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Abstract—Screen content coding (SCC) is developed to 

encode screen content videos, and it is an extension of High 

Efficiency Video Coding (HEVC). Since screen content videos 

contain computer-generated content that shows special 

characteristics, SCC adopts the new Intra Block Copy mode and 

Palette mode besides the HEVC based Intra mode to improve 

the coding efficiency. However, the exhaustive mode searching 

process makes the SCC encoder computational expensive. In 

this paper, a low-complexity intra prediction algorithm is 

proposed by the convolutional neural network (CNN). The 

proposed network skips unnecessary coding units (CUs) and 

mode candidates by imitating the behavior of the original SCC 

encoder. The network first decides if a CU size should be 

checked by analyzing global features, and it decides which mode 

should be checked by analyzing the local features.  Experimental 

results show that the proposed algorithm achieves 53.44% 

computational complexity reduction on average with 1.94% 

Bjøntegaard delta bitrate loss under All Intra configuration.  
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I. INTRODUCTION

Screen content videos are videos captured from the display 
screens of electronic devices. With the fast development of the 
Internet and wireless communication, screen content videos 
have been applied to many screen-sharing-based applications, 
such as cloud-mobile computing, remote education, video 
conference with document sharing, wireless or Wi-Fi screen 
mirroring [1]. As shown in Fig. 1, a screen content frame 
usually contains both the traditional natural image blocks 
(NIBs) and the new computer-generated screen content blocks 
(SCBs). Compared with NIBs, SCBs show different 
characteristics such as many repeated patterns within a frame, 
limited colors and sharp edges. Since High Efficiency Video 
Coding (HEVC) only considers the characteristics of NIBs, 
the Joint Collaborative Team on Video Coding (JCT-VC) 
started a Screen Content Coding (SCC) extension [2] based on 
HEVC to explore new coding tools for SCBs. 

As an extension of HEVC, SCC adopts the same quadtree-
based coding tree unit (CTU) partitioning structure as HEVC. 
To predict the traditional NIBs in screen content videos, SCC 
directly inherits the Intra mode from HEVC. Then, to predict 
the new SCBs that have different characteristics, SCC adopts 
two new coding modes, which are Intra Block Copy (IBC) [4] 
and Palette (PLT) [5]. With the adoption of the new mode 
candidates, SCC achieves over 50% Bjøntegaard delta bitrate 
(BDBR) [6] reduction compared with HEVC. However, the 
quadtree-based CTU partitioning structure and the exhaustive 
mode checking strategy make the SCC encoder computational 
expensive. 

To reduce the computational burden of the SCC encoder, 
various algorithms have been proposed, and they can be 
divided into three categories. The first category is to reduce 
the mode candidates to be checked [7], [8]. In [7], learning 
frames are first extracted and encoded by the original encoder 
to build Bayesian classifiers, and then the classifiers are 

applied to the following frames to adaptively skip unnecessary 
mode candidates. In [8], a fast searching approach was 
proposed for IBC mode by calculating a hash value, where 
only blocks with the same hash value as the current coding 
unit (CU) are searched by IBC mode.  

The second category is to make a fast CU partitioning 
decision [9], [10]. In [9], various features describing the CU 
statistics and sub-CU homogeneity are extracted to train 
neural network-based classifiers. The simplified SCC encoder 
can adaptively skip unnecessary CU sizes according to the 
output of the classifiers. In [10], a convolutional neural 
network (CNN) based classifier was proposed to early 
terminate the CU partition by taking the raw samples as the 
input. Since CNN contains much more training parameters 
than the traditional machine-learning-based method, it 
significantly reduces the encoding time.   

The third category is to simplify both the mode decision 
and the CU partitioning decision [11]–[13]. Decision tree-
based classifiers were proposed in [11], [12]. First, CUs are 
classified into SCBs and NIBs by analyzing various features. 
Then, only IBC and PLT modes are checked for SCBs while 
only Intra mode is checked for NIBs. Besides, another set of 
decision trees are trained to early terminate the CU partition. 
In [13], CUs are also classified into NIBs and SCBs by 
extracting limited hand-crafted rules. Only Intra mode is 
checked for NIBs but all modes are checked for SCBs because 
of the low classification accuracy. Then, spatial and temporal 
correlation, as well as the coding bits of the current CU are 
analyzed to make early CU partitioning decisions.  

Compared with the traditional fast prediction algorithms 
[7]–[9], [11]–[13] that rely on the limited number of hand-
crafted rules or hand-crafted features, CNN based classifiers 
show further improvement as they contain much more 
trainable parameters. However, the CNN based classifiers in 
[10] only consider the CU partitioning decision, which leaves
rooms for further improvement. In this paper, we propose a
low-complexity intra prediction algorithm by CNN. First, the
proposed network predicts whether a CU size should be
checked or not by extracting global features from a CTU.
Second, it a CU size is decided to be checked, the proposed
network decides which mode should be checked by extracting

Fig. 1. A frame in a screen content sequence “MissionControlClip2”. 
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local features from a CU. To reduce the computational 
overhead of the CNN inference time, we integrate these two 
parts to the same network by sharing feature maps. Since a 
screen content video contains many stationary areas, the 
temporal correlation of the CU size decision and the mode 
decision is also utilized for the stationary CTUs. The 
differences between our contributions and the related schemes 
can be summarized as 1) Unlike the traditional fast prediction 
algorithms [7]–[9], [11]–[13] that rely on the limited number 
of hand-crafted rules or hand-crafted features, the proposed 
algorithm utilizes CNN as the classifier. As a result, the 
proposed algorithm automatically learns useful features from 
the raw samples, and it avoids the risk that humans may ignore 
some important features during feature extraction. 2). Unlike 
[10] only utilizes CNN based classifiers that simplify the CU
partitioning decision, the proposed algorithm additionally
considers the mode decision. Therefore, it achieves further
performance improvement.

The rest of this paper is organized as follows. Section II 
briefly reviews the CU size decision and mode decision in 
SCC. Section III presents the proposed low-complexity intra 
prediction algorithm by CNN. The experimental results are 
presented in Section IV to verify the performance of the 
proposed algorithm. Finally, section V concludes the paper. 

II. REVIEW OF THE CU SIZE AND MODE DECISION IN SCC

SCC inherits the same quad-tree based CTU partitioning

structure from HEVC. As shown in Fig. 2, a CTU of 64×64 

pixels can be partitioned to four CUs of 32×32 pixels, and 

then each CU can be further partitioned into four smaller CUs 
recursively until the smallest CUs of 8 × 8 pixels are reached. 
In this paper, we call them CU64, CU32, CU16, and CU8, 
respectively. To find the optimal mode of a CU, an exhaustive 
mode searching strategy is adopted.  

A CU in SCC has three mode candidates, which are Intra, 
IBC, and PLT. The Intra mode from HEVC includes 33 
directional modes, plus planar and DC modes. Since a NIB 
usually has a dominant direction, Intra mode predicts the 
content in the NIB by copying the boundary samples along 
this direction. IBC is a block-matching-based technique. Since 
a SCB has many repeated patterns within the same frame, IBC 
performs motion estimation in the reconstructed areas of the 
current frame, and it uses a block vector to denote the position 
of the best-matched block. PLT is designed based on the 
characteristics that a SCB contains limited colors. It encodes 
a CU by selecting several representative colors in the CU, and 
it denotes the position of each representative color by using an 
index map. In the original encoder, the exhaustive mode 
checking strategy checks all modes of Intra, IBC, and PLT, as 

shown in Fig. 3. For each mode, the SCC encoder calculates 
the Lagrange rate-distortion (RD) cost Jmode 

Jmode = Dmode + 𝜆 × Rmode (1) 

where mode∈{Intra, IBC, PLT}, 𝜆 is a Lagrange multiplier, 
Dmode is the distortion and Rmode is the bit cost of the CU when 
selecting mode. The mode with the smallest value of mode is 
selected as the optimal mode for the CU. Therefore, the 
optimal mode selection of a CU is only related to the local 
content of the CU.  

After selecting the optimal mode for all CUs, the RD costs 
are compared across different CU sizes. If the RD cost of a 
CU is smaller than the sum of the RD costs of its four sub-
CUs, the content is coded by the current CU size. Otherwise, 
the current CU continues partitioning, and the content is coded 
by its four sub-CUs. Finally, the CTU partitioning structure is 
decided as the one with the smallest sum of RD cost. 
Therefore, the CU size decision is not decided by the local 
content of a CU but the global content of a CTU. 

III. PROPOSED NETWORK FOR LOW-COMPLEXITY  INTRA 

PREDICTION 

To make a low-complexity Intra prediction for SCC, we 
adopt CNN as the classifier. Since it contains extensive 
trainable parameters, it automatically learns useful features 
from the raw samples, which avoids the risk that humans may 
ignore some important features during feature extraction. 

A. Description of the CNN Based Classifier

The structure of the proposed network is shown in Fig. 4.
The input is the luminance component of a CTU, and it is 
preprocessed by mean removal before fed to the network. The 
proposed network can output all mode decisions and CU size 
decisions of a CTU in a single test. In total, the network 
contains 6 convolutional layers (Conv1–Conv6) and 3 
deconvolutional layers (Deconv1–Deconv3). The details of 
the proposed network are shown in Table I. Each 
convolutional or deconvolutional layer is followed by a 
rectified linear unit (ReLU) activation function.  

To make fast mode decision, the luminance component of 
a CTU goes through the convolutional layers (Conv1–Conv6). 
For each CU, the network outputs the probability of selecting 
each mode, i.e., P(mode), 𝑚𝑜𝑑𝑒 ∈ {Intra, IBC, PLT}. As 
shown in Fig. 2, the width/height of a CU is reduced by half 
when it goes through a partition. To imitate the heavier of the 
original SCC encoder, we set the kernel sizes of the conv1–

Fig. 2. Quad-tree based CTU partitioning structure. 

CU64 CU32 CU16 CU8
TABLE I. DETAILS OF THE PROPOSED NETWORK 

Layer Output size  
Channel 
number 

Kernel size  Stride 

Input 6464 1 22 22 

Conv1 3232 8 22 22 

Conv2 1616 16 22 22 

Conv3 88 32 22 22 

Conv4 44 64 22 22 

Conv5 22 128 22 22 

Conv6 11 256 22 22 

Deconv1 22 128 22 22 

Deconv2 44 64 22 22 

Deconv3 88 32 22 22 

Fig. 3. Exhaustive mode searching strategy for a CU. 

Intra IBC PLT
CU Optimal mode



conv6 to 2×2, and their strides are set to the widths of the 

kernels to perform non-overlapping convolutions, in 
accordance with the non-overlapping CU partitioning 
structure. By using this strategy, the receptive field of a node 
in feature maps of Conv3–Conv6 is a CU8, CU16, CU32, and 
CU64, respectively. Therefore, Conv3–Conv6 can extract the 
local features of CU8, CU16, CU32, and CU64 without 
introducing the influence from other CUs. Since the mode 
decision of a CU is only related to its local content, four mode 
classifiers are designed by using the local features from 
Conv3–Conv6. Each mode classifier contains a convolutional 

layer with a kernel size of 1×1, and it is followed by a 

softmax function to output P(mode). For example, the feature 
maps of Conv3 are used to predict the mode decision of CU8. 

Since the feature map of Conv3 has the size of 8×8, the mode 

classifiers for CU8 output 64 P(mode), in accordance with the 
64 CU8, as shown in Fig. 2. 

On the other hand, the CU size decision in a CTU is not 
only related to the content of a single CU but also related to 
the content from other CUs. Therefore, we use three 
deconvolutional layers (Deconv1–Deconv3) to enlarge the 
feature maps while extracting global features. Since the 
receptive field of each node in the feature maps of Conv6 is 
the entire CTU, the receptive field of each node in the feature 
maps of Deconv1–Deconv3 also becomes the entire CTU. By 
using this strategy, the feature maps of Deconv1–Deconv3 
introduce the influence of other CUs. By utilizing the global 
features of Conv6 and Deconv1–Deconv3, four CU size 
classifiers are designed. For each CU, the network outputs the 
probability of selecting this CU size, i.e., P(CU). Similar to 

the mode classifiers, each CU size classifier also contains a 

convolutional layer with a kernel size of 1×1, and it is 

followed by a softmax function to output P(CU). For example, 
the feature maps of Deconv3 are used to predict the CU size 
decision for CU8. Since the feature map of Deconv3 has the 

size of 8×8, the CU size classifier for CU8 output 64 P(CU), 

in accordance with the 64 CU8, as shown in Fig. 2. 

Specifically, two CNN models are trained for dynamic 
CTUs and stationary CTUs, respectively. For dynamic CTUs 
where the sum of absolute differences (SAD) between the 
current CTU and its collocated CTU is not 0, only the current 
CTU is input to the proposed network. For stationary CTUs 
where the SAD between the current CTU and its collocated 
CTU is 0, the temporal correlation is additionally utilized as 
the input. Four mode maps of the collocated CTUs are 
extracted, and they represent the optimal modes of the 
collocated CU8, CU16, CU32, and CU64, respectively. The 
mode maps are concatenated to the corresponding feature 
maps of Conv3–Conv6, as shown in Fig. 4.  

B. Training of the CNN Based Classifier 

To generate the training data of the proposed network, 12 
sequences [14]–[18] are selected to cover various video 
content, and they are shown in Table II. For each training 
sequence, 50 frames were extracted with an equal interval, and 
they were encoded by the original encoder to get the ground-
truth labels. Unlike other machine-learning-based algorithms 
that train a new model for each quantization parameter (QP), 
we train a single model by using training data from a wide 
range of QPs, which are QPs of 22, 27, 32, and 37, as defined 
in the common test conditions (CTC) [19]. Therefore, it can 
be applied to testing sequences under a wide range of QPs.  

The training of the network was implemented in Caffe, and 
a GPU of GeForce GTX 1080 Ti was used to accelerate the 
training process. To train the network, the “msra” filter is 
adopted for parameter initialization, and the “adam” optimizer 
is adopted to update the trainable parameters. The learning 
rate policy of “poly” is used to gradually reduce the learning 
rate, with the base learning rate of 0.01, power of 0.9, and the 
maximum iteration of 100,000. To alleviate the overfitting 
problem, a weight decay of 0.005 is applied. The cross-
entropy function is utilized to calculate the loss of the 
proposed network, and it is represented as  

𝑓(𝜔, �̂�) = −∑ 𝑦(𝜔 = 𝜔𝑖)𝑖 𝑙𝑜𝑔(𝑃(�̂� = 𝜔𝑖))        (2) 

 

Fig. 4. Structure of the proposed network.  
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Convolutional layer

Deconvolutional layer

Concatenating layer

(Only existed in stationary CTU)

Mode classifiers Luminance CTU

Mode map of the collocated CTU

(Only existed in stationary CTU)

Feature map

TABLE II. TRAINING SEQUENCES 

Sequences Resolution No. of Frame 

ClearTypeSpreadsheet 1920×1080 300 

PptDocXls 1920×1080 200 

RealTimeData 1920×1080 600 

WordEditing 1920×1080 600 

VideoConferencingDoc
Sharing 

1280×720 300 

BigBuck 1920×1080 400 

KristenAndSaraScreen 1920×1080 600 

MissionControlClip1 2560×1440 600 

Viking 1280×720 300 

EBULupoCandlelight 1920×1080 250 

Seeking 1920×1080 250 

ParkScene 1920×1080 240 

 



where 𝜔𝑖  denotes the i-class. 𝑦(𝜔𝑖 = 𝜔) is 1 if the ground 
truth class 𝜔  is 𝜔𝑖 . Otherwise, it is set to 0. 𝑃(𝜔𝑖 = �̂�) 
denotes the probability that the predicted class �̂� is 𝜔𝑖. In this 
paper, the loss function of a training sample is defined as the 
summation of the cross-entropy over all predicted labels in the 
mode classifiers and the CU size classifiers.  

C. Testing of the CNN Based Classifier 

After the training of the proposed network, it is invoked 
by the modified SCC encoder to skip unnecessary CU sizes 
and mode candidates. Before checking a CU size, the encoder 
checks its probability P(CU), and the CU size is skipped if  

P(CU) < α                                (3) 

where α is a confidence threshold for CU size decision. 
Otherwise, if a CU is decided to be checked, the encoder 
further checks the probability of P(mode), mode∈{Intra, IBC, 
PLT}, and a mode is skipped by the encoder if  

P(mode) < β                              (4) 

There exists spatial correlation in the CU size decision and 
mode decision, where a CU tends to have the same size and 
the same optimal mode as its neighbor CUs. Therefore, the 
spatial correlation is utilized to adaptively adjust the values of 
α and β. For the CU that has the same size as its left or top CU, 
the value of α is reduced by half so that the CU has a larger 
chance to checked. Similarly, for the mode that is the same as 
the optimal mode of its left or top CU, the value of β is reduced 
by half so that the mode has a larger chance to be checked. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed fast mode decision algorithm has been 
implemented in the SCC reference software, SCM-8.3 [20], 
and the proposed network is invoked by the DNN tool of 
OpenCV 3.4.1 to make the low-complexity prediction. To 
evaluate the performance of the proposed algorithm, the 
change in encoding time ΔTime and BDBR with QPs of 22, 
27, 32, and 37 have been compared with those of the original 
SCM-8.3 in percentage (%) under All Intra configuration. It 
should be noted that a negative value of BDBR or ΔTime 
denotes decrement in percentage as compared with SCM-8.3. 
The testing sequences are the 14 sequences in CTC [19]. They 
are divided into four categories according to the video content, 
where TGM represents text and graphics with motion, M 

represents mixed content, A represents animation and CC 
represents camera-captured content.  

To skip the unnecessary CU size and mode candidates, the 
proposed network adopts two confidence thresholds, α and β. 
Their values control the trade-off between BDBR and ΔTime. 
If larger values of α and β are used, more encoding time 
reduction can be achieved. However, it also brings more 
increase in BDBR. In this paper, the values of α and β are 
experimentally set to 0.15 and 0.07, respectively. The 
performance of the proposed network is shown in Table III. It 
is observed that the proposed algorithm achieves 53.44% 
encoding time reduction with 1.94% negligible  increase in 
BDBR. 

Furthermore, Table IV shows the performance comparison 
with the existing fast SCC encoding algorithms [9]–[13] in the 
literature. It is observed that they provide 36.80%–53.21% 
encoding time reduction with BDBR increased by 2.01%–
3.65%. Comparatively, the proposed algorithm outperforms 
them by achieving the largest encoding time reduction with 
the smallest increase in BDBR. Specially, Zhao et al. [10] is 
also a CNN based algorithm that only optimizes the CU size 
decision. However, the proposed CNN based algorithm 
optimizer both the CU size decision and the mode decision, 
and it further outperforms Zhao et al. [10] by provides a 
similar encoding time reduction with 0.73% less increase in 
BDBR. Besides, Zhao et al. [10] trains four models for four 
different QPs of 22, 27, 32, and 37. Comparatively, the 
proposed method only trained a single model by using mixed 
training data from the four QPs. Therefore, the memory 
overhead of the proposed network is also smaller than Zhao et 
al. [10]. 

V. CONCLUSION 

In this paper, a low-complexity intra prediction algorithm 
was proposed for SCC. CNN is utilized as the classification 
tool because it contains extensive trainable parameters. First, 
the proposed network decides if the current CU size should be 
checked or not by extracting global features from a CTU. If a 
CU size is decided to be checked, the proposed network 
further decides the mode candidates of Intra, IBC, and PLT 
should be checked or not by extracting local features from the 
CU.  Since screen content videos contain both dynamic CTUs 
and stationary CTUs, two different models are trained for 
them, respectively. For dynamic CTUs, only the luminance 
component of a CTU is utilized as the input. For stationary 
CTUs, the mode maps of the collocated CTUs are additionally 
utilized as the input. Experimental results show that the 
proposed network provides an average computational 
complexity reduction of 53.44% with a negligible increase in 
BDBR of 1.94% for typical screen content sequences under 
All Intra configuration. 

 

TABLE III. PERFORMANCE OF THE PROPOSED ALGORITHM 

Categories Sequences 
Proposed 

BDBR (%) ∆Time (%) 

TGM 

ChineseEditing 1.44 -64.02 

Console 3.20 -50.38 

Desktop 3.39 -62.25 
FlyingGraphics 1.34 -26.26 

Map 1.90 -48.72 

Programming 1.17 -48.13 
SlideShow 2.67 -62.07 

WebBrowsing 2.56 -66.46 

M 

BasketballScreen 2.10 -56.01 

MissionControlClip2 2.27 -56.6 
MissionControlClip3 2.07 -52.5 

A Robot 1.79 -37.1 

CC 
EBURainFruits 0.51 -41.85 

Kimono1 0.69 -75.82 

Average (ALL) 1.94 -53.44 

 

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS 

Algorithms 
Proposed 

BDBR (%) ∆Time (%) 

Duanmu et al. [9] 3.00 -36.80 

Zhao et al. [10] 2.67 -53.21 

Yang et al. [11] 2.72 -49.89 
Duanmu et al. [12] 3.65 -52.00 

Lei et al. [13] 2.01 -44.92 

Proposed 1.94 -53.44 

 



REFERENCES 

[1] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for 
cloud-mobile convergence,” IEEE Multimedia, vol. 18, no. 2, pp. 4–11, 
February. 2011.  

[2] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging hevc 
screen content coding extension,” IEEE Trans. Circuits Syst. Video 
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016. 

[3] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the 
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. 
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 
2012. 

[4] X. Xu et al., “Intra block copy in HEVC screen content coding 
extensions”, IEEE J. Emerg. Sel. Topic Circuits Syst.,  vol. 6, no. 4, pp. 
409–419, Dec. 2016. 

[5] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced screen content coding 
using color table and index map”, IEEE Trans. Image Process., vol. 23, 
no. 10, pp. 4399–4412, Oct. 2014. 

[6] G. Bjontegaard, “Calculation of average PSNR differences between rd- 
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 
2001. 

[7] W. Kuang, S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast Mode 
Decision Algorithm for HEVC Screen Content Intra Coding,” in Proc. 
of Int. Conf. on Image Process., pp. 2473-2477, Beijing, China, Sept. 
2017. 

[8] S.-H. Tsang, W. Kuang, Y.-L. Chan and W.-C. Siu, “Fast HEVC screen 
content coding by skipping unnecessary checking of intra block copy 
mode based on CU activity and gradient,” in Proc. APSIPA ASC, Jeju, 
Korea, Dec. 2016, pp.1–5. 

[9] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using 
machine learning for screen content compression,” in Proc. IEEE Int. 
Conf. Image Process., Quebec, QC, Canada, Sep. 2015, pp. 4972–4976. 

[10] L. Zhao, Z. Wei, W. Cai, W. Wang, L. Zeng and J. Chen, “Efficient 
screen content coding based on convolutional neural network guided 
by a large-scale database”, in Proc. of Int. Conf. on Image Process., pp. 
2656-2660, Taiwan, Sept. 2019. 

[11] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm 
based on statistical learning for screen content coding”, in Proc. IEEE 
Int. Conf. Image Process., Beijing, China, Sep. 2017, pp. 2468–2472. 

[12] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision 
using machine learning for intra-frame coding in HEVC screen content 
coding extension,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no. 
4, pp.517–531, Dec. 2016. 

[13] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra 
prediction based on content property analysis for low complexity 
HEVC-based screen content coding,” IEEE Trans. Broadcast., vol. 63, 
no.1, pp.48–58, Mar. 2017. 

[14] R. Cohen, “AHG8: 4:4:4 game content sequences for HEVC range 
extensions development”, 14th JCT-VC meeting, document JCTVC- 
N0294, Vienna, Austria, Aug. 2013. 

[15] A. M. Tourapis, D. Singer, and K. Kolarov, “New test sequences for 
screen content coding”, 15th JCT-VC meeting, document JCTVC-
O0222, Geneva, Switzerland, Nov. 2013. 

[16] H. -P. Yu, W. Wang, X. Wang, J. Ye, and Z. Ma, “AHG8: New 4:4:4 
test sequences with screen content”, 15th JCT-VC meeting, document 
JCTVC- O0256, Geneva, Switzerland, Nov. 2013. 

[17] J. Guo, L. Zhao, and T. Lin, “Response to B1002 Call for test materials: 
Five test sequences for screen content video coding”, 3th JVET 
meeting, document JVET-C0044, Geneva, Switzerland, May. 2016. 

[18] K. Sharman, and K. Suehring, “Common test conditions”, 24th JCT-
VC meeting, document JCTVC-X1100, Geneva, Switzerland, May. 
2016. 

[19] H.-P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions 
for screen content coding”, 21th JCT-VC meeting, document JCTVC-
U1015-r2, Warsaw, Poland, Jun. 2015. 

[20] HM-16.12+SCM-8.3, HEVC test model version 16.12 screen content 
model version 8.3, [Online], available at: 
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-
16.12+SCM-8.3/

 

https://en.wikipedia.org/wiki/Austria
http://phenix.int-evry.fr/jct/doc_end_user/current_meeting.php?id_meeting=167&search_id_group=1&search_sub_group=1
http://phenix.int-evry.fr/jct/doc_end_user/current_meeting.php?id_meeting=167&search_id_group=1&search_sub_group=1
http://phenix.int-evry.fr/jct/doc_end_user/current_meeting.php?id_meeting=167&search_id_group=1&search_sub_group=1
http://phenix.int-evry.fr/jct/doc_end_user/current_meeting.php?id_meeting=167&search_id_group=1&search_sub_group=1
https://hevc.hhi.fraunhofer.de/



