure 1. Compliance evaluates the likelihood of the residents not following 

the social distancing rules. While there are various ways in which compliance can be articulated, one 

variable could be the percentage of residents engaging in travel activities as a surrogate for the metric. 

Containment evaluates the level of human mobility, and a variable for the evaluation could be the 

maximum distance that people are willing to travel under the social distancing regulation. These two 

metrics, resulting from the strengths of the policy enforcement, will likely affect the transmission risk of 

the epidemic. This conceptual model featuring the two evaluative metrics is integrated into the classical 

SEIR model to develop a meso-scale epidemic model for COVID-19. 

[Figure 1 is here]

Figure 1. A conceptual model of the effects of social distancing on travel activities. The solid line 

represents the strength of policy enforcement; the dashed line represents the level of transmission risk.

2.3 Model development

We modify the SEIR structure with an emphasis on the impacts of travel activities at the meso-

scale, where the study area is a state and the unit of analysis is a town, also known as the county 

subdivision in the United States. Recent epidemic models have employed various forms of mobility data, 

such as smart-phone heat maps (Lai et al. 2020) and air traffic flow (Gilbert et al. 2020), to estimate 

mobility in the SEIR model. Because of the lack of mobility data at the town level, we employ the Huff-

model (Huff 1963) to estimate the potential for travel. The Huff-model is traditionally used for analyzing 

the business potential based on the probability of customers’ visits to retail and service facilities. It has 

also been extended to forecasting the external trips between communities (Anderson 1999; Anderson 

2005). The classical Huff-model uses real-world survey data to calibrate the model parameters, including 
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the attractiveness of facilities and the distance decay (Huff and McCallum 2008). In this paper, we 

choose the linear form to estimate the probability of travel between two towns, as shown in Equation 

(5). This linear form is seen as a better form to forecast inter-city trips and has been corroborated with 

field data (Anderson 1999).

(5)𝑇𝑖𝑗 =
𝑁𝑖
𝐷𝑖𝑗

∑
𝑗

𝑁𝑖
𝐷𝑖𝑗

where Tij is the probability that a person traveling from town i to town j, Dij is the distance between i and 

j, and Ni is the total population of town i.

We have further added to the Huff model two other parameters: a compliance parameter Ci, 

meaning the percentage of the population of town i engaging in inter-town trips, and a containment 

parameter D0, meaning the maximum distance people are willing to travel under influences of social 

distancing. These two parameters extend the Huff-model to estimate Mij, the total population traveling 

from town i to town j, as shown in Equation (6).

(6)𝑀𝑖𝑗 = 𝑁𝑖𝐶𝑖𝑇𝑖𝑗 = 𝑁𝑖𝐶𝑖 
𝑁𝑖
𝐷𝑖𝑗

∑
𝑗

𝑁𝑖
𝐷𝑖𝑗

s.t. 𝐷𝑖𝑗 ≤ 𝐷0 

Equation (6) is a Huff-based trip distribution model where the compliance parameter Ci and the 

containment variable D0 can be determined by different social distancing scenarios. To further 

incorporate the trip distribution model to the SEIR model, we have made several necessary 

assumptions: (1) both the susceptible and exposed populations conform to the mobility rule in Equation 

(6); (2) the infectious and recovered populations are isolated so that they cannot travel to other towns; 

(3) the susceptible population traveling to other towns can be affected by the infectious population in 

both their origin town and destination town; (4) the total population and the daily traveling population 
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of a town are stable during the modeling period; (5) daily travelers return to their origin town by the end 

of the day; (6) the transmission rate gradually decreases due to non-pharmaceutical interventions 

during the social distancing period (Lai et al. 2020). Based on these assumptions, we have developed the 

meso-scale SEIR model (MSEIR), simulating the daily dynamics of susceptible (Si), exposed (Ei), infectious 

(Ii), and recovered populations (Ri) of the ith town, as shown in Equations (7) through (11).

{
𝑑𝑆𝑖

𝑑𝑡 = ―
𝛽𝑆𝑖𝐼𝑖

𝑁𝑖
― ∑

𝑗

𝛽𝑀𝑖𝑗𝑆𝑖𝐼𝑗

(𝑁𝑖 ― 𝐼𝑖 - 𝑅𝑖)𝑁𝑗
(7)

𝑑𝐸𝑖

𝑑𝑡 =
𝛽𝑆𝑖𝐼𝑖

𝑁𝑖
― 𝜎𝐸𝑖  + ∑

𝑗

𝛽𝑀𝑖𝑗𝑆𝑖𝐼𝑗

(𝑁𝑖 ― 𝐼𝑖 - 𝑅𝑖)𝑁𝑗
(8)

𝑑𝐼𝑖

𝑑𝑡 = 𝜎𝐸𝑖 ― 𝛾𝐼𝑖 (9)

𝑑𝑅𝑖

𝑑𝑡 = 𝛾𝐼𝑖  (10)

𝑑𝛽
𝑑𝑡 = ―𝑎𝛽 (11)

where

Ei: exposed population of town i; 

Ii: infectious population of town i; 

Mij: population (susceptible or exposed) traveling from town i to town j. The parameter is derived from 

Equation (6).

Ni: total population of town i (Ni = Si + Ei + Ii + Ri); 

Ri: recovered population of town i (including hospitalized, self-recovered, and death); 

Si: susceptible population of town i; 

t: time (daily);

a: daily change rate of the transmission rate (0 < a < 1);

β: transmission rate (conversion from the susceptible population to exposed population);
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γ: recovery rate;

σ: daily incubation rate (reciprocal of the incubation period);

In the MSEIR model, Equations (7) through (10) are a series of differential equations indicating 

the daily variation of the susceptible, exposed, infectious, and recovered population at each 

transmission stage. Equation (11) is the daily change of the transmission rate. 

2.4 Model initialization and parameter estimation

Five state variables must be initiated prior to the model implementation: (1) the initial 

transmission rate β0 (estimated from our case study, see below); (2) the initial exposed population Ei0 

(estimated from our case study, see below); (3) the initial infectious population Ii0 , which equals to the 

cases of infection on March 23, 2020, the start date of the data; (4) the initial susceptible population , 𝑆i0

which can be derived as Si0 = Ni – Ei0; and (5) the initial recovered population R0 = 0 under the   

assumption that no individuals are cured, hospitalized, or had died at the initial stage. 

σ and γ can be derived from historical data. σ is the daily incubation rate as the reciprocal of the 

incubation period. γ is the recovery rate, indicating the rate of reduction in the infectious population 

due to hospitalization, self-recovery, and death. This parameter assumes that once an infectious 

individual is hospitalized, self-recovered, or died, the person will be isolated from the transmission cycle. 

According to a recent study among the first 425 diagnosed patients (Li et al. 2020), the mean incubation 

period of COVID-19 was 5.2 days (at a 95% confidence interval [CI], 4.1 to 7.0 days), and the mean time 

duration from the illness onset to hospital admission was 9.1 days (95% CI, 8.6 to 9.7 days). Thus, we 

assumed that our study had a similar incubation period and duration from illness onset to the first 

medical visit. In our model, σ = 1/5.2 and γ = 1/9.1.

For parameters β0 and a, we estimated their optimal values for each town using the daily 

cumulative cases of infection derived from the Connecticut Department of Public Health (CTDPH 2020). 
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We assumed that β0 and a were constant throughout the study area and under different social 

distancing scenarios. The exposed population at the initial stage Ei0 was an unknown parameter that 

varied by the town. Because of this uncertainty, we treated Ei0 as another parameter to be estimated. 

Thus, each town i had an independent Ei0 given the difference in the onset of the outbreak, population, 

and other factors dictating the early exposed population. The Nelder-Mead algorithm (Nelder and Mead 

1965) was employed to estimate parameters by minimizing the negative normal log-likelihood between 

the simulated and the confirmed daily cumulative cases.

3. Case study

3.1 Study area and data

Our first round of simulations was focused on the early outbreak in the state of Connecticut with 

the unit of analysis being a town. Located in the New England region, Connecticut is the third smallest 

state by area in the United States with 169 towns and a total population of 3.5 million (Figure 2a). On 

March 8, the first COVID-19 case was reported in Wilton, a town neighboring New York (The New York 

Times 2020). Because of the geographical proximity to New York City, the epicenter of the national 

outbreak, the state experienced an exponential rise of infections in the early outbreak. As of May 11, 

2020, the total confirmed cases of infection were over 34,000, and the total deaths were over 3,000 

(CTDPH 2020). Figure 2 shows the population density as well as the COVID-19 infection rate in the early 

outbreak.
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[Figure 2 is here]

Figure 2. Connecticut towns with (a) population density and (b) COVID-19 infection rate as of May 11. 

Towns further discussed in the article are labeled.

Modeling COVID-19 at the meso-scale is inseparable from state policy related to social 

distancing. In Connecticut, the initial social distancing rules were implemented on March 23 by the 

governor’s executive order “Stay Safe, Stay Home,” requiring the closure of non-essential businesses 

and some non-profit organizations (Ct.gov 2020a). This policy was relieved by reopening certain non-

essential businesses effective on May 20, marking the inception of the Phase 1 reopening plan (Ct.gov 

2020b). In this context, we retrieved the daily town-level COVID-19 infection data before the Phase 1 

period, specifically the first 50 days since the state’s social distancing rules were in effect (i.e., March 23 

through May 11). The COVID-19 dataset was solicited from the state government’s daily publications 

(CTDPH 2020).

3.2 Social distancing scenarios

We have designed three compliance levels and three containment levels to estimate Mij in the 

MSEIR model, forming a total of nine models representing different degrees of social distancing policy 

enforcement, as shown in Table 1. In this framework, Model 1 represents the substantial enforcement 

with only 10% of the population taking inter-town trips and a maximum travel distance of 20 miles (1 

mile = 1.609 km); Model 9 represents the minimum enforcement with 50% of the population taking 

inter-town trips and a maximum travel distance of 140 miles. The 140-mile threshold is the road 

network distance between the two most remote towns in Connecticut (i.e., Thompson and Greenwich).
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Table 1. Social distancing scenarios based on different compliance and containment levels.

Containment level (D0)

Compliance level (Ci) 20 miles 60 miles 140 miles

10% Model 1

(Substantial)

Model 2 Model 3

30% Model 4 Model 5

(Moderate)

Model 6

50% Model 7 Model 8 Model 9

(Minimum)

These social distancing scenarios were incorporated into Equation (6) by Python scripting to 

derive Mij. in the implementation, Pi was derived from the 2018 census data; Dij was derived as the road 

network distance between the geographic centers of towns using the Network Analysis module in ESRI 

ArcMap 10.7 (i.e., OD cost matrix) in a refined road network. The results of Mij were imported to the 

MSEIR model (scripted in Python) for fitting the dynamics of COVID-19 infection in the 50-day early 

outbreak period. We then employed the fitted models for simulating the trends.

3.3 Results

Using the town-level data, we implemented the MSEIR model under all social distancing 

scenarios in Table 1. In addition to the model fitting, we extended the epi curves of the cumulative cases 

of infection (IC) to the epidemic development with an end date of July 12. We also established the 

baseline scenario in the SEIR model where there is no travel or interaction between towns (Ci = 0%, D0 = 

0 miles).
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For the sake of clarity, we selected six scenarios for comparison and evaluation: the SEIR model 

for no interaction and Models 1, 3, 5, 7, and 9 with varying degrees of social distancing. Figure 3 shows 

the simulated epi curves of the entire state. As shown in the figure, the SEIR model has considerably 

underestimated the epi curve, with the value of Ic converging to 26,000. When the social distancing 

scenarios are introduced, the epi curves start to align with the confirmed cases, with the minimum social 

distancing scenario (i.e., Model 9) yielding the steepest curve. It is worth noting that the observed cases 

as of July 12 were 47,510, which is within the range of Model 5 (45,752) and Model 9 (48,105).

[Figure 3 is here]

Figure 3. Simulated cumulative cases of infection (Ic) for the state by the SEIR model and the MSEIR 

model (Models 1, 3, 5, 7, and 9) based on confirmed cases until May 11. 

[Figure 4 is here]

Figure 4. Simulated cumulative cases of infection (Ic) by the SEIR model and the MSEIR models for (a) 

Hampton, (b) Franklin, (c) Wilton, (d) Mansfield, (e) New Britain, and (f) Hartford. Simulations were 

based on confirmed cases until May 11. 
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Figure 4 shows the epi curves for six selected towns, where their geographical locations are 

given in Figure 2. The towns were selected based on the urban-rural classification given by USCB (2010): 

Hampton (population: 1853) and Franklin (population: 1933) are rural areas; Wilton (population: 18,397) 

and Mansfield (population: 25,817) are urban clusters, where Mansfield comprises mainly university 

employees and students; Hartford (population: 122,587), the state capital, and its satellite city New 

Britain (population: 72,453) are urbanized areas. It can be seen from the results that the SEIR model 

with no spatial interaction generates the flattest curve for all given towns except for Hampton (Figure 

4a). The results under different social distancing scenarios are mixed. Specifically, for Hampton, the 

observed cases fall below all estimations; for Franklin, the observed cases are between the SEIR model 

and Model 1; for Wilton and Mansfield, the observed cases align with the SEIR model; for New Britain 

and Hartford, all simulation results are under-estimated. We feel these uncertainties could be explained 

by the discrepancies between the simulated travel flow and the real-world mobility patterns, where 

travel activities in urbanized areas are more intense than what the model simulates.

3.4 Evaluation of model fitting

 To evaluate the performance of the MSEIR model and its variations, we compared Models 1-9 

with the original SEIR model. It is worth noting that a fundamental statistical bias, called the edge effect, 

exists in the modeling results—for analyses conducted within a finite geographic region, spatial 

interactions with entities beyond the region are overlooked (Chen 2017; Vidal Rodeiro and Lawson 

2005). In our case, the virus transmission could be introduced by interstate travel, where towns on the 

borders were largely affected. To alleviate the edge effect, we excluded the border towns (n = 29) and 

focused on the rest of the towns (n = 140) in the evaluation.

We employed two statistical metrics for each of the ten models: r2 and root-mean-square error 

(RMSE). Specifically, for each model, we calculated r2 and RMSE for each of the 140 towns by comparing 

Page 14 of 36

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

the simulation results with the confirmed cumulative cases in the 50-day period. r2 assesses whether the 

MSEIR model captures the trend of the historical data, while RMSE quantifies the absolute difference 

between the model output and the observation. Then, for each model, we performed the evaluations 

across all 140 towns and derived the average of the 140 values of r2 and RMSE (Table 2). As these two 

metrics cannot be intuitively interpreted, we introduced another metric, named the improvement ratio, 

to reveal the improvement of the MSEIR models over the SEIR model. The ratio is defined as the 

percentage of the towns where the RMSE in the MSEIR model is less than that in the SEIR model, as 

shown in Equation (12) and Table 2. We also employed the paired t-test to evaluate the difference 

between the RMSE values of the SEIR model and the RMSE values of each MSEIR model, as shown in 

Table 2.

 (12)𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑤𝑛 𝑐𝑜𝑢𝑛𝑡 (𝑀𝑆𝐸𝐼𝑅 𝑅𝑀𝑆𝐸 <  𝑆𝐸𝐼𝑅 𝑅𝑀𝑆𝐸)

𝑇𝑜𝑡𝑎𝑙 𝑡𝑜𝑤𝑛 𝑐𝑜𝑢𝑛𝑡 ∗ 100%

Overall, all models have achieved satisfactory levels of fitting with the historical data in terms of 

trend fitting (r2 > 0.9). However, in terms of fitting the absolute values by the average RMSE, the SEIR 

model is not satisfactory, where the average RMSE (72.595) is the largest, meaning that its simulated 

cases largely deviate from the observation. We also identified that Model 7 performs better than other 

models in terms of a relatively high r2 (0.918), the least average RMSE (46.166), the best improvement 

ratio (69%) over the SEIR model, and one of the highest significance levels in the paired t-test (p-value < 

0.001). We thus choose Model 7 for simulating the second-wave outbreak (see Section 3.6). 

To further explore the applicability of the MSEIR model, we divided the towns into three 

categories based on the United States Census Bureau (USCB)’s urban-rural classification (USCB 2010): 

urbanized areas (UAs), urban clusters (UCs), and rural areas (RAs). Then, we evaluated the model fitting 

for towns under each category, as shown in Table 3. We identified that for UAs and UCs, the models 

achieve satisfactory levels of fitting (r2 > 0.9), and they have the best performance for UAs in terms of 

relatively high improvement ratios; for RAs, the observation cannot be fitted well (r2 < 0.7). We feel this 
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discrepancy could be introduced by the relatively limited number of observed cases in small towns, 

giving rise to the uncertainty of outbreaks and the difficulty for model simulation. Thus, in general, the 

MSEIR model is best suited for towns exceeding a certain size and must be adjusted with real-world trip 

data for applications to small towns or rural areas.

Table 2. Model fitting with confirmed cases for all towns (n = 140).

Model Average r2 Average RMSE
Improvement 

ratio

Paired t-test 

t-value 

SEIR 0.924 72.595 N/A N/A

1 0.912 66.987 62.1% 0.990

2 0.913 68.315 53.6% 0.698

3 0.915 59.076 62.1% 2.530*

4 0.914 48.062 67.1% 4.032***

5 0.907 58.816 57.1% 1.848

6 0.912 47.604 57.9% 4.360***

7 0.918 46.166 69.3% 4.296***

8 0.918 56.222 39.3% 1.970

9 0.915 55.335 41.4% 2.489*

*p-value < 0.05 ***p-value < 0.001
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Table 3. Model fitting with confirmed cases for towns by category.

UAs (n = 15) UCs (n = 113) RAs (n = 12)

Model Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-

test t-value

Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-

test t-value

Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-test 

t-value

SEIR 0.987 319.891 N/A N/A 0.949 47.153 N/A N/A 0.603 3.057 N/A N/A

1 0.979 261.351 60.0% 1.747 0.936 48.080 62.8% -0.178 0.613 2.076 58.3% 1.687

2 0.983 286.676 66.7% 0.684 0.937 46.015 52.2% 0.273 0.608 5.352 50.0% -1.100

3 0.984 250.103 66.7% 1.881 0.937 39.645 63.7% 1.831 0.621 3.268 41.7% -0.230

4 0.982 186.627 80.0% 3.337** 0.937 34.575 66.4% 3.287** 0.609 1.859 58.3% 1.934

5 0.978 251.092 80.0% 1.157 0.928 39.247 55.8% 1.658 0.619 2.748 41.7% 0.449

6 0.978 164.976 100.0% 6.037*** 0.935 36.652 54.9% 2.543* 0.613 4.015 33.3% -1.098

7 0.986 176.308 93.3% 3.599** 0.942 33.568 68.1% 3.706*** 0.613 2.112 50.0% 1.231

8 0.988 135.591 93.3% 4.264*** 0.942 50.886 36.3% -0.607 0.603 7.265 0.0% -5.98***

9 0.984 157.769 93.3% 5.277*** 0.939 46.981 36.3% 0.031 0.612 5.954 25.0% -2.861*

Note: The categories are given by USCB (2010) based on population: urbanized areas (UAs) of 50,000 or more people, urban clusters (UCs) 
between 2,500 and 50,000 people, and rural areas (RAs) of less than 2,500 people. It should be noted that USCB uses a different areal unit for 
urban-rural classification and is not based on the county subdivision (i.e., town).  Thus, the category in this analysis does not suggest the actual 
urban-rural status.
*p-value < 0.05 **p-value < 0.005 ***p-value < 0.001
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3.5 Calibrating MSEIR model with travel survey

To further explore these model discrepancies and better estimate the mobility parameter, 

specifically the Mij in the MSEIR model, we launched a field survey to investigate the real-world travel 

activities in the state. The survey was distributed on Amazon’s MTurk and was reposted weekly, lasting 

for a total of 74 days (i.e., June 2 through August 14). Only Connecticut residents were eligible to take 

the survey. The survey questions included the participants’ residential town, if they have traveled to 

another town in the last week, towns to which they have traveled, and the number of trips for each 

town they have traveled to. Responses solicited from the survey were used to estimate the frequency of 

daily inter-town trips or the real-world Mij ( ) in the MSEIR model. The estimation is based on the 𝑀𝑅
𝑖𝑗

following assumptions: (1) participants’ travel activities represented the mobility pattern of their 

residential town; (2) the total population and the daily traveling population of a town were stable during 

the survey period; (3) trips across different weeks were independent. Based on these assumptions, we 

propose Equation (13) to estimate .𝑀𝑅
𝑖𝑗

 (13)𝑀𝑅
𝑖𝑗 =

𝑚𝑖𝑗𝑁𝑖

𝑑𝑃𝑖

where

d: number of days during the survey period;

mij: total number of trips from town i to town j taken by survey participants during the survey period;

Ni: total population of town i;

Pi: total number of survey participants residing in town i; 

After eliminating incomplete answers, we received 1225 valid responses, accounting for a total 

of 4000 completed trips. The survey data were employed to estimate  based on Equation (13), which 𝑀𝑅
𝑖𝑗

was further incorporated into the MSEIR for model calibration and comparison. 
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3.6 Second-wave simulations

On June 17, 2020, the state government started to enforce the Phase 2 reopening plan, allowing 

the limited operation of certain non-essential businesses (ct.gov 2020b). Because this change in social 

distancing policy could affect the mobility pattern, we initiated another round of simulations with 

confirmed cases drawn from the Phase 2 period. We chose Model 7 (i.e., model with the best 

performance) and Model R (i.e., model with real-world trip data) for simulating the second wave of the 

outbreak. Additionally, responses to our travel survey were mostly collected during this period, allowing 

for the justification of the mobility parameter or  in Model R. Thus, we refitted the model parameters 𝑀𝑅
𝑖𝑗

using the confirmed cases from June 17 through September 7 and then changed the model initialization 

parameters based on June 17. The simulation results for the period of September 8 through December 

31 are given in Figures 5 through 7.

Figure 5 shows the epi curves simulated by Model 7 and Model R for the state. The epi curve of 

Model 7 well aligns with the trend, and it indicates that the cumulative cases of infection would be 

73,866 by end of 2020 if the same level of policy enforcement remains in effect. However, the epi curve 

of Model R is relatively flat and underestimates the trend. This underestimation could be attributed to 

the relatively small sample in the travel survey. Figure 6 shows the simulated epi curves for the six 

selected towns. It could be seen from the two figures that comparing with the observed cases, the 

MSEIR model considerably underperforms on both the state level and the town level. The 

underperformance is likely due to the drastic change of social distancing policy, where the state entered 

the Phase 3 reopening on October 8 and then retreated to Phase 2.1 on November 6 because of a surge 

in infections (ct.gov 2020c). Therefore, the MSEIR model is unable to characterize the epi curve if major 

changes in social distancing policy occur.

In addition, Figure 7 visualizes the projected spatial patterns of the infection under the premise 

that the same level of social distancing is enforced. The figure shows the simulated infection rate and 
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the simulated rate of increase (based on September 7) across all towns by Model 7 as of December 31. 

We excluded the border towns in the figure, since their simulation results are subject to the edge effect. 

Towns with the top-10 highest rates in the two maps are labeled. Figure 7a shows that towns along the 

southwestern coast, towns near Hartford, and the town of Montville have alarming rates of outbreaks. 

Figure 7b shows several high-risk towns in the eastern part of the state—especially, Ledyard and Lisbon. 

Health policy intervention, such as increasing the coverage of testing, should thus be shifted towards 

these high-risk towns.

[Figure 5 is here]

Figure 5. Simulated cumulative cases of infection (Ic) for the state by the MSEIR model (Models R and 7) 

based on confirmed cases until September 7. 

[Figure 6 is here]

Figure 6. Simulated cumulative cases of infection (Ic) by the SEIR model and the MSEIR models for (a) 

Hampton, (b) Franklin, (c) Wilton, (d) Mansfield, (e) New Britain, and (f) Hartford. Simulations were 

based on confirmed cases until September 7. 

[Figure 7 is here]

Figure 7. (1) Simulated infection rate and (2) simulated rate of increase by Model 7 as of December 31. 

Towns with the top-10 highest rates are labeled.

4. Discussion

The proposed MSEIR model applied to meso-scale COVID-19 simulations is among the first to 

evaluate the development of the pandemic using an administrative unit smaller than a county. By 
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downscaling the analysis to the town level and realizing the model under different social distancing 

scenarios, the study sheds important insights into COVID-19 studies.

First, meso-scale analysis is of critical importance for revealing the epidemic development after 

the initial outbreak. When social distancing orders were placed to curb the early infection, needs for 

domestic flights or interstate travel were largely suppressed (Gao et al. 2020). While long-distance travel 

was restricted, new cases of infection were primarily caused by local spread through short-distance 

travel. Thus, efforts and policies to contain the COVID-19 development would be most effective by 

curbing inter-and intra-town travel activities. Incorporating the interaction across townships and 

deriving their epi curves can help the municipality to leverage resources for preparing for rising 

contingencies, such as the resurgence of outbreaks. The classical SEIR model and its many extensions, 

however, lack the capability of simulating the epidemic spread at the meso-scale. This increased spatial 

granularity to model COVID-19 is the major contribution of this work. 

Second, the proposed social distancing framework including the compliance and containment 

provides quantifiable metrics for COVID-19 studies that attempt to evaluate the effects of social 

distancing. Since the pandemic is growing at an alarming rate worldwide, existing studies have largely 

emphasized the timing (Chinazzi et al. 2020), economic impacts (Atkeson 2020), and the ethical issues 

(Lewnard and Lo 2020) of social distancing, while the effects on human mobility at the community scale 

are not well scrutinized. This gap has likely resulted from the lack of granular mobility data (especially 

the origin-destination trip data), coupled with the sensitivity of health data collection at a refined scale 

(e.g., the Health Insurance Portability and Accountability Act). The simulation of the travel activities 

using the Huff model could help to estimate the regional human movement pattern, and the model 

calibration using the survey method will increase the rigor of the estimation.

Third, for the early outbreak, we have found that there are discrepancies in the modeling results 

across different towns. While the SEIR model has a considerably poor fitting, it tends to align with towns 
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with a sparse population. This alignment is very likely due to the relatively low level of spatial interaction 

in terms of inter-town travel in these towns. The proposed MSEIR model works best for towns exceeding 

a certain size (e.g., UCs and UAs). This result justifies that although towns in a state are subject to the 

same timing of social distancing orders, the actual policy effects on residents’ mobility, and 

consequently, on curbing the epi curves of the pandemic are seemingly different. Due to this spatial 

heterogeneity in the mobility pattern, which is internally driven by socioeconomic inequities (Bonaccorsi 

et al. 2020), it is impossible to establish a one-size-fits-all model for COVID-19 analysis for every town in 

a state. Therefore, we have two recommendations for improving and better applying the MSEIR model: 

first, a travel survey or equivalent trip generation data (e.g., SafeGraph mobility data) is a necessity to 

derive the actual mobility pattern at the meso-scale and estimate the MSEIR model parameters; second, 

if such real-world mobility data are not attainable, we suggest that local stakeholders employing the 

model should adopt and prepare for the worst-case scenario (e.g., Model 9) and target towns that may 

experience the most rapid epidemic growth under all scenarios. This elevated caution can guide the 

leverage of public health resources towards the most severe pandemic situation.

Lastly, if any major changes in social distancing policy occur, the proposed MSEIR will be less 

effective. With the rapidly evolving pandemic and varying degrees of social distancing and reopening 

policies, projecting the epi curves in the months to come is beyond the model’s capacity. For example, in 

Connecticut, the total cases of infection were over 135,000 as of December 7, which outnumbered any 

simulation results. This steep rise was likely due to the implementation of subsequent reopening plans 

(Ct.gov 2020c), which largely increased the capacities of non-essential businesses and, therefore, the 

likelihood of transmission. Moreover, follow-up events, including the presidential election and national 

holidays could have contributed to the spike in infections (Cotti et al. 2020). To minimize these 

uncertainties, the model implementation should be focused on simulating cases in a short future period 

(e.g., one month) and should be conducted on a weekly basis to reflect the changes in public policies.
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5. Conclusion

The COVID-19 pandemic has posed an unprecedented challenge to the global economy and the 

healthcare system. While modeling COVID-19 by simulating the epi curve has become a growing practice 

across all disciplines, existing models have not been able to examine the issue at the meso-scale, using a 

small unit of analysis such as town or census tract, nor have they quantified how social distancing may 

curb the transmission at this scale. The proposed MSEIR model introduces the effects of spatial 

interaction between towns on the epidemic development. The scenario-based analysis could help policy 

stakeholders to understand how the compliance with and the containment by social distancing rules 

regulate people’s travel activities and can help predict how different degrees of policy enforcement 

would shape the epi curve. These modeling results have the potential to assist stakeholders with 

strategical decisions about the timing and expected outcomes of relieving social distancing 

requirements. Eventually, we believe the developed MSEIR model will establish the scientific foundation 

for community-level assessment and better preparedness for COVID-19.
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Table 1. Social distancing scenarios based on different compliance and containment levels.

Containment level (D0)

Compliance level (Ci) 20 miles 60 miles 140 miles

10% Model 1

(Substantial)

Model 2 Model 3

30% Model 4 Model 5

(Moderate)

Model 6

50% Model 7 Model 8 Model 9

(Minimum)
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Table 2. Model fitting with confirmed cases for all towns (n = 140).

Model Average r2 Average RMSE
Improvement 

ratio

Paired t-test 

t-value 

SEIR 0.924 72.595 N/A N/A

1 0.912 66.987 62.1% 0.990

2 0.913 68.315 53.6% 0.698

3 0.915 59.076 62.1% 2.530*

4 0.914 48.062 67.1% 4.032***

5 0.907 58.816 57.1% 1.848

6 0.912 47.604 57.9% 4.360***

7 0.918 46.166 69.3% 4.296***

8 0.918 56.222 39.3% 1.970

9 0.915 55.335 41.4% 2.489*

*p-value < 0.05 ***p-value < 0.001
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Table 3. Model fitting with confirmed cases for towns by category.

UAs (n = 15) UCs (n = 113) RAs (n = 12)

Model Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-

test t-value

Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-

test t-value

Average 

r2

Average 

RMSE

Improvement 

ratio

Paired t-test 

t-value

SEIR 0.987 319.891 N/A N/A 0.949 47.153 N/A N/A 0.603 3.057 N/A N/A

1 0.979 261.351 60.0% 1.747 0.936 48.080 62.8% -0.178 0.613 2.076 58.3% 1.687

2 0.983 286.676 66.7% 0.684 0.937 46.015 52.2% 0.273 0.608 5.352 50.0% -1.100

3 0.984 250.103 66.7% 1.881 0.937 39.645 63.7% 1.831 0.621 3.268 41.7% -0.230

4 0.982 186.627 80.0% 3.337** 0.937 34.575 66.4% 3.287** 0.609 1.859 58.3% 1.934

5 0.978 251.092 80.0% 1.157 0.928 39.247 55.8% 1.658 0.619 2.748 41.7% 0.449

6 0.978 164.976 100.0% 6.037*** 0.935 36.652 54.9% 2.543* 0.613 4.015 33.3% -1.098

7 0.986 176.308 93.3% 3.599** 0.942 33.568 68.1% 3.706*** 0.613 2.112 50.0% 1.231

8 0.988 135.591 93.3% 4.264*** 0.942 50.886 36.3% -0.607 0.603 7.265 0.0% -5.98***

9 0.984 157.769 93.3% 5.277*** 0.939 46.981 36.3% 0.031 0.612 5.954 25.0% -2.861*

Note: The categories are given by USCB (2010) based on population: urbanized areas (UAs) of 50,000 or more people, urban clusters (UCs) 
between 2,500 and 50,000 people, and rural areas (RAs) of less than 2,500 people. It should be noted that USCB uses a different areal unit for 
urban-rural classification and is not based on the county subdivision (i.e., town).  Thus, the category in this analysis does not suggest the actual 
urban-rural status.
*p-value < 0.05 **p-value < 0.005 ***p-value < 0.001
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Figure 1. A conceptual model of the effects of social distancing on travel activities. The solid line represents 
the strength of policy enforcement; the dashed line represents the level of transmission risk. 
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Figure 2. Connecticut towns with (a) population density and (b) COVID-19 infection rate as of May 11. 
Towns further discussed in the article are labeled. 
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Figure 3. Simulated cumulative cases of infection (Ic) for the state by the SEIR model and the MSEIR model 
(Models 1, 3, 5, 7, and 9) based on confirmed cases until May 11. 
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Figure 4. Simulated cumulative cases of infection (Ic) by the SEIR model and the MSEIR models for (a) 
Hampton, (b) Franklin, (c) Wilton, (d) Mansfield, (e) New Britain, and (f) Hartford. Simulations were based 

on confirmed cases until May 11. 
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Figure 5. Simulated cumulative cases of infection (Ic) for the state by the MSEIR model (Models R and 7) 
based on confirmed cases until September 7. 
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Figure 6. Simulated cumulative cases of infection (Ic) by the SEIR model and the MSEIR models for (a) 
Hampton, (b) Franklin, (c) Wilton, (d) Mansfield, (e) New Britain, and (f) Hartford. Simulations were based 

on confirmed cases until September 7. 

431x465mm (300 x 300 DPI) 

Page 35 of 36

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 7. (1) Simulated infection rate and (2) simulated rate of increase by Model 7 as of December 31. 
Towns with the top-10 highest rates are labeled. 
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