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ABSTRACT 

Nowadays, a precise video quality assessment (VQA) model is essential to maintain the quality of service (QoS). However, 
most existing VQA metrics are designed for specific purposes and ignore the spatiotemporal features of nature video. This 
paper proposes a novel general-purpose no-reference (NR) VQA metric adopting Long Short-Term Memory (LSTM) 
modules with the masking layer and pre-padding strategy, namely VQA-LSTM, to solve the above issues. First, we divide 
the distorted video into frames and extract some significant but also universal spatial and temporal features that could 
effectively reflect the quality of frames. Second, the data preprocessing stage and pre-padding strategy are used to process 
data to ease the training for our VQA-LSTM. Finally, a three-layer LSTM model incorporated with masking layer is 
designed to learn the sequence of spatial features as spatiotemporal features and learn the sequence of temporal features as 
the gradient of temporal features to evaluate the quality of videos. Two widely used VQA database, MCL-V and LIVE, 
are tested to prove the robustness of our VQA-LSTM, and the experimental results show that our VQA-LSTM has a better 
correlation with human perception than some state-of-the-art approaches.   
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1. INTRODUCTION
Recently, media platforms and social networks have dramatic growth in video content. However, the video is inevitably 
distorted since it has been processed, compressed, and transmitted before it finally reaches the end-users. These distortions 
may affect the human visual experience (HVE). Therefore, a precise VQA metric is highly demanded to provide a 
satisfactory end-user experience and maintain the QoS. The objective VQA method becomes an attractive and challenging 
topic in recent years since it could allow automatic quality estimation without any labor force and more suitable for real-
time application than Subjective VQA. According to the availability of information on the reference video1, there are three 
types of objective VQA methods. They are full-reference (FR)2-5, reduced-reference (RR)6, and no-reference (NR)7-13 VQA 
methods. Comparing with the FR/RR-VQA method, the NR-VQA method does not require any information from the 
reference video to assess the distorted video. Since the original video is not always available, the NR-VQA method is a 
more natural and preferable way to evaluate the perceived video quality in real applications. 

Some existing NR-VQA approaches have shown promising results. Wang7 proposed a VQA metric that focused on the 
influence of blockiness and blur artifact to predict the video quality with weighing and linear regression strategy. Zhu8 
proposed an NR-VQA model for measuring the distortion of compressed video by using intra-subband features and inter-
subband features. DeepBVQA9 targets on low-resolution video dataset that uses Convolutional Neural Network (CNN) to 
extract the spatial cues and extract sharpness variation as temporal features to evaluate the video quality. Zhang10 also 
trained a CNN by the deformations of 3D discrete cosine transform of video blocks to extract the significant features of 
the distorted videos and predict the perceptual quality by mapping with frequency histogram. Although the aforementioned 
NR-VQA methods have explored the spatial and temporal features of distorted videos with different strategies, those NR-
VQA methods may ignore the spatiotemporal features of videos, which affect the performance of NR-VQA metrics. 

With the development of deep learning, it is potent for learning data representation, and it can also automatically learn 
abstract features. LSTM is one of the deep learning methods that could process the whole sequences of data and is suitable 
for making predictions based on time series data. However, the LSTM model is rarely used in VQA metrics for two reasons. 
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First, the general LSTM model is not suitable for processing videos of various lengths since it requires fixed-length input. 
Second, various length videos as inputs affect the performance of LSTM.  Therefore, we propose the VQA-LSTM to solve 
the above problems. First, for a general use purpose, we extract some significant but also universal spatial and temporal 
features that could adequately reflect the quality of frames. Second, the data preprocessing stage is used to normalize the 
data. Also, due to the fixed-length data input requirement of the LSTM model, the pre-padding strategy is used to handle 
the variable-length input to be a fixed-length input to ease the training and improve the performance. Finally, a three-layer 
LSTM model is designed to learn the sequence of spatial features as spatiotemporal features and the sequence of temporal 
features as the gradient of temporal features to evaluate the quality of videos comprehensively. Also, a masking layer is 
incorporated with the LSTM model to reduce the impact of variable length input to improve the performance. Therefore, 
the significant contributions of this paper are threefold: 1) A general LSTM model is proposed to learn the spatiotemporal 
features and the gradient of temporal features of videos to gauge their quality comprehensively. 2) The pre-padding strategy 
and masking layer are used to ease the training and improve the performance when adopting the LSTM model in VQA 
metrics. 3) Our proposed general-purpose VQA-LSTM could be universal for various distortions and have a strong 
correlation with human perception. 

The rest of this paper is organized as follows. In Section 2, the proposed framework and the details are described. In Section 
3, the experimental result is presented. Finally, the conclusion and future works are stated in Section 4. 

2. PROPOSED MODEL AND METHODOLOGY
The overview of our VQA-LSTM structure is shown in Fig. 1(a). First, the video is divided into frames, and their universal 
spatial and temporal features are extracted frame by frame to generate feature vectors. In the data preprocessing stage, all 
feature vectors are normalized to the same scale. With the pre-padding strategy, variable-length feature vectors are 
promoted to a fixed-length sequence data input for the LSTM model to ease the training. Also, we incorporate the masking 
layer with the LSTM model to reduce the influence of the pre-padding strategy. Finally, the LSTM model could learn the 
temporal change of spatial features as spatiotemporal features and the variation of temporal features as the gradient of 
temporal features to assess the quality of videos. 

Figure 1. (a) The framework of our proposed VQA-LSTM to predict the quality of the input video. (b) Network Architecture 
of LSTM incorporated with masking layer 

2.1 Spatial Feature Extraction 

Sharpness, blocking, and Gaussian noise artifacts are the most common and universal spatial features found in frames1. 
Extracting and quantifying those spatial features could adequately reflect the quality of frames. Therefore, to develop a 
general use purpose NR-VQA model, we extract all the above significant spatial features to evaluate the quality of frames. 

For the Gaussian noise, in this paper, the block-based noise estimation approach with zero-mean operator14 is employed 
to estimate the standard deviation of noise to represent the Gaussian noise of frames. First, to compute the variance of 
Gaussian noise, we define a 3 × 3 zero-mean noise estimation operator L as below: 
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Thus, we could compute the variance of Gaussian noise by applying L to the noisy frame I and average over the frame 
with width W and height H. Therefore, the standard deviation of noise  could be computed as below: 

      (2) 

For detecting the blocking artifact, the block-based blocking artifact detection approach15 is used. First, we divide the 
frame into non-overlapping 8 × 8 blocks and evaluate each region block's blocking artifact regarding its corresponding 
four neighboring regions. Since the blocking artifact represents incoherence or discontinuities between blocks, the gradient 
slope across block boundaries could be used to detect blocking artifact. Assume  is the boundary slope of the block (i, 
j), and  represents  the average slopes next to the boundary. For the two neighboring blocks in the horizontal direction, 

 and are defined as below: 
     (3) 

     (4) 

     (5) 

where a = 0, 1, …, 7, N = 8 and xi,j is the pixel value in block (i, j). Then, the formula of the Mean Absolute Difference of 
Slope (MADS) is defined as follows: 

     (6) 

Avoiding the misdetection of real object edges, a threshold of MADS, four, is used in this paper. If the MADS of edges is 
larger than the threshold, it is identified as the blocking edge. After that, we take the average of MADS, , for all 
blocking edges to represent the blocking artifact of the frame. 

To estimate the sharpness, we measure the pixel gradient to identify the sharp edge. The pixel gradient is the difference of 
the pixel value in both horizontal and vertical directions, represented by ∆x and ∆y, respectively. We calculate the squared 
difference along in both horizontal and vertical directions row by row and column by column. If the squared difference of 
two adjacent pixels is significant, it could be identified as a sharp edge. Therefore, the mean square root value of ∆x2 and 
∆y2 could represent the sharpness of frames. The equation is shown as follows: 

     (7) 

2.2 Temporal Feature Extraction 

For the temporal features, we measure the similarity percentage of inter-frame (SPIF) to indicate three different levels of 
Frame Freeze (FF) artifacts to reflect the temporal features of frames. First, we compute the pixel difference PD of each 
location (x, y) of tth frame and t-1th frame by the following equation:   

     (8) 

where x = 0, 1, …, W-1, y = 0, 1, …, H-1, F(x, y) is the pixel information of tth frame, and F’(x, y) is the pixel information 
of t-1th frame. Thus, PD values in (8) can be used to estimate the SPIF(t) of tth frame as below: 

      (9) 

For the first frame of video, its SPIF(t) value is set to 0. Based on the SPIF(t), this paper proposes three types of frame 
freeze artifacts which are analyzed and classified as follows: 

                            (10) 

Absolutely Frame Freeze (AFF) is the typical type of the FF that the SPIF(t) is equal to one, which means tth frame is the 
same as t-1th frame. Visually Frame Freeze (VFF) is a virtual frame freeze derived by HVE. A high SPIF value implies 
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that the two adjacent frames are similar, and the difference is tiny. Due to the resolving power of human eyes, the video 
observer could misidentify it as FF. Besides, Content-related Frame Freeze (CFF) is another virtual frame freeze caused 
by continuous high-density frames with similar content in inter-frames. Videos may contain at least 20 to 50 frames within 
a second. Due to the resolving power of human eyes, if the continuous frames contain high-density and similar content, 
the observer is hard to identify the difference of frames and misidentifies it as FF. 

2.3 Data Preprocessing & Pre-padding Strategy 

After the feature extraction stage, TNF(k) features vectors are generated for the kth distorted video, where k = 1,2, 3, ...., K, 
and K is the total number of videos in the dataset, and TNF(k) is the total number of frames of kth distorted video. Each 
feature vector, fv, contains six feature values, including , , Sharpness, AFF, VFF, and CFF. However, since each 
feature has its own data range, which is harmful to training, normalization is performed to re-scale the data on a common 
scale without distorting the differences in data or loss information. Specifically, after normalization, all features are re-
scaled into the range [0,1] that benefit the LSTM model to optimize the gradient descent while learning the data 
representation and improving the performance.  

Besides, since the length of the TNF values are different for each video sequence, and the LSTM model requires fixed-
length input, the pre-padding method is used to handle the various length input to be a fixed-length input for the LSTM 
model. Specifically, first, we set the fixed-length . Then, the padding data pdvM are padded in front 
of the feature vectors to increase the length of feature vectors to be FM-length feature vectors. Therefore, the input sequence 
of kth video for the LSTM model is defined as below: 

(11) 

where pdvM = [-1,-1,-1,-1,-1,-1], and .  Those padding data, pdv, are meaningless and do not affect the 
original data. Therefore, no matter how long are the distorted videos which make the extracted feature vectors, TFN(k), 
with different lengths, after the data preprocessing stage, a set of fixed FM-length feature vectors, seq(k), is generated and 
fed into the LSTM model. It could provide an equal-length sequences data to the LSTM model to ease the training.  The 
padding in (11) is the pre-padding method.  We also test the performance16 of our VQA-LSTM when the post-padding 
method in (12) is used. 

(12) 

Since the LSTM model has memory to process the time series data by its forget, input, and output gates, if pdv is placed 
in front of fv, the forget gate could easily reduce the influence of pdv. Also, with fv placed at the back, it can benefit the 
gradient descent to achieve better performance for our VQA-LSTM. The experimental results of the pre-padding and post-
padding methods are shown in section 3. 

2.4 Network Architecture & Masking Layer 

LSTM is one of the deep learning methods that could process the whole sequences of data and make predictions based on 
time series data. Therefore, we make good use of the LSTM model to learn the sequence of spatial features as 
spatiotemporal features, and the gradient of temporal features to evaluate the quality of videos. 

In this paper, we designed a many-input one-output LSTM model incorporated with a masking layer, as shown in Fig. 
1(b). There are three LSTM layers, and each cell of LSTM has 60 neurons. After the data preprocessing stage, a set of 
fixed FM-length feature vectors is fed into the LSTM model and processed sequentially. For those spatial features, δn, 

, and Sharpness, the LSTM model could be used to learn the temporal variation of spatial features along with time 
series that could represent the spatiotemporal features of the video. For the temporal features, AFF, VFF, and CFF indicate 
the variation level of content between inter-frame. Thus, the LSTM model is used to process the entire sequences of 
temporal data to disclose the gradient of temporal features, which could better reflect the whole quality of video. 

Although the pre-padding method, Eq. (11), takes care of the various length input issue for the sake of proper training, it 
also slightly affects the LSTM model's performance. To further resolve this problem, we incorporate a masking layer 
between the input data and LSTM layers. The masking layer could mask the padding data, pdv, in the input sequence and 
skip its timestep. Thus, the LSTM model could only focus on meaningful data, fv, to improve performance. The 
experimental results of the LSTM model with and without the masking layer are shown in section 3. 

nd MADS

{ } Kk
kkTNFFM =
== 0)(max

î
í
ì

=
<

=
- FMkTNFfffffff

FMkTNFfffpdvpdvpdv
kseq

kTNFkTNF

kTNFM

)(],,......,,,,,[
)(],...,,,,...,,[

)(
)(1)(54321

)(2121

)(kTNFFMM -=

î
í
ì

=
<

=
- FMkTNFfffffff

FMkTNFpdvpdvpdvfff
kPseq

kTNFkTNF

MkTNF

)(],,......,,,,,[
)(],...,,,,...,,[

)(
)(1)(54321

21)(21

MADS



3. EXPERIMENTAL RESULTS
3.1 Data Sets and Evaluation 

1) MCL-V Video Quality Database: MCL-V17 is a high-definition VQA database that contains 96 distorted videos.  These
distorted videos are generated from 12 reference videos with four different distortion levels and two H.264/AVC
compression distortions with and without downscaled. The video sequences contain diversified content that can better
reflect the HVE. Each distorted video is a 6-second video with a frame rate of either 20 fps, 22 fps, 25 fps, or 30 fps
containing 120-180 various frame lengths. Besides, the MOS of each distorted video is provided to be a ground truth of
HVE for testing the VQA- LSTM.

2) LIVE Video Quality Database: LIVE18 contains 10 reference videos and 150 distorted videos. 15 distorted videos from
each reference video are generated with four different distortion types: wireless distortions, IP distortions, H.264
compression, and MPEG-2 compression. Each distorted video is a 10-second video, except for one group of distorted
videos, with a frame rate of 25 fps or 50 fps containing 217-500 various frame lengths. Besides, the ground truth, DMOS
scores, are provided for all distorted videos and tested with the VQA-LSTM.

When conducting experiments, each database was divided into two non-overlapping data set. 80% of the distorted videos 
were used for training, and the remaining 20% were used for testing, out of which 20% of the training set was used for 
validation. When training the LSTM model, 10,000 epochs are used for training with Mean Square Error loss function, 
Adam optimizer, and an initial learning rate of 0.0001. We also used full batch learning, in which the gradient calculation 
can better represent the sample population. Moreover, in our model, FM is set to 180 for MCL-V and 500 for LIVE since 
those are the largest frame number of videos in each database. To evaluate the correlation between MOS/DMOS scores 
and our proposed model, we used the Pearson Linear Correlation Coefficient (PLCC), and the Spearman Rank Order 
Correlation Coefficient (SROCC). 

3.2 Performance Evaluation on MCL-V and LIVE Video Database 

The ablation experiment is performed on MCL-V, which is shown in Table 1. It clearly shows that the pre-padding strategy 
and the masking layer could improve the performance and solve the restriction of LSTM when adopted in VQA metrics 
with various length videos. Besides, in Table 2(a), we compared the performances of VQA-LSTM against those of the 
other NR-VQA and FR-VQA models. The proposed method surpasses other NR-VQA metrics in terms of PLCC and 
SROCC. As compared to the FR-VQA, our NR-VQA metrics also outperforms some universal FR-VQA metrics such as 
SSIM19, VIF20, and STMAD2. Although our performance is on par with Zhang's FR-VQA metric using CNN5, our VQA-
LSTM has a satisfying result and is more suitable to implement in the real application without requiring the reference 
video. Similarly, some NR/FR-VQA metrics are compared with the VQA-LSTM on the LIVE video database, as shown 
in Table 2(b). Although DeepBVQA9 and Zhang’s12 also use deep learning and CNN algorithms, the proposed method, 
VQA-LSTM, outperforms them in terms of PLCC and SROCC.  As compared to other FR-VQA, our VQA-LSTM also 
surpasses other FR-VQA metrics, including Zhang’s5. Since the experimental results show that our VQA-LSTM has a 
better correlation with human perception than other state-of-the-art approaches, it proves that our VQA-LSTM is robust 
and effective. 

Table 1. Ablation performance of VQA-LSTM variants on MCL-V Video Database. 

Method PLCC SROCC 
Post-padding 0.768 0.782 
Pre-padding 0.868 0.856 

Post-padding with masking 0.881 0.896 
Pre-padding with masking (VQA-LSTM) 0.913 0.953 

Table 2. SROCC and PLCC on the (a) MCL-V and (b) LIVE Video Database comparing with other NR/FR-VQA metrics. 

MCL-V Video Database LIVE Video Database 

NR Method PLCC SROCC FR Method PLCC SROCC NR Method PLCC SROCC FR Method PLCC SROCC 

VIIDEO11 0.711 0.664 SSIM19 0.650 0.648 VIIDEO11 0.692 0.674 SSIM19 0.699 0.718 
V-BLIINDS13 0.861 0.746 VIF20 0.660 0.655 V-BLIINDS13 0.843 0.827 VIF20 0.759 0.765 

Wang’s7 0.759 0.806 STMAD2 0.634 0.623 DeepBVQA9 0.857 0.851 STMAD2 0.845 0.868 
Zhu’s8 0.778 0.784 VADM3 0.742 0.752 Zhang’s12 0.863 0.887 Suen’s4 0.836 0.859 

VQA-LSTM 0.913 0.953 Zhang’s5 0.931 0.933 VQA-LSTM 0.893 0.899 Zhang’s5 0.875 0.891 
(a) (b) 



4. CONCLUSION
In this paper, we developed a general-purpose NR-VQA metric VQA-LSTM. On the one hand, the pre-padding strategy 
and masking layer are used to ease the training and improve the performance when adopting the LSTM model in VQA 
metrics. On the other hand, a general LSTM model is built to learn the sequence of universal spatial and temporal features 
to evaluate the quality of videos. Also, the experimental results demonstrate that the VQA-LSTM is effective and 
correlation-well with human perception. 
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