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Abstract—The control performance of magnetically suspended motor (MSM) with heavy 

self-weight and great moment of inertia is affected by parameter uncertainty and external 

disturbances, and the coupling effect in radial tilting of MSM becomes serious with the increase 

of rotational speed and moment of inertia, and then the robustness would be reduced. Therefore, 

an internal model control (IMC) model is proposed to adjust the robustness of MSM. Based on 

the IMC model, a decoupling IMC model is designed for MSM on four degrees of freedom. 

Simulation and experiment are conducted to verify that the IMC model improves the robust 

stability of MSM, and the decoupling IMC model effectively realizes the decoupling control of 

MSM on four degrees of freedom. 

Index Terms: magnetically suspended motor; coupling effect; internal model control; 
decoupling control; robust stability 

1. Introduction

The magnetically suspended rotational machine has been widely applied in high-speed

motors (Li et al., 2020), centrifugal compressors (Han et al., 2016)，pumps (Asama et al., 

2014; Masuzawa et al., 2003; Wang et al., 2019) and robot system (Cole and Fakkaew, 2018) 

because of its advantages on controllability (Xiang and Tang, 2015; Barbaraci, 2016), 

zero-friction (Xiang and on Wong, 2019; Barbaraci et al., 2013) and lubrication-free (Cui and 

Cui, 2017). The PID control is a common method (Parada et al., 2017; Wei and Söffker, 2016; 

Tang et al., 2017; Ahrens et al., 1996) to realize the displacement control of MSM rotor. Other 

control schemes were also used to displacement control of MSM rotor to improve control 

performances on response speed, tracking precision and robustness. For example, the 

feed-forward control was used to reduce the vibration response of a magnetically suspended 

motor (MSM) (Zheng and Feng, 2016). In addition, the robust control (Noshadi et al., 2017; 

Rubio, 2018; Pesch et al., 2015), the sliding mode control (Zad et al., 2018; Rubio et al., 2019) 
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and the fuzzy control (Couzon and Der Hagopian, 2007; Haiping et al., 2010) were used to 

the displacement control of MSM rotor. However, those MSM rotors in above-mentioned 

literatures are ‘normal’ size, so the self-weight did not cause serious influence on the 

displacement control. 

For the MSM rotor with heavy self-weight, the displacement stiffness and the current 

stiffness easily deviate from nominal values, so this kind of MSM rotor is more sensitive to 

external disturbances and parameter uncertainty than ‘small’ MSM rotors (Guo et al., 2016). 

There are coupling terms in radial rotations of MSM rotor, and they become significant with 

the increase of rotational speed. 

Moreover, the internal model control (IMC) has characteristics on virtually affecting 

robustness through parameter design, so the stability of control system is guaranteed, and the 

structural model identification of control plant is not needed. Therefore, the robustness of 

control plant was tuned by adjusting the filter parameter (Garcia and Morari, 1982; Rivera et 

al., 1986). An IMC model with cross-coupling integrator was applied to a permanent magnet 

synchronous machine (PMSM) (Zad et al., 2018). The analysis results showed that the IMC 

model had lower parameter sensitivity, and an oscillation was avoided by applying a decoupling 

IMC (DIMC). A speed regulation strategy based on an IMC model and fuzzy adaptive law was 

designed to mitigate the sensitivity to input saturation and to improve speed tracking precision. 

It automatically tuned control parameters of rotational speed (Li and Gu, 2012). A control 

strategy combining an inverse system and an IMC model was proposed to mitigate the 

gyroscopic effect in a magnetically suspended control moment gyro (Fang and Ren, 2010), 

and it was proved that the IMC model is useful on suppressing gyroscopic terms of MSM 

rotor. Based on the inverse system theory and an IMC model, a decoupling control scheme 

was designed for an active magnetic bearing (AMB) to suppress unmodeled dynamics (Sun et 

al., 2017). 

Therefore, the IMC and DIMC models are potential to improve the robustness of MSM 

rotor with heavy self-weight and great moment of inertia. The robust stability of MSM rotor 

could be regulated by the IMC model, and the coupling effect could also be mitigated. In this 

article, an IMC model is designed for an MSM rotor with heavy self-weight and great 

moment of inertia. The DIMC model could realize the decentralized control of MSM rotor on 

four DOFs, so the robust stability of MSM rotor at high rotational speed could be improved. 

This article is organized as follows. In section 2, structure and dynamic models of MSM 
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rotor are introduced. The IMC and DIMC models are designed in section 3. The simulations 

are conducted in section 4. The experiments are conducted to compare performances of two 

control models in section 5. Finally, conclusions are summarized in section 0. 

 
2. Structure and Modeling of MSM Rotor 

2.1. Modelling of MSM Rotor 

 

(a)                       (b) 
Fig. 1. (a) prototype of MSM rotor, (b) force analysis of simplified model. 

The structure of an MSM rotor is depicted in Fig. 1(a); and it consists of a rotor system 

and a suspension system. The rotor system contains a flywheel (FW) rotor with 150Kg and a 

PMSM. The suspension system has a magnetic suspension system and a backup ball bearing 

system. The axial AMBs at lower and upper end of FW rotor stably suspend it at the axial 

equilibrium point. The radial AMBs at lower and upper end control radial translation and 

tilting of MSM rotor. As a protective component, the backup ball bearings hold the MSM 

rotor upright when the magnetic suspension system fails to work. 

The force analysis of MSM rotor is plotted in Fig. 1(b). The rotation about the axial axis 

is controlled by the PMSM, and the motions in other five DOFs are controlled by axial and 

radial AMBs. Considering the lower radial displacement sensor is symmetric to upper 

displacement sensor in axial direction, for radial translation and radial tilting of MSM rotor, 

the equations of motion are 
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where Jx=Jy is equatorial moment of inertial, and Jz is polar moment of inertial. dx and dy are 

radial displacements along x-axis and y-axis, respectively. l is the suspension span of radial 

AMB. α and β are tilting angles about radial axes, respectively. Ω is rotational speed about 

z-axis.  

The MSM rotor works at the balanced state when resultant forces and torques acting on 

it equal to zero. If not, it is at a nonequilibrium state. For example, the MSM rotor tilts an 

angle α about x-axis in Fig. 1(b). Since the suspension span of upper radial AMB is same as 

that at lower end, radial displacements and tilting angles are 
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The equations of motion are rewritten into 
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Furthermore, the control forces of radial AMB in four DOFs are 
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2.2. Modeling of AMB System 

 

(a) 

 

(b) 
Fig. 2. (a) prototype of radial AMB, (b) equivalent magnet circuit of radial AMB. 

The prototype of a radial AMB is illustrated in Fig. 2(a), and the equivalent magnet 

circuit is plotted in Fig. 2(b). The magnet fluxes pass through stator, magnet ring, airgap and 

rotor. The equivalent reluctances (R1~R8) of airgap and magnet ring are in series connection 

within the same magnet pole. N is the turn of winding, and (I1~I8) are the control currents of 

winding. The equivalent reluctances of radial AMB in four channels are, respectively 
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where dn=x+,x-,y+,y- is the radial airgap. μ0 is the vacuum permeability, and An=x+,x-,y+,y- is the 

radial cross-sectional area of magnet pole. The magnet fluxes of radial AMB in four channels 

are 
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The magnetic forces of radial AMB are 
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The resultant magnetic forces of radial AMB are 
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 (8) 

where I0 is the bias current, and ix and iy are control currents. The derivative of magnetic force 

with respect to displacement is the displacement stiffness, and the derivative of magnetic 

force with respect to current is the current stiffness. The current stiffness kix and the 

displacement stiffness kdx are 
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The magnetic forces of AMB system are 

 
;

;
ux ix ux dx ux lx ix lx dx lx

uy iy uy dy uy ly iy ly dy ly

f k i k d f k i k d

f k i k d f k i k d

   
    

 (10) 

Therefore, the equivalent model of magnetic force is used to design the control model of 

MSM rotor. 

 

2.3. Deviation Characteristics of MSM Rotor 

When the biased displacement d0 and the cross-sectional area A of the AMB deflects 

from the nominal values at the initial installation, the relationships among the current stiffness, 
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the displacement stiffness and the biased displacement are shown in Fig. 3. In radial direction, 

the biased displacement is defined as 1mm, and the deviation range is 0.2mm. The nominal 

value of the radial current stiffness is 620N/A, and the nominal displacement stiffness is 

-2800N/mm in radial direction. When the biased displacement deflects 0.1mm from the biased 

value, the deflection value of the radial current stiffness is 100N/A as marked by the red line in 

Fig. 3(a), and the deflection of the radial displacement stiffness is 1000N/mm in Fig. 3(b). 

When the axial biased displacement sets at 1.3mm with 0.2mm deviation range, the nominal 

value of the axial current stiffness is 470N/A, and the nominal displacement stiffness is 

-1700N/mm in axial direction. If the axial displacement of MSM rotor deflects 0.1mm from the 

equilibrium position, the deviation term of axial current stiffness is 60N/A, and the deflection 

value of axial displacement stiffness is 350N/mm. 

(a)

 

(a) (b)

 

(b) 
Fig. 3. (a) Current stiffness versus biased displacement, (b) displacement stiffness versus biased displacement. 

(a)

 

(a) (b)

 

(b) 
Fig. 4. (a) Radial magnetic force versus control current, (b) radial magnetic force versus displacement. 

Moreover, the comparison between the calculated and measured results is shown in Fig. 4, 

the nominal value is marked by the blue line, and the measured result is marked by the red 

line. As shown in Fig. 4(b), the measured result of the radial current stiffness is 608N/A, and the 

measured result of radial displacement stiffness is -2810N/mm. As illuminated in Fig. 5, the 

measured result of the axial current stiffness is 480N/A, and the measured value of the axial 

displacement stiffness is -1702N/mm. Therefore, there are differences between the nominal 



 

 

8 

 

results and the measured results, so the deviation of the AMB could affect the stability of MSM 

rotor. 

 

(a) 

 

(b) 
Fig. 5. (a) Axial magnetic force versus control current, (b) axial magnetic force versus displacement. 

 
2.4. Control Model of MSM Rotor 

Substituting (10) into (4), the control currents of radial AMB in four channels are 
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Obviously, there are coupling terms in four control channels of MSM rotor in (11). For 

example, as shown the first function in (11), in the upper end of x-axis control channel, 

besides the displacement control term dux, there are displacement terms dlx, duy and dly from 

other control channels. Therefore, a decoupling method should be used to realize decoupling 

control of MSM rotor in four control channels. For the radial rotation of MSM rotor, the 

gyroscopic effect related to the rotational speed introduces an additional coupling term. Based 

on (11), displacements of MSM rotor through the Laplace transform are 
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To realize decoupling control of MSM rotor, the following definition is introduced 
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. D(s) is the decoupled control 

matrix, and W(s) is the decoupling matrix. 

 
3. IMC and DIMC Models of MSM Rotor 

3.1. IMC Model of MSM Rotor 

For the displacement control of MSM rotor in four DOFs, the block diagram of IMC 

model is illustrated in Fig. 6(a). r(s) is reference input. d(s) is disturbance input. y(s) is output 

displacement. GIMC(s) is IMC model, and Gp(s) is control plant of MSM rotor. The internal 

model of MSM rotor is 

 ( ) ( ) ( )m m mG s G s G s    (14) 

where Gm+(s) is the irreversible model including pure time-delay and zeros on right half plane, 

and Gm-(s) is the reversible model. 

To tune the robust stability of IMC model, the low pass filter Gf(s) with diagonal 

elements (I is the unit matrix) is chosen as 
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Furthermore, the IMC model is 
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Moreover, based on the IMC model in Fig. 6(b), the equivalent function of IMC model is 
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Therefore, the positive integer of low pass filter would make GIMC(s) becomes proper, 

and the closed-loop system of MSM rotor could be arbitrarily robust by regulating λ. 
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(c) 
Fig. 6. Block diagrams of control models, (a) IMC model, (b) equivalent IMC model, (c) DIMC model. 

 

3.2. DIMC Model of MSM Rotor 

To suppress coupling terms in (11), a matrix W(s) in (13) is introduced to realize the 

decoupling control of MSM rotor, and then the control plant is decoupled by using a feedback 

loop illustrated in Fig. 6(c). K(s) is the control model. The model transfer function is 
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Using the decoupling matrix W(s) in (13), the decoupling model yields 

 1( ) ( )DG s D s  (19) 

Therefore, the DIMC model could be achieved as following 
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For an originally decoupled system, this decoupling model is not necessary, so the 

feedback loop would be omitted, and the standard IMC model of control plant could be 

applied. Moreover, based on (14), the IMC could be designed for reversible model of MSM 
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rotor, so the stability of IMC model and control plant could be easily testified. 

 
3.3. Tracking Performance and Sensitivity Analysis 

For the IMC model of MSM rotor in Fig. 6(b), the transfer function between reference 

input r(s) and output displacement y(s) is 
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The error between reference input r(s) and output displacement y(s) is 
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If the control plant is exact to the real plant, there is 
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When error approaches to zero, the IMC model could exactly track the reference input. If 

there is a deviation Δai of the ith plant parameter ai from the nominal value, the tracking 

performance with uncertain parameter is 
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The sensitivity function of IMC model is 
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For the IMC model, substituting the IMC model GIMC(s) in (16) into (25), the sensitivity 

function of IMC model is 
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For the DIMC model, substituting the DIMC model GDIMC(s) in (20) into (25), the 

sensitivity function of DIMC model is 
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 (27) 

If Gp(s) is the exact model, so 



 

 

12 

 

 
( )

0p

i

G s

a





 (28) 

Differentiating (18) with respect to ai, we have 
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 (29) 

Furthermore, the sensitivity function is  

 
1

1 1 1 ( )( ) ( )
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DIMC i i
i i i
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S s a D s D s D s a D s
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
     

      
 (30) 

Finally, the sensitivity functions of IMC and DIMC models are 
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 (31) 

 
3.4. Disturbance Rejection and Robustness 

For the IMC model in Fig. 6(b), the disturbance transfer function between disturbance 

input d(s) and output displacement y(s) is 
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
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
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
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 (32) 

If the control plant is exact, the response magnitude of disturbance transfer function is 
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 (33) 

So, the robustness is determined by filter parameter. The response magnitude increases 

with the filter parameter λ, so a small value of λ could improve the robustness. For the 

high-frequency disturbance, the robustness of IMC model would be decreased, so a low-pass 

filter is better for IMC model. 

Based on Fig. 6(c), the disturbance transfer function of DIMC model is 

 
( ) 1

( )
( ) 1 ( ) ( )

DIMC
dy

D

y s
G s

d s K s G s
 


 (34) 

For the exact control plant, the response magnitude is 
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 ( ) 1 ( )DIMC
dy fG s G s   (35) 

Comparing (35) to (33), the DIMC model has same performance on the robustness as the 

IMC model, and the robustness of closed-loop system is determined by filter parameters. 

 

4. Simulation 

4.1. Sensitivity Analysis of MSM Rotor 

 

Fig. 7. Singular values of IMC and DIMC models. 

In a multi-input multi-output system, the singular values of frequency function are used 

to evaluate frequency responses, and the singular values are 

 [ ( )] [ ( ) ( )]T
i iG j G j G j       (36) 

where δi is the ith eigenvalue. 

The relationship between singular value and rotational speed of MSM rotor is plotted in 

Fig. 7. For MSM rotor at a high speed, the IMC model has the same sensitivity as the DIMC 

model in the low-frequency range. When the system frequency equals to the natural rotational 

speed of MSM rotor, the IMC model has a greater sensitivity peak than the DIMC model, so a 

whirling oscillation of MSM rotor occurs at a high speed. Therefore, the DIMC model is more 

effective on suppressing the whirling oscillation of MSM rotor at a high speed. 

 
4.2. Tracking Performance and Robustness of MSM Rotor 

To test tracking performances of two control models, a step signal of 0.1mm amplitude is 

used as the reference input. The response curves of IMC and DIMC models are plotted in Fig. 

8(a). As shown by blue line in Fig. 8(a), for the IMC model, the maximum error between 
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response curve and reference input is 0.03mm. The response curve of DIMC model is shown 

by red line, and the maximum error is 0.02mm. Moreover, the rising time of IMC model is 

shorter than DIMC model. In addition, an impulse disturbance is imposed on the MSM rotor 

when it stably suspends at the equilibrium position, and the displacement deflection of MSM 

rotor is 0.02mm for both IMC and DIMC model. Therefore, the DIMC model could avoid the 

excessive overshoot, but the rising time and the setting time will increase. With the same filter 

coefficients of IMC and DIMC models, the response magnitudes for impulse disturbance are 

the same. 

 

(a) 

 

(b) 
Fig. 8. (a) Displacement curves of IMC and DIMC model, (b) response curves for impulse disturbance. 
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Fig. 9. Response of disturbance transfer function. 

In addition, with different values of λ, the response curves of MSM rotor for an impulse 

disturbance are plotted in Fig. 8(b). The displacement curve is shown by magenta line when 

λ=10. The error between reference input and response curve is 0.025mm and the settling time 

is 0.86s. In the meanwhile, the response curve for an impulse disturbance at λ=0.1 is plotted by 
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blue line. The error is 0.016mm and the settling time is 0.52s. Therefore, the robust stability of 

MSM rotor is improved with a great value of λ, but the tracking lag is enlarged. 

Moreover, response curves of disturbance transfer function in (33) with different values of 

λ are plotted in Fig. 9. The response magnitude at λ=0.1 shown by the blue line is greater than 

that at λ=1, so the IMC and DIMC models are both sensitive to the disturbance, but the cut-off 

frequency of disturbance transfer function is decreased with the value of λ. So, the disturbance 

could affect the robustness of MSM rotor, but a great value of λ could reduce the frequency 

range of disturbance. 

The simulation results indicate that the DIMC model has better performance on reducing 

overshoot and oscillation but increases the rising time and the setting time. 

 
4.3. Rotation Performance of MSM Rotor with IMC and DIMC Model 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Fig. 10. (a) Suspension process of MSM rotor with IMC model, (b) suspension process of MSM rotor with DIMC 
model, (c) dynamic displacements of MSM rotor with IMC model at 6000rpm, (b) dynamic displacements of 
MSM rotor with DIMC model at 6000rpm. 



 

 

16 

 

The suspension process of MSM rotor with IMC model is plotted in Fig. 10(a). The 

magnetic force of upper radial AMB at suspends the MSM rotor at the equilibrium position at 

t=1s. At that instant, there are deflections on other three displacement terms. An impulse 

disturbance acts on the upper end of MSM rotor when t=3s, the displacement dux has 0.07mm 

deflection from the equilibrium position, and a deflection 0.02mm occurs on other three 

displacement control channels. For the DIMC model, the suspension process of MSM rotor is 

plotted in Fig. 10(b). When an impulse disturbance is imposed on upper end of MSM rotor at 

t=3s, the displacement dux has 0.08mm deflection, and the displacement dlx has a deflection 

about 0.03mm, but displacements duy and dly still maintain at the balanced state. 

Furthermore, dynamic displacements of MSM rotor with IMC model at 6000rpm are 

plotted in Fig. 10(c). The stable displacement amplitude of MSM rotor is 0.015mm. When an 

impulse disturbance is imposed on the upper end of x-axis, deflections of dux and dlx are both 

0.05mm, and deflections of duy and dly are both 0.04mm. The dynamic displacements of MSM 

rotor with the DIMC model are plotted in Fig. 10(d) The displacement duy and dly remain stable, 

but deflections of dux and dlx both are 0.06mm. 

Therefore, the DIMC model reduces the coupling effect when the MSM rotor works at 

both static suspension and dynamic rotation states, and deflections of MSM rotor in other 

displacement channels are avoidable by applying the DIMC model. 

5. Experiment 

5.1. Experimental Setup 

The experiment setup is illustrated in Fig. 11. It consists of a mechanical system and a 

signal processing system. The mechanical system has two pairs of radial AMBs, one pair of 

axial AMBs, a FW rotor and a PMSM. The power supply system with 28V and 2A is used to 

drive axial and radial AMBs. The vacuum pump reduces the wind drag when the MSM rotor 

works at a high speed. For the signal processing system, the eddy current displacement 

sensors measure displacement deflections of MSM rotor. The data acquisition (DAQ) board 

collects and feds back displacement deflections to the main control unit (MCU) based on a 

digital signal processor (DSP) chip and a field programmable gate array (FPGA) chip. The 

industrial personal computer (IPC) timely monitors working statuses of experimental setup 

such as rotational speed and dynamic displacements. The major parameters are listed in 

TABLE. I. 
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Radial AMB

Axial AMB

FW rotor

DAQ board

Displacement 
sensor

MCU system and 
driving unit

IPC

Mechanical system Signal processing system

 

Fig. 11. The experimental setup of MSM rotor. 

TABLE. I. PARAMETERS OF EXPERIMENTAL SETUP. 

Parameter Value Parameter Value 

m 150kg kix 620NA-1 
Jx 1.24kgm2 kdx -1700Nmm-1 

Jy 1.24kgm2 l 0.48mm 

Jz 0.67kgm2 ka 0.2AV-1 

λ 0.001 Ω1 6000rpm 

ks 3.3V/mm Ω2 10000rpm 

5.2. Sensitive Analysis of MSM Rotor 

 
Fig. 12. The sensitivity of displacement stiffness and current stiffness. 
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Fig. 13. Dynamic displacements of MSM rotor with different values of λ. 

According to (9), relationships among current stiffness, displacement stiffness and bias 

displacement are illustrated in Fig. 12. The nominal bias displacement is 1mm, the nominal 

value of radial current stiffness shown by red line is 620N/A and the nominal value of radial 

displacement stiffness marked by blue line is -1700N/mm. When the bias displacement deflects 

0.1mm from the nominal position, the deflection value of radial current stiffness is 90N/A, and 

deflection of radial displacement stiffness is 360N/mm. Therefore, for the MSM rotor with 

great self-weight, the displacement stiffness and the current stiffness are sensitive to the initial 

position affected by the self-weight. 

Moreover, an impulse disturbance (10% of self-weight) is imposed on the lower end of 

MSM rotor at the equilibrium state. Fig. 13 shows the displacement deflections of MSM rotor 

with different values of λ. At λ=1, the response magnitude for impulse disturbance is 0.02mm as 

shown by blue line. The response magnitude declines to 0.085mm when λ decreases to 0.001. 

So, the disturbance sensitivity is suppressed by increasing the value of λ. 

 

5.3. Suspension Performance and Anti-Disturbance 

Firstly, a step signal is chosen as the reference input to realize MSM rotor’s suspension 

at the equilibrium position, and then an impulse disturbance is added on the lower end of 

MSM rotor. The suspension traces of MSM rotor with IMC model are shown in Fig. 14(a). 

The MSM rotor is forced to suspend at the equilibrium position in x-axis at t=5s, so 

displacements dux and dlx both equal to zero. At the same instant, displacements duy and dly have 

a deflection 0.07mm because of the coupling effect among four displacement channels. An 

impulse disturbance is imposed on the lower end of x-axis (displacement dlx) at t=5.5s, it has a 
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response magnitude 0.08mm. The response magnitude of dux is 0.04mm. Owing to the coupling 

effect, displacements dly and duy have respective deflection magnitudes of 0.07mm and 0.03mm. 

Moreover, the suspension traces of MSM rotor with the DIMC model are shown in Fig. 14(b). 

The displacement deflections of dly and duy are both 0.06mm when the MSM rotor is forced to 

suspend at the equilibrium position in x-axis at t=4s. The response magnitude of dlx due to the 

impulse disturbance is 0.07mm while the displacement deflection of dly is 0.05mm. So, as listed 

in TABLE. II, the DIMC model has a 28.6% reduction in dly and 33.3% reduction in duy 

compared to the IMC model. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Fig. 14. (a) Suspension traces of MSM rotor with IMC model, (b) suspension traces of MSM rotor with DIMC 
model, (c) dynamic displacement of MSM rotor with IMC model during speed regulation, (b) dynamic 
displacement of MSM rotor with DIMC model during speed regulation. 

The dynamic displacements of IMC and DIMC models during speed regulation are plotted. 

The speed curve is plotted by green line when the MSM rotor is accelerated from zero to 

5000rpm at t=118s and deaccelerated to 0rpm at t=418s. The displacements of MSM rotor 

have deflections at the start moment of acceleration and deceleration. The maximum 
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displacement deflection of IMC model is 0.15mm during acceleration and that during 

deceleration is 0.18mm in  Fig. 14(c). Moreover, the DIMC model has maximum 

displacement deflection 0.08mm during acceleration and that during deceleration is 0.09mm 

in Fig. 14(d). Therefore, the DIMC model has a reduction of displacement deflection 50% in 

comparison with the IMC model. 

The dynamic displacements of MSM rotor with the IMC model are plotted in Fig. 15(a) 

when the speed is 6000rpm. The stable displacement of MSM rotor is 0.025mm. When an 

impulse disturbance is imposed on lower end of x-axis, the response magnitude of dlx is 

0.08mm, and that of dux is 0.03mm. Along y-axis, the response amplitude of dly is 0.04mm, and 

that of duy is 0.03mm. Fig. 15(b) displays dynamic displacements of MSM rotor with using the 

DIMC model. The stable displacement of MSM rotor is 0.015mm. The deflection of dlx is 

0.05mm, and that of dux is 0.03mm. At the same instant, the response amplitude of dly for 

impulse disturbance is 0.035mm. Consequently, based on the comparison in TABLE. III, the 

DIMC model has 12.5% reduction in deflection of dly and 16.7% reduction in deflection of duy 

compared with the IMC model. 

The dynamic displacements of IMC model are shown in Fig. 15(c) when the speed of 

MSM rotor is 10000rpm. The stable amplitude of MSM rotor is 0.015mm. When an impulse 

disturbance is imposed on the lower end of MSM rotor in x-axis, the deflection of dlx for 

impulse disturbance is 0.09mm, and that of dux is 0.03mm. For the disturbance response in 

y-axis, the deflection of dly is 0.08mm, and that of duy is 0.03mm. The dynamic displacements 

of MSM rotor with applying DIMC model are shown in Fig. 15(d). The stable suspension 

displacement of MSM rotor is 0.01mm. When the disturbance is applied on lower end of 

x-axis, the response amplitude of dlx for impulse disturbance is 0.07mm, and that of dux is 

0.03mm. The response amplitude of dly for impulse disturbance is 0.07mm, and that of duy is 

0.02mm. Therefore, the DIMC model has a 12.5% deflection reduction in dly and 33.3% 

reduction in duy in comparison with the IMC model. 
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(d) 
Fig. 15. (a) Dynamic displacements of MSM rotor with IMC model at 6000rpm, (b) dynamic displacements of 
MSM rotor with DIMC model at 6000rpm, (c) dynamic displacements of MSM rotor with IMC model at 
10000rpm, (d) dynamic displacements of MSM rotor with DIMC model at 10000rpm. 

TABLE. II. COMPARISON (dly) o IMC and DIMC MODEL 

State of MSM IMC model DIMC model Reduction 

Suspension 0.07mm 0.06mm 14.3% 
Static disturbance 0.07mm 0.05mm 28.6% 

6000rpm 0.04mm 0.035mm 12.5% 

10000rpm 0.08mm 0.07mm 12.5% 

 

TABLE. III. COMPARISON (duy) of IMC and DIMC MODEL 

State of MSM IMC model DIMC model Reduction 

Suspension 0.07mm 0.06mm 14.3% 
Static disturbance 0.03mm 0.02mm 33.3% 

6000rpm 0.03mm 0.025mm 16.7% 

10000rpm 0.03mm 0.02mm 33.3% 
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6. Conclusion 

In static suspension state, the robustness of MSM rotor is improved by tuning the 

parameters of IMC model. Moreover, the DIMC model is applied to realize decoupling 

control in four DOFs, and displacement deflections of MSM rotor caused by the coupling 

effect are mitigated. In dynamical rotation state, dynamic displacements of MSM rotor are 

mitigated by both IMC and DIMC models. Although the displacement overshoot of MSM 

rotor with the IMC model still exists, the IMC model could improve the robustness of MSM 

rotor, and the DIMC model suppresses the coupling effect among different control channels. 
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