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Abstract—Screen Content Coding is an extension of High 
Efficiency Video Coding (HEVC), and it is developed to improve 
the coding efficiency of screen content videos by adopting two new 
coding modes, Intra Block Copy (IBC) and Palette (PLT). 
However, the flexible quadtree-based coding tree unit (CTU) 
partitioning structure and various mode candidates make the fast 
algorithms of SCC extremely challenging. To efficiently reduce the 
computational complexity of SCC, we propose a deep learning 
based fast prediction network DeepSCC, which contains two parts, 
DeepSCC-I and DeepSCC-II. Before fed to DeepSCC, incoming 
CUs are divided into two categories: dynamic CTUs and 
stationary CTUs. For dynamic CTUs having different content as 
their collocated CTUs, DeepSCC-I takes raw sample values as the 
input to make fast predictions. For stationary CTUs having the 
same content as their collocated CTUs, DeepSCC-II additionally 
utilizes the optimal mode maps of the stationary CTU to further 
reduce the computational complexity. Compared with the HEVC-
SCC reference software SCM-8.3, the proposed DeepSCC reduces 
encoding time by 48.81% on average with a negligible Bjøntegaard 
delta bitrate increase of 1.18% under all-intra configuration. 

Index Terms—Screen Content Coding (SCC), High Efficiency 
Video Coding (HEVC), fast algorithm, convolutional neural 
network, deep learning. 

I. INTRODUCTION

CREEN content video refers to video captured from the 
display screen of an electronic device, and it has been 

applied to many screen sharing based applications, such as 
online education, remote desktop, and web conferencing [1]. 
Besides the traditional camera-captured natural image blocks 
(NIBs), screen content videos contain a significant amount of 
stationary or dynamic computer-generated screen content 
blocks (SCBs). Compared with NIBs, SCBs exhibit different 
characteristics, including no sensor noise, large flat areas with 
a single color, repeated patterns in the same frame and limited 
colors. Leveraging on these special characteristics of screen 
content videos, the Joint Collaborative Team on Video Coding 
(JCT-VC) has developed Screen Content Coding (SCC) 
extension [2] on top of High Efficiency Video Coding (HEVC) 
[3], and it outperforms HEVC by achieving over 50% 
Bjøntegaard delta bitrate (BDBR) [4] reduction for typical 

screen content videos. 
In the development of SCC, two important coding modes, 

intra block copy (IBC) [5] and palette (PLT) modes [6] are 
additionally adopted besides the Intra mode of HEVC, and they 
are particularly effective in addressing coding units (CUs) with 
repeated patterns and limited colors, respectively. However, the 
flexible quadtree-based coding tree unit (CTU) partitioning 
structure and various mode candidates bring a significant 
computational burden to a SCC encoder.   

To simplify the encoding of HEVC, some deep learning 
based algorithms have been proposed recently. In [7], [8], 
structures of shallow convolutional neural network (CNN) were 
proposed to early terminate CU partitions in intra-prediction. In 
[9], deeper structures of CNN and long- and short-term memory 
(LSTM) networks were proposed to early terminate CU 
partitions in both intra-prediction and inter-prediction. 
However, these algorithms are inefficient in SCC due to the 
adoption of new modes. First, the new IBC and PLT modes 
make the CU partition decision in SCC very different from 
HEVC. The inhomogeneous contents can be coded as large 
CUs by IBC and PLT modes in SCC, while they are always 
coded as small CUs in HEVC. Second, the exhaustive mode 
searching among Intra, and the new IBC and PLT modes brings 
a significant complexity increase in SCC.  The two new modes 
make all fast HEVC algorithms in [7]–[9] fail in fast mode 
decision of Intra, IBC and PLT, as they only consider the 
characteristics of NIBs without the newly introduced IBC and 
PLT modes. These new modes then make the fast mode 
decision of SCC much more challenging.   

To reduce the computational complexity of a SCC encoder, 
the existing works include the early heuristic approaches [10]–
[14] and the recent machine learning based approaches [15]–
[24]. Those works simplify the encoding process of SCC in
different aspects, and they are mainly divided into three
categories. The first category is to simplify mode decision [11],
[12], [16], [17]. In [11], the rate-distortion (RD) cost and CU
activity are analyzed to skip unnecessary IBC mode to reduce
computational complexity. In [12], a hash value is calculated
for each block, and IBC mode only searches repeated patterns
among the blocks with the same hash value as the current CU.
In [15], fast mode decision is made based on the statistics of
learning frames. In [16], [17], decision trees and random forests
are used as classification tools to skip unnecessary modes. The
second category of fast algorithms is to simplify the CU size
decision of SCC [10], [14], [21]. In [10], the heuristic rules
based on entropy are proposed to predict the CU partitioning
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decision, and then coding bits after checking all mode 
candidates are used to eliminate the incorrect decision. In [14], 
the depth level of the collocated CU is used to predict the depth 
level of the current CU if they have similar content. All modes 
are checked in the depth level of the collocated CU, while only 
PLT mode is checked in other depth levels. However, it is not 
efficient for sequences with many dynamic CUs, and it needs 
to disable the fast approach every 10 frames to avoid error 
propagation. In [21], neural network-based classifiers were 
trained by utilizing features describing CU statistics and sub-
CU homogeneity, and CU sizes are adaptively checked 
according to the outcomes of the classifiers. However, it 
induces high RD performance loss because of low classification 
accuracy. In the third category, fast mode and fast CU size 
decisions are both investigated to further simplify the encoding 
proposes of SCC [13], [18]–[20], [22]–[24]. In [13], early CU 
size decision is made based on RD cost and IBC mode are 
adaptively skipped by checking the hash value of each block. In 
[18], [19], learning frames are used to derive the content-
adaptive rules for fast mode decision and CU size decision. 
However, original encoding process needs to be performed in 
the learning frames, which scarifies the encoding time reduction. 
In [20], [22]–[24], fast mode decision is preformed based on the 
assumption that NIBs select Intra mode while SCBs select IBC 
or PLT mode. Therefore, incoming CUs are classified into 
SCBs and NIBs by utilizing heuristic rules [20] and traditional 
machine learning based on hand-crafted features [22]–[24]. In 
[20], the CU type classification is performed based on CU 
content property analysis. Smooth NIBs only check Intra mode 
while the remaining CUs need to check all modes because of 
low classification accuracy. Then the depth levels of the 
collocated CU and spatial neighbor CUs as well as coding bits 
are jointly analyzed to make fast CU size decision. However, it 
brings high RD performance loss because it does not consider 
the actual content of the current CU when utilizing information 
from the collocated CU and spatial neighbor CUs. In [22], 
decision tree-based classifiers were trained to classify CUs into 
SCBs and NIBs, so that NIBs only check Intra mode while 
SCBs check both IBC and PLT modes. Then, another two 
classifiers were trained to further simplify the encoding of NIBs, 
which predict the direction of Intra mode from 35 prediction 
modes and make CU size decision of NIBs, respectively. 
Besides, several thresholds are derived to early terminate the 
mode searching process for CUs with small bit cost, but it is 
helpful for only a small number of CUs. Similarly, decision 
tree-based classifiers are also utilized in [23] to make CU type 
classification and CU size decision separately. However, Intra 
mode is always checked for all CUs with 2N×2N prediction 
units (PUs) to get the features required by the classifiers, and it 
brings additional computational overhead for SCBs even 
though Intra mode is redundant for them. In [24], neural 
network-based classifiers are trained to classify CUs in NIBs 
and SCBs. Again, IBC, PLT modes and a subset of Intra mode 
are checked for SCBs, while only Intra mode is checked for 
NIBs. Then, various heuristic rules based on the information 
from spatial and temporal adjacent CUs is proposed to make 
fast CU partitioning decision.  

In this paper, we propose a deep learning based fast 
prediction network, DeepSCC, to reduce the computational 
complexity of SCC, and it makes fast predictions for all CUs of 
a CTU in a single test. Since a screen content sequence usually 
has many dynamic CTUs as well as stationary CTUs, the 
proposed DeepSCC is composed of two parts, DeepSCC-I and 
DeepSCC-II, which simplify the encoding of dynamic CTUs 
and stationary CTUs, respectively. Specifically, DeepSCC-I 
only takes the CTU sample values as the input, while 
DeepSCC-II takes both the CTU sample values and the optimal 
mode maps of the collocated CTU as the input. Since DeepSCC 
contains many trainable parameters and learns extensive 
features, it can make the more accurate mode decision of Intra, 
IBC, and PLT rather than the simple CU type classification of 
NIBs and SCBs. Besides, the proposed DeepSCC jointly 
analyzes the local features of a CU and the global features from 
other CUs by concatenating convolution layers and 
deconvolution layers to improve the prediction accuracy. 

To the best of our knowledge, we are the first to use deep 
learning for making fast predictions of SCC. The differences 
between our contributions and the related schemes can be 
summarized as: 1) Unlike the existing fast SCC encoding 
algorithms in [10]–[24] which heavily rely on the limited 
number of hand-crafted features or heuristic rules, the proposed 
DeepSCC automatically learns useful features from the raw 
samples. Since the proposed DeepSCC contains much more 
trainable parameters than the traditional machine learning based 
approaches, it learns extensive features and avoids the risk that 
humans may ignore some important features during feature 
extraction. 2) Unlike the existing algorithms in [11], [12], [16], 
[17] which only design the mode decision model, and in [10], 
[14], [21] which only design the CU partition model, the 
proposed DeepSCC consider the whole fast encoding process of 
SCC. Although algorithms in [13], [18]–[20], [22]–[24] also 
optimize the whole encoding process, they employ numerous 
models to address mode decision and CU partitioning decision 
independently for each CU. Besides, a CTU contains 85 CUs, so 
that they need to test those models for multiple times. As a 
consequence, multiple models are always built for testing. On 
the contrary, the proposed DeepSCC makes predictions in the 
CTU level so that 85 CUs in a CTU get their predictions in a 
single test. It integrates mode decision and CU partitioning 
decision in the same model by treating the case of skipping all 
modes in a CU as a special class of mode decision. Therefore, 
the multiple model tests in a CTU can be avoided, and it helps 
to reduce the computational overhead of the proposed DeepSCC. 
3) Unlike the algorithms in [14], [20], [24] which directly utilize 
the optimal mode and the CU depth level from the collocated 

Fig. 1. Hierarchical CTU partitioning structure in SCC. 
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CU without analyzing the actual CU content, the proposed 
DeepSCC jointly analyzes the optimal mode maps of the 
collocated CTU and the content of the current CTU to avoid 
error propagation. 4) The proposed DeepSCC contains many 
trainable parameters and learns extensive features, so that it 
directly performs the mode decision for Intra, IBC, and PLT 
rather than the simple CU type classification in [20], [22]–[24]. 
As a result, the decision for IBC and PLT modes can be 
different, and many SCBs only check one mode from IBC and 
PLT to further reduce the computational complexity. 

The rest of this paper is organized as follows. Section II 
presents the review and analysis of intra prediction in SCC. 
Section III presents the proposed fast network DeepSCC. The 
experimental results are presented in Section IV to verify the 
performance of the proposed DeepSCC. Finally, Section V 
concludes the paper. 

II. REVIEW AND ANALYSIS OF INTRA PREDICTION IN SCC 

A. Review on Intra Prediction in SCC 
A CTU is a basic processing unit in SCC. To find the optimal 

CTU coding structure, a CTU is recursively partitioned into 
CUs in four different depth levels, i.e., depth level d∈{0,1,2,3}. 
As shown in Fig. 1, a CTU of 64×64 pixels is partitioned into 
four CUs of 32×32 pixels, and then each CU of 32×32 pixels 
is further partitioned into four smaller CUs, until CUs of 8×8 
pixels are reached. Therefore, a CTU contains 85 CU partitions 
(1 + 4 + 16 + 64). In each CU, an exhaustive mode search is 
performed to find its sub-optimal mode, as shown in Fig. 2. 
Besides the Intra mode in HEVC that is used to encode the 
traditional NIBs, SCC additionally adopts two new modes, IBC 
and PLT, to improve the coding efficiency of SCBs. IBC mode 
is developed based on the observation that there are many 
repeated patterns for SCBs in the same frame. When encoding 
the current CU, IBC searches in the reconstructed region of the 
current frame to find the best-matched block for it, and the 
location of the best-matched block is denoted by a block vector. 
PLT mode is developed based on the observation that a SCB 
usually contains the limited number of distinct colors. PLT 
predicts a palette table based on the previously coded CUs, 
which contains several representative sample values. Then, an 
index map is sent to the decoder to denote the position of each 
representative sample value in a CU. In the exhaustive mode 
search, a Lagrange RD cost Jx is calculated for a mode x 

Jx = Dx + ߣ × Rx                                                   (1) 
where x∈{Intra, IBC, PLT}, ߣ is a Lagrange multiplier, Dx and 
Rx are the distortion and bit cost of the CU coded with a mode 
x. The sub-optimal mode for a CU is selected as the one with 
the smallest value of Jx. After calculating the RD cost Jx, the 
optimal CTU coding structure is selected as the one with the 
smallest value of the total RD cost. Then the corresponding sub-
optimal modes of those CUs become their optimal modes, and 
they are involved in the final encoding bitstream. 

As shown in Fig. 1, a CTU contains 85 CU partitions, and 
each CU needs to check three mode candidates, except that CUs 
only check IBC and Intra modes in the depth level of 0. 
Therefore, the RD cost Jx is calculated for 254 mode candidates 
in a CTU (1×2 + 84×3). Although the hierarchical CTU 
partitioning structure and the exhaustive mode search achieve 
the best coding performance, it brings significant computational 
burden to a SCC encoder. Since only parts of those modes are 
involved in the final encoding bitstream, which are from 1 to 
64, precise prediction of the optimal modes in a CTU leads to 
great encoding time reduction. 

B. Analysis of Intra Prediction in SCC and Motivation of 
DeepSCC 

To analyze the intra prediction in SCC, experiments were 
performed for sequences in YUV 4:4:4 format based on the 
HEVC-SCC reference software, Screen Content Model version 
8.3 (SCM-8.3) [25]. The testing sequences were selected by the 
experts in the JCT-VC group, and they were encoded with 
quantization parameters (QPs) of 22, 27, 32, and 37 using SCM-
8.3 under All Intra (AI) configuration defined in the common 
test conditions (CTC) [26]. Those sequences are classified into 
four categories according to their content: text and graphics with 
motion (TGM), mixed content (M), animation (A) and camera-
captured content (CC). Fig. 3 shows the examples of testing 
sequences in four categories. Since sequences in TGM and M 
show mixed content of NIBs and SCBs, while sequences in A 
and CC only contain NIBs, we will show the average results for 
sequences in TGM+M and A+CC in the following sections. 

Table I shows the mode distribution of each sequence, which 
is calculated as the percentages of Intra, IBC, and PLT coded 
areas in a sequence. Since sequences in A+CC only contain 
NIBs, it is observed that 97.46% areas of them are encoded by 
Intra mode on average. Therefore, the CU type classification in 
[20], [22]–[24] is efficient for NIBs by skipping both IBC and 
PLT modes. However, it is observed that the mode distributions 
of sequences in TGM+M are much more complicated, where 
all modes take up large percentages. Even although 
“ChineseEditing”, “Console”, “Desktop” and “FlyingGraphics” 
only contain SCBs, Intra mode still takes up 10.06%-14.56% in 
those sequences. Besides, IBC and PLT modes are not evenly 
distributed. For example, IBC mode takes up 70.93% while 
PLT mode only takes up 16.72% in “FlyingGraphics”. 
Comparatively, SCBs in “Map” are more likely to select PLT 

 
Fig. 2. Exhaustive mode search in a CU. 
   

MissionControlClip3 (M)                           Desktop (TGM) 

  
Robot (A)                                       Kimono1 (CC) 

Fig. 3. Examples of testing sequences in four categories. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

mode than IBC mode, which take up 25.28% and 14.88%, 
respectively. This observation shows that different SCBs may 
have different characteristics so that they have different 
preferences for IBC and PLT modes. The CU type classification 
in [20], [22]–[24] always treats IBC and PLT modes equally, 
and either both IBC and PLT modes or all modes are checked 
for a SCB. In fact, a SCB will only select one mode from IBC 
or PLT as its optimal mode. Therefore, they are not efficient for 
SCBs. Although it is difficult to make further classification 
between IBC and PLT modes by simply selecting a limited 
number of hand-crafted features, we believe that the recent 
CNN with extensive trainable parameters shows a promising 
way to address this problem. 

 Unlike the traditional camera-captured sequences only 
containing dynamic CTUs which show different content in 
adjacent frames, screen content sequences contain many 
stationary CTUs, i.e., the sum of absolute differences (SAD) 
between the current CTU and its collocated CTU is 0. Table II 
shows the percentage of stationary CTUs in different sequences. 
It is observed that sequences in A+CC only contain dynamic 
CTUs, while 70.98% CTUs in TGM+M sequences are 
stationary CTUs. To simplify the encoding of stationary CTUs, 
an intuitive idea is to directly encode stationary CTUs with the 
same optimal modes of the collocated CTUs. However, it brings 
high RD performance loss because whether a CU selects the 

same mode as its collocated CU is related to its actual content. 
For example, a SCB with simple texture usually has many 
repeated patterns within the current frame while a SCB with 
complex texture has few repeated patterns. If the collocated CU 
of a simple SCB selects IBC mode, this SCB usually select IBC 
mode. On the contrary, if the collocated CU of a complex SCB 
selects IBC mode, this SCB may select PLT mode since its very 
limited repeated patterns can be disappeared in the current 
frame. Table III shows BDBR [27] and the change in encoding 
time,  ΔTime, brought by this approach compared with the 
original SCM-8.3. It should be noted that a negative value of 
BDBR or ΔTime denotes decrement in percentage as compared 
with SCM-8.3. It is observed that for sequences in TGM+M that 
contain many stationary CTUs, this approach provides 44.37% 
encoding time reduction, but it brings 6.32% increase in BDBR. 
Although the algorithms in [14], [20], [24] utilize some 
heuristic rules to reduce the RD performance loss brought by 
this approach, such as disabling the fast approach every 10 
frames to avoid error propagation [14], and jointly analyzing 
the coding information from the collocated CU and spatial 
neighbor CUs [20], [24], they still do not achieve a good 
tradeoff between ∆Time and BDBR. To further improve the 
performance for stationary CTUs, it is desired that the optimal 
mode of the collocated CTU and the actual CTU content are 
jointly analyzed. 

III. PROPOSED FAST PREDICTION NETWORK DEEPSCC 
Generally, humans are sensitive to the difference between 

SCBs and NIBs, so that many approaches, such as [20], [22]–
[24], have successfully differentiated SCBs from NIBs relying 
on a limited number of hand-crafted features. However, it is 
very challenging to make further classification between IBC-
coded SCBs and PLT-code SCBs with hand-crafted features 
because humans are less sensitive to their difference. To 
overcome the limitation of hand-crafted features, a deep 
learning based fast prediction network DeepSCC is proposed, 
which contains two parts, DeepSCC-I and DeepSCC-II. 
DeepSCC-I is used to make predictions for dynamic CTUs, 
while DeepSCC-II is used to make predictions for stationary 
CTUs. It is noted that DeepSCC is disabled for the blocks 
located at the frame boundary and smaller than 64×64 pixels. 

TABLE II 
PERCENTAGE OF STATIONARY AREAS IN DIFFERENT SEQUENCES 

Categories Sequences Stationary CTU (%) 
TGM ChineseEditing 93.41 

Console 62.72 
Desktop 78.57 

FlyingGraphics 2.50 
Map 79.20 

Programming 48.11 
SlideShow 75.41 

WebBrowsing  96.43 
M BasketballScreen 86.80 

MissionControlClip2 83.82 
MissionControlClip3 73.78 

A Robot 0 
CC EBURainFruits 0 

Kimono1 0 
Average (TGM+M) 70.98 

Average (A+CC) 0 
Average (ALL) 55.77 

 

TABLE III 
PERFORMANCE OF ENCODING STATIONARY CTUS WITH THE SAME OPTIMAL 

MODES OF THE COLLOCATED CTUS 
Categories Sequences BDBR (%) ∆Time (%) 

TGM ChineseEditing 3.44 -51.81 
Console 4.20 -47.83 
Desktop 6.16 -57.22 

FlyingGraphics 0.13 -1.28 
Map 4.94 -49.39 

Programming 2.52 -31.84 
SlideShow 13.01 -43.26 

WebBrowsing 8.55 -65.98 
M BasketballScreen 7.38 -47.51 

MissionControlClip2 12.40 -44.42 
MissionControlClip3 6.77 -48.67 

A Robot 0 0 
CC EBURainFruits 0 0 

Kimono1 0 0 
Average (TGM+M) 6.32 -44.37 

Average (A+CC) 0 0 
Average (ALL) 4.96 -34.95 

 

TABLE I 
MODE DISTRIBUTION OF DIFFERENT SEQUENCES 

Categories Sequences Intra (%) IBC (%) PLT (%) 
TGM ChineseEditing 14.56 47.95 37.49 

Console 10.06 67.73 22.21 
Desktop 13.38 69.07 17.55 

FlyingGraphics 12.35 70.93 16.72 
Map 59.84 14.88 25.28 

Programming 37.03 49.76 13.21 
SlideShow 79.95 13.45 6.60 

WebBrowsing  24.13 65.93 9.94 
M BasketballScreen 43.35 46.59 10.06 

MissionControlClip2 55.89 39.72 4.39 
MissionControlClip3 43.96 48.71 7.33 

A Robot 93.27 3.95 2.78 
CC EBURainFruits 99.30 0.67 0.03 

Kimono1 99.80 0.19 0.01 
Average (TGM+M) 35.86 48.61 15.53 

Average (A+CC) 97.46 1.60 0.94 
Average (ALL) 49.06 38.54 12.40 
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Since the proposed DeepSCC contains many trainable 
parameters and learns extensive features, it can make the more 
accurate mode decision of Intra, IBC, and PLT rather than the 
simple CU type classification of NIBs and SCBs. The previous 
fast prediction approaches of SCC always make predictions in 
the CU level, which means the derived model is tested for 
multiple times to make fast prediction for a single CTU. The 
drawback of this strategy is that it scarifies the encoding time 
reduction due to the multiple tests of the derived models. To 
reduce the computation overhead, the proposed DeepSCC 
directly outputs 85 labels for 85 CUs of a CTU in a single test. 
Since a CU can either skip all modes or select one mode from 
Intra, IBC, and PLT, each predicted label contains the 
probabilities of four classes, i.e., P(Allskip), P(Intra), P(IBC), 
and P(PLT), in accordance with the probabilities for skipping 
all modes, and checking Intra, IBC, PLT modes, respectively. 
Fig. 4 illustrates the structure of the proposed DeepSCC, where 
the kernel sizes and feature map dimensions are also presented. 
The only difference between DeepSCC-I and DeepSCC-II is 
that the optimal mode maps of the collocated CTU are 
concatenated to the extracted feature maps before going 
through the convolution layers conv6–conv9 in DeepSCC-II, 
which is denoted by green color. The details of DeepSCC are 
given in the following sub-sections.  

A. DeepSCC-I for Dynamic CTUs 
As shown in Fig. 4, DeepSCC-I takes the luminance 

component of a CTU as the input, and it is preprocessed by 
mean removal before fed to DeepSCC-I. Finally, DeepSCC-I 
outputs 85 labels for 85 CUs with different sizes, where each 
label shows the probabilities of selecting different modes. 
DeepSCC-I is composed of nine convolutional layers (conv1–
conv9), three deconvolutional layers (deconv1–deconv3), and 
three concatenating layers (concat1–concat3). Each 
convolutional or deconvolutional layer is followed by a 
rectified linear unit (ReLU) activation function, except for 
conv6–conv9, where softmax is utilized to generate the output 
labels. The details of these layers are presented as follows.  

Convolutional layers: At the beginning, the luminance 
component of a CTU goes through five convolutional layers, 
i.e., conv1–conv5, to generate feature maps. As shown in Fig. 
4, the kernel size of conv1 is 4×4 and the kernel sizes of 

conv2–conv5 are 2×2. The strides of conv1–conv5 are set to 
the width of the kernel sizes for non-overlapping convolutions, 
in accordance with the non-overlapping CU partitioning 
structure. By using this arrangement, the receptive field of each 
node in a feature map is always equal to a CU size, so that the 
feature maps of conv2–conv5 reflect the local features of CUs 
from 8×8 to 64×64, respectively. At each downsampling step, 
we double the channel number of feature maps. After 
concatenating the feature maps of convolutional layers and 
deconvolutional layers, conv6–conv9 incorporate those feature 
maps and generate the last set of feature maps with the kernel 
size of 1×1 and stride of 1. Each layer of conv6–conv9 outputs 
four feature maps since each CU contains four classes. Finally, 
the feature maps of conv6–conv9 are used to output the 
predicted labels after going through a softmax function. 

Deconvolutional layers: In contrast to the convolution layer 
which reduces the size of a feature map, a deconvolutional layer 
is used to enlarge the size of a feature map. After generating the 
128 feature maps of conv5 with the size of 1 × 1, three 
deconvolutional layers i.e., deconv1–deconv3, are used to 
enlarge the feature maps of conv5 using the kernel size of 2×2 
and stride of 2. Since the receptive field of each node in the 
feature maps of conv5 is the entire CTU, the receptive field of 
each node in the feature maps of deconv1–deconv3 also 
becomes the entire CTU, and they reflect the global features for 
CUs with size from 32×32 to 8×8, respectively. The global 
features help to improve the prediction accuracy because there 
exists spatial content correlation in a CTU. For example, if 
other CUs are SCBs in a CTU, the current CU is more likely to 
be a SCB and it would check IBC or PLT mode. On the contrary, 
if other CUs are NIBs in a CTU, the current CU is more likely 
to be a NIB and it would check Intra mode. At each feature map 
enlarging step, we halve the channel number of feature maps. 
Finally, the global feature maps and the local feature maps have 
the same dimension for each CU size. 

Concatenating layers: DeepSCC-I adopts three 
concatenating layers, i.e., concat1–concat3, to concatenate the 
global feature maps and local feature maps for CUs with sizes 
from 32×32 to 8×8, respectively. 

As shown in Fig. 4, DeepSCC-I outputs 1, 4, 16, and 64 
labels for a CTU, in accordance with the hierarchical CTU 

 

Fig. 4. Structure of DeepSCC. The optimal mode maps of the collocated CTU only exist in DeepSCC-II, which is denoted by green blocks. 
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partitioning structure in Fig. 1, which contains 1 CU of 64×64 
pixels, 4 CUs of 32×32 pixels, 16 CUs of 16×16 pixels, and 
64 CUs of 8×8 pixels. 

B. DeepSCC-II for Stationary CTUs 
As analyzed in Section II.B, directly encoding a stationary 

CTU with the same optimal modes of the collocated CTU leads 
to a very high increase in BDBR. To address this problem, the 
optimal mode maps of the collocated CTU are jointly analyzed 
with the actual CTU content to reduce the BDBR loss for 
stationary CTUs. By defining the indices for classes of Allskip, 
Intra, IBC and PLT as 0, 1, 2 and 3, an example of a collocated 
CTU and its optimal mode maps is shown in Fig. 5. To obtain 
the optimal mode maps of a collocated CTU, its optimal modes 
are analyzed in four depth levels. Since the CTU in Fig. 5 is not 
encoded as a single 64×64 CU, the optimal mode map for the 
64×64 CU has the class index of Allskip, which means all 
modes are skipped in the 64×64 CU. Then, there are two 32×
32 CUs encoded by PLT mode and Intra mode in the CTU, 
respectively, so that the class indices of the corresponding 
positions in the optimal mode map for 32×32 CUs are 3 and 1, 
which denote PLT and Intra, respectively. The other two 
positions in this optimal mode map still contain the index of 
Allskip since they are not encoded as 32×32 CUs. This process 
is repeated until the four optimal mode maps are all generated. 
It is noted that the four optimal mode maps of the collocated 
CTU have the same size as the corresponding feature maps from 
conv2–covn5 and deconv1–deconv3. To utilize the optimal 
mode correlation between the current stationary CTU and its 
collocated CTU, the four optimal mode maps of the collocated 
CTU are concatenated to the corresponding feature maps of the 

current CTU by using four concatenate layers concat4–concat7, 
as shown in Fig. 4. After using conv6–conv9 to incorporate 
those feature maps and the optimal mode maps, a softmax 
function is used to output the predicted labels. 

C. Training Strategy for DeepSCC 
To avoid the overlapping between the training set and testing 

set, we selected 12 training sequences from [28]–[32] which are 
not included in CTC [26] to generate the training samples. 
These 12 training sequences were carefully selected to cover 
various video content. Based on the content classification 
criterion of CTC, we also classify the 12 training sequences into 
the four categories of TGM, M, A, and CC, and they are shown 
in Table IV. Then, the 14 sequences in CTC are used as the 
testing sequences to evaluate the performance of the proposed 
DeepSCC. A single model of DeepSCC is trained for QPs of 22, 
27, 32, and 37 by using mixed training data from the four QPs. 
For each training sequence, 50 frames were extracted with an 
equal interval, and they were encoded by the original SCM-8.3 
with QPs of 22, 27, 32 and 37 to obtain the ground truth labels. 
Finally, 750,000 CTUs were generated with their ground truth 
labels to train DeepSCC-I, while 440,000 CTUs with their 
ground truth labels and the optimal mode maps of the collocated 
CTUs were obtained to train DeepSCC-II. 

The training process of DeepSCC was implemented in Caffe 
[33]. A GPU of GeForce GTX 1080 Ti was used to accelerate 
the training process, and then it was disabled in the testing phase 
so that only a CPU was used to evaluate the performance of 
DeepSCC. To make the maximum use of GPU memory, a large 
batch size of 1024 CTUs was adopted. The loss of an i-th 
training sample in a batch is defined as the sum of cross-entropy 
over all labels in four depth levels, and it is represented by  

                     ݈ = ݂(߱, ෝ߱) + ∑ ݂(߱ଵ_ , ෝ߱ଵ_)ଷ
ୀ +  

  ∑ ݂(߱ଶ_ , ෝ߱ଶ_)ଵହ
ୀ + ∑ ݂(߱ଷ_ , ෝ߱ଷ_)ଷ

ୀ              (1) 

where ߱ and  ߱ଵ_, ߱ଶ_, ߱ଷ_ denote the ground truth classes 
of the CU in the depth level of 0, and the j-th CU in the depth 
levels of 1, 2, 3, respectively. Similarly, ෝ߱_ , ෝ߱ଵ_, ෝ߱ଶ_, and 
ෝ߱ଷ_  denote the predicted classes of the corresponding CUs. 
݂(‧,‧) represents the cross-entropy function between the ground 
truth class and predicted class, and it is represented as  

݂(߱, ෝ߱) = − ∑ )ݕ ߱ = ߱) )ܲ)݈݃ ߱ = ෝ߱))        (2) 

where ܿ  denotes the class index. ݕ( ߱ = ߱) is 1 if ߱ܿ  is the 
same as the ground truth class ߱, otherwise, ݕ(߱ = ߱) is 0. 
ܲ( ߱ = ෝ߱) denotes the probability that ߱ܿ is the same as the 
predicted class ෝ߱ . By averaging the loss over all training 
samples in one batch, the loss function L is written as 

ܮ      = ଵ
ே

∑ ݈
ே
ୀଵ                                (3) 

where N is the number of training samples in one batch. All 
trainable parameters in DeepSCC are initialized by the “msra” 
filter [34]. Then, Adam optimizer [35] is adopted to update the 
trainable parameters in DeepSCC with the default values of 
momentum and momentum2, which are 0.9 and 0.999, 
respectively. A weight decay of 0.005 is used to alleviate the 
overfitting problem. Instead of using the conventional learning 

 
Fig. 5. A collocated CTU and its optimal mode maps. 
 TABLE IV 

TRAINING SEQUENCES FOR DEEPSCC 
Categories Sequences Resolution No. of Frame Frame Rate (Hz) 

TGM ClearTypeSpreadsheet 1920×1080 300 30 
PptDocXls 1920×1080 200 20 

RealTimeData 1920×1080 600 60 
WordEditing 1920×1080 600 60 

VideoConferencingDo
cSharing 1280×720 300 30 

M BigBuck 1920×1080 400 60 
KristenAndSaraScreen 1920×1080 600 60 
MissionControlClip1 2560×1440 600 60 

A Viking 1280×720 300 30 
CC EBULupoCandlelight 1920×1080 250 50 

Seeking 1920×1080 250 50 
ParkScene 1920×1080 240 24 
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rate policy of “Step”, we adopt the learning rate policy of “Poly” 
as in [36], and the learning rate in each iteration (iter), ݈݅ݎ݁ݐݎ, is  

௧ݎ݈ = ௦ݎ݈ × (1 − ௧
௫ೝ

)௪                  (4) 

where ݈ݎ௦  is the base learning rate of 0.01, ݎ݁ݓ is set to 
0.9, and ݉ܽݔ௧ is set to 50,000.  

The training losses of DeepSCC-I and DeepSCC-II 
calculated by (2) are shown in Fig. 6. It is observed that the 
training processes of DeepSCC-I and DeepSCC-II converge 
very fast. Besides, the final loss of DeepSCC-II is smaller than 
DeepSCC-I, because DeepSCC-II additionally utilizes the 
optimal mode maps of the collocated CTUs. Although 
DeepSCC-I can reduce encoding time for all CTUs by only 
taking sample values as the input, we only enable it for dynamic 
CTUs. For stationary CTUs, DeepSCC-II is enabled instead of 
DeepSCC-I because it has a smaller loss. The advantage of 
DeepSCC-II over DeepSCC-I for stationary CTUs is further 
discussed in Section IV.C. 

D. Content-adaptive Threshold  
To make fast prediction for an input CTU, the proposed 

DeepSCC outputs 85 labels for 85 CUs, and each label contains 
four probabilities, i.e., P(߱), ߱ ∈{Allskip, Intra, IBC, PLT}. In 
the testing phase, a threshold ߙ௫  is used to decide whether a CU 
needs to check the mode x, ݔ  ∈ {Intra, IBC, PLT}. If the 
probability of checking a mode x is smaller than the value of ߙ௫, 
i.e., P(߱=x)<ߙ௫ , the mode x is regarded as unnecessary, and the 
current CU does not check it for encoding time reduction. It 
should be noted that the selection of the class Allskip is not 
directly decided but depended on the probabilities of checking 
other classes from {Intra, IBC, PLT}. If the probabilities of 
checking all classes from {Intra, IBC, PLT} are smaller than ߙ௫ , 
the optimal class of the CU becomes Allskip, and the mode 
checking for the CU can be skipped. 

In SCC, NIBs and SCBs usually show the concentrated 
distribution in a frame, and there exists an optimal mode 
correlation in spatial neighbor CUs. Therefore, ߙ௫ is treated as 
a content-adaptive threshold, and its value is adjusted by 
utilizing the spatial optimal mode correlation. The mode 
distribution of the first frame in “Programming” is shown in Fig. 
7, and it was encoded by the original SCM-8.3 with QP of 22. 
It is observed that many CUs select the same modes as their top 
or left CUs at the same depth levels. Besides, many IBC-coded 
CUs and PLT-coded CUs are mixed together because IBC and 
PLT modes are both valid mode candidates for SCBs. Therefore, 
the value of ߙ௫ for a CU is decided by the optimal modes of its 
top and left neighbor CUs at the same depth level 

௫ߙ = ௦ߙ − ௫ܫ × ௗ௬ߙ                           (5) 

where ܫ௫ is a content-adaptive parameter, ߙ௦ and ߙௗ௬  are 
two predefined parameters that control the value of ߙ௫ . The 
impact of their values to DeepSCC is discussed in Section IV.A. 
Since IBC and PLT modes show a mixed distribution, they are 
grouped together to decide the value of ܫ௫. For ݔ ∈{IBC, PLT}, 
  ௫ is represented asܫ

௫ܫ = ൜1, ݂݅ ߱௧ ∈ ,ܥܤܫ} ௧߱ ݎ {ܶܮܲ ∈ ,ܥܤܫ}  {ܶܮܲ
                                ݁ݏ݅ݓݎℎ݁ݐ                                ,0

    (6) 

For ݔ ∈{Intra}, ܫ௫ is represented as 

௫ܫ = ൜1, ݂݅ ߱௧ ∈ ௧߱ ݎ {ܽݎݐ݊ܫ} ∈  {ܽݎݐ݊ܫ}
                          ݁ݏ݅ݓݎℎ݁ݐ                         ,0

         (7) 

where ߱௧  and ߱௧  are the optimal mode classes of the left 
and top neighbor CUs, respectively. By using the content-
adaptive threshold ߙ௫ , a CU has a larger chance to be coded by 
the optimal modes of its left and top CUs. 

Since the proposed DeepSCC treats the case of skipping all 
modes as the class Allskip in mode decision, the CU partitioning 
decision is integrated into DeepSCC. If DeepSCC selects the 
class Allskip for a CU, it means that the current depth level is not 
optimal and the mode checking of the CU is skipped. Therefore, 
additional testing of another model specially designed for CU 
partitioning decision as in [13], [18]–[20], [22]–[24] is not 
necessary, and it further reduces the testing time. Before a CU 
in the depth level of 0, 1, or 2 continues the partitioning process 
shown in Fig. 1, the labels of CUs in the deeper depth levels are 
analyzed to perform the CU partitioning decision. If an area of 
a CU always selects the class Allskip in all deeper depth levels, 
the CU cannot be encoded if it continues partitioning. Therefore, 
we early terminate the CU partition to avoid unnecessary 
computation.  

It should be noted that although IBC and PLT modes are 
grouped together to derive the content-adaptive thresholds so 
that ߙூ  and ߙ்  are the same, DeepSCC can still 
differentiate IBC-coded SCBs and PLT-coded SCBs by output 
independent probabilities of P(IBC) and P(PLT). For example, 
if P(IBC) is smaller than ߙூ  while P(PLT) is larger than ߙ் , 
only PLT mode will be checked. The details of mode decision 
distribution will be investigated in Section IV.B. 

E. Memory Overhead of DeepSCC   
To make fast prediction, the trained Caffe model needs to be 

invoked in SCM-8.3. The memory overhead of DeepSCC 

Fig. 7. Optimal mode in the first frame of “Programming”. Intra, IBC and PLT 
coded CUs are noted by blue, yellow and red blocks, respectively. 
 

 

Fig. 6. Training loss of DeepSCC-I and DeepSCC-II alongside iterations. 
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comes from two parts, which are the size of the parameters 
stored in the Caffe model and the size of generated feature maps 
when running DeepSCC. If a CTU is a dynamic CTU, the Caffe 
model of DeepSCC-I is invoked, which takes up 348.47KB. To 
store the generated feature maps, 47.66KB is needed by using 
the double-precision floating point which requires 8B in C 
language. Therefore, the memory overhead is 396.13KB for 
DeepSCC-I. On the other hand, the Caffe model of DeepSCC-
II is invoked for stationary CTUs, which takes up 348.80KB, 
and the associated feature maps require 48.32KB. Therefore, the 
memory overhead is 397.12KB for DeepSCC-II. Comparatively, 
a video frame with the resolution of 2560×1440 pixels takes up 
108,00KB (2560× 1440 × 3 ÷ 1024). Therefore, the memory 
overhead percentages of DeepSCC-I and DeepSCC-II over the 
frame memory are only 3.67% and 3.68%, respectively. 

IV. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed DeepSCC, it 

has been implemented in SCM-8.3 [25], and the DNN tool of 
OpenCV 3.4.1 is used to invoke the trained Caffe model in 
SCM-8.3. The trained Caffe model and the source code of the 
proposed DeepSCC can be found in our website [37]. The 
coding efficiency and computational complexity are compared 
with the original SCM-8.3 under all-intra (AI) configuration 
defined in CTC [26], and they are measured by BDBR and 
encoding time increase ΔTime in percentage (%). It should be 
noted that no GPU but only a CPU is enabled for making fair 
comparisons. The test platform used for simulations was a HP 
EliteDesk 800 G1 computer with a 64-bit Microsoft Windows 
10 OS running on an Intel Core i7-4790 CPU of 3.6 GHz and 
32.0 GB RAM. First, a series of ablation experiments were 
performed to decide the optimal structure of DeepSCC by using 
validation sequences [29], [31], [32], [38] in Table V. Second, 
the performance of DeepSCC is evaluated by comparing it with 
the existing fast SCC prediction algorithms. Third, the 
performances of the individual DeepSCC-I and DeepSCC-II are 
analyzed. In the following sub-sections, we highlight the largest 
decrease in ΔTime and smallest increase in BDBR by boldface 
when making comparisons between different methods. 

A. Ablation Study 
In this sub-section, various experiments were performed to 

decide the optimal structure of the proposed DeepSCC by using 
the validation sequences shown in Table V. 
1) Threshold Determination 

As aforementioned in Section III.D, a content-adaptive 
threshold ߙ௫ is used to eliminate unnecessary mode candidates 
in a CU, and its value is controlled by two predefined 
parameters ߙ௦  and ߙௗ௬ . A fixed value of ߙௗ௬  is 

applied to analyze the impact of ߙ௦ , and the results are 
shown in Fig. 8. It is observed that as the value of ߙ௦ 
increases, more encoding time is reduced at the cost of a larger 
increase in BDBR. Besides, when the gap between ߙ௦ and 
ௗ௬ߙ , i.e., ߙ௦ − ௗ௬ߙ , is large, BDBR increases quickly. 
For example, when the gap between ߙ௦  and ߙௗ௬  increases 
from 0 to 0.02, the encoding time is further reduced by 5.50% 
while BDBR is further increased by only 0.37%. When the gap 
between ߙ௦  and ߙௗ௬  increases from 0.02 to 0.04, the 
encoding time is further reduced by 3.96% while BDBR is 
further increased by 0.86%. Therefore, we limit the gap 
between ߙ௦  and ߙௗ௬  to a small value to balance the 
encoding time reduction and the increase in BDBR, and the 
results are shown in Table VI. It is observed that DeepSCC is 
complexity scalable and it provides 46.60%–56.34% encoding 
time reduction with BDBR increased by 0.48%–1.33%. In the 
following sub-sections, ߙ௦ is set to 0.05 and ߙௗ௬  is set to 
0.04 for further discussions, where 52.35% encoding time is 
reduced with 0.83% increase in BDBR. 
2) Decoupling Local Features and Global Features 

The proposed DeepSCC utilizes convolutional layers and 
deconvolutional layers to extract the local features and global 
features in a CTU, respectively. Then, they are concatenated 
together to predict the mode labels. To evaluate the importance 
of the proposed structure, two sets of experiments were 
performed by decoupling local features and global features, i.e., 
removing concat1–concat3 from DeepSCC. First, only the 
feature maps of conv2–conv5 are fed to concat4–concat7 so that 
only local features are utilized to make mode prediction. 
Second, only the feature maps of conv5 and deconv1–3 are fed 
to concat4–concat7 so that only global features are utilized to 
make mode prediction. Let us call them LFDeepSCC and 
GFDeepSCC, respectively, and their performances are shown 
in Table VII. It is observed that LFDeepSCC provides 36.90% 
encoding time reduction with 0.73% increase in BDBR. The 
original DeepSCC outperforms it by providing a much higher 
encoding time reduction of 52.35% with a similar increase in 
BDBR. GFDeepSCC also shows worse performance than 
DeepSCC by providing 50.66% encoding time reduction with 
0.90% increase in BDBR. Therefore, concatenating the local 
features and global features helps to improve the performance 
of the proposed DeepSCC.  
3) Term Normalization in Loss Function 

In (1), the loss function of a training sample is derived as the 
sum of cross-entropy over all labels in the four depth levels, and 
the terms for different depth levels are not normalized. For 
example, the loss function contains only one term in the depth 

 

Fig. 8. Performance of DeepSCC with various values of ߙ௦ and the fixed 
value of ߙௗ௬ . 
 

TABLE V 
VALIDATION SEQUENCES FOR DEEPSCC 

Categories Sequences Resolution No. of Frame Frame Rate (Hz) 
TGM BitstreamAnalyzer 1920×1080 300 30 

Doc 1280×720 500 10 
Web 1280×720 500 10 

M KimonoError2 2560×1440 500 60 
CC BirdsInCage 1920×1080 600 60 

DucksAndLegs 1920×1080 300 30 
Traffic 2560×1440 60 30 

VenueVu 1920×1080 300 30 
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level of 0 while it contains 64 terms in the depth level of 4. The 
reason that we do not normalize the loss function to let the terms 
of different depth levels have equal weight is that the mode 
classifications in deeper depth levels are more complex. 
Therefore, the loss function without term normalization will be 
naturally more focused on the mode classification of small CUs. 
To prove its advantage, Table VII shows the performance of 
DeepSCC using loss function with term normalization. It is 
observed that the original DeepSCC outperforms DeepSCC 
with term normalization by providing 6.4% more encoding time 
reduction with almost the same increase in BDBR. 
4) Feature Fusion Function 

To join the convolution features, deconvolution features, and 
optimal mode maps of the collocated CTU, the concatenating 
layer is adopted in DeepSCC. It is one of the most widely used 
feature fusion layers and it can join feature maps with the 
arbitrary channel number. An alternative way is to use element 
wise addition layer which can only join two sets of feature maps 
with the equal channel numbers. Therefore, element wise 
addition layers can be adopted to join convolution features and 
deconvolution features since they have equal channel numbers, 
and then they are concatenated to the optimal mode maps of the 
collocated CTU. Table VII shows the results of DeepSCC with 
element wise addition layers. It is observed it almost shows the 
same results as the original DeepSCC. Therefore, different 
feature fusion functions have a minor impact on the DeepSCC.  
5) Adoption of DenseNet Structure 

Recently, many advanced CNN structures have been 
proposed for different tasks. For example, DenseNet [39] 
alleviates the vanishing-gradient problem, encourages feature 
reuse and substantially reduces the number of parameters. A set 

of experiments that adopt the DenseNet structure into DeepSCC 
were conducted. Each set of kernels in conv1–conv5 and 
deconv1–deconv3 are replaced by a 4-layer dense block in [39], 
and the growth rate is 1/4 of the original channel number in each 
layer so that the output of a 4-layer dense block has the same 
channel number as the one in the original DeepSCC. The results 
are shown in Table VII, and it is observed that the adoption of 
DenseNet does not help to improve the performance of 
DeepSCC, and it shows almost the same results as the original 
DeepSCC with ߙ௦ =0.03 and ߙௗ௬=0.01, as in Table VI.  
6) Learning Policy 

In the training process of DeepSCC, the learning rate policy 
of “Poly” is adopted rather than the conventional “Step”. To 
evaluate the efficiency of this strategy, experiments were done 
by training DeepSCC with “Step” with the same values of ݈ܾ݁ݏܽݎ 
and ݉ܽݔ௧ , and the learning rate is multiplied by 0.1 every 
10,000 iterations. The performance comparison is shown in 
Table VII. It is observed that DeepSCC with “Step” achieves 
51.18% encoding time reduction with 0.94% increase in BDBR. 
By replacing “Step” with “Poly”, DeepSCC shows a slightly 
better performance of 1.17% larger encoding time reduction 
and 0.11% smaller increase in BDBR.  
7) Number of Channels 

The proposed DeepSCC has the advantage of automatically 
learning useful features by using extensive learnable parameters, 
which is controlled by the number of channels in each layer. If 
a small number of channels are employed, DeepSCC may run 
into the underfitting problem. On the contrary, if a larger 
number of channels are employed, DeepSCC may run into the 
overfitting problem. To evaluate the impact of the channel 
number in DeepSCC, another four sets of experiments were 

TABLE VII 
PERFORMANCE COMPARISON OF DEEPSCC AND OTHER POSSIBLE DESIGNS 

Sequences 
LFDeepSCC GFDeepSCC DeepSCC with term 

normalization 
DeepSCC with element 

wise addition layer 
DeepSCC with 

DenseNet structure 
DeepSCC with 

“Step” 
 Proposed 
DeepSCC 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
 (%) 

∆Time 
 (%) 

BDBR 
 (%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BitstreamAnalyzer 0.82 -45.20 0.83 -40.86 1.82 -38.81 0.78 -44.69 0.46 -34.05 1.30 -47.50 0.79 -45.29 
Doc 1.44 -49.02 1.79 -50.18 0.92 -47.90 1.24 -49.20 1.21 -43.19 1.48 -50.01 1.35 -50.47 
Web 1.77 -51.11 1.45 -51.61 1.10 -49.04 1.60 -52.15 1.14 -44.19 1.68 -51.02 1.43 -52.71 

KimonoError2 0.87 -37.28 0.82 -39.75 0.82 -33.19 0.81 -37.30 0.29 -38.15 0.73 -36.25 0.76 -37.24 
BirdsInCage 0.03 -29.38 0.11 -58.02 0.07 -51.96 0.09 -61.91 0.10 -65.08 0.09 -57.68 0.09 -59.07 

DucksAndLegs 0.03 -20.02 0.19 -61.32 0.22 -61.15 0.22 -64.27 0.10 -51.48 0.32 -63.11 0.24 -64.21 
Traffic 0.29 -35.24 0.93 -52.94 0.72 -40.78 0.78 -54.61 0.07 -46.16 0.82 -53.89 0.90 -56.96 

VenueVu 0.57 -27.93 1.10 -50.58 0.92 -44.79 1.00 -53.16 1.07 -52.46 1.12 -50.01 1.08 -52.85 
Average (TGM+M) 1.23 -45.65 1.22 -45.60 1.17 -42.23 1.11 -45.84 0.78 -39.90 1.30 -46.20 1.08 -46.43 

Average (CC) 0.23 -28.14 0.58 -55.72 0.48 -49.67 0.52 -58.49 0.34 -53.80 0.59 -56.17 0.58 -58.27 
Average (ALL) 0.73 -36.90 0.90 -50.66 0.82 -45.95 0.82 -52.16 0.56 -46.85 0.94 -51.18 0.83 -52.35 

 

TABLE VI 
PERFORMANCE OF THE PROPOSED DEEPSCC FOR VALIDATION SEQUENCES WITH DIFFERENT VALUES OF ߙ௦  AND ߙௗ௬ 

Sequences 
௦ߙ  =0.03 
 ௗ௬=0.02ߙ

௦ߙ =0.03 
 ௗ௬=0.01ߙ

 ௦=0.05ߙ
 ௗ௬=0.04ߙ

௦ߙ =0.05 
 ௗ௬=0.03ߙ

௦ߙ =0.07 
 ௗ௬=0.06ߙ

 ௦=0.07ߙ
 ௗ௬=0.05ߙ

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 
BitstreamAnalyzer 0.43 -40.74 0.44 -41.49 0.79 -45.29 0.91 -45.43 1.42 -48.60 1.52 -49.35 

Doc 0.38 -45.05 0.34 -44.13 1.35 -50.47 1.52 -51.56 2.06 -55.60 2.13 -56.70 
Web 0.86 -47.17 1.03 -48.32 1.43 -52.71 1.57 -54.04 2.71 -56.66 2.99 -57.82 

KimonoError2 0.66 -31.63 0.70 -29.75 0.76 -37.24 0.82 -37.14 0.90 -39.98 0.93 -39.98 
BirdsInCage 0.04 -49.37 0.04 -49.95 0.09 -59.07 0.10 -59.03 0.14 -63.01 0.14 -63.10 

DucksAndLegs 0.17 -62.23 0.17 -62.22 0.24 -64.21 0.24 -64.48 0.33 -65.51 0.33 -65.76 
Traffic 0.57 -51.02 0.59 -51.33 0.90 -56.96 0.91 -56.64 1.16 -60.05 1.16 -60.37 

VenueVu 0.76 -45.55 0.81 -45.93 1.08 -52.85 1.10 -52.60 1.36 -56.77 1.40 -57.67 
Average (TGM+M) 0.58 -41.15 0.63 -40.92 1.08 -46.43 1.21 -47.04 1.77 -50.21 1.89 -50.96 

Average (CC) 0.39 -52.04 0.40 -52.36 0.58 -58.27 0.59 -58.19 0.75 -61.34 0.76 -61.73 
Average (ALL) 0.48 -46.60 0.52 -46.64 0.83 -52.35 0.90 -52.62 1.26 -55.77 1.33 -56.34 
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performed, i.e., multiplying the channel number of each layer 
before concat4–concat7 by 1/4, 1/2, 2, 4, and they are denoted 
as NumChannel/4, NumChannel/2, NumChannel×2, 
NumChannel×4, respectively. The results are shown in Table 
VIII. It is observed that the original DeepSCC shows slightly 
better performance than the networks with the other number of 
channels. As the channel number increases, the performance of 
DeepSCC is improved first because of underfitting, and then it 
is dropped because of overfitting. Therefore, DeepSCC with the 
proposed channel number achieves a good tradeoff between 
∆Time and BDBR. 

B. Performance of DeepSCC 
Table IX shows the performance of the proposed DeepSCC 

for training sequences, where 50.17% encoding time is reduced 
with 1.13% negligible increase in BDBR. Then, to evaluate the 
performance of the proposed DeepSCC, it is directly compared 
with four state-of-the-art SCC fast intra prediction algorithms 
[14], [20], [22], [23]. It is noted that they were implemented in 
different reference software from ours in their original 
publications. Zhang et al.’s method [14], Lei et al.’s method [20], 
Duanmu et al.’s method [22], and Yang et al.’s method [23] 
were simulated using SCM-3.0, SCM-2.0, SCM-4.0, and SCM-
5.0, respectively. There are numerous enhancements, speed-up 
techniques and codes clean-up in SCM-8.3 compared with the 
older versions. Therefore, we re-implemented them into SCM-
8.3 for direct comparison. Besides, we make an indirect 
comparison of the proposed DeepSCC with Huang et al.’s 
method [24] because we do not have the source code of their 
approach. However, DeepSCC is implemented in the same 
reference software as Huang et al.’s method [24], SCM-8.3, 

which makes the indirect comparison to be fair. The results for 
14 testing sequences in YUV 4:4:4 format are shown in Table X.  

It is observed that DeepSCC outperforms the SCC fast intra 
prediction algorithms [14], [20], [22]–[24] by providing 48.81% 
encoding time reduction with only 1.18% increase in BDBR. 
Compared with the results in Table IX, DeepSCC provides 
similar performance for both training sequences and testing 
sequences. This shows that the proposed DeepSCC is 
generalizable to the unseen sequences. Zhang et al.’s method [14] 
shows similar increase in BDBR to the proposed DeepSCC, but 
it provides 15.62% smaller encoding time reduction than 
DeepSCC. Since Zhang et al.’s method [14] strongly relies on 
the CUs having similar content as their collocated CUs, it shows 
very limited encoding time reduction for sequences with almost 
only dynamic regions, such as “FlyingGraphics”, “Robot”, 
“EBURainFruits”, and “Kimono1”, where only 4.60%, 12.04%, 
16.48%, and 0.46% encoding time is reduced. Comparatively, 
DeepSCC can efficiently address dynamic CTUs, and it 
provides 30.76%, 49.73%, 55.94% and 70.68% encoding time 
reduction for those sequences. Lei et al.’s method [20], Duanmu 
et al.’s method [22] and Yang et al.’s method [23] all eliminate 
the mode candidates for a CU by classifying it into a NIB or a 
SCB, and at most one mode, i.e., Intra mode, is skipped for a 
SCB. On the contrary, DeepSCC directly performs the mode 
classification rather than the simple CU type classification, so 
IBC and PLT modes are no longer always checked together for 
a SCB. As a result, DeepSCC outperforms the fast algorithms 
[20], [22], and [23] by providing 15.61%, 21.92% and 13.45% 
larger encoding time reduction with 1.18%, 0.52%, and 2.32% 
smaller increase in BDBR, respectively. It should be noted that 
we do not fine-tune the algorithms in [14], [20], [22], [23] when 
migrating them from their original SCM versions to SCM-8.3, 
and the results in Table X may not represent their best 
performance in SCM-8.3. However, DeepSCC outperforms 
them by a large margin in SCM-8.3. Furthermore, Table XI 
further shows the indirect comparisons between DeepSCC and 
algorithms in [14], [20], [22], [23] under different SCM 
versions where these algorithms are fine-tuned. It is observed 
that DeepSCC also achieves the best trade-off between ∆Time 
and BDBR. Although Zhang et al.’s method [14] has 0.14% 
smaller increase in BDBR than DeepSCC, it provides 10% less 
encoding time reduction than DeepSCC. Therefore, it is 
reasonable to conclude that DeepSCC has better performance 
than the algorithms in [14], [20], [22], [23]. Huang et al.’s 
method [24] adopts a hybrid framework of neural network-based 
classifiers for CU type classification and various heuristic rules 
to make CU partitioning decisions. Comparatively, the proposed 

TABLE VIII 
PERFORMANCE COMPARISON OF DEEPSCC WITH DIFFERENT NUMBER OF CHANNELS 

Sequences NumChannel/4 NumChannel/2 Original DeepSCC NumChannel×2 NumChannel×4 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

BitstreamAnalyzer 1.35 -38.14 1.67 -38.90 0.79 -45.29 1.36 -47.26 1.10 -47.93 
Doc 1.36 -49.86 1.32 -50.52 1.35 -50.47 1.31 -47.23 1.35 -47.88 
Web 1.32 -50.67 1.50 -51.76 1.43 -52.71 1.45 -51.23 1.41 -50.56 

KimonoError2 0.78 -35.67 0.79 -38.04 0.76 -37.24 0.68 -36.72 0.91 -36.82 
BirdsInCage 0.08 -55.92 0.07 -66.94 0.09 -59.07 0.07 -55.16 0.09 -50.04 

DucksAndLegs 0.17 -43.67 0.18 -62.15 0.24 -64.21 0.23 -64.74 0.29 -63.38 
Traffic 0.53 -49.04 0.79 -56.14 0.90 -56.96 0.96 -52.78 1.02 -52.23 

VenueVu 1.10 -49.85 1.12 -54.27 1.08 -52.85 1.10 -53.85 1.11 -45.24 
Average (TGM+M) 1.20 -43.59 1.32 -44.81 1.08 -46.43 1.20 -45.61 1.19 -45.80 

Average (CC) 0.47 -49.62 0.54 -59.88 0.58 -58.27 0.59 -56.63 0.63 -52.72 
Average (ALL) 0.84 -46.60 0.93 -52.34 0.83 -52.35 0.90 -51.12 0.91 -49.26 

 TABLE IX 
PERFORMANCE OF THE PROPOSED DEEPSCC FOR TRAINING SEQUENCES  

Training Sequences BDBR (%) ∆Time (%) 
ClearTypeSpreadsheet 1.01 -53.59 

PptDocXls 1.99 -45.60 
RealTimeData 1.04 -40.91 
WordEditing 1.40 -53.54 

VideoConferencingDocSharing 1.86 -52.61 
BigBuck 1.18 -42.48 

KristenAndSaraScreen 0.90 -46.69 
MissionControlClip1 1.37 -47.43 

Viking 1.78 -54.40 
EBULupoCandlelight 0.25 -53.60 

Seeking 0.30 -52.65 
ParkScene 0.47 -58.51 

Average (TGM+M) 1.34 -47.86 
Average (A+CC) 0.70 -54.79 
Average (ALL) 1.13 -50.17 
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DeepSCC integrates the mode decision and CU partitioning 
decision into the same network by using a one-pass design. 
Therefore, DeepSCC is easier for implementation than Huang et 
al.’s method [24]. As observed in Table X, Huang et al.’s 
method [24] provides 49.34% encoding time reduction with 
1.36% increase in BDBR for their selected sequences. However, 
the proposed DeepSCC outperforms Huang et al.’s method [24] 
by reducing nearly the same encoding time with 0.16% less 
increase in BDBR based on the same SCM-8.3. Besides, the 
training sequences of Huang et al.’s method [24] are partly 
overlapped with its testing sequences, where “WebBrowsing” 
and “Kimono1” are utilized for both training and testing. On the 
contrary, the training and testing sequences of the proposed 
DeepSCC are totally different, which avoids overfitting. 

To understand the advantage of the proposed DeepSCC over 
the fast prediction algorithms [14], [20], [22], [23], the mode 
decision made by each algorithm is analyzed in detail. Table XII 
shows the distribution of mode decision in each depth level for 
a representative sequence “Console”. It should be noted that 
“Console” only contains SCBs. Table I shows “Console” is the 
sequence with the smallest percentage of Intra mode, and we 
find that disabling Intra mode for “Console” leads to 31.58% 
encoding time reduction with only 0.69% increase in BDBR. To 
reduce redundant mode checking, a good prediction algorithm 
should let most CUs in “Console” only check IBC or PLT mode 
or skip all modes in a depth level. Let us call only checking IBC 
or PLT mode or skip all modes as Goal Mode. It can be seen 
from Table XII that the proposed DeepSCC obviously 
outperforms fast prediction algorithms [14], [20], [22], [23]. 
Since DeepSCC is the only algorithm in Table XII that directly 
makes mode decision of Intra, IBC, and PLT, it shows a more 
flexible combination of mode decision than others. For example, 
IBC mode can be checked alone or checked together with PLT 

mode or Intra mode. It is observed that many CUs only check 
IBC or PLT mode or skip all modes, and it has the highest 
percentages of Goal Mode among the algorithms in Table XII, 
which are 90.57%, 58.64%, 42.28%, and 42.88% in the depth 
levels of 0, 1, 2, and 3, respectively. For a CU that has similar 
content as its collocated CU, Zhang et al.’s method [14] only 
checks PLT mode if the depth levels of the current CU and the 
collocated CU are not equal. Otherwise, all modes are checked. 
Therefore, 9.19%–39.37% CUs only check PLT mode in the 
depth levels of 1–3. However, it still has 53.26%–90.81% CUs 
need to check all modes in the depth levels of 0–3. Lei et al.’s 
method [20] has no early mode decision for SCBs, and it only 
utilizes some rules to skip all modes in a CU. Hoverer, it has 
38.89%–91.11% CUs need to check all modes in the depth levels 
of 0–3. Duanmu et al.’s method [22] manually disables IBC 
mode for all CUs in the depth level of 0, and all SCBs need to 
redundantly check Intra mode in the depth level of 0. Although 
some thresholds are derived to skip remaining mode candidates 
for CUs with small bit cost, it is observed that 52.50%–88.13% 
CUs need to check both IBC and PLT modes due to the simple 
CU type classification. Yang et al.’s method [23] always checks 
Intra mode for CUs with 2N×2N PUs to obtain the features 
required by classifiers, so that Intra mode takes a very large 
percentage even though “Console” only contains SCBs. Besides, 
it falsely skips IBC and PLT modes for many CUs, which 
explains the reason for the very high increase in BDBR of 7.38% 
for “Console”.  

Table XIII shows the hit rate of Intra, IBC and PLT predicted 
by the proposed DeepSCC, which is calculated as the 
percentage of the areas encoded by the same mode as the 
original SCM-8.3. Besides, the hit rate of Allskip is also given 
by calculating as the percentage of CUs whose all modes are 
correctly skipped compared with the original SCM-8.3. Since 
that sequences in A+CC barely select IBC and PLT modes, only 
the hit rate of Intra mode is shown for them. It is observed that 
the prediction hit rate of DeepSCC is very high and it varies 
from 87.23% to 99.45% for different class, different sequences 
and different QPs. Therefore, the proposed DeepSCC induces a 
negligible increase in BDBR. In addition, the hit rate is 
maintained stable for testing sequences with QPs of 22, 27, 32 

TABLE X 
PERFORMANCE OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 UNDER CTC FOR SEQUENCES IN YUV 4:4:4 FORMAT 

Sequences Zhang et al. [14] Lei et al. [20] Duanmu et al. [22] Yang et al. [23] Huang et al. [24] Proposed DeepSCC 
BDBR (%) ∆Time (%) BDBR (%) BDBR (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing 0.65 -49.73 0.99 -18.96 1.10 -17.47 4.30 -34.16   1.07 -48.80 
Console 3.36 -39.35 2.87 -23.40 1.87 -28.12 7.38 -42.83   1.06 -41.85 
Desktop 1.95 -47.94 1.97 -23.85 2.19 -26.24 6.27 -35.91 0.84 -46.48 1.00 -53.46 

FlyingGraphics 0.84 -4.60 1.72 -18.13 0.98 -20.13 5.47 -31.19 1.10 -43.45 0.99 -30.76 
Map 0.85 -36.95 1.23 -20.05 1.55 -19.16 2.84 -41.66 1.25 -42.60 1.79 -36.36 

Programming 1.16 -40.44 2.50 -22.92 1.89 -22.16 4.71 -27.38 2.05 -53.66 0.87 -42.74 
SlideShow 1.39 -44.15 2.32 -55.58 2.82 -52.47 3.69 -34.45 1.54 -68.38 2.78 -55.36 

WebBrowsing  2.05 -51.73 6.02 -26.75 1.91 -28.17 5.00 -53.00 0.99 -55.33 0.88 -54.09 
BasketballScreen 1.06 -41.84 1.46 -24.83 1.25 -22.43 3.00 -31.54 0.87 -39.83 1.27 -46.78 

MissionControlClip2 1.29 -39.08 1.71 -25.49 2.86 -33.90 2.51 -38.54 1.47 -46.39 1.56 -51.16 
MissionControlClip3 1.05 -39.91 1.69 -33.81 2.03 -24.61 2.90 -34.15 1.63 -39.42 1.01 -45.96 

Robot 0.92 -12.04 5.21 -46.91 1.18 -29.36 0.59 -28.19 2.52 -40.31 1.81 -49.43 
EBURainFruits 0.71 -16.48 1.76 -48.58 0.88 -26.47 0.17 -25.89 0.67 -50.56 0.29 -55.94 

Kimono1 0.15 -0.46 1.52 -75.55 1.23 -25.75 0.13 -36.18 1.35 -65.74 0.17 -70.69 
Average (TGM+M) 1.42 -39.61 2.23 -26.71 1.86 -26.81 4.37 -36.80 1.30 -48.39 1.30 -46.12 

Average (A+CC) 0.59 -9.66 2.83 -57.01 1.10 -27.19 0.30 -30.09 1.51 -52.20 0.76 -58.69 
Average ([19])         1.36 -49.34 1.20 -49.39 
Average (ALL) 1.25 -33.19 2.36 -33.20 1.70 -26.89 3.50 -35.36   1.18 -48.81 

Indirect comparison is made between [24] and DeepSCC based on SCM-8.3, and [14], [20], [22], [23] were re-implemented into SCM-8.3 for direct comparison. 

TABLE XI 
INDIRECT COMPARISIONS UNDER DIFFERENT SCM VERSIONS  
Methods SCM version BDBR (%) ∆Time (%) 

Zhang et al. [14] SCM-3.0 1.04 -39 
Lei et al. [20] SCM-2.0 2.01 -45 

Duanmu et al. [22] SCM-4.0 1.46 -40 
Yang et al. [23] SCM-5.0 2.72 -49 

Proposed DeepSCC SCM-8.3 1.18 -49 
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and 37. It is due to the reason that the model of DeepSCC is 
trained using mixed data generated by QPs of 22, 27, 32 and 37.  
Furthermore, we also investigate the hit rate of DeepSCC if we 
train a model by data only from QP of 37 and then apply it to 

test sequences with QPs of 22 and 37. The results are shown in 
Table XIV. It is observed that for testing sequences with QP of 
37, DeepSCC trained by data from QP of 37 has similar hit rate 
to the proposed DeepSCC trained by the mixed data from QPs 
of 22, 27, 32 and 37. However, DeepSCC trained by data from 
QP of 37 has lower hit rate than the proposed DeepSCC for QP 
of 22. Therefore, a single model trained by the mixed data from 
QPs of 22, 27, 32 and  37 can cover a wider QP range of testing 
sequences while providing similar hit rate to the model trained 
and tested by data from one QP. 

Fig. 9 shows the RD curve and ∆Time for four sequences over 
different QPs by using DeepSCC, and it is noted that other 
sequences have similar results. It is observed that the RD curves 
of DeepSCC are very close to those of the original SCC encoder, 
which indicates that DeepSCC has negligible influence on video 
quality. Besides, ∆Time varies little over different QPs for all 
sequences. Therefore, DeepSCC provides stable performance in 
both high and low bitrate cases.  

Fig. 10 shows the computational overhead of the proposed 
DeepSCC, which is calculated as the ratio of running DeepSCC 
to the total encoding time of the proposed fast encoder. Since 
DeepSCC adopts non-overlapping convolutions and outputs 85 

TABLE XIII 
HIT RATE OF THE PROPOSED DEEPSCC 

Sequences QP=22 (%) QP=27 (%) QP=32 (%) QP=37 (%)  
Intra IBC PLT Allskip Intra IBC PLT Allskip Intra IBC PLT Allskip Intra IBC PLT Allskip 

ChineseEditing 98.23 98.50 94.86 95.81 97.91 98.38 94.84 95.87 97.47 98.29 94.23 95.60 95.79 97.80 93.85 95.91 
Console 98.07 98.03 96.45 97.21 97.68 98.17 96.39 96.98 97.09 98.17 96.34 96.67 94.43 97.45 96.08 95.86 
Desktop 98.18 98.33 96.57 96.65 98.04 98.22 96.35 96.85 97.46 98.07 96.20 96.44 96.22 97.59 95.59 95.78 

FlyingGraphics 96.48 98.91 93.76 94.20 96.50 99.00 93.83 95.20 96.34 99.02 93.95 95.73 95.75 98.93 94.85 96.20 
Map 99.45 98.26 90.84 99.07 99.38 97.63 90.95 98.73 99.13 97.41 91.04 98.75 98.62 97.70 91.59 98.90 

Programming 97.04 96.37 94.13 95.21 97.92 96.56 93.71 97.65 98.09 96.20 93.77 98.16 97.79 96.31 93.39 98.48 
SlideShow 98.08 92.03 92.61 98.84 98.50 95.52 92.76 99.45 99.00 96.62 94.09 99.74 99.06 95.15 94.75 99.84 

WebBrowsing  98.76 98.67 96.70 98.16 98.74 98.03 95.76 97.79 98.93 97.80 96.32 98.41 98.37 97.69 95.29 98.70 
BasketballScreen 98.44 96.02 92.12 95.98 99.02 95.97 91.41 97.70 99.05 97.83 91.35 98.34 98.70 96.77 91.97 98.68 

MissionControlClip2 95.83 96.19 90.65 94.47 97.71 96.92 90.78 97.51 98.70 96.51 90.85 98.79 98.22 97.05 90.38 99.23 
MissionControlClip3 97.25 97.79 93.38 95.92 98.13 97.86 93.07 98.06 98.51 98.25 93.22 98.78 98.30 97.69 93.20 98.90 

Robot 97.33   87.23 99.19   93.83 99.39   97.85 98.50   99.40 
EBURainFruits 97.33   95.58 98.12   98.02 98.75   99.07 98.59   99.61 

Kimono1 96.66   97.49 98.48   99.13 98.78   99.53 98.77   99.70 
Average (TGM+M) 97.80 97.19 93.82 96.50 98.14 97.48 93.62 97.44 98.16 97.65 93.76 97.76 97.39 97.28 93.72 97.86 

Average (A+CC) 97.11   93.43 98.60   96.99 98.97   98.82 98.62   99.57 
Average (ALL) 97.65 97.19 93.82 95.84 98.24 97.48 93.62 97.34 98.34 97.65 93.76 97.99 97.65 97.28 93.72 98.23 

TABLE XII 
COMPARISON OF THE MODE DECISION DISTRIBUTION DECIDED BY DIFFERENT ALGORITHMS OF “CONSOLE” 

Algorithm Depth 
level 

Console (%) 
Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT Skip All Modes Goal Mode 

Proposed  
DeepSCC 

0 5.58 5.46  3.85    85.11 90.57 
1 1.08 16.62 21.42 5.93 2.39 22.37 9.59 20.60 58.64 
2 2.54 26.23 3.18 7.99 1.16 31.53 14.50 12.87 42.28 
3 1.57 24.97 0 9.31 0 20.93 25.31 17.91 42.88 

Zhang et al. [11] 

0 0 0  53.26    46.74 46.74 
1 0 0 39.37 0 0 0 60.63 0 39.37 
2 0 0 25.75 0 0 0 74.25 0 25.75 
3 0 0 9.19 0 0 0 90.81 0 9.19 

Lei et al. [12] 

0 0 0  38.89    61.11 61.11 
1 0 0 0 0 0 0 91.11 8.89 8.89 
2 0 0 0 0 0 0 93.00 7.00 7 
3 0 0 0 0 0 0 60.17 39.83 39.83 

Duanmu et al. [14] 

0 100 0  0    0 0 
1 3.40 0 0 0 0 88.13 7.61 0.86 0.86 
2 3.10 0.23 0 0.04 0 77.29 7.76 11.58 11.81 
3 0.21 0.09 0 0.02 0 52.50 21.47 25.71 25.8 

Yang et al. [15] 

0 100 0  0    0 0 
1 72.11 0 0 0 0 0 27.77 0.12 0.12 
2 33.94 0 0 0 0 0 62.89 3.17 3.17 
3 21.55 0 0 0 0 36.26 23.20 18.99 18.99 

 

TABLE XIV 
HIT RATE OF DEEPSCC TRAINED BY DATA FROM QP OF 37 

Sequences QP=22 (%) QP=37 (%) 
Intra IBC PLT Allskip Intra IBC PLT Allskip 

ChineseEditing 96.56 97.70 94.89 95.03 97.04 97.40 94.89 96.71 
Console 96.26 98.28 96.01 96.80 96.99 98.48 96.01 96.74 
Desktop 96.28 98.51 94.54 97.37 96.76 98.07 94.54 96.56 

FlyingGraphics 96.92 98.59 91.05 94.79 96.73 98.83 91.05 95.07 
Map 98.10 97.44 90.01 95.59 98.77 97.57 90.01 98.45 

Programming 94.18 92.54 92.50 91.89 97.40 96.79 92.50 97.75 
SlideShow 92.97 89.16 91.07 96.43 98.60 95.48 91.07 99.70 

WebBrowsing  98.00 97.15 92.53 95.91 98.55 97.35 92.53 98.78 
BasketballScreen 92.00 95.05 92.19 84.32 98.71 96.90 92.19 98.50 

MissionControlClip2 81.53 79.17 89.13 86.65 97.79 96.78 89.13 98.83 
MissionControlClip3 89.93 96.52 92.80 90.11 98.39 97.77 92.80 98.52 

Robot 72.14   53.39 96.80   96.43 
EBURainFruits 88.00   85.47 98.14   98.75 

Kimono1 91.80   94.90 98.70   99.59 
Average (TGM+M) 93.88 94.56 92.43 93.17 97.79 97.40 92.43 97.78 

Average (A+CC) 83.98   77.92 97.88   98.25 
Average (ALL) 91.76 94.56 92.43 89.90 97.81 97.40 92.43 97.88 
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labels in a single test, the computational overhead is very low, 
which varies from 1.17% to 3.94% of the total encoding time 
for all test sequences. It is noted that the computational overhead 
is included to calculate the total encoding time of the proposed 
DeepSCC for all simulations in this paper. 

Table XV shows the performance of DeepSCC applied to 
sequences in RGB 4:4:4 and YUV 4:2:0 formats. While the 
luminance samples of sequences in YUV 4:2:0 format are 
directly input to DeepSCC, color space conversion is performed 
for sequences in RGB 4:4:4 format to get the luminance samples. 
It should be noted that DeepSCC is only trained by sequences 
in YUV 4:4:4 format. However, DeepSCC shows good 
generalization for sequences in YUV 4:2:0 and RGB 4:4:4 
formats, where 46.49% and 43.69% encoding time is reduced 
with only 1.13% and 1.29% increase in BDBR, respectively. 
Since most existing fast SCC prediction algorithms do not 
support sequences in other formats, we cannot make the 
comparison for sequences in YUV 4:2:0 and RGB 4:4:4 formats. 

 Since intra-prediction also exists in low-delay (LD) and 
random-access (RA) configurations, Table XVI shows the 
performance comparisons between DeepSCC and algorithms in 
[14], [20], [22], [23] applied to these configurations. It should be 

noted that all algorithms are not fine-tuned for LD and RA 
configurations. It is observed DeepSCC achieves the best trade-
off between ∆Time and BDBR, where 11.92% and 10.85% 
encoding time is reduced with BDBR increased by 0.90% and 
0.58% under LD and RA configurations, respectively. 

C. Performance of Individual DeepSCC-I and DeepSCC-II 
The proposed overall DeepSCC utilizes DeepSCC-I and 

DeepSCC-II to make separate predictions for dynamic CTUs 
and stationary CTUs. To show the advantage of this 
arrangement, two sets of experiments were performed by only 
enabling DeepSCC-I and DeepSCC-II for all CTUs, 
respectively. The results are shown in Table XVII. When 
applying DeepSCC-II to all CTUs, a very high increase in 
BDBR of 3.96% is brought since the mode correlation between 
the current CTU and the collected CTU is not guaranteed. 
Although some sequences contain very high percentages of 
stationary CTUs, they still suffer from very high increases of 
BDBR. For example, “ChineseEditing” contains 93.41% 
stationary CTUs, and it shows 6.11% increase in BDBR by 
implementing the individual DeepSCC-II for all CTUs. When 
applying DeepSCC-I to all CTUs, it provides 41.86% encoding 
time reduction with 1.03% increase in BDBR. It proves that 
DeepSCC-I can address both dynamic CTUs and stationary 
CTUs by only take the luminance samples as the input. 
However, it shows less encoding time reduction compared with 
the overall DeepSCC, especially for sequences with many 
stationary CTUs. For example, the proposed overall DeepSCC 
shows 13.91% larger encoding time reduction for 
“ChineseEditing” than the individual DeepSCC-I. Therefore, 
the proposed overall DeepSCC which integrates DeepSCC-I 
and DeepSCC-II together helps to improve coding performance.  

 

Fig. 9. RD curve and ∆Time of the proposed DeepSCC for “ChineseEditing”, “Programming”, “BasketballScreen”, and “MissionControlClip2”. 
 

 

Fig. 10. Computational overhead of the proposed DeepSCC. 
 

TABLE XVII 
PERFORMANCE OF THE INDIVIDUAL DEEPSCC-I AND DEEPSCC-II 

Sequences 
DeepSCC-I DeepSCC-II Proposed Overall 

DeepSCC 
BDBR 

(%) 
∆Time 

(%) 
BDBR 

(%) 
∆Time 

(%) 
BDBR 

(%) 
∆Time 

(%) 
ChineseEditing 0.69 -35.49 6.11 -43.62 1.07 -48.80 

Console 0.83 -33.95 4.92 -26.79 1.06 -41.85 
Desktop 0.64 -42.75 4.08 -44.78 1.00 -53.46 

FlyingGraphics 0.98 -30.48 6.58 -0.78 0.99 -30.76 
Map 1.62 -25.32 4.10 -33.52 1.79 -36.36 

Programming 0.76 -33.65 5.40 -26.75 0.87 -42.74 
SlideShow 3.19 -51.07 8.73 -40.50 2.78 -55.36 

WebBrowsing  0.49 -42.58 7.13 -51.63 0.88 -54.09 
BasketballScreen 0.88 -37.05 1.00 -38.29 1.27 -46.78 

MissionControlClip2 1.36 -40.62 3.44 -39.25 1.56 -51.16 
MissionControlClip3 0.66 -36.94 2.20 -32.25 1.01 -45.96 

Robot 1.81 -49.78 1.19 0 1.81 -49.43 
EBURainFruits 0.29 -55.67 0.37 0 0.29 -55.94 

Kimono1 0.17 -70.69 0.21 0 0.17 -70.69 
Average (TGM+M) 1.10 -37.27 4.88 -34.38 1.30 -46.12 

Average (A+CC) 0.76 -58.71 0.59 0 0.76 -58.69 
Average (ALL) 1.03 -41.86 3.96 -27.01 1.18 -48.81 

 

TABLE XVI 
PERFORMANCE COMPARISONS UNDER LD AND RA CONFIGURATIONS.  

Methods LD RA 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Zhang et al. [14] 0.14 1.53 0.14 1.25 
Lei et al. [20] 1.96 4.52 2.73 5.94 

Duanmu et al. [22] 3.17 7.65 2.29 10.47 
Yang et al. [23] 4.03 12.45 3.80 13.25 

Proposed DeepSCC 0.90 11.92 0.58 10.89 
 

TABLE XV 
PERFORMANCE OF DEEPSCC FOR SEQUENCES IN RGB 4:4:4 AND YUV 4:2:0  

Sequences RGB 4:4:4 YUV 4:2:0 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Average (TGM+M) 1.29 -42.62 1.27 -42.69 
Average (A+CC) 0.54 -60.68 1.40 -49.23 
Average (ALL) 1.13 -46.49 1.29 -43.69 
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V. CONCLUSION 
In this paper, a deep learning based fast prediction network 

DeepSCC was proposed to reduce the computational 
complexity of SCC. To avoid the exhaustive mode search in a 
CTU, DeepSCC outputs 85 labels for 85 CUs of the CTU in a 
single test. For dynamic CTUs, DeepSCC-I was designed to 
take the luminance samples of a CTU as the input. For 
stationary CTUs, DeepSCC-II additionally utilizes the optimal 
mode maps of the collocated CTUs for further performance 
improvement. Compared with the traditional fast SCC 
prediction algorithms heavily relying on the limited number of 
hand-crafted features or heuristic rules, the proposed DeepSCC 
automatically learns useful features from the input. With 
extensive trainable parameters, DeepSCC can make direct 
mode decision for Intra, IBC, and PLT rather than the simple 
CU type classification. Experimental results showed that the 
proposed DeepSCC provides an average computational 
complexity reduction of 48.81% with a negligible increase in 
BDBR of 1.18%, and the computational overhead of DeepSCC 
is less than 4% of the total encoding time. This paper only 
investigated the fast decision in the granular of the CU level, 
and it can be treated as a baseline for other CNN approaches in 
the future. Future works may include fast algorithms making a 
fast decision in the granular of PU and transform unit (TU) 
levels for more encoding time reduction. Besides, more 
advanced CNN structures in SCC could also be a point for our 
future investigation.   
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