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Abstract
Grouped and right-censored (GRC) counts are widely used in criminology, demog-

raphy, epidemiology, marketing, sociology, psychology, and other related disciplines
to study behavioral and event frequencies, especially when sensitive research topics or
individuals with possibly lower cognitive capacities are at stake. Yet, the co-existence
of grouping and right-censoring poses major difficulties in regression analysis. To
implement generalized linear regression of GRC counts, we derive modified Poisson
estimators and their asymptotic properties, develop a hybrid line search algorithm for
parameter inference, demonstrate the finite-sample performance of these estimators
via simulation, and evaluate its empirical applicability based on survey data of drug
use in America. This method has a clear methodological advantage over the ordered
logistic model for analyzing GRC counts.

Key words: Regression Analysis, Grouped and Right-censored Counts, Modified
Poisson Estimators, Zero Inflation, Hybrid Line Search, Fisher Information

1 Introduction
In survey research, response categories combining both grouped counts (e.g., a response
category of “3-4 times” rather than separate categories of “3 times” and “4 times”) and
right-censored counts (e.g., an upper end category as “5 or more times”) constitute a useful
instrument to solicit information on sensitive themes (e.g., substance use) and/or from
populations with lower cognitive capacities (e.g., the elderly and adolescents) (Blair and
Burton, 1987; Schaeffer and Dykema, 2011; Schaeffer and Presser, 2003). Consequently,
these grouped and right-censored (GRC) counts have so far been widely used in criminology,
demography, epidemiology, marketing, sociology, psychology and other related disciplines to
study behavioral and event frequencies (Ackard et al., 2002; Akers et al., 1989; Bachman
et al., 1990; Hagan et al., 2005; Marsden, 2003). For example, since the year 1975, GRC
counts have been repeatedly used in an ongoing national representative study of adolescents,
the Monitoring the Future (MTF, or the National High School Senior Survey) project, to
track annual changes in substance use and juvenile delinquency based on hundreds of middle
and high schools in the United States (Johnston et al., 2017). Besides the MTF project, the
only other repeated nationally-representative survey which collects information about risky
behaviors among American youth, the Youth Risk Behavior Survey (YRBS), included GRC
count responses in multiple survey questions (Kann et al., 2018). As the largest longitudinal
survey of adolescents ever conducted, the National Longitudinal Study of Adolescent to
Adult Health (Add Health) also uses GRC counts to collect information on a variety of
juvenile delinquent behaviors (Harris, 2013).

Two reasons may account for the wide use of GRC counts in surveys (Coughlin, 1990;
Groves et al., 2009; Fu et al., 2020; Schaeffer and Presser, 2003). First, respondents are
less likely to report exact frequencies when sensitive topics are at stake. Because a further
demand for an exact enumeration of sensitive behaviors (e.g., substance use, sex intercourse,
and juvenile delinquency) would on the contrary result in excessive missing values, the use of
GRC counts as response categories actually allow survey investigators to gain valuable albeit
incomplete information. Second, even when respondents are willing to cooperate, recall bias
will make their accurate enumeration unreliable and thus discourage a direct estimation of
frequencies/counts in questionnaire designs. It is not surprising to find that major social
and epidemiological surveys targeting children, adolescents, the elderly, or other individuals
with possibly lower cognitive capacities widely adopt GRC count responses for questions
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on behavioral frequencies (Bauman et al., 2013; Johnston et al., 2017; Kann et al., 2018;
Voorrips et al., 1991).

Regression models for right-censored (count) data have long been developed (e.g., Brän-
näs (1992); Cameron and Trivedi (2013); Gross and Lai (1996); Li and Ma (2010); Sinha
et al. (1994) and the regression analysis of right-censored counts can be readily implemented
by existing software packages (Raciborski, 2011). However, when right-censored counts are
also grouped, the development of regression models and computation tools have received re-
markably little attention. Despite large volumes of GRC count data collected across different
disciplines and research settings, this type of count data has not been adequately exploited
in empirical research. Due to the absence of statistical methods and computing tools, one
conventional view shared by scholars across different disciplines is that these GRC counts
can only be treated as categories and subsequently be analyzed by (ordered/multinomial)
logistic regression models, if not by descriptive methods. Obviously, when counts are being
treated as (ordinal) categories, logistic regression models fail to utilize the rich information
embedded in their data structure.

Existing literature suggests that Poisson-based regression models are most suitable for
analyzing count data, whereas logistic regression models are mainly designed for analyzing
categorical data (e.g., Cameron and Trivedi (2013); Hall (2000); Lambert (1992)). Despite
a clear methodological advantage over logistic regression models, a Poisson approach to
modeling GRC counts are thwarted by several challenges. First, existing Poisson likelihood
estimators should be modified to take both grouping and right-censoring into account. More-
over, the modified estimator(s) should be applicable to overdispersed GRC counts given the
fact that observed counts are often overdispersed (Hall, 2000; Lambert, 1992; Young et al.,
2017). Second, to implement Poisson-based regression models of GRC counts with covari-
ates, any attempt should start with designing data generating processes for GRC counts and
deriving asymptotic properties in a framework of generalized linear models. Third, because
software packages for regression analysis of GRC counts have yet to be developed, different
algorithms and search strategies need to be assessed to compute regression estimates. This
study attempts to address all these issues.

2 Modeling Grouped and Right-censored Counts in
Surveys

In this study, we implement modified Poisson regression models to analyze GRC counts.
To illustrate the conceptual and methodological differences between these models and other
existing methods, we review several prior approaches to count or censored data. While
the use of GRC counts in survey research leads to grouped counts, misreporting of the
exact count can also produce heaping at common counts (e.g., 5, 10, 15) and a mixture
of exact and coarsened counts (Wang and Heitjan, 2008; Cummings et al., 2015; Zinn and
Würbach, 2016). According to survey methodologists (Schaeffer and Presser, 2003), heaped
counts (also known as digital preference) are a product of “satisficing” strategies adopted
by respondents who try to conserve energy and provide seemingly good enough answers
to survey questions. Heaped counts then correspond to measurement errors when exact
enumeration is required in surveys (Cummings et al., 2015). In contrast, grouped counts
correspond to design errors when GRC counts are used as survey instruments. Because
GRC counts do not require exact enumeration, they may provide a plausible solution to
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digital preference by pushing errors in the measurement stage back to errors in the design
stage. Although measurement errors are largely beyond the control of researchers, optimum
experimental designs can be used to reduce design errors (Atkinson et al., 2007).

Two general approaches to heaped counts have been implemented (Cummings et al.,
2015; Zinn and Würbach, 2016). The interval-regression approach treats that the heap-
ing multiples as interval-censored counts, while the rescaled-mixture approach assumes that
one group of respondents report k times of the requested counts over a 1/k interval of the
reference period (Wang and Heitjan, 2008; Cummings et al., 2015). The use of these ap-
proaches to heaped counts relies on the specification of heaping multiples and understanding
of misreporting patterns. Our models presented here do not require such information at the
measurement stage.

Other regression models have been implemented to deal with censored count data (Cameron
and Trivedi, 2013; Raciborski, 2011). Yet, these existing tools including the -cpoisson- and
-rcpoisson- commands in Stata cannot consider overdispersion of censored counts. Moreover,
only one censored interval, either is right-censoring, or left-censoring, or interval-censoring,
can be considered by these tools. For regression models which can consider an outcome
with multiple censored intervals, they have been implemented in the context of a contin-
uous rather than count outcome (Royston, 2007). Again, the overdispersion of censored
counts cannot be addressed by these models. This research aims to provide flexible tools
for modeling grouped and right-censored counts with or without overdispersion.

Two issues related to the modeling of zeros (e.g., “never”) in GRC counts should further
be noted. First, the zero count is often contained in a separate group and does not combine
with other frequency counts (e.g., once or twice) in the design of GRC response categories.
The rationale is that the prevalence of an event/behavior being studied can still be estimated
even though the expected frequency cannot. Second, the modeling of zeros is actually also
emphasized in the analysis of overdispersed counts. In general, two regression approaches
to overdispersed counts exist (Hall, 2000; Lambert, 1992; Young et al., 2017). The zero-
inflated Poisson approach uses a binomial distribution to model excessive zeros, while the
negative binomial approach uses a multiplicative effect (i.e., the shape parameter) to denote
unobserved heterogeneity. Due to space limit, this study adopts the zero-inflated Poisson
approach to overdispersion. But the negative-binomial approach to GRC counts can also be
developed based on the analytical procedures described here.

3 Methods
3.1 Modified Poisson Estimators
Consider the random variable Y from a Poisson distribution Pois(µ) with mean µ,

Prob(Y = k) = e−µµ
k

k!
, k = 0, 1, · · · ,

where the mean and the variance of Y are both µ. In Poisson regression, the expected
frequency µ is determined by a linear combination of predictors X0, · · · , Xd ∈ R through an
invertible link function gµ : (0,∞)→ R,

µ = g−1
µ (β∗

0X0 + · · ·+ β∗
dXd), (1)
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where β∗
0 , · · · , β∗

d ∈ R are unknown coefficients to be inferred from data. X0 is set to be 1
for models with an intercept. We next consider a Poisson-multinomial approach to GRC
counts (Fu et al. (2018)). First, we divide all the non-negative integers into N ≥ 1 groups,
where N corresponds to the total number of groups predetermined by a survey investigator.
For each 1 ≤ i ≤ N , the i-th group consists of one, or a successive sequence of integers,

Groupi = {k ∈ N : li ≤ k < li+1},

where N = {0, 1, 2, · · · } is the totality of all non-negative integers, and we use 0 = l1 <
l2 < · · · < lN+1 = ∞ to mark the boundaries of these N groups. If we use G = {li}N+1

i=1 to
denote a grouped and right-censored grouping scheme, and combine the probability masses
of Pois(µ) to form a multinomial distribution M(θ1, · · · , θN) with one trial, the observation
of the counts takes the form YG ∼ M(θ1, · · · , θN) instead of Y ∼ Pois(µ), such that for
1 ≤ j ≤ N ,

Prob(YG = j) = θG(j, µ = g−1
µ (β∗TX)) =

lj+1−1∑
k=lj

e−µµ
k

k!
(2)

where X = (X0, · · · , Xd)
T and β∗ = (β∗

0 , · · · , β∗
d)

T . Considering a sample
{
(X i, Y i

G)
}n

i=1
,

the log-likelihood function of the model above is

ℓPoisn (β) =
n∑

i=1

log θG(Y i
G, g

−1
µ (βTX i)). (3)

The equi-dispersion assumption (that the mean equals the variance) under the Poisson
distribution is violated when an empirical distribution has excessive zeros. The zero-inflated
Poisson (ZIP) distribution is proposed to address excessive zeros (Hall, 2000; Lambert, 1992).
For a count variable Y ∼ ZIP(µ, p) with µ > 0 and 0 < p < 1, we have

Prob(Y = k) =

{
p+ (1− p)e−µ, k = 0,

(1− p)e−µ µk

k!
, k ≥ 1,

where (1 − p) is the proportion of population subject to Pois(µ). YG is again modeled by
a multinomial distribution M(θ1, · · · , θN) where each θi is a combined ZIP(µ, p) probabil-
ity of the corresponding group. In addition to X, we assume another set of predictors
U = (U0, · · · , Ud′)

T ∈ Rd′+1, their corresponding coefficients γ∗ = (γ∗
0 , · · · , γ∗

d′)
T , and an

invertible link function gp : (0, 1)→ R, to model the parameter p = g−1
p (γ∗TU). Note that

U and X may share some common predictors, and they may even be the same vector. Now
the data set takes the form {(X i,U i, Y i

G)}ni=1, and we write the log-likelihood function as

ℓZIPn (β,γ) =
n∑

i=1

log θG(Y i
G, g

−1
µ (βTX i), g−1

p (γTU i)). (4)

Different link functions can be adopted as gµ and gp, including the log link function,
glog : (0,∞)→ R,

glog(λ) = log λ, g−1
log(t) = et, (5)
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and the logit link glogit : (0, 1)→ R,

glogit(λ) = log

(
λ

1− λ

)
, g−1

logit(t) = (1 + e−t)−1.

For any C2 multivariate function1 f , we have ∇f and Hess(f) as its gradient vector and
Hessian matrix, respectively. Next we give the consistency and asymptotic efficiency of the
MLE’s defined by (3) and (4), respectively. Our discussion below draws on the assumption
of stochastic regressors (Fahrmeir and Kaufmann, 1985; van der Vaart, 1998). Let ρGL,P be
a Borel probability measure on Rd+1×{1, . . . , N} with marginal distribution ρGL,P

X on Rd+1.
Assume that for a.s. X ∼ ρGL,P

X , the conditional distribution ρGL,P(·|X) is defined by (2)
with µ = g−1

µ (β∗TX). Let 0 denote a zero vector. The following theorem demonstrates the
asymptotic existence, consistency, and asymptotic normality of MLE based on model (3).

Theorem 3.1. Assume that

1. The marginal distribution ρGL,P
X is supported on a compact set X ⊂ Rd+1, and g−1

µ is
C2 with (g−1

µ )′ > 0 everywhere;

2.
∫
Rd+1 ⟨u,x⟩2 dρGL,P

X (x) > 0 for any u ∈ Rd+1\{0};

3. N ≥ 2.

There then exists a sequence β̂n of random vectors and a random integer n1, such that as
the sample size n→∞,

(i). Prob
(
∇ℓPoisn (β̂n) = 0 for all n ≥ n1

)
= 1 (asymptotic existence);

(ii). β̂n
a.s.−→ β∗ (strong consistency);

(iii). The Fisher information matrix F(β) := −E[Hess(ℓPois1 (β))] exists, and it is strictly
positive definite for any β. Moreover,

√
n(β̂n − β∗)

Law−→ N (0, (F(β∗))−1) (asymptotic
normality).

In essence, the assumption 2 in Theorem 3.1 requires that the distribution ρGL,P
X is not

concentrated on any non-trivial subspace. For the ZIP case, we define ρGL,ZIP as its joint
probability distribution on Rd+1 × Rd′+1 × {1, . . . , N}, and define ρGL,ZIP

X (ρGL,ZIP
U ), and

ρGL,ZIP(·|X,U) as its marginal and conditional distributions, respectively. The following
theorem demonstrates the asymptotic existence, consistency, and asymptotic normality of
MLE based on model (4).

Theorem 3.2. Assume that

1. The marginal distributions ρGL,ZIP
X and ρGL,ZIP

U are compactly supported. Both the
inverses of the link functions g−1

µ and g−1
p are C2 with (g−1

µ )′ > 0 and (g−1
p )′ > 0

everywhere;

2. For both ρ = ρGL,ZIP
X and ρ = ρGL,ZIP

U ,
∫
⟨u,x⟩2 dρ(x) > 0 for any u ̸= 0;

1Here in this paper, a function is called C2 if its first and second (partial) derivatives exist and are
continuous.
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3. N ≥ 3.

Then, there exists a sequence (β̂n, γ̂n) of random vectors and a random integer n1, such that
as the sample size n→∞,

(i). Prob
(
∇ℓZIPn (β̂n, γ̂n) = 0 for all n ≥ n1

)
= 1 (asymptotic existence);

(ii). β̂n
a.s.−→ β∗, and γ̂n

a.s.−→ γ∗ (strong consistency);

(iii). The Fisher information matrix F(β,γ) := −E[Hess(ℓZIP1 (β,γ))] exists, and it is strictly
positive definite for any β and γ. Moreover,

√
n

((
β̂n

γ̂n

)
−
(

β∗

γ∗

))
Law−→ N (0, (F(β∗,γ∗))−1),

(asymptotic normality).

In Appendix A, we give a rigorous proof of Theorems 3.1 and 3.2 by developing a more
general framework of generalized linear models for GRC counts.

3.2 Computing Modified Poisson Estimates
We define the log-likelihood functions for the Poisson and ZIP cases by (3) and (4), re-
spectively. The maximizers of these log-likelihood functions are modified Poisson and ZIP
estimates respectively. To compute these modified Poisson estimates, we develop a hy-
brid line search algorithm, which consists of both first-order gradient method and second-
order iteratively-reweighted-least-squares (IRLS, which is derived from the Newton-Raphson
method) method. When GRC counts are at stake, we find that the use of this hybrid line
search algorithm offers an effective way to compute estimates and avoid non-convergence.
While Algorithm 1 presents step-by-step details of this algorithm, its logic can be further
illustrated as follows.

For the Poisson case (the ZIP case can be analyzed similarly), we denote ηi = βTX i

and ξi = g−1
µ (ηi) in (3), and write the partial derivative of the log-likelihood function with

respect to a regression coefficient βr, or a coordinate of the gradient, as:

∂ℓPoisn (β)

∂βr

=
∂

∂βr

n∑
i=1

log θG(Y i
G, ξ

i) =
n∑

i=1

1

θG(Y i
G, ξ

i)
·
∂θG(Y i

G, ξ
i)

∂ξi
·
(
g−1
µ

)′
(ηi) ·X i

r. (6)

When the log link is used and counts are not grouped or right-censored, there is a simple
analytical expression of (6), which is

∑n
i=1(Y

i − ξi)X i
r. However, this simple analytical

expression no longer exists when counts are grouped and right-censored. Instead, the com-
putation of (6) with GRC counts involves the summation of many (exponential) terms,
which might be prone to overflow errors. Especially, overflow errors tend to take place if
the initial choices of regression coefficients are distant from modified Poisson estimates in
early iteration steps. We therefore evaluate the gradient using a finite-difference numerical
method. Here, a numerical first-order instead of second-order method is implemented be-
cause a numerical approximation to the Hessian matrix Hess(ℓPoisn ) is more time-consuming.
We expect that this numerical first-order method mainly determines the search directions
in early iteration steps.
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Yet, the first-order method may converge slowly in final iteration steps due to the com-
mon zig-zagging behavior of a first-order method (Luenberger and Ye, 2016, Section 8.2).
Instead, the second-order IRLS method should be used to diversify search directions and
facilitate a quick convergence. Rather than using a numerical approximation, we draw on
an analytical expression for Hess(ℓPoisn ) to implement the IRLS for two reasons. First, when
the search process is close to modified Poisson estimates in its final stage, overflow errors
are no longer a serious concern. Second, as compared with a numerical approximation to
Hess(ℓPoisn ), an analytical method still provides a more precise evaluation of Hess(ℓPoisn ) and
subsequently yields more effective modified Poisson likelihood estimates.

The idea of our hybrid algorithm is further illustrated in Figure 1, where solid contour
lines represent different levels of log-likelihood function ℓPoisn . The dashed ellipse gives the
contour of the second-order evaluation of ℓPoisn , of which the location of the maximum is
marked by the star. If we start from point A, the two arrows show the search directions
of the gradient and IRLS methods, respectively. In line with our discussion above, we
experimented with this hybrid search and found that, the gradient method helps to increase
the log-likelihood in early iteration steps, while the IRLS method tends to cause overflow
errors. However, the gradient method slows down at the final stage of the search process
but the IRLS provides very quick convergence towards a maximizer. A critical issue is that
we do not know exactly when the IRLS method starts to outperform the gradient method
in providing a meaningful search direction. In practice, the answer to this question varies
with model specification, variable selection, and datasets. Meanwhile, due to the complex
structure of ℓPoisn (e.g., its n summands with exponential functions), the gradient ∇ℓPoisn can
change drastically as β changes, which makes it difficult to determine an appropriate step
size for gradient ascent. To address these practical concerns, we implement line searches in
each iteration. By calculating and comparing the log-likelihood of multiple locations along
the directions informed by both the gradient and the IRLS methods, our hybrid line search
algorithm eventually converges to modified Poisson estimates.

Figure 1: Graphical model representation of the hybrid line search algorithm
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Algorithm 1: A hybrid line search algorithm for MLE
Input: the log-likelihood function ℓn.
m← 0, β(0) ← 0, maxIter← 100
Set b > 1 > a > 0.
R← {abi : 1 ≤ i ≤ 15}, Prel ← 10−8

repeat
m← m+ 1
n∗

1 ← ∇ℓn(β(m−1)) /* n∗
1 calculated using a numerical method */

n1 ← n∗
1/∥n∗

1∥, or 0 if n∗
1 overflows.

n∗
2 ← −Hess(ℓn)(β(m−1))−1∇ℓn(β(m−1))

/* n∗
2 calculated using the analytical expression */

n2 ← n∗
2/∥n∗

2∥, or 0 if n∗
2 overflows.

D ← {0} ∪ {rn1 : r ∈ R} ∪ {rn2 : r ∈ R}
v = argmax{ℓn(β(m−1) + u) : u ∈ D}
β(m) ← v

until m > maxIter, or ∥v − β(m−1)∥ ≤ Prel · ∥β(m−1)∥;
Output: β(m)

4 Simulation and Empirical Results
To assess finite-sample properties of the modified (zero-inflated) Poisson estimators, we
experiment with artificial data using different sample sizes. For the Poisson parameter µ in
both modified Poisson and ZIP models, we use a log link function with an intercept β0 = −1.
Two regressors X1 and X2 are independently drawn from the standard normal distribution,
with their coefficients β1 = 1 and β2 = 2, respectively. For the ZIP case, we use a logit
link function for its zero-inflation parameter p. This link function has an intercept γ0 = 1
and one additional regressor γ1 drawn independently from the standard normal distribution.
The coefficient is set as γ1 = −1. Two sets of results from simulation studies are presented
in Table 1 (for the Poisson case) and Table 2 (for the ZIP case). For both sets of results,
the finite-sample properties of the proposed methods are assessed based on sample sizes of
n = 100, 400, 1200, 3600, and 10800, respectively. For each set of results with a specific
sample size n, 1000 replications were carried out to calculate the averaged bias of estimates
(BIAS in the tables), standard error (approximated by the standard deviation of estimates
from replications and denoted by SE in the tables), the average of estimated standard errors
from replications (SEE in the tables), and the empirical coverage probability of confidence
intervals with a confidence level of 95% (CP 95% in the tables).

Results from Table 1 and Table 2 clearly suggest the validity of modified Poisson esti-
mators. For the Poisson case (see Table 1), the bias in estimating coefficients appears to
be acceptable even with a small sample size (n = 100) and it diminishes when the sample
size gets larger. This observation also holds for the estimation of standard errors: with a
small sample size (n = 100), the average of estimated standard errors is similar to the actual
standard error, and their difference becomes negligible when sample size n increases. The
empirical coverage probability stays very close to 95% and this pattern does not vary with
sample size.

To illustrate the methodological advantage of modified Poisson estimators over conven-
tional ways of modeling GRC counts, we also use ordered logistic regression models (propor-
tional odds models with the parallel regression assumption) to estimate the partial effects of
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X1 and X2 on the outcome effects and the results from simulations with 1,000 replications
are also presented in Table 1. Here, the data generating model remains the same as that for
simulation results of the modified Poisson model. Because ordered logistic regression models
incorrectly treat counts as categories and cannot consider the design of grouping schemes,
the bias in estimating β1 and β2 is quite large and does not appear to diminish with a larger
sample size. While both SE and SEE tend to decrease with a larger sample size, the bias is
so large that the 95% confidence intervals fail to contain the true values of β1 and β2 across
all scenarios with n ≥ 100. Again, these results suggest that neither should GRC counts be
treated in conventional models as (ordinal) categories, nor would logistic models provide a
satisfactory way to analyze GRC counts. It should be noted that, because ordered logistic
regression uses several thresholds to model intercepts related to different categories in the
GRC counts, a direct comparison between the two methods in the estimation of β0 cannot
be conducted.

For the modified zero-inflated Poisson estimators (see Table 2), possibly related to more
parameters to be inferred, the averaged bias of regression estimates tends to be large with
a small sample size (n = 100). However, the bias substantially reduces when the sample
size is moderate (n = 400) or large. Similarly, the average of estimated standard errors
does not provide a very accurate approximation of its corresponding standard error of the
estimates when the sample size is small (n = 100). However, the average of estimated
standard errors gets (very) close to the true standard error if the sample size increases. The
empirical coverage probability somewhat fluctuates around 95% with a small (n = 100) or
moderate (n = 400) sample size; yet it gets much closer to 95% when the sample size gets
larger.

We also show an empirical application of modified Poisson estimators. Administered by
the University of Michigan, the MTF (Monitoring the Future) project tracks annual changes
in drug use and juvenile delinquency in the United States since the year 1975 (Johnston et al.,
2017). As the largest repeated cross-sectional survey of its kind, the MTF studies students
from hundreds of American middle and high schools each year. Data used in the current
study are retrieved from the 2015 wave of the MTF project, which was released by the
survey team for public use.

The existing literature suggests that adolescent marijuana use is strongly associated with
their socio-demographic background, which guides our selection of regressors. A notable age
increase in marijuana use has been documented from early to late adolescence, where male
adolescents exhibit higher prevalence rates of marijuana use than females do (Chen and
Jacobson, 2012; Finn, 2006). While mixed patterns have been observed on racial disparities
in adolescent marijuana use (Miech et al., 2019), black adolescents often have lower rates of
marijuana use than their white counterparts (Chen and Jacobson, 2012; Keyes et al., 2011).
With regard to the impacts of family background, adolescents from single-parent families
or with less-educated parents generally report higher levels of substance use (Barrett and
Turner, 2006; Cambron et al., 2018). Finally, compared with adolescents living in rural
areas, adolescents living in metropolitan areas tend to have higher levels of marijuana use
(Martino et al., 2008).

The outcome variable and covariates are described as follows. One’s lifetime frequency
of marijuana use is measured by the survey’s grouping scheme [never, 1-2 times, 3-5 times,
6-9 times, 10-19 times, 20-39 times, 40+ times]. For comparison, we consider the same
set of eight variables (including intercepts). Grade 10 and grade 12 are dummy vari-
ables denoting the grade of respondents, with 8th graders as reference. The demographic
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Table 1: Modified Poisson estimators for GRC counts: Regression results based on 1,000
replications

n Coef Generalized Linear Models Ordered Logistic Regression
BIAS SE SEE CP 95% BIAS SE SEE CP 95%

β0 −0.032 0.221 0.217 96.1% – – – –
100 β1 0.017 0.130 0.129 95.6% 1.090 0.456 0.389 14.8%

β2 0.025 0.189 0.183 95.5% 2.163 0.773 0.633 2.2%
β0 −0.011 0.105 0.106 95.8% – – – –

400 β1 0.005 0.061 0.062 95.9% 1.002 0.199 0.183 0.0%
β2 0.011 0.087 0.089 96.0% 2.001 0.335 0.297 0.0%
β0 −0.005 0.059 0.061 96.5% – – – –

1200 β1 0.000 0.034 0.035 95.2% 0.984 0.113 0.104 0.0%
β2 0.004 0.050 0.051 95.2% 1.977 0.190 0.170 0.0%
β0 0.000 0.034 0.035 95.7% – – – –

3600 β1 0.000 0.019 0.020 96.0% 0.977 0.063 0.060 0.0%
β2 −0.000 0.029 0.029 95.0% 1.954 0.107 0.097 0.0%
β0 0.000 0.020 0.020 95.8% – – – –

10800 β1 −0.000 0.011 0.012 95.2% 0.976 0.037 0.035 0.0%
β2 −0.001 0.017 0.017 95.7% 1.949 0.063 0.056 0.0%

Note: n: sample size; Coef: regression coefficient; BIAS: averaged bias of estimates; SE:
standard error of the estimates; SEE: average of estimated standard errors; CP 95%:
empirical coverage probability of 95% confidence intervals.

background of respondents is further indicated by male (versus female) and black (versus
non-African American). Intact Family means both parents were present (coded as one)
and the variable is coded as zero if otherwise. Parental Education is coded as one if either
of the parents has completed college education and is coded as zero if otherwise. Finally,
metropolitan areas indicates if a school was located in a metropolitan region (coded as
one) or not (coded as zero).

As suggested by Table 3, male, more senior students and students from metropolitan
areas were significantly associated with higher frequencies of marijuana use, while students
from intact families or with college-educated parents were significantly associated with lower
frequencies. Consistent with existing literature (Pacek et al., 2012; Finn, 2006), black adoles-
cents reported significantly lower frequencies as compared with their counterparts. Results
from the binomial part of the ZIP case showed that students from intact families or with
college-educated parents were less exposed to marijuana use, while male, more senior stu-
dents, and students living in metropolitan areas are more exposed to marijuana use. As
expected, measures of goodness of fit, such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC), favor ZIP models over Poisson models. All models
are weighted by survey weights.
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Table 2: Modified zero-inflated Poisson estimators for GRC counts: Regression results based
on 1,000 replications

n Coef BIAS SE SEE CP 95%

β0 −0.223 0.590 0.518 94.0%
β1 0.099 0.330 0.274 92.8%

100 β2 0.200 0.482 0.410 93.9%
γ0 −0.071 0.499 0.472 96.2%
γ1 −0.227 0.687 0.556 96.5%

β0 −0.043 0.251 0.242 93.6%
β1 0.022 0.127 0.125 94.9%

400 β2 0.042 0.192 0.188 94.9%
γ0 −0.023 0.225 0.220 95.0%
γ1 −0.035 0.237 0.235 95.6%

β0 −0.006 0.143 0.139 94.5%
β1 0.002 0.071 0.071 94.8%

1200 β2 0.008 0.110 0.107 94.9%
γ0 −0.003 0.127 0.126 94.9%
γ1 −0.014 0.133 0.133 94.4%

β0 −0.005 0.079 0.080 95.3%
β1 0.002 0.041 0.041 94.7%

3600 β2 0.003 0.062 0.061 95.0%
γ0 −0.001 0.072 0.073 94.7%
γ1 −0.004 0.074 0.076 95.6%

β0 −0.000 0.049 0.046 93.9%
β1 0.000 0.024 0.024 94.7%

10800 β2 0.001 0.037 0.035 93.5%
γ0 0.001 0.042 0.042 94.5%
γ1 −0.000 0.045 0.044 94.9%

Note: n: sample size; Coef: regression coefficient; BIAS: averaged bias of estimates; SE:
standard error of the estimates; SEE: average of estimated standard errors; CP 95%:
empirical coverage probability of 95% confidence intervals.

5 Discussion
Grouped and right-censored counts have been widely employed by survey investigators across
different disciplines yet the conventional wisdom for modeling GRC data fails to take into
account their latent count structure. By proposing a general framework of generalized
linear models, we provide a valid tool, modified Poisson estimators, for much more precise
estimation. Methodologically speaking, this general framework presented here has a clear
advantage over conventional logistic regression analysis of GRC counts. This is because the
former takes into account the design of grouping schemes and allows a direct assessment
of counts, frequencies and rates, whereas the latter cannot consider the design of grouping
schemes and requires GRC counts be collapsed into categories.

Modified Poisson estimators provide a flexible framework for analyzing GRC data re-
gardless of whether the true data generating process is Poisson, zero-inflated Poisson, or
other Poisson-based distributions. This framework has been developed, implemented and
assessed in the present study as follows: we define/derive modified Poisson estimators and

12



their asymptotic properties, develop a hybrid line search algorithm for parameter inference,
demonstrate finite-sample performance of these estimators via simulation, and evaluate its
empirical relevance based on survey data of marijuana use in America. Proof and findings
from the current study evidently corroborate the validity and applicability of the generalized
linear models for GRC counts.

Further efforts on generalized linear modeling of GRC counts are warranted. First and
foremost, the relation between the choice of grouping schemes and the applicability of modi-
fied Poisson estimators needs to be further elucidated. A better understanding of the relation
relies on future inquires into the design and optimality of GRC counts, and the accumu-
lation of empirical applications in different research fields. Second, it is useful to extend
the current focus on modified Poisson/ZIP regression models to other related parametric
models of count data, such as negative binomial models, hurdle models, or zero-inflated
negative binomial models (see Guo et al. (2020) for a discussion on negative-binomial mod-
els). Third, it is useful to incorporate other computing methods/algorithms in the modified
Poisson estimators so that they can be applied to a wider range of research settings, such
as random-effect analysis.
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Appendix A A Proof of Asymptotic Properties
To prove Theorems 3.1 and 3.2, we now develop a general framework of generalized linear
models for GRC counts, and these two theorems can be treated as corollaries. Let Y be
a random variable, of which the probability density/mass function f(y|ξ = (ξ1, · · · , ξr)) is
parameterized by r continuous parameters. Here, the Poisson case only has µ to be estimated
(r = 1) and the ZIP case has both µ and p to be estimated (r = 2). Assume that for each i,
ξi is defined on an open interval Ii, mapped to R by a homeomorphic link function gi such
that g−1

i is C2, and (g−1
i )′ > 0 everywhere. We assume that f(y|ξ) is a C2 function of ξ on

the (possibly unbounded) open “brick” I1×· · ·×Ir. For each parameter ξi, denote a vector
of stochastic regressors X i = (Xi,0, · · · , Xi,di)

T ∈ Rdi+1, and a vector of their corresponding
coefficients βi = (βi,0, · · · , βi,di)

T ∈ Rdi+1. Define

ξi = g−1
i (βT

i X i).

We combine the regressors into one vector X = (XT
1 , · · · ,XT

r )
T , and use a pair of two

numbers (s, s′) to index the vector X, where 1 ≤ s ≤ r and 0 ≤ s′ ≤ ds. Similarly, we
write β = (βT

1 , · · · ,βT
r )

T and ξ = ξ(β,X) = (ξ1 = g−1
1 (βT

1X1), · · · , ξr). In particular, Xi,0

is fixed to be 1 for models with an intercept. Again, we use G = {li}N+1
i=1 , M(θ1, · · · , θN),

and YG ∈ {1, · · · , N} to denote a predetermined grouping scheme, its associated 1-trial
multinomial distribution, and the (observed) occurrence of a group among the N possible
groups, respectively.

We let I = I(G, ξ) = (IGs,t)r×r be the Fisher information matrix of a random integer
1 ≤ YG ≤ N with respect to parameters ξ (without considering regressors). That is,

IGs,t = IGs,t(ξ) = E
[

∂

∂ξs
log θG(YG, ξ)

∂

∂ξt
log θG(YG, ξ)

]
, (7)

where for 1 ≤ k ≤ N ,

θG(k, ξ) =

lk+1−1∑
j=lk

f(j|ξ) (8)

gives the probability mass function of the N groups. Since YG takes values in the finite set
{1, · · · , N} and the expectation (7) is a finite sum, IGs,t is well defined for all ξ ∈ I1×· · ·×Ir.

Let {(X i, Y i
G)}ni=1 be a sample drawn independently from a distribution ρ on Rd1+1 ×

· · ·×Rdr+1×{1, · · · , N} with the true coefficient vector given by β∗ = ((β∗
1)

T , · · · , (β∗
r)

T )T .
We write the log-likelihood function as

ℓn(β) =
n∑

i=1

log θG(Y i
G, ξ(β,X

i)).

To show large sample properties of estimators based on the above framework of gener-
alized linear models for GRC counts, we write d = d1 + · · · + dr, use ∥ · ∥ to denote the
Euclidean norm, and have the following theorem.

Theorem A.1. Assume that

1. The marginal distribution ρX of ρ on Rd1+1 × · · · × Rdr+1 is supported on a compact
set X . θG(YG, ξ) is a C2 function of ξ. For each 1 ≤ j ≤ s, g−1

j is C2 with (g−1
j )′ > 0

everywhere;
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2. For any 1 ≤ j ≤ r and u ∈ Rdj+1\{0},
∫
⟨u,x⟩2 dρj(x) > 0, where ρj is the marginal

distribution of ρ on Rdj+1;

3. The matrix I(G, ξ) is continuous on ξ ∈ I1 × · · · × Ir, and is strictly positive definite
everywhere.

Then, there exists a sequence β̂n of random vectors and a random integer n1, such that as
the sample size n→∞,

(i). Prob
(
∇ℓn(β̂n) = 0 for all n ≥ n1

)
= 1 (asymptotic existence);

(ii). β̂n
a.s.−→ β∗ (strong consistency);

(iii). The Fisher Information matrix F(β) := −E[Hess(ℓ1)(β)] exists, and it is strictly
positive definite for any β. Moreover,

√
n(β̂n − β∗)

Law−→ N (0, (F(β∗))−1) (asymptotic
normality).

Proof of Theorem A.1. For any β ∈ Rd+r, we write ∆β = β − β∗ and consider the Taylor
expansion of the average log-likelihood,

1

n
[ℓn(β)− ℓn(β

∗)] =
1

n
∆βT∇ℓn(β∗) +

1

2n
∆βTHn(β̃)∆β, (9)

where Hn = HG
n = Hess(ℓn) and β̃ is a vector between β and β∗. Recall that the co-

efficient vector β ∈ Rd+r has the structure β = (βT
1 , · · · ,βT

r )
T . For each 1 ≤ s ≤ r,

βs = (βs,0, · · · , βs,ds)
T ∈ Rds+1 is a GLM coefficient vector associated with the model pa-

rameter ξs. For any fixed β ∈ Rd+r, 1 ≤ s ≤ r, and 0 ≤ s′ ≤ ds, the (s, s′)-coordinate of
∇ℓn(β) is

[∇ℓn(β)]s,s′ =
n∑

i=1

∂

∂ξs
log θG(Y i

G, ξ(β,X
i))(g−1

s )′(βT
s X

i
s)X

i
s,s′ . (10)

Given the boundedness of X and the C2 smoothness of g−1
s and θG, every summand on the

right-hand side of (10) is bounded. Since Y i
G only takes values from the finite set {1, . . . , N},

the conditional expectation E[·|X i] of the i-th summand is just a sum of N terms. For
notational simplicity we write θGi = θG(Y i

G, ξ(β,X
i)). In particular, when β = β∗, for any

1 ≤ i ≤ n,

E
[

∂

∂ξs
log θG(Y i

G, ξ(β
∗,X i))

∣∣∣∣X i

]
=

∂

∂ξs

N∑
j=1

θG(j, ξ(β∗,X i)) =
∂

∂ξs
1 = 0.

So when β = β∗, the n summands in (10) are bounded i.i.d. random variables with zero
means. According to the strong law of large numbers,

1

n
∇ℓn(β∗)

a.s.−→ 0, as n→∞. (11)
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For any 1 ≤ s, t ≤ r with 0 ≤ s′ ≤ ds and 0 ≤ t′ ≤ dt, recall that

[Hn(β)]s,s′,t,t′ =
n∑

i=1

∂2

∂βs,s′∂βt,t′
log θG(Y i

G, ξ(β,X
i)). (12)

Given the compactness of X , and the assumption that θG and {g−1
i }ri=1 are all C2, the sum-

mands in (12) are i.i.d. and bounded for any fixed β ∈ Rd+r. Thus they have expectations.
For any 1 ≤ i ≤ n,

E
[

∂2

∂βs,s′∂βt,t′
log θG(Y i

G, ξ(β,X
i))

∣∣∣∣ {Xj}nj=1

]
=

∂2

∂βs,s′∂βt,t′

N∑
j=1

θG(j, ξ(β,X i))− E
[
∂ log θGi
∂βs,s′

∂ log θGi
∂βt,t′

∣∣∣∣X i

]

=0− E
[
∂ log θGi
∂ξs

∂ log θGi
∂ξt

∣∣∣∣X i

]
∂ξs
∂βs,s′

∂ξt
∂βt,t′

=− IGs,t(ξ(β,X
i))(g−1

s )′(βT
s X

i
s)(g

−1
t )′(βT

t X
i
t)X

i
s,s′X

i
t,t′ . (13)

Again, given the compactness of X , the mean of the above conditional expectation exists
and is exactly [−F(β)]s,s′,t,t′ . The continuity of I(G, ξ) and {(g−1

s )′}rs=1, together with the
dominated convergence theorem, guarantees that F(β) is continuous on Rd+r.

For any β ∈ Rd+r, let u = (u1,0, · · · , u1,d1 , u2,0, · · · , ur,dr) be an arbitrary nonzero real
vector. Based on (13), we have

⟨u,F(β)u⟩ =
r∑

s=1

r∑
t=1

ds∑
s′=0

dt∑
t′=0

E
[
IGs,t(ξ)(g

−1
s )′(βT

s Xs)(g
−1
t )′(βT

t X t)us,s′ut,t′Xs,s′Xt,t′
]

=E
r∑

s=1

r∑
t=1

IGs,t(ξ)(g
−1
s )′(βT

s Xs)(g
−1
t )′(βT

t X t)
(
uT

s Xs

) (
uT

t X t

)
≥Eσmin(I)

r∑
s=1

(
(g−1

s )′(βT
s Xs)(u

T
s Xs)

)2
=

r∑
s=1

∫
Xs

(
σmin(I)(g−1

s )′(βT
s x)

2
)
⟨us,x⟩2 dρs(x),

where Xs is the compact support of ρs. The continuity and the positiveness of σmin(I) and
(g−1

s )′ implies that there exists some constant Cs > 0 such that

σmin(I)(g−1
s )′(βT

s x)
2 ≥ Cs, for any x in Xs.

Since among u1, · · · ,us, there is at least one non-zero vector, we derive from Assumption 2
that

⟨u,F(β)u⟩ > 0.

F(β) is thus strictly positive definite.
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We now write CM(Bε(β
∗)) the space of all the (d+ r)× (d+ r) real symmetric matrix-

valued continuous functions on Bε(β
∗), which is defined as Bε(β

∗) := {β ∈ Rd+r : ∥β −
β∗∥ ≤ ε} for some ε > 0. CM(Bε(β

∗)) is equipped with the norm

∥D∥C = max
x∈Bε(β

∗)
∥D(x)∥F ,

where ∥ · ∥F denotes the Frobenius norm of matrices. With polynomials on Rd+r ⊃ Bε(β
∗)

with rational coefficients, it is easy to show that CM(Bε(β
∗)) is a separable Banach space.

Again, considering the compactness of X , and the C2 smoothness of θG and {g−1
i }ri=1, the

random variable ∥H1(β)∥F is uniformly bounded on Bε(β
∗). Therefore, E [∥H1∥C ] < ∞

and E [H1] exists. We see that 1
n
Hn is the average of n independent copies of H1, with

E[H1(β)] = −F(β) for any β ∈ Bε(β
∗). According to the strong law of large numbers in

the separable Banach spaces (see, e.g., Theorem 4.1.1 in (Padgett and Taylor, 1973, page
42)), we have

Prob

(
lim
n→∞

∥∥∥∥ 1nHn + F
∥∥∥∥
C

= 0

)
= 1. (14)

If we denote σmin(D) the minimum eigenvalue of D for any symmetric matrix D, σmin

is a Lipschitz continuous function on the space of symmetric matrices (Weyl’s perturbation
theorem, see, e.g., (Bhatia, 1997, page 63)). For any E ∈ CM(Bε(β

∗)), σmin(E(β)) is then
also a continuous function on Bε(β

∗) and the minimum

λmin(E) := min
β∈Bε(β

∗)
σmin(E(β))

is achievable. For any D,E ∈ CM(Bε(β
∗)), we assume that λmin(D) = σmin(D(βD)) ≤

λmin(E) = σmin(E(βE)) and obtain

|λmin(D)− λmin(E)| =σmin(E(βE))− σmin(E(βD)) + σmin(E(βD))− σmin(D(βD))

≤0 + ∥E(βD)−D(βD)∥F ≤ ∥E −D∥C .

λmin is then (Lipschitz) continuous on CM(Bε(β
∗)). (14) further implies that

λmin

(
− 1

n
Hn

)
a.s.−→ λmin(F) > 0, as n→∞.

For notational simplicity, we write below λmin = λmin(F) and λn
min = λmin(− 1

n
Hn). Obviously,

λn
min is measurable.
Let τn =

∥∥ 1
n
∇ℓn(β∗)

∥∥. Since ∇ℓn(β∗) is measurable, so is τn. We then assume β ∈
∂Bε(β

∗), where ∂Bε(β
∗) is the boundary of the ball Bε(β

∗), and have ∥∆β∥ = ε. Based on
(11), we have τn

a.s.→ 0. Define

mn =

{
n, if supk≥n τk <

ε
4
λmin,

∞, otherwise.
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mn is clearly measurable. Similarly, define

m′
n =

{
n, if infk≥n λ

k
min >

1
2
λmin

∞, otherwise,

and n1 = max{infn mn, infn m
′
n}. We have that n1 is measurable and n1 <∞ almost surely.

For any n ≥ n1, τn < ε
4
λmin and λn

min >
1
2
λmin, so

1

n
∆βT∇ℓn(β∗) ≤ τnε <

ε2

4
λmin <

ε2

2
λn
min ≤ −

1

2n
∆βTHn(β̃)∆β.

According to (9), this implies ℓn(β∗) > ℓn(β) for any β ∈ ∂Bε(β
∗). This proves the existence

of β̂n in Bε(β
∗)\∂Bε(β

∗) such that ∇ℓn(β̂n) = 0.
Here the definition of m′

n also suggests that for n ≥ n1, λn
min > 1

2
λmin > 0, so ℓn is

strictly concave on Bε(β
∗), and β̂n is thus the unique solution to ∇ℓn = 0 on Bε(β

∗). The
measurability of β̂n can be easily developed when n is sufficiently large. To prove that β̂n

is measurable when n is not sufficiently large, we define β̂n = ∞ when n < n1. Next,
we proceed to prove that each coordinate of β̂n is measurable. To do so, without loss of
generality we fix the coordinate index (s, s′) when n < ∞ and only let t varies. For any
−∞ < t <∞, by definition,

{n < n1} ∩
{
[β̂n]s,s′ < t

}
= ∅.

When [β∗]s,s′ + ε ≤ t < ∞, the set
{
[β̂n]s,s′ < t

}
∩ {n ≥ n1} = {n ≥ n1} is measurable.

When −∞ < t ≤ [β∗]s,s′−ε, by definition
{
[β̂n]s,s′ < t

}
∩{n ≥ n1} = ∅. When [β∗]s,s′−ε <

t < [β∗]s,s′ + ε, given the uniqueness of β̂n,{
[β̂n]s,s′ < t

}
∩ {n ≥ n1} =

{
inf

βs,s′≥t
∥∇ℓn(β)∥ > 0

}
∩ {n ≥ n1}

=

{
inf

β∈B,βs,s′≥t
∥∇ℓn(β)∥ > 0

}
∩ {n ≥ n1} ,

where B ⊂ Bε(β
∗) is a countable dense set. So

{
[β̂n]s,s′ < t

}
∩{n ≥ n1} is also measurable.

We have proved that the set
{
[β̂n]s,s′ < t

}
is measurable. So β̂n is measurable.

To prove (ii), let {εk}∞k=1 (with ε1 = ε) be a sequence of positive numbers decreasing to
zero. For each k ≥ 2, we repeat the above argument on the measurability of n1 to define nk,
with ε substituted by εk. For any sufficiently small εk > 0, there exists nk < ∞ such that
whenever n ≥ nk,

∥∥∥β̂n − β∗
∥∥∥ ≤ εk. This completes the proof of (ii).

To prove (iii), we apply the fundamental theorem of calculus to the difference ∇ℓn(β̂n)−
∇ℓn(β∗). When n ≥ n1, ∇ℓn(β̂n) = 0. So

− 1

n
∇ℓn(β∗) =

1

n
∇ℓn(β̂)−

1

n
∇ℓn(β∗) =

[∫ 1

0

1

n
Hn(β

∗ + t(β̂n − β∗))dt

]
(β̂n − β∗). (15)
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Since λn
min >

1
2
λmin, for any 0 ≤ t ≤ 1 we know that −Hn(β

∗+ t(β̂n−β∗)) is strictly positive
definite. The integral in the square bracket in (15) is thus invertible because its maximum
eigenvalue is bounded from above by −1

2
λmin. We have[∫ 1

0

− 1

n
Hn(β

∗ + t(β̂n − β∗))

]−1
1√
n
∇ℓn(β∗) =

√
n(β̂n − β∗). (16)

By (14) and item (ii), we have almost surely that for any ε > 0 there exists some n′
1 ≥ n1

such that, whenever n ≥ n′
1, both of the following inequalities hold∥∥∥∥− 1

n
Hn(β

∗ + t(β̂n − β∗))− F(β∗ + t(β̂n − β∗))

∥∥∥∥
F

≤ ε

2
, and∥∥∥F(β∗ + t(β̂n − β∗))− F(β∗)

∥∥∥
F
≤ ε

2
.

Therefore, the absolute value of every entry of the matrix − 1
n
Hn(β

∗+t(β̂n−β∗)) is bounded
uniformly by ∥F(β∗)∥F + ε for 0 ≤ t ≤ 1. Also,

− 1

n
Hn(β

∗ + t(β̂n − β∗))
a.s.−→ F(β∗), uniformly for 0 ≤ t ≤ 1 as n→∞.

We apply the dominated convergence theorem and the continuity of matrix inversion on the
space of strictly positive definite matrices to obtain that[∫ 1

0

− 1

n
Hn(β

∗ + t(β̂n − β∗))

]−1
a.s.−→ (F(β∗))−1 , as n→∞. (17)

From (10) and (13), we see that ∇ℓn(β∗) is the sum of n i.i.d. random vectors, each of
which has mean 0 and its covariance matrix F(β∗). So, we apply the central limit theorem
to obtain

1√
n
∇ℓn(β∗)

Law−→ N (0,F(β∗)),

which, together with (17) and (16), implies that
√
n
(
β̂n − β∗

)
Law−→ N (0, [F(β∗)]−1).

The proof is complete.

The proof of consistency and asymptotic normality mainly follows Fahrmeir and Kauf-
mann (1985). The proof of measurability of the MLE estimator follows Serfling (1980).
Theorem 3.1 and Theorem 3.2 are direct corollaries of Theorem A.1. In fact, the smooth-
ness of θG on ξ is guaranteed by the analytical forms of Poisson and ZIP probability mass
functions, respectively. It is easy to prove the strictly positive definiteness of I(G, ξ), as
well as its continuity on ξ for Poisson model with N ≥ 2, and for ZIP model with N ≥ 3,
respectively Fu et al. (2020).
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Table 3: Regression estimates from generalized linear models, the MTF project, 2015
Poisson Regression Estimates
Coefficient 95% Confidence Interval

Intercept 0.749*** (0.703, 0.796)

Grade 10 1.278*** (1.243, 1.313)

Grade 12 1.760*** (1.723, 1.797)

Male 0.325*** (0.302, 0.348)

Black −0.095*** (−0.130,−0.061)
Intact Family −0.472*** (−0.497,−0.447)
Parental Education −0.407*** (−0.433,−0.382)
Metropolitan Areas 0.082*** (0.054, 0.111)

Log-likelihood −59166.9417
AIC 118300
BIC 118400

Zero-inflated Poisson Estimates
Coefficient 95% Confidence Interval

Poisson, log link
Intercept 2.482*** (2.432, 2.533)

Grade 10 0.473*** (0.435, 0.511)

Grade 12 0.594*** (0.554, 0.634)

Male 0.167*** (0.142, 0.192)

Black −0.103*** (−0.141,−0.066)
Intact Family −0.096*** (−0.123,−0.069)
Parental Education −0.176*** (−0.203,−0.148)
Metropolitan Areas −0.009 (−0.040, 0.023)
Bernoulli, logit link
Intercept 1.302*** (1.117, 1.487)

Grade 10 −1.063*** (−1.185,−0.940)
Grade 12 −1.677*** (−1.820,−1.534)
Male −0.239*** (−0.339,−0.139)
Black −0.046 (−0.194, 0.103)
Intact Family 0.629*** (0.515, 0.742)

Parental Education 0.424*** (0.309, 0.540)

Metropolitan Areas −0.162* (−0.288,−0.037)
Log-likelihood −23801.5767
AIC 47640
BIC 47750

Note: *** p < 0.001, ** p < 0.01, * p < 0.05. The total number of observations is 8,478.
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