
Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the
IEEE by sending an email to pubs-permissions@ieee.org.

Abstract—Screen Content Coding is an extension of High
Efficiency Video Coding (HEVC), and it is developed to improve
the coding efficiency of screen content videos by adopting two new
coding modes, Intra Block Copy (IBC) and Palette (PLT).
However, the flexible quadtree-based coding tree unit (CTU)
partitioning structure and various mode candidates make the fast
algorithms of SCC extremely challenging. To efficiently reduce the
computational complexity of SCC, we propose a deep learning
based fast prediction network DeepSCC, which contains two parts,
DeepSCC-I and DeepSCC-II. Before fed to DeepSCC, incoming
CUs are divided into two categories: dynamic CTUs and
stationary CTUs. For dynamic CTUs having different content as
their collocated CTUs, DeepSCC-I takes raw sample values as the
input to make fast predictions. For stationary CTUs having the
same content as their collocated CTUs, DeepSCC-II additionally
utilizes the optimal mode maps of the stationary CTU to further
reduce the computational complexity. Compared with the HEVC-
SCC reference software SCM-8.3, the proposed DeepSCC reduces
encoding time by 48.81% on average with a negligible Bjøntegaard
delta bitrate increase of 1.18% under all-intra configuration.

Index Terms—Screen Content Coding (SCC), High Efficiency
Video Coding (HEVC), fast algorithm, convolutional neural
network, deep learning.

I. INTRODUCTION

CREEN content video refers to video captured from the
display screen of an electronic device, and it has been

applied to many screen sharing based applications, such as
online education, remote desktop, and web conferencing [1].
Besides the traditional camera-captured natural image blocks
(NIBs), screen content videos contain a significant amount of
stationary or dynamic computer-generated screen content
blocks (SCBs). Compared with NIBs, SCBs exhibit different
characteristics, including no sensor noise, large flat areas with
a single color, repeated patterns in the same frame and limited
colors. Leveraging on these special characteristics of screen
content videos, the Joint Collaborative Team on Video Coding
(JCT-VC) has developed Screen Content Coding (SCC)
extension [2] on top of High Efficiency Video Coding (HEVC)
[3], and it outperforms HEVC by achieving over 50%
Bjøntegaard delta bitrate (BDBR) [4] reduction for typical

screen content videos.
In the development of SCC, two important coding modes,

intra block copy (IBC) [5] and palette (PLT) modes [6] are
additionally adopted besides the Intra mode of HEVC, and they
are particularly effective in addressing coding units (CUs) with
repeated patterns and limited colors, respectively. However, the
flexible quadtree-based coding tree unit (CTU) partitioning
structure and various mode candidates bring a significant
computational burden to a SCC encoder.

To simplify the encoding of HEVC, some deep learning
based algorithms have been proposed recently. In [7], [8],
structures of shallow convolutional neural network (CNN) were
proposed to early terminate CU partitions in intra-prediction. In
[9], deeper structures of CNN and long- and short-term memory
(LSTM) networks were proposed to early terminate CU
partitions in both intra-prediction and inter-prediction.
However, these algorithms are inefficient in SCC due to the
adoption of new modes. First, the new IBC and PLT modes
make the CU partition decision in SCC very different from
HEVC. The inhomogeneous contents can be coded as large
CUs by IBC and PLT modes in SCC, while they are always
coded as small CUs in HEVC. Second, the exhaustive mode
searching among Intra, and the new IBC and PLT modes brings
a significant complexity increase in SCC. The two new modes
make all fast HEVC algorithms in [7]–[9] fail in fast mode
decision of Intra, IBC and PLT, as they only consider the
characteristics of NIBs without the newly introduced IBC and
PLT modes. These new modes then make the fast mode
decision of SCC much more challenging.

To reduce the computational complexity of a SCC encoder,
the existing works include the early heuristic approaches [10]–
[14] and the recent machine learning based approaches [15]–
[24]. Those works simplify the encoding process of SCC in
different aspects, and they are mainly divided into three
categories. The first category is to simplify mode decision [11],
[12], [16], [17]. In [11], the rate-distortion (RD) cost and CU
activity are analyzed to skip unnecessary IBC mode to reduce
computational complexity. In [12], a hash value is calculated
for each block, and IBC mode only searches repeated patterns
among the blocks with the same hash value as the current CU.
In [15], fast mode decision is made based on the statistics of
learning frames. In [16], [17], decision trees and random forests
are used as classification tools to skip unnecessary modes. The
second category of fast algorithms is to simplify the CU size
decision of SCC [10], [14], [21]. In [10], the heuristic rules
based on entropy are proposed to predict the CU partitioning

DeepSCC: Deep Learning Based Fast Prediction
Network for Screen Content Coding

Wei Kuang, Student Member, IEEE, Yui-Lam Chan, Member, IEEE, Sik-Ho Tsang, Member, IEEE,
and Wan-Chi Siu, Life Fellow, IEEE

S

Manuscript received March 19, 2019; revised June 13, 2019, accepted July
2, 2019. This work was supported by the Hong Kong Research Grants Council
under Research Grant PolyU 152069/18E.

The authors are with the Department of Electronic and Information
Engineering, The Hong Kong Polytechnic University, Hong Kong (e-mail:
wei.kuang@connect.polyu.hk; enylchan@polyu.edu.hk; sik-
ho.tsang@polyu.edu.hk; enwcsiu@polyu.edu.hk).

This is the Pre-Published Version.

The following publication W. Kuang, Y. Chan, S. Tsang and W. Siu, "DeepSCC: Deep Learning-Based Fast Prediction Network for Screen
Content Coding," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 1917-1932, July 2020 is available at
https://dx.doi.org/10.1109/TCSVT.2019.2929317

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

decision, and then coding bits after checking all mode
candidates are used to eliminate the incorrect decision. In [14],
the depth level of the collocated CU is used to predict the depth
level of the current CU if they have similar content. All modes
are checked in the depth level of the collocated CU, while only
PLT mode is checked in other depth levels. However, it is not
efficient for sequences with many dynamic CUs, and it needs
to disable the fast approach every 10 frames to avoid error
propagation. In [21], neural network-based classifiers were
trained by utilizing features describing CU statistics and sub-
CU homogeneity, and CU sizes are adaptively checked
according to the outcomes of the classifiers. However, it
induces high RD performance loss because of low classification
accuracy. In the third category, fast mode and fast CU size
decisions are both investigated to further simplify the encoding
proposes of SCC [13], [18]–[20], [22]–[24]. In [13], early CU
size decision is made based on RD cost and IBC mode are
adaptively skipped by checking the hash value of each block. In
[18], [19], learning frames are used to derive the content-
adaptive rules for fast mode decision and CU size decision.
However, original encoding process needs to be performed in
the learning frames, which scarifies the encoding time reduction.
In [20], [22]–[24], fast mode decision is preformed based on the
assumption that NIBs select Intra mode while SCBs select IBC
or PLT mode. Therefore, incoming CUs are classified into
SCBs and NIBs by utilizing heuristic rules [20] and traditional
machine learning based on hand-crafted features [22]–[24]. In
[20], the CU type classification is performed based on CU
content property analysis. Smooth NIBs only check Intra mode
while the remaining CUs need to check all modes because of
low classification accuracy. Then the depth levels of the
collocated CU and spatial neighbor CUs as well as coding bits
are jointly analyzed to make fast CU size decision. However, it
brings high RD performance loss because it does not consider
the actual content of the current CU when utilizing information
from the collocated CU and spatial neighbor CUs. In [22],
decision tree-based classifiers were trained to classify CUs into
SCBs and NIBs, so that NIBs only check Intra mode while
SCBs check both IBC and PLT modes. Then, another two
classifiers were trained to further simplify the encoding of NIBs,
which predict the direction of Intra mode from 35 prediction
modes and make CU size decision of NIBs, respectively.
Besides, several thresholds are derived to early terminate the
mode searching process for CUs with small bit cost, but it is
helpful for only a small number of CUs. Similarly, decision
tree-based classifiers are also utilized in [23] to make CU type
classification and CU size decision separately. However, Intra
mode is always checked for all CUs with 2N×2N prediction
units (PUs) to get the features required by the classifiers, and it
brings additional computational overhead for SCBs even
though Intra mode is redundant for them. In [24], neural
network-based classifiers are trained to classify CUs in NIBs
and SCBs. Again, IBC, PLT modes and a subset of Intra mode
are checked for SCBs, while only Intra mode is checked for
NIBs. Then, various heuristic rules based on the information
from spatial and temporal adjacent CUs is proposed to make
fast CU partitioning decision.

In this paper, we propose a deep learning based fast
prediction network, DeepSCC, to reduce the computational
complexity of SCC, and it makes fast predictions for all CUs of
a CTU in a single test. Since a screen content sequence usually
has many dynamic CTUs as well as stationary CTUs, the
proposed DeepSCC is composed of two parts, DeepSCC-I and
DeepSCC-II, which simplify the encoding of dynamic CTUs
and stationary CTUs, respectively. Specifically, DeepSCC-I
only takes the CTU sample values as the input, while
DeepSCC-II takes both the CTU sample values and the optimal
mode maps of the collocated CTU as the input. Since DeepSCC
contains many trainable parameters and learns extensive
features, it can make the more accurate mode decision of Intra,
IBC, and PLT rather than the simple CU type classification of
NIBs and SCBs. Besides, the proposed DeepSCC jointly
analyzes the local features of a CU and the global features from
other CUs by concatenating convolution layers and
deconvolution layers to improve the prediction accuracy.

To the best of our knowledge, we are the first to use deep
learning for making fast predictions of SCC. The differences
between our contributions and the related schemes can be
summarized as: 1) Unlike the existing fast SCC encoding
algorithms in [10]–[24] which heavily rely on the limited
number of hand-crafted features or heuristic rules, the proposed
DeepSCC automatically learns useful features from the raw
samples. Since the proposed DeepSCC contains much more
trainable parameters than the traditional machine learning based
approaches, it learns extensive features and avoids the risk that
humans may ignore some important features during feature
extraction. 2) Unlike the existing algorithms in [11], [12], [16],
[17] which only design the mode decision model, and in [10],
[14], [21] which only design the CU partition model, the
proposed DeepSCC consider the whole fast encoding process of
SCC. Although algorithms in [13], [18]–[20], [22]–[24] also
optimize the whole encoding process, they employ numerous
models to address mode decision and CU partitioning decision
independently for each CU. Besides, a CTU contains 85 CUs, so
that they need to test those models for multiple times. As a
consequence, multiple models are always built for testing. On
the contrary, the proposed DeepSCC makes predictions in the
CTU level so that 85 CUs in a CTU get their predictions in a
single test. It integrates mode decision and CU partitioning
decision in the same model by treating the case of skipping all
modes in a CU as a special class of mode decision. Therefore,
the multiple model tests in a CTU can be avoided, and it helps
to reduce the computational overhead of the proposed DeepSCC.
3) Unlike the algorithms in [14], [20], [24] which directly utilize
the optimal mode and the CU depth level from the collocated

Fig. 1. Hierarchical CTU partitioning structure in SCC.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

CU without analyzing the actual CU content, the proposed
DeepSCC jointly analyzes the optimal mode maps of the
collocated CTU and the content of the current CTU to avoid
error propagation. 4) The proposed DeepSCC contains many
trainable parameters and learns extensive features, so that it
directly performs the mode decision for Intra, IBC, and PLT
rather than the simple CU type classification in [20], [22]–[24].
As a result, the decision for IBC and PLT modes can be
different, and many SCBs only check one mode from IBC and
PLT to further reduce the computational complexity.

The rest of this paper is organized as follows. Section II
presents the review and analysis of intra prediction in SCC.
Section III presents the proposed fast network DeepSCC. The
experimental results are presented in Section IV to verify the
performance of the proposed DeepSCC. Finally, Section V
concludes the paper.

II. REVIEW AND ANALYSIS OF INTRA PREDICTION IN SCC

A. Review on Intra Prediction in SCC
A CTU is a basic processing unit in SCC. To find the optimal

CTU coding structure, a CTU is recursively partitioned into
CUs in four different depth levels, i.e., depth level d∈{0,1,2,3}.
As shown in Fig. 1, a CTU of 64×64 pixels is partitioned into
four CUs of 32×32 pixels, and then each CU of 32×32 pixels
is further partitioned into four smaller CUs, until CUs of 8×8
pixels are reached. Therefore, a CTU contains 85 CU partitions
(1 + 4 + 16 + 64). In each CU, an exhaustive mode search is
performed to find its sub-optimal mode, as shown in Fig. 2.
Besides the Intra mode in HEVC that is used to encode the
traditional NIBs, SCC additionally adopts two new modes, IBC
and PLT, to improve the coding efficiency of SCBs. IBC mode
is developed based on the observation that there are many
repeated patterns for SCBs in the same frame. When encoding
the current CU, IBC searches in the reconstructed region of the
current frame to find the best-matched block for it, and the
location of the best-matched block is denoted by a block vector.
PLT mode is developed based on the observation that a SCB
usually contains the limited number of distinct colors. PLT
predicts a palette table based on the previously coded CUs,
which contains several representative sample values. Then, an
index map is sent to the decoder to denote the position of each
representative sample value in a CU. In the exhaustive mode
search, a Lagrange RD cost Jx is calculated for a mode x

Jx = Dx + ߣ × Rx (1)
where x∈{Intra, IBC, PLT}, ߣ is a Lagrange multiplier, Dx and
Rx are the distortion and bit cost of the CU coded with a mode
x. The sub-optimal mode for a CU is selected as the one with
the smallest value of Jx. After calculating the RD cost Jx, the
optimal CTU coding structure is selected as the one with the
smallest value of the total RD cost. Then the corresponding sub-
optimal modes of those CUs become their optimal modes, and
they are involved in the final encoding bitstream.

As shown in Fig. 1, a CTU contains 85 CU partitions, and
each CU needs to check three mode candidates, except that CUs
only check IBC and Intra modes in the depth level of 0.
Therefore, the RD cost Jx is calculated for 254 mode candidates
in a CTU (1×2 + 84×3). Although the hierarchical CTU
partitioning structure and the exhaustive mode search achieve
the best coding performance, it brings significant computational
burden to a SCC encoder. Since only parts of those modes are
involved in the final encoding bitstream, which are from 1 to
64, precise prediction of the optimal modes in a CTU leads to
great encoding time reduction.

B. Analysis of Intra Prediction in SCC and Motivation of
DeepSCC

To analyze the intra prediction in SCC, experiments were
performed for sequences in YUV 4:4:4 format based on the
HEVC-SCC reference software, Screen Content Model version
8.3 (SCM-8.3) [25]. The testing sequences were selected by the
experts in the JCT-VC group, and they were encoded with
quantization parameters (QPs) of 22, 27, 32, and 37 using SCM-
8.3 under All Intra (AI) configuration defined in the common
test conditions (CTC) [26]. Those sequences are classified into
four categories according to their content: text and graphics with
motion (TGM), mixed content (M), animation (A) and camera-
captured content (CC). Fig. 3 shows the examples of testing
sequences in four categories. Since sequences in TGM and M
show mixed content of NIBs and SCBs, while sequences in A
and CC only contain NIBs, we will show the average results for
sequences in TGM+M and A+CC in the following sections.

Table I shows the mode distribution of each sequence, which
is calculated as the percentages of Intra, IBC, and PLT coded
areas in a sequence. Since sequences in A+CC only contain
NIBs, it is observed that 97.46% areas of them are encoded by
Intra mode on average. Therefore, the CU type classification in
[20], [22]–[24] is efficient for NIBs by skipping both IBC and
PLT modes. However, it is observed that the mode distributions
of sequences in TGM+M are much more complicated, where
all modes take up large percentages. Even although
“ChineseEditing”, “Console”, “Desktop” and “FlyingGraphics”
only contain SCBs, Intra mode still takes up 10.06%-14.56% in
those sequences. Besides, IBC and PLT modes are not evenly
distributed. For example, IBC mode takes up 70.93% while
PLT mode only takes up 16.72% in “FlyingGraphics”.
Comparatively, SCBs in “Map” are more likely to select PLT

Fig. 2. Exhaustive mode search in a CU.

MissionControlClip3 (M) Desktop (TGM)

Robot (A) Kimono1 (CC)

Fig. 3. Examples of testing sequences in four categories.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

mode than IBC mode, which take up 25.28% and 14.88%,
respectively. This observation shows that different SCBs may
have different characteristics so that they have different
preferences for IBC and PLT modes. The CU type classification
in [20], [22]–[24] always treats IBC and PLT modes equally,
and either both IBC and PLT modes or all modes are checked
for a SCB. In fact, a SCB will only select one mode from IBC
or PLT as its optimal mode. Therefore, they are not efficient for
SCBs. Although it is difficult to make further classification
between IBC and PLT modes by simply selecting a limited
number of hand-crafted features, we believe that the recent
CNN with extensive trainable parameters shows a promising
way to address this problem.

 Unlike the traditional camera-captured sequences only
containing dynamic CTUs which show different content in
adjacent frames, screen content sequences contain many
stationary CTUs, i.e., the sum of absolute differences (SAD)
between the current CTU and its collocated CTU is 0. Table II
shows the percentage of stationary CTUs in different sequences.
It is observed that sequences in A+CC only contain dynamic
CTUs, while 70.98% CTUs in TGM+M sequences are
stationary CTUs. To simplify the encoding of stationary CTUs,
an intuitive idea is to directly encode stationary CTUs with the
same optimal modes of the collocated CTUs. However, it brings
high RD performance loss because whether a CU selects the

same mode as its collocated CU is related to its actual content.
For example, a SCB with simple texture usually has many
repeated patterns within the current frame while a SCB with
complex texture has few repeated patterns. If the collocated CU
of a simple SCB selects IBC mode, this SCB usually select IBC
mode. On the contrary, if the collocated CU of a complex SCB
selects IBC mode, this SCB may select PLT mode since its very
limited repeated patterns can be disappeared in the current
frame. Table III shows BDBR [27] and the change in encoding
time, ΔTime, brought by this approach compared with the
original SCM-8.3. It should be noted that a negative value of
BDBR or ΔTime denotes decrement in percentage as compared
with SCM-8.3. It is observed that for sequences in TGM+M that
contain many stationary CTUs, this approach provides 44.37%
encoding time reduction, but it brings 6.32% increase in BDBR.
Although the algorithms in [14], [20], [24] utilize some
heuristic rules to reduce the RD performance loss brought by
this approach, such as disabling the fast approach every 10
frames to avoid error propagation [14], and jointly analyzing
the coding information from the collocated CU and spatial
neighbor CUs [20], [24], they still do not achieve a good
tradeoff between ∆Time and BDBR. To further improve the
performance for stationary CTUs, it is desired that the optimal
mode of the collocated CTU and the actual CTU content are
jointly analyzed.

III. PROPOSED FAST PREDICTION NETWORK DEEPSCC
Generally, humans are sensitive to the difference between

SCBs and NIBs, so that many approaches, such as [20], [22]–
[24], have successfully differentiated SCBs from NIBs relying
on a limited number of hand-crafted features. However, it is
very challenging to make further classification between IBC-
coded SCBs and PLT-code SCBs with hand-crafted features
because humans are less sensitive to their difference. To
overcome the limitation of hand-crafted features, a deep
learning based fast prediction network DeepSCC is proposed,
which contains two parts, DeepSCC-I and DeepSCC-II.
DeepSCC-I is used to make predictions for dynamic CTUs,
while DeepSCC-II is used to make predictions for stationary
CTUs. It is noted that DeepSCC is disabled for the blocks
located at the frame boundary and smaller than 64×64 pixels.

TABLE II
PERCENTAGE OF STATIONARY AREAS IN DIFFERENT SEQUENCES

Categories Sequences Stationary CTU (%)
TGM ChineseEditing 93.41

Console 62.72
Desktop 78.57

FlyingGraphics 2.50
Map 79.20

Programming 48.11
SlideShow 75.41

WebBrowsing 96.43
M BasketballScreen 86.80

MissionControlClip2 83.82
MissionControlClip3 73.78

A Robot 0
CC EBURainFruits 0

Kimono1 0
Average (TGM+M) 70.98

Average (A+CC) 0
Average (ALL) 55.77

TABLE III
PERFORMANCE OF ENCODING STATIONARY CTUS WITH THE SAME OPTIMAL

MODES OF THE COLLOCATED CTUS
Categories Sequences BDBR (%) ∆Time (%)

TGM ChineseEditing 3.44 -51.81
Console 4.20 -47.83
Desktop 6.16 -57.22

FlyingGraphics 0.13 -1.28
Map 4.94 -49.39

Programming 2.52 -31.84
SlideShow 13.01 -43.26

WebBrowsing 8.55 -65.98
M BasketballScreen 7.38 -47.51

MissionControlClip2 12.40 -44.42
MissionControlClip3 6.77 -48.67

A Robot 0 0
CC EBURainFruits 0 0

Kimono1 0 0
Average (TGM+M) 6.32 -44.37

Average (A+CC) 0 0
Average (ALL) 4.96 -34.95

TABLE I
MODE DISTRIBUTION OF DIFFERENT SEQUENCES

Categories Sequences Intra (%) IBC (%) PLT (%)
TGM ChineseEditing 14.56 47.95 37.49

Console 10.06 67.73 22.21
Desktop 13.38 69.07 17.55

FlyingGraphics 12.35 70.93 16.72
Map 59.84 14.88 25.28

Programming 37.03 49.76 13.21
SlideShow 79.95 13.45 6.60

WebBrowsing 24.13 65.93 9.94
M BasketballScreen 43.35 46.59 10.06

MissionControlClip2 55.89 39.72 4.39
MissionControlClip3 43.96 48.71 7.33

A Robot 93.27 3.95 2.78
CC EBURainFruits 99.30 0.67 0.03

Kimono1 99.80 0.19 0.01
Average (TGM+M) 35.86 48.61 15.53

Average (A+CC) 97.46 1.60 0.94
Average (ALL) 49.06 38.54 12.40

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Since the proposed DeepSCC contains many trainable
parameters and learns extensive features, it can make the more
accurate mode decision of Intra, IBC, and PLT rather than the
simple CU type classification of NIBs and SCBs. The previous
fast prediction approaches of SCC always make predictions in
the CU level, which means the derived model is tested for
multiple times to make fast prediction for a single CTU. The
drawback of this strategy is that it scarifies the encoding time
reduction due to the multiple tests of the derived models. To
reduce the computation overhead, the proposed DeepSCC
directly outputs 85 labels for 85 CUs of a CTU in a single test.
Since a CU can either skip all modes or select one mode from
Intra, IBC, and PLT, each predicted label contains the
probabilities of four classes, i.e., P(Allskip), P(Intra), P(IBC),
and P(PLT), in accordance with the probabilities for skipping
all modes, and checking Intra, IBC, PLT modes, respectively.
Fig. 4 illustrates the structure of the proposed DeepSCC, where
the kernel sizes and feature map dimensions are also presented.
The only difference between DeepSCC-I and DeepSCC-II is
that the optimal mode maps of the collocated CTU are
concatenated to the extracted feature maps before going
through the convolution layers conv6–conv9 in DeepSCC-II,
which is denoted by green color. The details of DeepSCC are
given in the following sub-sections.

A. DeepSCC-I for Dynamic CTUs
As shown in Fig. 4, DeepSCC-I takes the luminance

component of a CTU as the input, and it is preprocessed by
mean removal before fed to DeepSCC-I. Finally, DeepSCC-I
outputs 85 labels for 85 CUs with different sizes, where each
label shows the probabilities of selecting different modes.
DeepSCC-I is composed of nine convolutional layers (conv1–
conv9), three deconvolutional layers (deconv1–deconv3), and
three concatenating layers (concat1–concat3). Each
convolutional or deconvolutional layer is followed by a
rectified linear unit (ReLU) activation function, except for
conv6–conv9, where softmax is utilized to generate the output
labels. The details of these layers are presented as follows.

Convolutional layers: At the beginning, the luminance
component of a CTU goes through five convolutional layers,
i.e., conv1–conv5, to generate feature maps. As shown in Fig.
4, the kernel size of conv1 is 4×4 and the kernel sizes of

conv2–conv5 are 2×2. The strides of conv1–conv5 are set to
the width of the kernel sizes for non-overlapping convolutions,
in accordance with the non-overlapping CU partitioning
structure. By using this arrangement, the receptive field of each
node in a feature map is always equal to a CU size, so that the
feature maps of conv2–conv5 reflect the local features of CUs
from 8×8 to 64×64, respectively. At each downsampling step,
we double the channel number of feature maps. After
concatenating the feature maps of convolutional layers and
deconvolutional layers, conv6–conv9 incorporate those feature
maps and generate the last set of feature maps with the kernel
size of 1×1 and stride of 1. Each layer of conv6–conv9 outputs
four feature maps since each CU contains four classes. Finally,
the feature maps of conv6–conv9 are used to output the
predicted labels after going through a softmax function.

Deconvolutional layers: In contrast to the convolution layer
which reduces the size of a feature map, a deconvolutional layer
is used to enlarge the size of a feature map. After generating the
128 feature maps of conv5 with the size of 1 × 1, three
deconvolutional layers i.e., deconv1–deconv3, are used to
enlarge the feature maps of conv5 using the kernel size of 2×2
and stride of 2. Since the receptive field of each node in the
feature maps of conv5 is the entire CTU, the receptive field of
each node in the feature maps of deconv1–deconv3 also
becomes the entire CTU, and they reflect the global features for
CUs with size from 32×32 to 8×8, respectively. The global
features help to improve the prediction accuracy because there
exists spatial content correlation in a CTU. For example, if
other CUs are SCBs in a CTU, the current CU is more likely to
be a SCB and it would check IBC or PLT mode. On the contrary,
if other CUs are NIBs in a CTU, the current CU is more likely
to be a NIB and it would check Intra mode. At each feature map
enlarging step, we halve the channel number of feature maps.
Finally, the global feature maps and the local feature maps have
the same dimension for each CU size.

Concatenating layers: DeepSCC-I adopts three
concatenating layers, i.e., concat1–concat3, to concatenate the
global feature maps and local feature maps for CUs with sizes
from 32×32 to 8×8, respectively.

As shown in Fig. 4, DeepSCC-I outputs 1, 4, 16, and 64
labels for a CTU, in accordance with the hierarchical CTU

Fig. 4. Structure of DeepSCC. The optimal mode maps of the collocated CTU only exist in DeepSCC-II, which is denoted by green blocks.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

partitioning structure in Fig. 1, which contains 1 CU of 64×64
pixels, 4 CUs of 32×32 pixels, 16 CUs of 16×16 pixels, and
64 CUs of 8×8 pixels.

B. DeepSCC-II for Stationary CTUs
As analyzed in Section II.B, directly encoding a stationary

CTU with the same optimal modes of the collocated CTU leads
to a very high increase in BDBR. To address this problem, the
optimal mode maps of the collocated CTU are jointly analyzed
with the actual CTU content to reduce the BDBR loss for
stationary CTUs. By defining the indices for classes of Allskip,
Intra, IBC and PLT as 0, 1, 2 and 3, an example of a collocated
CTU and its optimal mode maps is shown in Fig. 5. To obtain
the optimal mode maps of a collocated CTU, its optimal modes
are analyzed in four depth levels. Since the CTU in Fig. 5 is not
encoded as a single 64×64 CU, the optimal mode map for the
64×64 CU has the class index of Allskip, which means all
modes are skipped in the 64×64 CU. Then, there are two 32×
32 CUs encoded by PLT mode and Intra mode in the CTU,
respectively, so that the class indices of the corresponding
positions in the optimal mode map for 32×32 CUs are 3 and 1,
which denote PLT and Intra, respectively. The other two
positions in this optimal mode map still contain the index of
Allskip since they are not encoded as 32×32 CUs. This process
is repeated until the four optimal mode maps are all generated.
It is noted that the four optimal mode maps of the collocated
CTU have the same size as the corresponding feature maps from
conv2–covn5 and deconv1–deconv3. To utilize the optimal
mode correlation between the current stationary CTU and its
collocated CTU, the four optimal mode maps of the collocated
CTU are concatenated to the corresponding feature maps of the

current CTU by using four concatenate layers concat4–concat7,
as shown in Fig. 4. After using conv6–conv9 to incorporate
those feature maps and the optimal mode maps, a softmax
function is used to output the predicted labels.

C. Training Strategy for DeepSCC
To avoid the overlapping between the training set and testing

set, we selected 12 training sequences from [28]–[32] which are
not included in CTC [26] to generate the training samples.
These 12 training sequences were carefully selected to cover
various video content. Based on the content classification
criterion of CTC, we also classify the 12 training sequences into
the four categories of TGM, M, A, and CC, and they are shown
in Table IV. Then, the 14 sequences in CTC are used as the
testing sequences to evaluate the performance of the proposed
DeepSCC. A single model of DeepSCC is trained for QPs of 22,
27, 32, and 37 by using mixed training data from the four QPs.
For each training sequence, 50 frames were extracted with an
equal interval, and they were encoded by the original SCM-8.3
with QPs of 22, 27, 32 and 37 to obtain the ground truth labels.
Finally, 750,000 CTUs were generated with their ground truth
labels to train DeepSCC-I, while 440,000 CTUs with their
ground truth labels and the optimal mode maps of the collocated
CTUs were obtained to train DeepSCC-II.

The training process of DeepSCC was implemented in Caffe
[33]. A GPU of GeForce GTX 1080 Ti was used to accelerate
the training process, and then it was disabled in the testing phase
so that only a CPU was used to evaluate the performance of
DeepSCC. To make the maximum use of GPU memory, a large
batch size of 1024 CTUs was adopted. The loss of an i-th
training sample in a batch is defined as the sum of cross-entropy
over all labels in four depth levels, and it is represented by

 ݈ = ݂(߱, ෝ߱) + ∑ ݂(߱ଵ_ , ෝ߱ଵ_)ଷ
ୀ +

 ∑ ݂(߱ଶ_ , ෝ߱ଶ_)ଵହ
ୀ + ∑ ݂(߱ଷ_ , ෝ߱ଷ_)ଷ

ୀ (1)

where ߱ and ߱ଵ_, ߱ଶ_, ߱ଷ_ denote the ground truth classes
of the CU in the depth level of 0, and the j-th CU in the depth
levels of 1, 2, 3, respectively. Similarly, ෝ߱_ , ෝ߱ଵ_, ෝ߱ଶ_, and
ෝ߱ଷ_ denote the predicted classes of the corresponding CUs.
݂(‧,‧) represents the cross-entropy function between the ground
truth class and predicted class, and it is represented as

݂(߱, ෝ߱) = − ∑)ݕ ߱ = ߱))ܲ)݈݃ ߱ = ෝ߱)) (2)

where ܿ denotes the class index. ݕ(߱ = ߱) is 1 if ߱ܿ is the
same as the ground truth class ߱, otherwise, ݕ(߱ = ߱) is 0.
ܲ(߱ = ෝ߱) denotes the probability that ߱ܿ is the same as the
predicted class ෝ߱ . By averaging the loss over all training
samples in one batch, the loss function L is written as

ܮ = ଵ
ே

∑ ݈
ே
ୀଵ (3)

where N is the number of training samples in one batch. All
trainable parameters in DeepSCC are initialized by the “msra”
filter [34]. Then, Adam optimizer [35] is adopted to update the
trainable parameters in DeepSCC with the default values of
momentum and momentum2, which are 0.9 and 0.999,
respectively. A weight decay of 0.005 is used to alleviate the
overfitting problem. Instead of using the conventional learning

Fig. 5. A collocated CTU and its optimal mode maps.
 TABLE IV

TRAINING SEQUENCES FOR DEEPSCC
Categories Sequences Resolution No. of Frame Frame Rate (Hz)

TGM ClearTypeSpreadsheet 1920×1080 300 30
PptDocXls 1920×1080 200 20

RealTimeData 1920×1080 600 60
WordEditing 1920×1080 600 60

VideoConferencingDo
cSharing 1280×720 300 30

M BigBuck 1920×1080 400 60
KristenAndSaraScreen 1920×1080 600 60
MissionControlClip1 2560×1440 600 60

A Viking 1280×720 300 30
CC EBULupoCandlelight 1920×1080 250 50

Seeking 1920×1080 250 50
ParkScene 1920×1080 240 24

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

rate policy of “Step”, we adopt the learning rate policy of “Poly”
as in [36], and the learning rate in each iteration (iter), ݈݅ݎ݁ݐݎ, is

௧ݎ݈ = ௦ݎ݈ × (1 − ௧
௫ೝ

)௪ (4)

where ݈ݎ௦ is the base learning rate of 0.01, ݎ݁ݓ is set to
0.9, and ݉ܽݔ௧ is set to 50,000.

The training losses of DeepSCC-I and DeepSCC-II
calculated by (2) are shown in Fig. 6. It is observed that the
training processes of DeepSCC-I and DeepSCC-II converge
very fast. Besides, the final loss of DeepSCC-II is smaller than
DeepSCC-I, because DeepSCC-II additionally utilizes the
optimal mode maps of the collocated CTUs. Although
DeepSCC-I can reduce encoding time for all CTUs by only
taking sample values as the input, we only enable it for dynamic
CTUs. For stationary CTUs, DeepSCC-II is enabled instead of
DeepSCC-I because it has a smaller loss. The advantage of
DeepSCC-II over DeepSCC-I for stationary CTUs is further
discussed in Section IV.C.

D. Content-adaptive Threshold
To make fast prediction for an input CTU, the proposed

DeepSCC outputs 85 labels for 85 CUs, and each label contains
four probabilities, i.e., P(߱), ߱ ∈{Allskip, Intra, IBC, PLT}. In
the testing phase, a threshold ߙ௫ is used to decide whether a CU
needs to check the mode x, ݔ ∈ {Intra, IBC, PLT}. If the
probability of checking a mode x is smaller than the value of ߙ௫,
i.e., P(߱=x)<ߙ௫ , the mode x is regarded as unnecessary, and the
current CU does not check it for encoding time reduction. It
should be noted that the selection of the class Allskip is not
directly decided but depended on the probabilities of checking
other classes from {Intra, IBC, PLT}. If the probabilities of
checking all classes from {Intra, IBC, PLT} are smaller than ߙ௫ ,
the optimal class of the CU becomes Allskip, and the mode
checking for the CU can be skipped.

In SCC, NIBs and SCBs usually show the concentrated
distribution in a frame, and there exists an optimal mode
correlation in spatial neighbor CUs. Therefore, ߙ௫ is treated as
a content-adaptive threshold, and its value is adjusted by
utilizing the spatial optimal mode correlation. The mode
distribution of the first frame in “Programming” is shown in Fig.
7, and it was encoded by the original SCM-8.3 with QP of 22.
It is observed that many CUs select the same modes as their top
or left CUs at the same depth levels. Besides, many IBC-coded
CUs and PLT-coded CUs are mixed together because IBC and
PLT modes are both valid mode candidates for SCBs. Therefore,
the value of ߙ௫ for a CU is decided by the optimal modes of its
top and left neighbor CUs at the same depth level

௫ߙ = ௦ߙ − ௫ܫ × ௗ௬ߙ (5)

where ܫ௫ is a content-adaptive parameter, ߙ௦ and ߙௗ௬ are
two predefined parameters that control the value of ߙ௫ . The
impact of their values to DeepSCC is discussed in Section IV.A.
Since IBC and PLT modes show a mixed distribution, they are
grouped together to decide the value of ܫ௫. For ݔ ∈{IBC, PLT},
 ௫ is represented asܫ

௫ܫ = ൜1, ݂݅ ߱௧ ∈ ,ܥܤܫ} ௧߱ ݎ {ܶܮܲ ∈ ,ܥܤܫ} {ܶܮܲ
 ݁ݏ݅ݓݎℎ݁ݐ ,0

 (6)

For ݔ ∈{Intra}, ܫ௫ is represented as

௫ܫ = ൜1, ݂݅ ߱௧ ∈ ௧߱ ݎ {ܽݎݐ݊ܫ} ∈ {ܽݎݐ݊ܫ}
 ݁ݏ݅ݓݎℎ݁ݐ ,0

 (7)

where ߱௧ and ߱௧ are the optimal mode classes of the left
and top neighbor CUs, respectively. By using the content-
adaptive threshold ߙ௫ , a CU has a larger chance to be coded by
the optimal modes of its left and top CUs.

Since the proposed DeepSCC treats the case of skipping all
modes as the class Allskip in mode decision, the CU partitioning
decision is integrated into DeepSCC. If DeepSCC selects the
class Allskip for a CU, it means that the current depth level is not
optimal and the mode checking of the CU is skipped. Therefore,
additional testing of another model specially designed for CU
partitioning decision as in [13], [18]–[20], [22]–[24] is not
necessary, and it further reduces the testing time. Before a CU
in the depth level of 0, 1, or 2 continues the partitioning process
shown in Fig. 1, the labels of CUs in the deeper depth levels are
analyzed to perform the CU partitioning decision. If an area of
a CU always selects the class Allskip in all deeper depth levels,
the CU cannot be encoded if it continues partitioning. Therefore,
we early terminate the CU partition to avoid unnecessary
computation.

It should be noted that although IBC and PLT modes are
grouped together to derive the content-adaptive thresholds so
that ߙூ and ߙ் are the same, DeepSCC can still
differentiate IBC-coded SCBs and PLT-coded SCBs by output
independent probabilities of P(IBC) and P(PLT). For example,
if P(IBC) is smaller than ߙூ while P(PLT) is larger than ߙ் ,
only PLT mode will be checked. The details of mode decision
distribution will be investigated in Section IV.B.

E. Memory Overhead of DeepSCC
To make fast prediction, the trained Caffe model needs to be

invoked in SCM-8.3. The memory overhead of DeepSCC

Fig. 7. Optimal mode in the first frame of “Programming”. Intra, IBC and PLT
coded CUs are noted by blue, yellow and red blocks, respectively.

Fig. 6. Training loss of DeepSCC-I and DeepSCC-II alongside iterations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

comes from two parts, which are the size of the parameters
stored in the Caffe model and the size of generated feature maps
when running DeepSCC. If a CTU is a dynamic CTU, the Caffe
model of DeepSCC-I is invoked, which takes up 348.47KB. To
store the generated feature maps, 47.66KB is needed by using
the double-precision floating point which requires 8B in C
language. Therefore, the memory overhead is 396.13KB for
DeepSCC-I. On the other hand, the Caffe model of DeepSCC-
II is invoked for stationary CTUs, which takes up 348.80KB,
and the associated feature maps require 48.32KB. Therefore, the
memory overhead is 397.12KB for DeepSCC-II. Comparatively,
a video frame with the resolution of 2560×1440 pixels takes up
108,00KB (2560× 1440 × 3 ÷ 1024). Therefore, the memory
overhead percentages of DeepSCC-I and DeepSCC-II over the
frame memory are only 3.67% and 3.68%, respectively.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed DeepSCC, it

has been implemented in SCM-8.3 [25], and the DNN tool of
OpenCV 3.4.1 is used to invoke the trained Caffe model in
SCM-8.3. The trained Caffe model and the source code of the
proposed DeepSCC can be found in our website [37]. The
coding efficiency and computational complexity are compared
with the original SCM-8.3 under all-intra (AI) configuration
defined in CTC [26], and they are measured by BDBR and
encoding time increase ΔTime in percentage (%). It should be
noted that no GPU but only a CPU is enabled for making fair
comparisons. The test platform used for simulations was a HP
EliteDesk 800 G1 computer with a 64-bit Microsoft Windows
10 OS running on an Intel Core i7-4790 CPU of 3.6 GHz and
32.0 GB RAM. First, a series of ablation experiments were
performed to decide the optimal structure of DeepSCC by using
validation sequences [29], [31], [32], [38] in Table V. Second,
the performance of DeepSCC is evaluated by comparing it with
the existing fast SCC prediction algorithms. Third, the
performances of the individual DeepSCC-I and DeepSCC-II are
analyzed. In the following sub-sections, we highlight the largest
decrease in ΔTime and smallest increase in BDBR by boldface
when making comparisons between different methods.

A. Ablation Study
In this sub-section, various experiments were performed to

decide the optimal structure of the proposed DeepSCC by using
the validation sequences shown in Table V.
1) Threshold Determination

As aforementioned in Section III.D, a content-adaptive
threshold ߙ௫ is used to eliminate unnecessary mode candidates
in a CU, and its value is controlled by two predefined
parameters ߙ௦ and ߙௗ௬ . A fixed value of ߙௗ௬ is

applied to analyze the impact of ߙ௦ , and the results are
shown in Fig. 8. It is observed that as the value of ߙ௦
increases, more encoding time is reduced at the cost of a larger
increase in BDBR. Besides, when the gap between ߙ௦ and
ௗ௬ߙ , i.e., ߙ௦ − ௗ௬ߙ , is large, BDBR increases quickly.
For example, when the gap between ߙ௦ and ߙௗ௬ increases
from 0 to 0.02, the encoding time is further reduced by 5.50%
while BDBR is further increased by only 0.37%. When the gap
between ߙ௦ and ߙௗ௬ increases from 0.02 to 0.04, the
encoding time is further reduced by 3.96% while BDBR is
further increased by 0.86%. Therefore, we limit the gap
between ߙ௦ and ߙௗ௬ to a small value to balance the
encoding time reduction and the increase in BDBR, and the
results are shown in Table VI. It is observed that DeepSCC is
complexity scalable and it provides 46.60%–56.34% encoding
time reduction with BDBR increased by 0.48%–1.33%. In the
following sub-sections, ߙ௦ is set to 0.05 and ߙௗ௬ is set to
0.04 for further discussions, where 52.35% encoding time is
reduced with 0.83% increase in BDBR.
2) Decoupling Local Features and Global Features

The proposed DeepSCC utilizes convolutional layers and
deconvolutional layers to extract the local features and global
features in a CTU, respectively. Then, they are concatenated
together to predict the mode labels. To evaluate the importance
of the proposed structure, two sets of experiments were
performed by decoupling local features and global features, i.e.,
removing concat1–concat3 from DeepSCC. First, only the
feature maps of conv2–conv5 are fed to concat4–concat7 so that
only local features are utilized to make mode prediction.
Second, only the feature maps of conv5 and deconv1–3 are fed
to concat4–concat7 so that only global features are utilized to
make mode prediction. Let us call them LFDeepSCC and
GFDeepSCC, respectively, and their performances are shown
in Table VII. It is observed that LFDeepSCC provides 36.90%
encoding time reduction with 0.73% increase in BDBR. The
original DeepSCC outperforms it by providing a much higher
encoding time reduction of 52.35% with a similar increase in
BDBR. GFDeepSCC also shows worse performance than
DeepSCC by providing 50.66% encoding time reduction with
0.90% increase in BDBR. Therefore, concatenating the local
features and global features helps to improve the performance
of the proposed DeepSCC.
3) Term Normalization in Loss Function

In (1), the loss function of a training sample is derived as the
sum of cross-entropy over all labels in the four depth levels, and
the terms for different depth levels are not normalized. For
example, the loss function contains only one term in the depth

Fig. 8. Performance of DeepSCC with various values of ߙ௦ and the fixed
value of ߙௗ௬ .

TABLE V
VALIDATION SEQUENCES FOR DEEPSCC

Categories Sequences Resolution No. of Frame Frame Rate (Hz)
TGM BitstreamAnalyzer 1920×1080 300 30

Doc 1280×720 500 10
Web 1280×720 500 10

M KimonoError2 2560×1440 500 60
CC BirdsInCage 1920×1080 600 60

DucksAndLegs 1920×1080 300 30
Traffic 2560×1440 60 30

VenueVu 1920×1080 300 30

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

level of 0 while it contains 64 terms in the depth level of 4. The
reason that we do not normalize the loss function to let the terms
of different depth levels have equal weight is that the mode
classifications in deeper depth levels are more complex.
Therefore, the loss function without term normalization will be
naturally more focused on the mode classification of small CUs.
To prove its advantage, Table VII shows the performance of
DeepSCC using loss function with term normalization. It is
observed that the original DeepSCC outperforms DeepSCC
with term normalization by providing 6.4% more encoding time
reduction with almost the same increase in BDBR.
4) Feature Fusion Function

To join the convolution features, deconvolution features, and
optimal mode maps of the collocated CTU, the concatenating
layer is adopted in DeepSCC. It is one of the most widely used
feature fusion layers and it can join feature maps with the
arbitrary channel number. An alternative way is to use element
wise addition layer which can only join two sets of feature maps
with the equal channel numbers. Therefore, element wise
addition layers can be adopted to join convolution features and
deconvolution features since they have equal channel numbers,
and then they are concatenated to the optimal mode maps of the
collocated CTU. Table VII shows the results of DeepSCC with
element wise addition layers. It is observed it almost shows the
same results as the original DeepSCC. Therefore, different
feature fusion functions have a minor impact on the DeepSCC.
5) Adoption of DenseNet Structure

Recently, many advanced CNN structures have been
proposed for different tasks. For example, DenseNet [39]
alleviates the vanishing-gradient problem, encourages feature
reuse and substantially reduces the number of parameters. A set

of experiments that adopt the DenseNet structure into DeepSCC
were conducted. Each set of kernels in conv1–conv5 and
deconv1–deconv3 are replaced by a 4-layer dense block in [39],
and the growth rate is 1/4 of the original channel number in each
layer so that the output of a 4-layer dense block has the same
channel number as the one in the original DeepSCC. The results
are shown in Table VII, and it is observed that the adoption of
DenseNet does not help to improve the performance of
DeepSCC, and it shows almost the same results as the original
DeepSCC with ߙ௦ =0.03 and ߙௗ௬=0.01, as in Table VI.
6) Learning Policy

In the training process of DeepSCC, the learning rate policy
of “Poly” is adopted rather than the conventional “Step”. To
evaluate the efficiency of this strategy, experiments were done
by training DeepSCC with “Step” with the same values of ݈ܾ݁ݏܽݎ
and ݉ܽݔ௧ , and the learning rate is multiplied by 0.1 every
10,000 iterations. The performance comparison is shown in
Table VII. It is observed that DeepSCC with “Step” achieves
51.18% encoding time reduction with 0.94% increase in BDBR.
By replacing “Step” with “Poly”, DeepSCC shows a slightly
better performance of 1.17% larger encoding time reduction
and 0.11% smaller increase in BDBR.
7) Number of Channels

The proposed DeepSCC has the advantage of automatically
learning useful features by using extensive learnable parameters,
which is controlled by the number of channels in each layer. If
a small number of channels are employed, DeepSCC may run
into the underfitting problem. On the contrary, if a larger
number of channels are employed, DeepSCC may run into the
overfitting problem. To evaluate the impact of the channel
number in DeepSCC, another four sets of experiments were

TABLE VII
PERFORMANCE COMPARISON OF DEEPSCC AND OTHER POSSIBLE DESIGNS

Sequences
LFDeepSCC GFDeepSCC DeepSCC with term

normalization
DeepSCC with element

wise addition layer
DeepSCC with

DenseNet structure
DeepSCC with

“Step”
 Proposed
DeepSCC

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
 (%)

∆Time
 (%)

BDBR
 (%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BitstreamAnalyzer 0.82 -45.20 0.83 -40.86 1.82 -38.81 0.78 -44.69 0.46 -34.05 1.30 -47.50 0.79 -45.29
Doc 1.44 -49.02 1.79 -50.18 0.92 -47.90 1.24 -49.20 1.21 -43.19 1.48 -50.01 1.35 -50.47
Web 1.77 -51.11 1.45 -51.61 1.10 -49.04 1.60 -52.15 1.14 -44.19 1.68 -51.02 1.43 -52.71

KimonoError2 0.87 -37.28 0.82 -39.75 0.82 -33.19 0.81 -37.30 0.29 -38.15 0.73 -36.25 0.76 -37.24
BirdsInCage 0.03 -29.38 0.11 -58.02 0.07 -51.96 0.09 -61.91 0.10 -65.08 0.09 -57.68 0.09 -59.07

DucksAndLegs 0.03 -20.02 0.19 -61.32 0.22 -61.15 0.22 -64.27 0.10 -51.48 0.32 -63.11 0.24 -64.21
Traffic 0.29 -35.24 0.93 -52.94 0.72 -40.78 0.78 -54.61 0.07 -46.16 0.82 -53.89 0.90 -56.96

VenueVu 0.57 -27.93 1.10 -50.58 0.92 -44.79 1.00 -53.16 1.07 -52.46 1.12 -50.01 1.08 -52.85
Average (TGM+M) 1.23 -45.65 1.22 -45.60 1.17 -42.23 1.11 -45.84 0.78 -39.90 1.30 -46.20 1.08 -46.43

Average (CC) 0.23 -28.14 0.58 -55.72 0.48 -49.67 0.52 -58.49 0.34 -53.80 0.59 -56.17 0.58 -58.27
Average (ALL) 0.73 -36.90 0.90 -50.66 0.82 -45.95 0.82 -52.16 0.56 -46.85 0.94 -51.18 0.83 -52.35

TABLE VI
PERFORMANCE OF THE PROPOSED DEEPSCC FOR VALIDATION SEQUENCES WITH DIFFERENT VALUES OF ߙ௦ AND ߙௗ௬

Sequences
௦ߙ =0.03
 ௗ௬=0.02ߙ

௦ߙ =0.03
 ௗ௬=0.01ߙ

 ௦=0.05ߙ
 ௗ௬=0.04ߙ

௦ߙ =0.05
 ௗ௬=0.03ߙ

௦ߙ =0.07
 ௗ௬=0.06ߙ

 ௦=0.07ߙ
 ௗ௬=0.05ߙ

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)
BitstreamAnalyzer 0.43 -40.74 0.44 -41.49 0.79 -45.29 0.91 -45.43 1.42 -48.60 1.52 -49.35

Doc 0.38 -45.05 0.34 -44.13 1.35 -50.47 1.52 -51.56 2.06 -55.60 2.13 -56.70
Web 0.86 -47.17 1.03 -48.32 1.43 -52.71 1.57 -54.04 2.71 -56.66 2.99 -57.82

KimonoError2 0.66 -31.63 0.70 -29.75 0.76 -37.24 0.82 -37.14 0.90 -39.98 0.93 -39.98
BirdsInCage 0.04 -49.37 0.04 -49.95 0.09 -59.07 0.10 -59.03 0.14 -63.01 0.14 -63.10

DucksAndLegs 0.17 -62.23 0.17 -62.22 0.24 -64.21 0.24 -64.48 0.33 -65.51 0.33 -65.76
Traffic 0.57 -51.02 0.59 -51.33 0.90 -56.96 0.91 -56.64 1.16 -60.05 1.16 -60.37

VenueVu 0.76 -45.55 0.81 -45.93 1.08 -52.85 1.10 -52.60 1.36 -56.77 1.40 -57.67
Average (TGM+M) 0.58 -41.15 0.63 -40.92 1.08 -46.43 1.21 -47.04 1.77 -50.21 1.89 -50.96

Average (CC) 0.39 -52.04 0.40 -52.36 0.58 -58.27 0.59 -58.19 0.75 -61.34 0.76 -61.73
Average (ALL) 0.48 -46.60 0.52 -46.64 0.83 -52.35 0.90 -52.62 1.26 -55.77 1.33 -56.34

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

performed, i.e., multiplying the channel number of each layer
before concat4–concat7 by 1/4, 1/2, 2, 4, and they are denoted
as NumChannel/4, NumChannel/2, NumChannel×2,
NumChannel×4, respectively. The results are shown in Table
VIII. It is observed that the original DeepSCC shows slightly
better performance than the networks with the other number of
channels. As the channel number increases, the performance of
DeepSCC is improved first because of underfitting, and then it
is dropped because of overfitting. Therefore, DeepSCC with the
proposed channel number achieves a good tradeoff between
∆Time and BDBR.

B. Performance of DeepSCC
Table IX shows the performance of the proposed DeepSCC

for training sequences, where 50.17% encoding time is reduced
with 1.13% negligible increase in BDBR. Then, to evaluate the
performance of the proposed DeepSCC, it is directly compared
with four state-of-the-art SCC fast intra prediction algorithms
[14], [20], [22], [23]. It is noted that they were implemented in
different reference software from ours in their original
publications. Zhang et al.’s method [14], Lei et al.’s method [20],
Duanmu et al.’s method [22], and Yang et al.’s method [23]
were simulated using SCM-3.0, SCM-2.0, SCM-4.0, and SCM-
5.0, respectively. There are numerous enhancements, speed-up
techniques and codes clean-up in SCM-8.3 compared with the
older versions. Therefore, we re-implemented them into SCM-
8.3 for direct comparison. Besides, we make an indirect
comparison of the proposed DeepSCC with Huang et al.’s
method [24] because we do not have the source code of their
approach. However, DeepSCC is implemented in the same
reference software as Huang et al.’s method [24], SCM-8.3,

which makes the indirect comparison to be fair. The results for
14 testing sequences in YUV 4:4:4 format are shown in Table X.

It is observed that DeepSCC outperforms the SCC fast intra
prediction algorithms [14], [20], [22]–[24] by providing 48.81%
encoding time reduction with only 1.18% increase in BDBR.
Compared with the results in Table IX, DeepSCC provides
similar performance for both training sequences and testing
sequences. This shows that the proposed DeepSCC is
generalizable to the unseen sequences. Zhang et al.’s method [14]
shows similar increase in BDBR to the proposed DeepSCC, but
it provides 15.62% smaller encoding time reduction than
DeepSCC. Since Zhang et al.’s method [14] strongly relies on
the CUs having similar content as their collocated CUs, it shows
very limited encoding time reduction for sequences with almost
only dynamic regions, such as “FlyingGraphics”, “Robot”,
“EBURainFruits”, and “Kimono1”, where only 4.60%, 12.04%,
16.48%, and 0.46% encoding time is reduced. Comparatively,
DeepSCC can efficiently address dynamic CTUs, and it
provides 30.76%, 49.73%, 55.94% and 70.68% encoding time
reduction for those sequences. Lei et al.’s method [20], Duanmu
et al.’s method [22] and Yang et al.’s method [23] all eliminate
the mode candidates for a CU by classifying it into a NIB or a
SCB, and at most one mode, i.e., Intra mode, is skipped for a
SCB. On the contrary, DeepSCC directly performs the mode
classification rather than the simple CU type classification, so
IBC and PLT modes are no longer always checked together for
a SCB. As a result, DeepSCC outperforms the fast algorithms
[20], [22], and [23] by providing 15.61%, 21.92% and 13.45%
larger encoding time reduction with 1.18%, 0.52%, and 2.32%
smaller increase in BDBR, respectively. It should be noted that
we do not fine-tune the algorithms in [14], [20], [22], [23] when
migrating them from their original SCM versions to SCM-8.3,
and the results in Table X may not represent their best
performance in SCM-8.3. However, DeepSCC outperforms
them by a large margin in SCM-8.3. Furthermore, Table XI
further shows the indirect comparisons between DeepSCC and
algorithms in [14], [20], [22], [23] under different SCM
versions where these algorithms are fine-tuned. It is observed
that DeepSCC also achieves the best trade-off between ∆Time
and BDBR. Although Zhang et al.’s method [14] has 0.14%
smaller increase in BDBR than DeepSCC, it provides 10% less
encoding time reduction than DeepSCC. Therefore, it is
reasonable to conclude that DeepSCC has better performance
than the algorithms in [14], [20], [22], [23]. Huang et al.’s
method [24] adopts a hybrid framework of neural network-based
classifiers for CU type classification and various heuristic rules
to make CU partitioning decisions. Comparatively, the proposed

TABLE VIII
PERFORMANCE COMPARISON OF DEEPSCC WITH DIFFERENT NUMBER OF CHANNELS

Sequences NumChannel/4 NumChannel/2 Original DeepSCC NumChannel×2 NumChannel×4
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

BitstreamAnalyzer 1.35 -38.14 1.67 -38.90 0.79 -45.29 1.36 -47.26 1.10 -47.93
Doc 1.36 -49.86 1.32 -50.52 1.35 -50.47 1.31 -47.23 1.35 -47.88
Web 1.32 -50.67 1.50 -51.76 1.43 -52.71 1.45 -51.23 1.41 -50.56

KimonoError2 0.78 -35.67 0.79 -38.04 0.76 -37.24 0.68 -36.72 0.91 -36.82
BirdsInCage 0.08 -55.92 0.07 -66.94 0.09 -59.07 0.07 -55.16 0.09 -50.04

DucksAndLegs 0.17 -43.67 0.18 -62.15 0.24 -64.21 0.23 -64.74 0.29 -63.38
Traffic 0.53 -49.04 0.79 -56.14 0.90 -56.96 0.96 -52.78 1.02 -52.23

VenueVu 1.10 -49.85 1.12 -54.27 1.08 -52.85 1.10 -53.85 1.11 -45.24
Average (TGM+M) 1.20 -43.59 1.32 -44.81 1.08 -46.43 1.20 -45.61 1.19 -45.80

Average (CC) 0.47 -49.62 0.54 -59.88 0.58 -58.27 0.59 -56.63 0.63 -52.72
Average (ALL) 0.84 -46.60 0.93 -52.34 0.83 -52.35 0.90 -51.12 0.91 -49.26

 TABLE IX
PERFORMANCE OF THE PROPOSED DEEPSCC FOR TRAINING SEQUENCES

Training Sequences BDBR (%) ∆Time (%)
ClearTypeSpreadsheet 1.01 -53.59

PptDocXls 1.99 -45.60
RealTimeData 1.04 -40.91
WordEditing 1.40 -53.54

VideoConferencingDocSharing 1.86 -52.61
BigBuck 1.18 -42.48

KristenAndSaraScreen 0.90 -46.69
MissionControlClip1 1.37 -47.43

Viking 1.78 -54.40
EBULupoCandlelight 0.25 -53.60

Seeking 0.30 -52.65
ParkScene 0.47 -58.51

Average (TGM+M) 1.34 -47.86
Average (A+CC) 0.70 -54.79
Average (ALL) 1.13 -50.17

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

DeepSCC integrates the mode decision and CU partitioning
decision into the same network by using a one-pass design.
Therefore, DeepSCC is easier for implementation than Huang et
al.’s method [24]. As observed in Table X, Huang et al.’s
method [24] provides 49.34% encoding time reduction with
1.36% increase in BDBR for their selected sequences. However,
the proposed DeepSCC outperforms Huang et al.’s method [24]
by reducing nearly the same encoding time with 0.16% less
increase in BDBR based on the same SCM-8.3. Besides, the
training sequences of Huang et al.’s method [24] are partly
overlapped with its testing sequences, where “WebBrowsing”
and “Kimono1” are utilized for both training and testing. On the
contrary, the training and testing sequences of the proposed
DeepSCC are totally different, which avoids overfitting.

To understand the advantage of the proposed DeepSCC over
the fast prediction algorithms [14], [20], [22], [23], the mode
decision made by each algorithm is analyzed in detail. Table XII
shows the distribution of mode decision in each depth level for
a representative sequence “Console”. It should be noted that
“Console” only contains SCBs. Table I shows “Console” is the
sequence with the smallest percentage of Intra mode, and we
find that disabling Intra mode for “Console” leads to 31.58%
encoding time reduction with only 0.69% increase in BDBR. To
reduce redundant mode checking, a good prediction algorithm
should let most CUs in “Console” only check IBC or PLT mode
or skip all modes in a depth level. Let us call only checking IBC
or PLT mode or skip all modes as Goal Mode. It can be seen
from Table XII that the proposed DeepSCC obviously
outperforms fast prediction algorithms [14], [20], [22], [23].
Since DeepSCC is the only algorithm in Table XII that directly
makes mode decision of Intra, IBC, and PLT, it shows a more
flexible combination of mode decision than others. For example,
IBC mode can be checked alone or checked together with PLT

mode or Intra mode. It is observed that many CUs only check
IBC or PLT mode or skip all modes, and it has the highest
percentages of Goal Mode among the algorithms in Table XII,
which are 90.57%, 58.64%, 42.28%, and 42.88% in the depth
levels of 0, 1, 2, and 3, respectively. For a CU that has similar
content as its collocated CU, Zhang et al.’s method [14] only
checks PLT mode if the depth levels of the current CU and the
collocated CU are not equal. Otherwise, all modes are checked.
Therefore, 9.19%–39.37% CUs only check PLT mode in the
depth levels of 1–3. However, it still has 53.26%–90.81% CUs
need to check all modes in the depth levels of 0–3. Lei et al.’s
method [20] has no early mode decision for SCBs, and it only
utilizes some rules to skip all modes in a CU. Hoverer, it has
38.89%–91.11% CUs need to check all modes in the depth levels
of 0–3. Duanmu et al.’s method [22] manually disables IBC
mode for all CUs in the depth level of 0, and all SCBs need to
redundantly check Intra mode in the depth level of 0. Although
some thresholds are derived to skip remaining mode candidates
for CUs with small bit cost, it is observed that 52.50%–88.13%
CUs need to check both IBC and PLT modes due to the simple
CU type classification. Yang et al.’s method [23] always checks
Intra mode for CUs with 2N×2N PUs to obtain the features
required by classifiers, so that Intra mode takes a very large
percentage even though “Console” only contains SCBs. Besides,
it falsely skips IBC and PLT modes for many CUs, which
explains the reason for the very high increase in BDBR of 7.38%
for “Console”.

Table XIII shows the hit rate of Intra, IBC and PLT predicted
by the proposed DeepSCC, which is calculated as the
percentage of the areas encoded by the same mode as the
original SCM-8.3. Besides, the hit rate of Allskip is also given
by calculating as the percentage of CUs whose all modes are
correctly skipped compared with the original SCM-8.3. Since
that sequences in A+CC barely select IBC and PLT modes, only
the hit rate of Intra mode is shown for them. It is observed that
the prediction hit rate of DeepSCC is very high and it varies
from 87.23% to 99.45% for different class, different sequences
and different QPs. Therefore, the proposed DeepSCC induces a
negligible increase in BDBR. In addition, the hit rate is
maintained stable for testing sequences with QPs of 22, 27, 32

TABLE X
PERFORMANCE OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 UNDER CTC FOR SEQUENCES IN YUV 4:4:4 FORMAT

Sequences Zhang et al. [14] Lei et al. [20] Duanmu et al. [22] Yang et al. [23] Huang et al. [24] Proposed DeepSCC
BDBR (%) ∆Time (%) BDBR (%) BDBR (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing 0.65 -49.73 0.99 -18.96 1.10 -17.47 4.30 -34.16 1.07 -48.80
Console 3.36 -39.35 2.87 -23.40 1.87 -28.12 7.38 -42.83 1.06 -41.85
Desktop 1.95 -47.94 1.97 -23.85 2.19 -26.24 6.27 -35.91 0.84 -46.48 1.00 -53.46

FlyingGraphics 0.84 -4.60 1.72 -18.13 0.98 -20.13 5.47 -31.19 1.10 -43.45 0.99 -30.76
Map 0.85 -36.95 1.23 -20.05 1.55 -19.16 2.84 -41.66 1.25 -42.60 1.79 -36.36

Programming 1.16 -40.44 2.50 -22.92 1.89 -22.16 4.71 -27.38 2.05 -53.66 0.87 -42.74
SlideShow 1.39 -44.15 2.32 -55.58 2.82 -52.47 3.69 -34.45 1.54 -68.38 2.78 -55.36

WebBrowsing 2.05 -51.73 6.02 -26.75 1.91 -28.17 5.00 -53.00 0.99 -55.33 0.88 -54.09
BasketballScreen 1.06 -41.84 1.46 -24.83 1.25 -22.43 3.00 -31.54 0.87 -39.83 1.27 -46.78

MissionControlClip2 1.29 -39.08 1.71 -25.49 2.86 -33.90 2.51 -38.54 1.47 -46.39 1.56 -51.16
MissionControlClip3 1.05 -39.91 1.69 -33.81 2.03 -24.61 2.90 -34.15 1.63 -39.42 1.01 -45.96

Robot 0.92 -12.04 5.21 -46.91 1.18 -29.36 0.59 -28.19 2.52 -40.31 1.81 -49.43
EBURainFruits 0.71 -16.48 1.76 -48.58 0.88 -26.47 0.17 -25.89 0.67 -50.56 0.29 -55.94

Kimono1 0.15 -0.46 1.52 -75.55 1.23 -25.75 0.13 -36.18 1.35 -65.74 0.17 -70.69
Average (TGM+M) 1.42 -39.61 2.23 -26.71 1.86 -26.81 4.37 -36.80 1.30 -48.39 1.30 -46.12

Average (A+CC) 0.59 -9.66 2.83 -57.01 1.10 -27.19 0.30 -30.09 1.51 -52.20 0.76 -58.69
Average ([19]) 1.36 -49.34 1.20 -49.39
Average (ALL) 1.25 -33.19 2.36 -33.20 1.70 -26.89 3.50 -35.36 1.18 -48.81

Indirect comparison is made between [24] and DeepSCC based on SCM-8.3, and [14], [20], [22], [23] were re-implemented into SCM-8.3 for direct comparison.

TABLE XI
INDIRECT COMPARISIONS UNDER DIFFERENT SCM VERSIONS
Methods SCM version BDBR (%) ∆Time (%)

Zhang et al. [14] SCM-3.0 1.04 -39
Lei et al. [20] SCM-2.0 2.01 -45

Duanmu et al. [22] SCM-4.0 1.46 -40
Yang et al. [23] SCM-5.0 2.72 -49

Proposed DeepSCC SCM-8.3 1.18 -49

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

and 37. It is due to the reason that the model of DeepSCC is
trained using mixed data generated by QPs of 22, 27, 32 and 37.
Furthermore, we also investigate the hit rate of DeepSCC if we
train a model by data only from QP of 37 and then apply it to

test sequences with QPs of 22 and 37. The results are shown in
Table XIV. It is observed that for testing sequences with QP of
37, DeepSCC trained by data from QP of 37 has similar hit rate
to the proposed DeepSCC trained by the mixed data from QPs
of 22, 27, 32 and 37. However, DeepSCC trained by data from
QP of 37 has lower hit rate than the proposed DeepSCC for QP
of 22. Therefore, a single model trained by the mixed data from
QPs of 22, 27, 32 and 37 can cover a wider QP range of testing
sequences while providing similar hit rate to the model trained
and tested by data from one QP.

Fig. 9 shows the RD curve and ∆Time for four sequences over
different QPs by using DeepSCC, and it is noted that other
sequences have similar results. It is observed that the RD curves
of DeepSCC are very close to those of the original SCC encoder,
which indicates that DeepSCC has negligible influence on video
quality. Besides, ∆Time varies little over different QPs for all
sequences. Therefore, DeepSCC provides stable performance in
both high and low bitrate cases.

Fig. 10 shows the computational overhead of the proposed
DeepSCC, which is calculated as the ratio of running DeepSCC
to the total encoding time of the proposed fast encoder. Since
DeepSCC adopts non-overlapping convolutions and outputs 85

TABLE XIII
HIT RATE OF THE PROPOSED DEEPSCC

Sequences QP=22 (%) QP=27 (%) QP=32 (%) QP=37 (%)
Intra IBC PLT Allskip Intra IBC PLT Allskip Intra IBC PLT Allskip Intra IBC PLT Allskip

ChineseEditing 98.23 98.50 94.86 95.81 97.91 98.38 94.84 95.87 97.47 98.29 94.23 95.60 95.79 97.80 93.85 95.91
Console 98.07 98.03 96.45 97.21 97.68 98.17 96.39 96.98 97.09 98.17 96.34 96.67 94.43 97.45 96.08 95.86
Desktop 98.18 98.33 96.57 96.65 98.04 98.22 96.35 96.85 97.46 98.07 96.20 96.44 96.22 97.59 95.59 95.78

FlyingGraphics 96.48 98.91 93.76 94.20 96.50 99.00 93.83 95.20 96.34 99.02 93.95 95.73 95.75 98.93 94.85 96.20
Map 99.45 98.26 90.84 99.07 99.38 97.63 90.95 98.73 99.13 97.41 91.04 98.75 98.62 97.70 91.59 98.90

Programming 97.04 96.37 94.13 95.21 97.92 96.56 93.71 97.65 98.09 96.20 93.77 98.16 97.79 96.31 93.39 98.48
SlideShow 98.08 92.03 92.61 98.84 98.50 95.52 92.76 99.45 99.00 96.62 94.09 99.74 99.06 95.15 94.75 99.84

WebBrowsing 98.76 98.67 96.70 98.16 98.74 98.03 95.76 97.79 98.93 97.80 96.32 98.41 98.37 97.69 95.29 98.70
BasketballScreen 98.44 96.02 92.12 95.98 99.02 95.97 91.41 97.70 99.05 97.83 91.35 98.34 98.70 96.77 91.97 98.68

MissionControlClip2 95.83 96.19 90.65 94.47 97.71 96.92 90.78 97.51 98.70 96.51 90.85 98.79 98.22 97.05 90.38 99.23
MissionControlClip3 97.25 97.79 93.38 95.92 98.13 97.86 93.07 98.06 98.51 98.25 93.22 98.78 98.30 97.69 93.20 98.90

Robot 97.33 87.23 99.19 93.83 99.39 97.85 98.50 99.40
EBURainFruits 97.33 95.58 98.12 98.02 98.75 99.07 98.59 99.61

Kimono1 96.66 97.49 98.48 99.13 98.78 99.53 98.77 99.70
Average (TGM+M) 97.80 97.19 93.82 96.50 98.14 97.48 93.62 97.44 98.16 97.65 93.76 97.76 97.39 97.28 93.72 97.86

Average (A+CC) 97.11 93.43 98.60 96.99 98.97 98.82 98.62 99.57
Average (ALL) 97.65 97.19 93.82 95.84 98.24 97.48 93.62 97.34 98.34 97.65 93.76 97.99 97.65 97.28 93.72 98.23

TABLE XII
COMPARISON OF THE MODE DECISION DISTRIBUTION DECIDED BY DIFFERENT ALGORITHMS OF “CONSOLE”

Algorithm Depth
level

Console (%)
Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT Skip All Modes Goal Mode

Proposed
DeepSCC

0 5.58 5.46 3.85 85.11 90.57
1 1.08 16.62 21.42 5.93 2.39 22.37 9.59 20.60 58.64
2 2.54 26.23 3.18 7.99 1.16 31.53 14.50 12.87 42.28
3 1.57 24.97 0 9.31 0 20.93 25.31 17.91 42.88

Zhang et al. [11]

0 0 0 53.26 46.74 46.74
1 0 0 39.37 0 0 0 60.63 0 39.37
2 0 0 25.75 0 0 0 74.25 0 25.75
3 0 0 9.19 0 0 0 90.81 0 9.19

Lei et al. [12]

0 0 0 38.89 61.11 61.11
1 0 0 0 0 0 0 91.11 8.89 8.89
2 0 0 0 0 0 0 93.00 7.00 7
3 0 0 0 0 0 0 60.17 39.83 39.83

Duanmu et al. [14]

0 100 0 0 0 0
1 3.40 0 0 0 0 88.13 7.61 0.86 0.86
2 3.10 0.23 0 0.04 0 77.29 7.76 11.58 11.81
3 0.21 0.09 0 0.02 0 52.50 21.47 25.71 25.8

Yang et al. [15]

0 100 0 0 0 0
1 72.11 0 0 0 0 0 27.77 0.12 0.12
2 33.94 0 0 0 0 0 62.89 3.17 3.17
3 21.55 0 0 0 0 36.26 23.20 18.99 18.99

TABLE XIV
HIT RATE OF DEEPSCC TRAINED BY DATA FROM QP OF 37

Sequences QP=22 (%) QP=37 (%)
Intra IBC PLT Allskip Intra IBC PLT Allskip

ChineseEditing 96.56 97.70 94.89 95.03 97.04 97.40 94.89 96.71
Console 96.26 98.28 96.01 96.80 96.99 98.48 96.01 96.74
Desktop 96.28 98.51 94.54 97.37 96.76 98.07 94.54 96.56

FlyingGraphics 96.92 98.59 91.05 94.79 96.73 98.83 91.05 95.07
Map 98.10 97.44 90.01 95.59 98.77 97.57 90.01 98.45

Programming 94.18 92.54 92.50 91.89 97.40 96.79 92.50 97.75
SlideShow 92.97 89.16 91.07 96.43 98.60 95.48 91.07 99.70

WebBrowsing 98.00 97.15 92.53 95.91 98.55 97.35 92.53 98.78
BasketballScreen 92.00 95.05 92.19 84.32 98.71 96.90 92.19 98.50

MissionControlClip2 81.53 79.17 89.13 86.65 97.79 96.78 89.13 98.83
MissionControlClip3 89.93 96.52 92.80 90.11 98.39 97.77 92.80 98.52

Robot 72.14 53.39 96.80 96.43
EBURainFruits 88.00 85.47 98.14 98.75

Kimono1 91.80 94.90 98.70 99.59
Average (TGM+M) 93.88 94.56 92.43 93.17 97.79 97.40 92.43 97.78

Average (A+CC) 83.98 77.92 97.88 98.25
Average (ALL) 91.76 94.56 92.43 89.90 97.81 97.40 92.43 97.88

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

labels in a single test, the computational overhead is very low,
which varies from 1.17% to 3.94% of the total encoding time
for all test sequences. It is noted that the computational overhead
is included to calculate the total encoding time of the proposed
DeepSCC for all simulations in this paper.

Table XV shows the performance of DeepSCC applied to
sequences in RGB 4:4:4 and YUV 4:2:0 formats. While the
luminance samples of sequences in YUV 4:2:0 format are
directly input to DeepSCC, color space conversion is performed
for sequences in RGB 4:4:4 format to get the luminance samples.
It should be noted that DeepSCC is only trained by sequences
in YUV 4:4:4 format. However, DeepSCC shows good
generalization for sequences in YUV 4:2:0 and RGB 4:4:4
formats, where 46.49% and 43.69% encoding time is reduced
with only 1.13% and 1.29% increase in BDBR, respectively.
Since most existing fast SCC prediction algorithms do not
support sequences in other formats, we cannot make the
comparison for sequences in YUV 4:2:0 and RGB 4:4:4 formats.

 Since intra-prediction also exists in low-delay (LD) and
random-access (RA) configurations, Table XVI shows the
performance comparisons between DeepSCC and algorithms in
[14], [20], [22], [23] applied to these configurations. It should be

noted that all algorithms are not fine-tuned for LD and RA
configurations. It is observed DeepSCC achieves the best trade-
off between ∆Time and BDBR, where 11.92% and 10.85%
encoding time is reduced with BDBR increased by 0.90% and
0.58% under LD and RA configurations, respectively.

C. Performance of Individual DeepSCC-I and DeepSCC-II
The proposed overall DeepSCC utilizes DeepSCC-I and

DeepSCC-II to make separate predictions for dynamic CTUs
and stationary CTUs. To show the advantage of this
arrangement, two sets of experiments were performed by only
enabling DeepSCC-I and DeepSCC-II for all CTUs,
respectively. The results are shown in Table XVII. When
applying DeepSCC-II to all CTUs, a very high increase in
BDBR of 3.96% is brought since the mode correlation between
the current CTU and the collected CTU is not guaranteed.
Although some sequences contain very high percentages of
stationary CTUs, they still suffer from very high increases of
BDBR. For example, “ChineseEditing” contains 93.41%
stationary CTUs, and it shows 6.11% increase in BDBR by
implementing the individual DeepSCC-II for all CTUs. When
applying DeepSCC-I to all CTUs, it provides 41.86% encoding
time reduction with 1.03% increase in BDBR. It proves that
DeepSCC-I can address both dynamic CTUs and stationary
CTUs by only take the luminance samples as the input.
However, it shows less encoding time reduction compared with
the overall DeepSCC, especially for sequences with many
stationary CTUs. For example, the proposed overall DeepSCC
shows 13.91% larger encoding time reduction for
“ChineseEditing” than the individual DeepSCC-I. Therefore,
the proposed overall DeepSCC which integrates DeepSCC-I
and DeepSCC-II together helps to improve coding performance.

Fig. 9. RD curve and ∆Time of the proposed DeepSCC for “ChineseEditing”, “Programming”, “BasketballScreen”, and “MissionControlClip2”.

Fig. 10. Computational overhead of the proposed DeepSCC.

TABLE XVII
PERFORMANCE OF THE INDIVIDUAL DEEPSCC-I AND DEEPSCC-II

Sequences
DeepSCC-I DeepSCC-II Proposed Overall

DeepSCC
BDBR

(%)
∆Time

(%)
BDBR

(%)
∆Time

(%)
BDBR

(%)
∆Time

(%)
ChineseEditing 0.69 -35.49 6.11 -43.62 1.07 -48.80

Console 0.83 -33.95 4.92 -26.79 1.06 -41.85
Desktop 0.64 -42.75 4.08 -44.78 1.00 -53.46

FlyingGraphics 0.98 -30.48 6.58 -0.78 0.99 -30.76
Map 1.62 -25.32 4.10 -33.52 1.79 -36.36

Programming 0.76 -33.65 5.40 -26.75 0.87 -42.74
SlideShow 3.19 -51.07 8.73 -40.50 2.78 -55.36

WebBrowsing 0.49 -42.58 7.13 -51.63 0.88 -54.09
BasketballScreen 0.88 -37.05 1.00 -38.29 1.27 -46.78

MissionControlClip2 1.36 -40.62 3.44 -39.25 1.56 -51.16
MissionControlClip3 0.66 -36.94 2.20 -32.25 1.01 -45.96

Robot 1.81 -49.78 1.19 0 1.81 -49.43
EBURainFruits 0.29 -55.67 0.37 0 0.29 -55.94

Kimono1 0.17 -70.69 0.21 0 0.17 -70.69
Average (TGM+M) 1.10 -37.27 4.88 -34.38 1.30 -46.12

Average (A+CC) 0.76 -58.71 0.59 0 0.76 -58.69
Average (ALL) 1.03 -41.86 3.96 -27.01 1.18 -48.81

TABLE XVI
PERFORMANCE COMPARISONS UNDER LD AND RA CONFIGURATIONS.

Methods LD RA
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Zhang et al. [14] 0.14 1.53 0.14 1.25
Lei et al. [20] 1.96 4.52 2.73 5.94

Duanmu et al. [22] 3.17 7.65 2.29 10.47
Yang et al. [23] 4.03 12.45 3.80 13.25

Proposed DeepSCC 0.90 11.92 0.58 10.89

TABLE XV
PERFORMANCE OF DEEPSCC FOR SEQUENCES IN RGB 4:4:4 AND YUV 4:2:0

Sequences RGB 4:4:4 YUV 4:2:0
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Average (TGM+M) 1.29 -42.62 1.27 -42.69
Average (A+CC) 0.54 -60.68 1.40 -49.23
Average (ALL) 1.13 -46.49 1.29 -43.69

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

V. CONCLUSION
In this paper, a deep learning based fast prediction network

DeepSCC was proposed to reduce the computational
complexity of SCC. To avoid the exhaustive mode search in a
CTU, DeepSCC outputs 85 labels for 85 CUs of the CTU in a
single test. For dynamic CTUs, DeepSCC-I was designed to
take the luminance samples of a CTU as the input. For
stationary CTUs, DeepSCC-II additionally utilizes the optimal
mode maps of the collocated CTUs for further performance
improvement. Compared with the traditional fast SCC
prediction algorithms heavily relying on the limited number of
hand-crafted features or heuristic rules, the proposed DeepSCC
automatically learns useful features from the input. With
extensive trainable parameters, DeepSCC can make direct
mode decision for Intra, IBC, and PLT rather than the simple
CU type classification. Experimental results showed that the
proposed DeepSCC provides an average computational
complexity reduction of 48.81% with a negligible increase in
BDBR of 1.18%, and the computational overhead of DeepSCC
is less than 4% of the total encoding time. This paper only
investigated the fast decision in the granular of the CU level,
and it can be treated as a baseline for other CNN approaches in
the future. Future works may include fast algorithms making a
fast decision in the granular of PU and transform unit (TU)
levels for more encoding time reduction. Besides, more
advanced CNN structures in SCC could also be a point for our
future investigation.

REFERENCES
[1] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for cloud-

mobile convergence,” IEEE Multimedia, vol. 18, no. 2, pp. 4–11, Feb.
2011.

[2] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging hevc screen
content coding extension,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 1, pp. 50–62, Jan. 2016.

[3] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[4] G. Bjontegaard, “Calculation of average PSNR differences between rd-
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 2001.

[5] X. Xu et al., “Intra block copy in HEVC screen content coding
extensions”, IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no. 4, pp.
409–419, Dec. 2016.

[6] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced screen content coding
using color table and index map,” IEEE Trans. Image Process., vol. 23,
no. 10, pp. 4399–4412, Oct. 2014.

[7] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “CU partition mode
decision for HEVC hardwired intra encoder using convolution neural
network,” IEEE Trans. Image Process., vol. 25, no. 11, 5088–5103, Aug.
2016.

[8] T. Li, M. Xu and X. Deng, “A deep convolutional neural network
approach for complexity reduction on intra-mode HEVC,” in Proc.
IEEE Int. Conf. Multimedia and Expo, Hong Kong, China, Jul. 2017, pp.
1255-1260.

[9] M. Xu, T. Li, Z. Wang, X. Deng and Z. Guan, “Reducing complexity of
HEVC: A deep learning approach,” IEEE Trans. Image Process., vol.
27, no. 10, 5044–5059, Oct. 2018.

[10] M. Zhang, Y. Guo, and H. Bai, “Fast intra partition algorithm for HEVC
screen content coding,” in Proc. IEEE Vis. Commun. Image Process.,
Valletta, Malta, Dec. 2014, pp. 390–393.

[11] D.-K. Kwon, and M. Budagavi, “Fast intra block copy (IntraBC) search
for HEVC screen content coding,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Melbourne VIC, Australia, Jun. 2014, pp. 9–12.

[12] S.-H. Tsang, W. Kuang, Y.-L. Chan and W.-C. Siu, “Fast HEVC screen
content coding by skipping unnecessary checking of intra block copy
mode based on CU activity and gradient,” in Proc. APSIPA ASC, Jeju,
Korea, Dec. 2016, pp.1–5.

[13] S.-H. Tsang, W. Kuang, Y.-L. Chan and W.-C. Siu, “Reduced-
Complexity Intra Block Copy (IntraBC) Mode with Early CU Splitting
and Pruning for HEVC Screen Content Coding,” IEEE Trans.
Multimedia, vol. 21, no. 2, pp.269–283, Feb. 2019.

[14] H. Zhang, Q. Zhou, N.-N Shi, F. Yang, X. Feng, and Z. Ma, “Fast intra
mode decision and block matching for HEVC screen content
compression,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Shanghai, China, Mar. 2016, pp.1377–1381.

[15] W. Kuang, S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast Mode
Decision Algorithm for HEVC Screen Content Intra Coding,” in Proc.
of Int. Conf. on Image Process., pp. 2473-2477, Beijing, China, Sep.
2017.

[16] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Machine Learning
Based Fast Intra Encoding Decision for HEVC Screen Content Coding
Via Decision Trees,” IEEE Trans. Circuits Syst. Video Technol., early
access, 2019.

[17] S.-H. Tsang, Y.-L. Chan, W. Kuang, and W.-C. Siu, “Mode Skipping
for HEVC Screen Content Coding via Random Forest,” early access,
IEEE Trans. Multimedia, 2019.

[18] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Fast
Intraprediction for High-Efficiency Video Coding Screen Content
Coding by Content Analysis and Dynamic Thresholding,” J. Electron.
Imaging, vol. 27, no. 5, pp. 053029-1-053029-18, Oct. 2018.

[19] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Online-Learning-
Based Bayesian Decision Rule for Fast Intra Mode and CU Partitioning
Algorithm in HEVC Screen Content Coding,” early access, IEEE Trans.
Image Process., 2019.

[20] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra
prediction based on content property analysis for low complexity
HEVC-based screen content coding,” IEEE Trans. Broadcast., vol. 63,
no.1, pp.48–58, Mar. 2017.

[21] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using
machine learning for screen content compression,” in Proc. IEEE Int.
Conf. Image Process., Quebec, QC, Canada, Sep. 2015, pp. 4972–4976.

[22] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision
using machine learning for intra-frame coding in HEVC screen content
coding extension,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no.
4, pp.517–531, Dec. 2016.

[23] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm based
on statistical learning for screen content coding”, in Proc. IEEE Int. Conf.
Image Process., Beijing, China, Sep. 2017, pp. 2468–2472.

[24] C. Huang, Z. Peng, F. Chen, Q. Jiang, G. Jiang and Q. Hu, “Efficient CU
and PU Decision Based on Neural Network and Gray Level Co-
Occurrence Matrix for Intra Prediction of Screen Content Coding,”
IEEE Access, vol. 6, pp. 46643- 46655, Aug. 2018.

[25] HM-16.12+SCM-8.3, HEVC test model version 16.12 screen content
model version 8.3, [Online], available at: https://hevc.hhi.fraunhofer.de/
svn/svn_HEVCSoftware/tags/HM-16.12+SCM-8.3/.

[26] H. -P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions
for screen content coding”, 24th JCT-VC meeting, document JCTVC-
X1015-r1, Geneva, Switzerland, May. 2016.

[27] G. Bjontegaard, “Calculation of average PSNR differences between rd-
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 2001.

[28] R. Cohen, “AHG8: 4:4:4 game content sequences for HEVC range
extensions development”, 14th JCT-VC meeting, document JCTVC-
N0294, Vienna, Austria, Aug. 2013.

[29] A. M. Tourapis, D. Singer, and K. Kolarov, “New test sequences for
screen content coding”, 15th JCT-VC meeting, document JCTVC-
O0222, Geneva, Switzerland, Nov. 2013.

[30] H. -P. Yu, W. Wang, X. Wang, J. Ye, and Z. Ma, “AHG8: New 4:4:4
test sequences with screen content”, 15th JCT-VC meeting, document
JCTVC- O0256, Geneva, Switzerland, Nov. 2013.

[31] J. Guo, L. Zhao, and T. Lin, “Response to B1002 Call for test materials:
Five test sequences for screen content video coding”, 3th JVET meeting,
document JVET-C0044, Geneva, Switzerland, May. 2016.

[32] K. Sharman, and K. Suehring, “Common test conditions”, 24th JCT-VC
meeting, document JCTVC-X1100, Geneva, Switzerland, May. 2016.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” in Proc. ACM Int. Conf. Multimedia, Orlando,
Florida, USA, Nov. 2014, pp. 675–678.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, Dec. 2015, pp.
1026–1034.

[35] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,”
in Proc. Int. Conf. Learning Representations, San Diego, USA, May
2015, pp. 1–13.

[36] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[37] DeepSCC: Deep learning based fast prediction network for screen
content coding. Available at:
http://www.eie.polyu.edu.hk/~ylchan/research/DeepSCC/.

[38] W. Ding, Y. Shi, and B. Yin, “YUV444 test sequences for screen
content”, 13th JCT-VC meeting, document JCTVC-M0431, Incheon,
South Korea, Apr. 2013.

[39] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”. In Proc. IEEE Int. Conf. Computer
Vision, Hawaii, USA, Mar. 2017, pp. 4700-4708.

Wei Kuang (S’17) received the B. S. degree in
School of Electronic and Optical Engineering from
Nanjing University of Science and Technology,
Nanjing, China, in 2015. Now, he is currently
pursuing the Ph.D. Degree in the Department of
Electronic and Information Engineering at The Hong
Kong Polytechnic University. His research interests
include machine learning and deep learning in video
coding and video transcoding. He serves as a
reviewer of international journals including the IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY and KSII TRANSACTIONS ON INTERNET AND
INFORMATION SYSTEMS.

Yui-Lam Chan (S’94-A’97-M’00) received the
B.Eng. (Hons.) and Ph.D. degrees from The Hong
Kong Polytechnic University, Hong Kong, in 1993
and 1997, respectively.
He joined The Hong Kong Polytechnic University in
1997, where he is currently an Associate Professor
with the Department of Electronic and Information
Engineering. He is actively involved in professional
activities. He has authored over 120 research papers
in various international journals and conferences. His
research interests include multimedia technologies,

signal processing, image and video compression, video streaming, video
transcoding, video conferencing, digital TV/HDTV, 3DTV/3DV, multiview
video coding, machine learning for video coding, and future video coding
standards including screen content coding, light-field video coding, and 360-
degree omnidirectional video coding.
Dr. Chan serves as an Associate Editor of IEEE TRANSACTIONS ON IMAGE
PROCESSING. He was the Secretary of the 2010 IEEE International
Conference on Image Processing. He was also the Special Sessions Co-Chair
and the Publicity Co-Chair of the 2015 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference, and the Technical
Program Co-Chair of the 2014 International Conference on Digital Signal
Processing.

Sik-Ho Tsang (M’10) received the Ph.D. degree from
The Hong Kong Polytechnic University (PolyU),
Hong Kong, in 2013.
He was a Postdoctoral Fellow from 2013 to 2016, and
involved numerous industrial projects for video
coding and transcoding. He is currently a Research
Fellow in PolyU. He has authored numerous
international journals, conferences and patents. His
current research fields involve video coding such as
HEVC, VVC, multiview video plus depth coding,

screen content coding, and immersive video coding including light field coding
and 360-degree video coding. His research interests also includes machine
learning and deep learning.
He serves as a reviewer of international journals including the IEEE
TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, and Elsevier
Journal of Signal Processing: Image Communication.

Wan-Chi Siu (S’77-M’77-SM’90-F’12-Life-F’16)
received the MPhil and PhD degrees from The
Chinese University of Hong Kong in 1977 and
Imperial College London in 1984. He is Life-Fellow
of IEEE and Fellow of IET, and Immediate-Past
President (2019-2020) of APSIPA (Asia-Pacific
Signal and Information Processing Association). Prof.
Siu is now Emeritus Professor, and was Chair
Professor, Founding Director of Signal Processing
Research Centre, Head of Electronic and Information

Engineering Department and Dean of Engineering Faculty of The Hong Kong
Polytechnic University. He is an expert in DSP, transforms, fast algorithms,
machine learning, and conventional and deep learning approaches for super-
resolution imaging, 2D and 3D video coding, object recognition and tracking.
He has published 500 research papers (over 200 appeared in international
journal papers), and edited three books. He has also 9 recent patents granted.
Prof. Siu was an independent non-executive director (2000-2015) of a publicly-
listed video surveillance company and convenor of the First Engineering/IT
Panel of the RAE(1992/93) in Hong Kong. He is an outstanding scholar, with
many awards, including the Best Teacher Award, the Best Faculty Researcher
Award (twice) and IEEE Third Millennium Medal (2000). Prof. Siu has been
Guest Editor/Subject Editor/AE for IEEE Transactions on Circuits and System
II, Image Processing, Circuit & System for Video Technology, and Electronics
Letters, and organized very successfully over 20 international conferences
including IEEE society-sponsored flagship conferences, such as TPC Chair of
ISCAS1997 and General Chair of ICASSP2003 and General Chair of ICIP2010.
He was Vice-President, Chair of Conference Board and Core Member of Board
of Governors (2012-2014) of the IEEE Signal Processing Society, and is now a
member of the IEEE Educational Activities Board, IEEE Fourier Award for
Signal Processing Committee and some other IEEE committees.

