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Abstract

This paper studies the optimal dividend for a multi-line insurance group, in which each

subsidiary runs a product line and is exposed to some external credit risk. The default con-

tagion is considered such that one default event may increase the default probabilities of all

surviving subsidiaries. The total dividend problem for the insurance group is investigated and

we find that the optimal dividend strategy is still of the barrier type. Furthermore, we show

that the optimal barrier of each subsidiary is modulated by the default state. That is, how many

and which subsidiaries have defaulted will determine the dividend threshold of each surviving

subsidiary. These conclusions are based on the analysis of the associated recursive system

of Hamilton-Jacobi-Bellman variational inequalities (HJBVIs). The existence of the classical

solution is established and the verification theorem is proved. In the case of two subsidiaries,
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the value function and optimal barriers are given in analytical forms, allowing us to conclude

that the optimal barrier of one subsidiary decreases if the other subsidiary defaults.

Keywords: Insurance group, credit default contagion, optimal dividend, default-state-modulated

barriers, recursive system of HJBVIs

1 Introduction

Dividend payment is always a focused issue in insurance and corporate finance, which is regarded

as an important signal of the company’s future growth opportunities and has direct impact on the

wealth of shareholders. Meanwhile, insurance companies also dynamically invest money in the

financial market in order to pay future claims. The pioneer work [18] solves the optimal dividend

problem up to the financial ruin time when the surplus process follows a simple random walk.

Later, vast research has been devoted to finding optimal dividend strategies in various discrete and

continuous time risk models, see a short list of related work by [21, 5, 26, 8, 7, 36, 30, 14, 29,

33, 34, 32] and references therein. We refer to [2] and [6] for some comprehensive surveys on the

topic of dividend optimization.

The present paper has a particular interest in a multi-line insurance group, which is a parent

insurer consisting of multiple subsidiaries in the market where each subsidiary runs a product

line such as life insurance, auto insurance, income protection insurance, housing insurance and

etc. Each product line is subject to bankruptcy separately and has its own premiums and losses

with very distinctive claim frequency, which motivates some recent academic studies on multi-

line insurance business. In a multi-line insurance group framework, the insurance pricing model

by line is studied by [35]. The capital allocation strategy for a multi-line insurance company is

investigated by [31], which reveals that allocations depend on the uncertainty of each line’s losses

and the marginal contribution of each line. Under the assumption that losses from all product lines

follow a sharing rule, some premiums problems are examined by [27].
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What is missing in the literature is the investigation of external systemic risk for the insurance

group. Our work enriches the study of the insurance group by considering the group dividend

optimization problem in which each subsidiary may go default due to some contagious default

risk. In practice, many subsidiaries share the same reserves pool from the parent group company.

It is reasonable to assume that all subsidiaries are exposed to some common credit risk. Our model

can depict some real life situations that the group manager collects cash reserves from different

subsidiaries and invests them into some financial credit instruments such as defaultable Bonds,

CDS, equity default swaps and etc. The insolvency and termination of one subsidiary business

caused by the market credit risk may quickly spread to all other subsidiaries if they share the

same underlying credit assets. Some empirical studies find that defaults are indeed contagious in

certain cases and exhibit the so-called default-clustering phenomenon, see [17]. In particular, a

dependent credit risk model is studied by [37], which analyzes the contagious defaults affected by

a common macroeconomic factor. A financial network model is later developed by [3], in which

the contagious defaults are caused by a macroeconomic shock. In the context of insurance, it is

also reasonable to consider the investment of net-reserves in some credit assets and the default

risk in the financial market may lead to some massive domino effects in surplus management and

subsidiaries operations.

It is worth noting that some recent work such as [1], [25] and [24] consider the collaborating

dividend problem between multiple insurance companies, in which the credit default and default

contagion are again not concerned. Instead, they consider some independent insurance compa-

nies and assume that one insurance company can inject capital into other companies whenever

their financial ruins occur. The optimal dividend for two collaborating insurance companies in

compound Poisson and diffusion models are studied by [1] and [25] respectively. The extension

to different solvency criteria is considered later by [24]. Although these work differ substantially

from the present paper, we confront similar challenges from the multi-dimensional singular control

problem and some new mathematical methods are required.

To ensure the tractability, we work in the interacting intensity framework to model default
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contagion, which allows sequential defaults and assumes that the credit default of one subsidiary

can affect other surviving names by increasing their default intensities. This type of default con-

tagion has been actively studied recently in the context of portfolio management, see among

[10, 9, 11, 12, 13] and many others. The key observation in these work is that the system of HJB

partial differential equations (PDEs) is recursive and the depth of the recursion equals the number

of risky assets. The system of PDEs can therefore be analyzed using a backward recursion from the

state in which all assets are defaulted towards the state that all assets are alive. As opposed to port-

folio optimization, we confront a singular control problem that stems from the dividend payment,

and we consequently need to handle variational inequalities instead of PDE problems. To the best

of our knowledge, our work appears as the first one attempting to introduce the default contagion

to the insurance group dividend control framework. In particular, we distinguish the ruin caused

by insurance claims (i.e. the surplus process diffuses to zero) and the termination caused by credit

default jump. It is observed in this paper that the optimal group dividend is of the barrier type and

the optimal barrier for each subsidiary is default-state-modulated, i.e., the optimal barrier of each

surviving subsidiary will be adjusted whenever some subsidiaries go default. In the simple case of

two subsidiaries, we can rigorously prove that the group manager lowers the dividend barrier of

the surviving subsidiary and forces it to pay dividend soon, see Corollary 3.5.

Our mathematical contribution is the study of the recursive system of HJBVIs (4.5), which

differs from some conventional PDE problems in portfolio optimization. We adopt the core idea in

[10, 9, 11, 13] and follow the backward recursion based on the number of defaulted subsidiaries.

In addition, we take the full advantage of the risk neutral valuation of the group control and sim-

plify the multi-dimensional value function into a separation form. Our arguments can be outlined

as follows. Firstly, we start from the case when there is only one surviving subsidiary and work

inductively to the case when all subsidiaries are alive. The classical solution in the step with k sur-

viving subsidiaries will appear as variable coefficients in the step with k+1 surviving subsidiaries,

and we can continue to show the existence of classical solution with k + 1 names. Secondly, to

show the existence of classical solution in each step with a fixed number of subsidiaries, we con-
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jecture a separation form of the value function, and split the variational inequality from the group

control into a subsystem of auxiliary variational inequalities. To tackle each auxiliary variational

inequality, we first obtain the existence of a classical solution to the ODE problem. By applying

the smooth-fit principle, we deduce the existence of a free boundary point depending on the default

state and construct the desired classical solution to the auxiliary variational inequality. The rigor-

ous proof of the verification theorem is provided to show that the value function coincides with the

classical solution to the recursive system of HJBVIs (4.5). As a byproduct, the optimal dividend is

proved to be a reflection strategy with the barrier depending on the default state indicator process,

see (2.11) in Theorem 2.1.

The rest of the paper is organized as follows. Section 2 introduces the model of the multi-line

insurance group with external credit default contagion. The optimal group dividend problem for all

subsidiaries is formulated and the main theorem is presented therein. In Section 3, we derive the

HJBVI (3.3) for two subsidiaries and solve the value function in an explicit manner. The optimal

barriers of the dividend are constructed using the smooth-fit principle. Section 4 generalizes the

results to a multi-line insurance group. The proof of the verification theorem is given in Section 5.

The derivation of the HJBVI (3.3) for two subsidiaries is reported in Appendix A.

2 Model Formulation

Let (Ω,F ,F,P) be a complete filtered probability space where F := {Ft} is a right-continuous, P-

completed filtration. We consider an insurance group consisting ofN subsidiary business units and

each business unit is managed independently within the group. In particular, the decision maker

in the present paper is the insurance group manager, who collects the premiums and contributes

shares of the dividend for the whole group of subsidiaries.

After the pioneer work [28], the diffusion-approximation of the classical Cramér-Lundberg

model has been popular in the study of optimal dividend and reinsurance thanks to its tractability

and allowance of explicit control strategies, see among [19], [23], [4], [15], [22] and many others.
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Following their setting, it is assumed in this paper that all subsidiaries have the same form of

surplus processes with different drifts and insurance claim distributions and the pre-default surplus

process X̂i(t) for each subsidiary satisfies the diffusion model that

dX̂i(t) = aidt− bidWi(t), (2.1)

where constants ai > 0 and bi > 0 represent the mean and the volatility of the surplus process

respectively, and each Wi(t) is a standard P-Brownian motion. For 1 ≤ i, j ≤ N , the correlation

coefficient between Wi and Wj is denoted by the constant −1 ≤ ρij ≤ 1 and the correlation

coefficient matrix is denoted by Σ = (ρij)N×N . The model covers correlated insurance claims

from different subsidiaries including possible scenarios that some subsidiaries are running product

lines that depend on other product lines and some subsidiaries serve certain overlapping customers.

We consider in this paper that each subsidiary allocates a large proportion of its net-reserves in

some credit assets. Each subsidiary is exposed to some external credit risk in the financial market,

and a wave of defaults in these credit assets may lead to large loss of net-reserves in all subsidiaries.

One example is the collapse of AIG, which is exposed to substantial credit risk in its balance sheet

in the 2008 financial crisis. To make our multi-dimensional dividend control problem tractable

and facilitate the backward induction method, we consider the extreme case in the present paper

that the external default will terminate the operation of the subsidiary and no salvage value can be

paid as dividend at the moment of default. To model these extreme and irreparable default events,

we choose the so-called default indicator process that is described by an N-dimensional F-adapted

process Z(t) = (Z1(t), . . . , ZN(t)) taking values on {0, 1}N . For each i, Zi(t) = 1 indicates that

the i-th subsidiary has defaulted up to time t, while Zi(t) = 0 indicates that the i-th subsidiary is

still alive at time t. The process Z(t) is assumed to be independent of all Brownian motions Wi(t),

i = 1, . . . , N , to reflect that these external default events stem from the credit assets and they do

not depend on the claims of each subsidiary’s insurance products.
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For each i = 1, . . . , N , the default time σi for the i-th subsidiary is given by

σi := inf {t ≥ 0;Zi(t) = 1} .

The stochastic intensity of σi is modeled by (1− Zi(·))λi (Z(·)), where λi maps {0, 1}N to

(0,+∞) and the process

Mi(t) := Zi(t)−
∫ t∧σi

0

λi (Z(s)) ds, (2.2)

is a martingale with respect to the filtration generated by Z. Note that this process Zi(t) can

also be viewed as a Cox process truncated above by constant 1, whose intensity process is (1 −

Zi(t))λi(Z(t)) + Zi(t).

Let us take N = 2 as an example and consider the default state Z(t) = (0, 0) at time t. The

values λ1(0, 0) and λ2(0, 0) give the default intensity of subsidiary 1 and subsidiary 2 at time t

respectively. Suppose that subsidiary 1 has already defaulted before time t and only subsidiary 2

is alive, then λ2(1, 0) represents the default intensity of subsidiary 2 at time t. Similarly, if the

subsidiary 2 has already defaulted before time t and only subsidiary 1 is alive, then λ1(0, 1) repre-

sents the default intensity of subsidiary 1 at time t. Moreover, we consider the default contagion

in the sense that λ1(0, 0) ≤ λ1(0, 1) and λ2(0, 0) ≤ λ2(1, 0) such that the default intensity of one

subsidiary increases after the other subsidiary defaults.

For the general case with N subsidiaries, the default indicator process at time t may jump

from a state Z(t) = (Z1(t), . . . , Zi−1(t), Zi(t), Zi+1(t), . . . , ZN) in which the subsidiary i is alive

(Zi(t) = 0) to the neighbour state (Z1(t), . . . , Zi−1(t), 1 − Zi(t), Zi+1(t), . . . , ZN) in which the

subsidiary i has defaulted with the stochastic rate λi(Z(t)). It is assumed from this point on that

Zi, i = 1, . . . , N , will not jump simultaneously in the sense that

∆Zi(t)∆Zj(t) = 0, 1 ≤ i < j ≤ N, t ≥ 0. (2.3)
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Note that the default intensity of the i-th subsidiary λi(Z(t)) depends on the whole vector process

Z(t), and it is assumed that λi(Z(t)) increases if any other subsidiary defaults. This is what we

mean by default contagion for multiple subsidiaries. Let us denote the vector λ(z) = (λi(z); i =

1, . . . , N)T , for the given default vector z ∈ {0, 1}N .

The actual surplus process of subsidiary i after the incorporation of external credit risk is de-

noted by X̃i(t), where i = 1, 2, . . . , N, and it is defined as

X̃i(t) := (1− Zi(t)) X̂i(t). (2.4)

Given the surplus process X̃i(t), for each subsidiary i, we can then introduce the dividend

policy. A dividend strategy Di(·) is an Ft-adapted process representing the accumulated amount

of dividend paid up to time t. That is, Di(t) is a nonnegative and nondecreasing stochastic process

that is right continuous and have left limits with Di(0
−) = 0. The jump size of Di at time t ≥ 0

is denoted by ∆Di(t) := Di(t) − Di(t
−), and Dc

i (t) := Di(t) −
∑

0≤s≤t ∆Di(s) denotes the

continuous part of Di(t).

For the i-th subsidiary, the resulting surplus process in the presence of dividend payments can

be written as

Xi(t) :=
(
1− Zi(t)

)(
X̃i(t)−Di(t)

)
, Xi(0) = xi ≥ 0, (2.5)

where xi stands for the initial surplus of the i-th subsidiary. We denote the vector process X(t) :=

(X1(t), . . . , XN(t)).

The objective function for the insurance group is formulated as a corporative singular control of

total dividend strategy D(t) = (D1(t), . . . , DN(t)) under the expected value of discounted future

dividend payments up to the ruin time

J(x, z,D(·)) := E

(
N∑
i=1

αi

∫ τi

0

e−rtdDi(t)

)
, (2.6)

where the weight parameter satisfies α1 + α2 + . . . + αN = 1. The parameter αi represents the
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relative weight of the subsidiary in the insurance group, and they add up to 1 after scaling. r > 0

is a given discount rate. Recall that the insurance group manager is the decision maker, the surplus

process of each subsidiary is therefore completely observable to the decision maker. The ruin time

τi of the subsidiary i is defined by

τi := inf{t ≥ 0 : Xi(t) = 0}, i = 1, . . . , N.

The initial surplus level is denoted byXi(0) = xi and the initial default state is denoted by Zi(0) =

zi, i = 1, . . . , N . We also denote X(0) = x := (x1, . . . , xN) and Z(0) = z := (z1, . . . , zN). It is

assumed henceforth that each admissible control process Di(t) can not jump simultaneously with

Zi(t) in the sense that, for t ≥ 0,

∆Di(t)∆Zi(t) = 0, 1 ≤ i ≤ N. (2.7)

That is, the dividend for the subsidiary i can not be paid right at the moment when the subsidiary

i goes default due to external credit risk. The assumption (2.7) is by no means restrictive be-

cause the process Di(t) is càdlàg and the default time σi is totally inaccessible due to the exis-

tence of default intensity λi. In Appendix A, assumptions (2.3) and (2.7) are needed to derive

the associated HJBVI. Moreover, it is assumed throughout the paper that ∆Di(t) ≤ Xi(t−) and

Di(t) = Di(t ∧ τi), where the first condition dictates that the subsidiary i can not pay dividend

more than its currently available fund and the second condition means that the subsidiary i won’t

pay any dividend after its ruin time.

Our goal is to find the optimal dividend strategy D∗ such that the value function can be attained

that

f(x, z) := sup
D
J(x, z,D) = J(x, z,D∗). (2.8)

In particular, we are interested in the case that all subsidiaries are alive at the initial time, i.e., the
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value function f(x,0) can be characterized, where 0 = (0, . . . , 0) is the zero vector.

A barrier dividend strategy is to pay dividend whenever the surplus process excesses over the

barrier. The optimal dividend for a single insurance company has been shown to fit this type of

barrier control in various risk models. In our setting with default contagion, the optimal dividend

for the insurance group also fits this barrier control. Nevertheless, the optimal barrier for each

subsidiary is no longer a fixed level as in the model of a single insurance company. Instead,

we identify that the optimal barrier is dynamically modulated by the defaulted subsidiaries and

surviving ones. The dependence on the default state leads to some distinctive phenomena that the

dividend barrier will be adjusted in the observation of sequential defaults. Furthermore, the change

of the barrier for subsidiary i, i.e. the change of mi(Z(t)) in (2.11), is complicated and depends

on all market parameters. In the case of two subsidiaries, we can prove in Corollary 3.5 that the

default event of one subsidiary will stimulate the surviving one to pay dividend, albeit with less

amount, because the dividend threshold decreases.

For any vectors x ∈ [0,+∞)N and z ∈ {0, 1}N , let us denote

x(l) := (x1, . . . , xl−1, 0, xl+1, . . . , xN), zl := (z1, . . . , zl−1, 1, zl+1, . . . , zN). (2.9)

The next theorem is the main result of this paper.

Theorem 2.1. Let us consider the initial surplus level X(0) = x ∈ [0,+∞)N and the initial

default state Z(0) = z := (z1, . . . , zN) = 0 that all subsidiaries are alive at the initial time. The

value function f(x,0) defined in (2.8) is the unique classical solution to the variational inequalities

max
1≤i≤N

{
Lf(x, z) +

N∑
l=1

λl(z)f(x(l), zl), αi − ∂if(x, z)

}
= 0, (2.10)

in which the operator is defined by

Lf(x, z) := −

(
r +

N∑
k=1

λk(z)

)
f(x, z) +

N∑
k=1

(
ak∂kf(x, z) +

1

2
b2
k∂kkf(x, z)

)
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+
N∑

i,j=1
i>j

bibjρij∂
2
ijf(x, z),

where ∂kf := ∂f
∂xk

and ∂kkf := ∂2f
∂x2k

.

Moreover, for each i = 1, . . . , N , there exists a mapping mi : {0, 1}N 7→ (0,+∞) such that

the optimal dividend D∗ for the i-th subsidiary is given by the reflection strategy

D∗i (t) := max

{
0, sup

0≤s≤t

{
X̃i(s)−mi (Z(s))

}}
, i = 1, . . . , N, (2.11)

andmi(Z(t)) represents the optimal barrier for the i-th subsidiary modulated by the N-dimensional

default state indicator Z(t) at time t.

From the form of HJBVI (2.10), we can see that the solution f(x, z) actually depends on the

value function f(x, zl) with the initial default state zl indicating that one subsidiary has already

defaulted. Therefore, to show the existence of classical solution to HJBVI (2.10) with z = 0,

we have to analyze the existence of the classical solution of the entire system of HJBVIs with all

different values of z ∈ {0, 1}N . To this end, we follow a recursive scheme that is based on default

states of subsidiaries. The proof of Theorem 2.1 is postponed to Section 5.

3 Analysis of HJBVIs: Two Subsidiaries

To make our recursive arguments more readable, we first present the main result for only 2 sub-

sidiaries. As one can see, the associated HJB variational inequalities can be solved explicitly for 2

initial subsidiaries and the optimal barriers of dividend for each subsidiary at time t can be derived

that depends on the default state Z(t). The recursive scheme to analyze the variational inequalities

has a hierarchy feature, which is operated in a backward manner. To be more precise, we first solve

a standard optimal dividend problem when only one subsidiary survives initially, and the associated

value function appears as variable coefficients in the top level of HJBVI when both subsidiaries

are initially alive. We can then continue to tackle the top level HJBVI with two subsidiaries by
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employing a separation form of its solution and the smooth-fit principle.

3.1 One Surviving Subsidiary

In this subsection, it is assumed that there is only one subsidiary at the initial time. That is, we

need to consider default states z1 := (0, 1) and z2 := (1, 0). Here, the default state zi, i = 1, 2,

indicates that subsidiary i is alive initially while the other subsidiary has already defaulted due to

the external credit risk.

For each i, let us consider the default state zi, and let xi ≥ 0 be the initial surplus level for the

subsidiary i. The associated HJBVI for the default state (0, 1) and (1, 0) can be derived as

max

{
Lzif(xi, zi), αi −

∂f

∂xi
(xi, zi)

}
= 0, i = 1, 2, (3.1)

where the operator is defined by

Lzif := − (r + λi(zi)) f +

(
ai
∂f

∂xi
+

1

2
b2
i

∂2f

∂x2
i

)
.

Here, we recall that λi(zi) stands for the default intensity for subsidiary i given that the other

subsidiary has already defaulted.

We can follow some standard results in [5], which solves the stochastic control problem for a

single insurance company. The positive discount rate r > 0 ensures that 1
2
b2
i s

2+ais−(r+λi(zi)) =

0 admits two real roots. Let θ̂i1, −θ̂i2 denote the positive and negative root respectively that

θ̂i1 :=
−ai +

√
a2
i + 2b2

i (r + λi(zi))

b2
i

, −θ̂i2 :=
−ai −

√
a2
i + 2b2

i (r + λi(zi))

b2
i

, i = 1, 2.

According to results in [5], for i = 1, 2, the solution to the HJBVI (3.1) is

f(xi, zi) =


αiCi(zi)(e

θ̂i1xi − e−θ̂i2xi), 0 ≤ xi ≤ mi(zi),

αiCi(zi)(e
θ̂i1mi(zi) − e−θ̂i2mi(zi)) + αi(xi −mi(zi)), xi ≥ mi(zi),

(3.2)
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where

mi(zi) :=
2

θ̂i1 + θ̂i2
log

(
θ̂i2

θ̂i1

)
=

b2
i√

a2
i + 2b2

i (r + λi(zi))
log

(√
a2
i + 2b2

i (r + λi(zi)) + ai√
a2
i + 2b2

i (r + λi(zi))− ai

)
,

Ci(zi) :=
1

θ̂i1eθ̂i1mi(zi) + θ̂i2e−θ̂i2mi(zi)
, i = 1, 2.

3.2 Auxiliary Results for Two Subsidiaries

We continue to consider the case that both subsidiaries are alive at time t = 0 with the initial

surplus x = (x1, x2) and initial default state z = (0, 0). Using heuristic arguments in Appendix A,

the associated HJBVI for the value function can be written by

max
{
L(0,0)f(x, (0, 0)), α1 − ∂1f(x, (0, 0)), α2 − ∂2f(x, (0, 0))

}
= 0, (3.3)

with the operator

L(0,0)f(x, (0, 0)) :=− (r + λ1(0, 0) + λ2(0, 0))f(x, (0, 0)) + b1b2ρ12∂12f(x, (0, 0))

+

(
a1∂1f(x, (0, 0)) +

1

2
b2

1∂
2
11f(x, (0, 0))

)
+

(
a2∂2f(x, (0, 0)) +

1

2
b2

2∂
2
22f(x, (0, 0))

)
+ λ1(0, 0)f(x2, (1, 0)) + λ2(0, 0)f(x1, (0, 1)), (3.4)

where functions f(x1, (0, 1)) and f(x2, (1, 0)) are given explicitly in (3.2), and

∂if(x, (0, 0)) :=
∂f(x, (0, 0))

∂xi
, and ∂ijf(x, (0, 0)) :=

∂2f(x, (0, 0))

∂xixj
, i, j = 1, 2.

To show the existence of a classical solution to HJBVI (3.3), we first conjecture that the solution

f(x, (0, 0)) with x = (x1, x2) ∈ [0,+∞)2 admits a key separation form that

f(x, (0, 0)) = f1(x1, (0, 0)) + f2(x2, (0, 0)), x1, x2 ≥ 0, (3.5)
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for some smooth functions f1 and f2, i.e., functions of x1 and x2 can be decoupled. The rigorous

proof of this separation form will be given in the next subsection.

With the aid of the separation form (3.5), to solve HJBVI (3.3) is equivalent to solve two

auxiliary variational inequalities with one dimensional variable x ∈ [0,+∞) defined by

max

{
Aifi(x, (0, 0)) +

λ1(0, 0)λ2(0, 0)

λi(0, 0)
f(x, zi), αi − f ′i(x, (0, 0))

}
= 0, i = 1, 2, x ≥ 0,

(3.6)

where the operators are defined as

Aif(x, (0, 0)) :=
1

2
b2
i f
′′(x, (0, 0)) + aif

′(x, (0, 0))

− (r + λ1(0, 0) + λ2(0, 0))f(x, (0, 0)), i = 1, 2,

and the boundary condition fi(0, (0, 0)) = 0, i = 1, 2.

Remark 3.1. When two subsidiaries are alive, the function f1(x1, (0, 0)) from the decomposi-

tion relationship (3.29) satisfies variational inequalities (3.6). It is worth noting that this function

f1(x1, (0, 0)) can not be simplify interpreted as the value function of the optimal dividend prob-

lem for the single subsidiary 1 without considering all other subsidiaries. As one can observe

from (3.6), f1(x1, (0, 0)) depends on the coefficient λ2(0, 0) that is the default intensity of the

subsidiary 2 and also depends on the value function f1(x, (0, 1)). However, as pointed out later

in Remark 5.1, our mathematical approach can eventually verify that f1(x1, (0, 0)) equals the ex-

pected value of the discounted dividend using the dividend control policy D∗1(t) for subsidiary 1,

where D∗(t) = (D∗1(t), D∗2(t)) is the optimal dividend for the whole group.

By symmetry, for the existence of classical solution to the auxiliary variational inequality (3.6),

for i = 1, 2, it is sufficient to study the general form of variational inequality with one dimensional

variable x ∈ [0,+∞) defined by

max {Af(x) + h(x), γ − f ′(x)} = 0, (3.7)
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where γ > 0,

Af(x) := −µf(x) + νf ′(x) +
1

2
σ2f ′′(x), µ, ν, σ > 0, (3.8)

and the function h is a C2 function satisfying h(0) = 0, limu→+∞ h(u) = +∞, h(x) ≥ 0,

h′(x) > 0, and h′′(x) ≤ 0, for x ≥ 0.

To tackle the general variational inequality (3.7), we propose to examine the solution to the

ODE part at first in the next lemma.

Lemma 3.2. Let us consider the ODE problem

Ag(x) + h(x) = 0, x ≥ 0, (3.9)

with the boundary condition g(0) = 0 and the operator A is defined in (3.8), h is the same as that

in (3.7). The classical solution g to (3.9) admits the form

g(x) = φ1(x) + Cφ2(x),

where C is a parameter in R, and

φ1(x) := − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(eθ1(x−u) − e−θ2(x−u))du, x ≥ 0, (3.10)

φ2(x) := eθ1x − e−θ2x, x ≥ 0. (3.11)

Here θ1, −θ2 are the roots of the equation 1
2
σ2θ2 + νθ − µ = 0.

Proof. We first rewrite the ODE (3.9) in a vector form as

d

dx

 g(x)

g′(x)

 = A

 g(x)

g′(x)

+ β(x),
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where

A :=

 0 1

2σ−2µ −2σ−2ν

 , β(x) :=

 0

−2σ−2h(x)

 .

One can solve it as  g(x)

g′(x)

 = eAx
∫ x

0

e−Auβ(u)du+ eAxβ0.

The boundary condition g(0) = 0 then yields that β0 = (0, g′(0))> and

eAxβ0 =
(
C(eθ1x − e−θ2x), C(θ1e

θ1x + θ2e
−θ2x)

)>
,

for some constant C. Note also that β(x) =
(
0,−2σ−2h(x)

)
, hence it follows that

eAx
∫ x

0

e−Auβ(u)du = −2σ−2

∫ x

0

eA(x−u)

 0

h(u)

 du

= −2σ−2

∫ x

0

h(u)eA(x−u)

 0

1

 du.

Let

 y1(t)

y2(t)

 = eAt

 0

1

, we get that d
dt

 y1(t)

y2(t)

 = A

 y1(t)

y2(t)

 , y1(0) = 0, y2(0) = 1.

Then y′1(t) = y2(t) implies that y1(t) = C1e
θ1t + C2e

−θ2t, y1(0) = 0, y′1(0) = 1. We then deduce

that C1 = −C2 = 1
θ1+θ2

. Therefore, we have

eAx
∫ x

0

e−Auβ(u)du = −2σ−2

∫ x

0

h(u)eA(x−u)

 0

1

 du
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= − 2

σ2(θ1 + θ2)

∫ x

0

 h(u)(eθ1(x−u) − e−θ2(x−u))

h(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))

 du,

and also

g(x, (0, 0)) = − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(eθ1(x−u) − e−θ2(x−u))du+ C(eθ1x − e−θ2x)

= φ1(x) + Cφ2(x),

where C is a parameter, and φ1(x) and φ2(x) satisfy (3.10) and (3.11) respectively. �

Back to the variational inequality (3.7), we plan to apply the smooth-fit principle to mandate the

solution to be smooth at the free boundary point. The next technical result becomes an important

step to prove the main theorem.

Lemma 3.3. Under the conditions in Lemma 3.2, we have ζ > 0 and there exist positive constants

(C,m) such that


φ′1(m) + Cφ′2(m) = γ,

φ′′1(m) + Cφ′′2(m) = 0.

Proof. Let us start with some identities of derivatives by direct calculations that

φ′1(x) = − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))du ≤ 0, (3.12)

φ′′1(x) = − 2

σ2(θ1 + θ2)

∫ x

0

h′(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))du ≤ 0, (3.13)

where the second inequality holds thanks to h(0) = 0, and

φ′′1(x) = − 2

σ2(θ1 + θ2)
h(x)φ′2(0)− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du

= − 2

σ2(θ1 + θ2)
(h(x)φ′2(0)− h(0)φ′2(x))− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du
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=
2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du− 2

σ2(θ1 + θ2)

∫ x

0

h′(u)φ′2(x− u)du

− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du

= − 2

σ2(θ1 + θ2)

∫ x

0

h′(u)φ′2(x− u)du.

Note that φ′′2(0) = θ2
1 − θ2

2 < 0. As φ′2(x) > 0, the existence of m ∈ (0,+∞) boils down to the

existence of root x ∈ (0,+∞), to the following equation

q(x) := φ′′1(x) +
γ − φ′1(x)

φ′2(x)
φ′′2(x) = 0.

As φ′1(0) = φ′′1(0) = 0 by (3.12) and (3.13), we obtain that q(0) =
γφ′′2 (0)

φ′2(0)
< 0.

Plugging (3.12) and (3.13) into the definition of q above, we obtain that

q(x) =γ
φ′′2(x)

φ′2(x)
+

2

σ2(θ1 + θ2)

×
∫ x

0

[
φ′′2(x)

φ′2(x)
h(u)− h′(u)

]
(θ1e

θ1(x−u) + θ2e
−θ2(x−u))du. (3.14)

As h′′ ≤ 0, h′ > 0, it follows that h′ is bounded. Noting that limx→+∞
φ′′2 (x)

φ′2(x)
= θ1 > 0, as well as

that limu→+∞ h(u) = +∞, we deduce from (3.14) that limx→+∞ q(x) = +∞. Therefore q admits

at least one root x ∈ (0,+∞). We then define

m := inf {u : q(u) = 0} ∈ (0,+∞), (3.15)

and choose

C :=
γ − φ′1(m)

φ′2(m)
≥ γ

φ′2(m)
> 0. (3.16)

�

With the parameters (C,m) obtained in (3.16) and (3.15) in the proof of Lemma 3.3, we can
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turn to the construction of a classical solution to the general variational inequality.

Proposition 3.4. The variational inequality

max {Af(x) + h(x), γ − f ′(x)} = 0, x ≥ 0, (3.17)

with the boundary condition f(0) = 0 admits a C2 solution, which has the form of

f(x) =


φ1(x) + Cφ2(x), x ∈ [0,m],

φ1(m) + Cφ2(m) + γ(x−m), x ∈ [m,+∞).

(3.18)

Here φ1(x) and φ2(x), x ≥ 0, are defined in (3.10) and (3.11) respectively and parameters C and

m are determined in (3.16) and (3.15).

In particular, we have


Af(x) + h(x) = 0, x ∈ [0,m],

γ − f ′(x) = 0, x ∈ [m,+∞),

(3.19)

and f(0) = 0, f ′ > 0, f ′′ ≤ 0, limx→+∞ f(x) = +∞.

Proof of Proposition 3.4. Let g(x) be the classical solution to the ODE (3.9). We have that f(x)

coincides with g(x) in Lemma 3.2, for x ≤ m and the function is a linear function, for x > m.

We aim to prove that the function f is the desired C2 solution to the variational inequality (3.17).

Thanks to Lemma 3.3, we deduce that f ′(m) = γ, f ′′(m) = 0. In view of its definition, it is

straightforward to see that f belongs to C2. On the other hand, Lemma 3.2 and (3.18) give the

validity of (3.19). Therefore (3.17) holds once we show that

f ′(x) = φ′1(x) + Cφ′2(x) ≥ γ, for x ∈ [0,m],
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as well as

Af(x) + h(x) ≤ 0, for x ≥ m.

Define the elliptic operator

Lf := −1

2
σ2f ′′ − νf ′ + µf, (3.20)

and consider g(x) in Lemma 3.2 with C in (3.16). Then we have

Lg(x) = h(x), x ∈ (0,m).

Note that h is twice differentiable, and that h′′ ≤ 0. It therefore follows that

Lg′′(x) = h′′(x) ≤ 0, x ∈ (0,m).

Since µ > 0, according to the weak maximum principle (see Theorem 2 in §6.4 of [20]), we have

max
x∈[0,m]

g′′(x) ≤ max
{[
g′′(0)

]+
,
[
g′′(m)

]+}
= 0.

Therefore, we have

φ′1(x) + Cφ′2(x) ≥ φ′1(m) + Cφ′2(m) = γ, for x ∈ [0,m].

In other words,

φ′′1(x) + Cφ′′2(x) ≤ 0, x ∈ [0,m]. (3.21)

We next show that Af ′(x) + h′(x) ≤ 0, for x ≥ m. In our previous argument, we have shown
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that φ′′1(x) + Cφ′′2(x) ≤ 0, x ∈ [0,m], i.e., f ′′(x) ≤ 0, x ∈ [0,m]. It follows that

f ′′′(m−) = lim
x→m−

f ′′(m)− f ′′(x)

m− x
= − lim

x→m−

f ′′(x)

m− x
≥ 0. (3.22)

Thanks to the definition of f , we have that Af ′(x) + h′(x) = 0 on x ∈ [0,m). By sending

x→ m−, we get

Af ′(m−) + h′(m) = 0.

That is,

−µγ + h′(m) = −1

2
σ2f ′′′(m−) ≤ 0.

For x > m, we have f ′′(x) = 0, f ′(x) = γ, and h′(x) ≤ h′(m) as h′′ ≤ 0. Hence, we have

Af ′(x) + h′(x) = −µf ′(x) + h′(x) ≤ −µγ + h′(m) ≤ 0.

Then for x ≥ m, we arrive at

Af(x) + h(x) ≤ Af(m) + h(m) = 0.

Putting all the pieces together, we can conclude that f is the desired C2 solution to the variational

inequality (3.17).

To complete the proof, it remains to show that

f(0) = 0, f ′(x) > 0, f ′′(x) ≤ 0, x ≥ 0.

In view of (3.10), (3.11) and (3.18), it holds that f(0) = 0. Note that the variational inequality

(3.17) gives f ′(x) > 0, x ≥ 0. Moreover, in view of (3.21) and the fact that f(x) is linear on
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x ∈ [m,+∞), we obtain that f ′′(x) ≤ 0, x ≥ 0, limx→+∞ f(x) = +∞. �

3.3 Main Results for Two Subsidiaries

In view of the explicit solution of the auxiliary variational inequality (3.17), for i = 1, 2, we can

derive the explicit solution fi(xi, (0, 0)) to the variational inequality (3.6) by setting A = Ai,

h(xi) = λ1(0,0)λ2(0,0)
λi(0,0)

fi(xi, zi) and γ = αi.

Moreover, for i = 1, 2, let us denote the constant m and C for variational inequality (3.6) by

mi(0, 0) and Ci(0, 0), because we can verify later that the constant mi(0, 0) is the optimal barrier

of the dividend strategy for the subsidiary i.

Let us define

Ki := αiCi(zi)(e
θ̂i1mi(zi) − e−θ̂i2mi(zi))− αimi(zi), i = 1, 2,

and we will construct the explicit solution of the variational inequality (3.6) in the following steps.

For i = 1, 2, let us denote θi1, −θi2 as the positive and negative roots of the equation 1
2
b2
i θ

2 +

aiθ − (r + λ1(0, 0) + λ2(0, 0)) = 0 respectively that

θi1 :=
−ai +

√
a2
i + 2b2

i (r + λ1(0, 0) + λ2(0, 0))

b2
i

,

−θi2 :=
−ai −

√
a2
i + 2b2

i (r + λ1(0, 0) + λ2(0, 0))

b2
i

.
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Let us first define for i = 1, 2 and the variable x ≥ 0 that

fi1(x, (0, 0)) :=



fi11(x) := − 2

σ2

αiλ1(0, 0)λ2(0, 0)Ci(zi)

λi(0, 0)(θi1 + θi2)

×

[
(θi1 + θi2)eθ̂i1x

(θ̂i1 − θi1)(θ̂i1 + θi2)
+

(θi1 + θi2)e−θ̂i2x

(θ̂i2 + θi1)(−θ̂i2 + θi2)

− (θ̂i1 + θ̂i2)eθi1x

(θ̂i1 − θi1)(θ̂i2 + θi1)
− (θ̂i1 + θ̂i2)e−θi2x

(θ̂i1 + θi2)(−θ̂i2 + θi2)

]
, 0 ≤ x ≤ mi(zi),

fi12(x) := − 2

σ2

αiλ1(0, 0)λ2(0, 0)Ci(zi)

λi(0, 0)(θi1 + θi2)

×

[
eθi1x

θ̂i1 − θi1

(
e(θ̂i1−θi1)mi(zi) − 1

)
+

e−θi2x

θ̂i1 + θi2

(
− e(θ̂i1+θi2)mi(zi) + 1

)
+

eθi1x

θ̂i2 + θi1

(
e−(θ̂i2+θi1)mi(zi) − 1

)
+

e−θi2x

−θ̂i2 + θi2

(
e(−θ̂i2+θi2)mi(zi) − 1

)]

− 2

σ2

Kiλ1(0, 0)λ2(0, 0)

λi(0, 0)(θi1 + θi2)

×

[
1

θi1

(
eθi1x−θi1mi(zi) − 1

)
+

1

θi2

(
e−θi2x+θi2mi(zi) − 1

)]

− 2

σ2

αiλ1(0, 0)λ2(0, 0)

λi(0, 0)(θi1 + θi2)

×

[
1

(θi1)2

(
− θi1x− 1 + (θi1mi(zi) + 1)eθi1x−θi1mi(zi)

)
+

1

(θi2)2

(
− θi2x+ 1 + (θi2mi(zi)− 1)e−θi2x+θi2mi(zi)

)]
, mi(zi) ≤ x,

(3.23)

fi2(x, (0, 0)) = eθi1x − e−θi2x, x ≥ 0. (3.24)

In view of Lemma 3.3 and Proposition 3.4, we can define the constant

mi(0, 0) := inf{s : qi(s) = 0}, i = 1, 2,
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where

qi(x) := f ′′i1(x, (0, 0)) +
αi − f ′i1(x, (0, 0))

f ′i2(x, (0, 0))
f ′′i2(x, (0, 0)), i = 1, 2.

We also define Ci(0, 0) :=
αi−f ′i1(mi(0,0))

f ′i2(mi(0,0))
, i = 1, 2.

To illustrate the change of the optimal barrier when one subsidiary defaults, let us choose the

model parameters: a1 = 0.1, b1 = 0.07, a2 = 0.15, b2 = 0.06, λ1(0, 0) = 0.02, λ1(0, 1) = 0.04,

λ2(0, 0) = 0.01, λ2(1, 0) = 0.04, r = 0.05 and α1 = 0.4. We can see from Figure 1 that the

comparison results m1(0, 0) > m1(0, 1) and m2(0, 0) > m2(1, 0) hold. That is, both subsidiaries

decrease the optimal barriers for dividend payment after the other subsidiary defaults. These ob-

servations are consistent with our intuition that the default contagion effect forces the surviving

subsidiary to take into account that itself will go default very soon because of the increased default

intensity. Therefore the surviving one prefers to pay dividend as soon as possible by setting a lower

dividend threshold before the unexpected default happens.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Initial Surplus

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: The change of the optimal barrier when default occurs

We actually have the next theoretical result on the change of the optimal barrier when one

subsidiary defaults.

Corollary 3.5. For the case of two subsidiaries, as we have λ1(0, 1) ≥ λ1(0, 0) and λ2(1, 0) ≥
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λ2(0, 0), we always have the orders that m1(0, 0) ≥ m1(0, 1) and m2(0, 0) ≥ m2(1, 0).

Proof. It suffices to show thatm1(0, 0) ≥ m1(0, 1). We first show that f1(x, (0, 0)) ≥ f1(x, (0, 1)),

x ≥ 0. Define fδ(x) := e−δxf1(x, (0, 0)), f̂δ(x) := e−δxf1(x, (0, 1)). Here, we choose the constant

δ > 0 small enough such that r + λ1(0, 0) + λ2(0, 0)− δa1 − 1
2
δ2b2

1 > 0. We can verify by direct

calculation that fδ(x) satisfies

max
{
Aδ1fδ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxfδ(x)

)′}
= 0, x ≥ 0, (3.25)

with fδ(0) = 0 and the operator Aδ1 defined by

Aδ1f :=
1

2
b2

1

(
eδxf(x)

)′′
+ a1

(
eδxf(x)

)′ − (r + λ1(0, 0) + λ2(0, 0)
)
eδxf(x).

On the other hand, we have that

max
{
Âδ1f̂δ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxf̂δ(x)

)′}
= 0, x ≥ 0,

with f̂δ(0) = 0 and the operator Âδ1 defined by

Âδ1f :=
1

2
b2

1

(
eδxf(x)

)′′
+ a1

(
eδxf(x)

)′ − (r + λ̂1(0, 0) + λ2(0, 0)
)
eδxf(x),

and λ̂1(0, 0) := λ1(0, 1). Noting that λ̂1(0, 0) ≥ λ1(0, 0) and f̂δ ≥ 0, we thus have that

max
{
Aδ1f̂δ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxf̂δ(x)

)′} ≥ 0, x ≥ 0.

The comparison result of viscosity solutions (see e.g. Section 5B in [16]) yields that, for each

M > 0,

f̂δ(x)− fδ(x) ≤ max
{

0, f̂δ(M)− fδ(M)
}
, x ∈ [0,M ].
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Note that M > 0 is arbitrary and limM→+∞ |f̂δ(M) − fδ(M)| = 0. Letting M → +∞ in the

inequality above, we obtain that

fδ(x)− f̂δ(x) ≥ 0, x ≥ 0.

This gives that f1(x, (0, 0)) ≥ f1(x, (0, 1)), x ≥ 0.

Next, let us define g(x1) := f ′1(x1, (0, 0)). We claim that g is the viscosity solution of

max {A1g(x1) + λ2(0, 0)f ′1(x1, (0, 1)), α1 − g(x1)} = 0, (3.26)

with g(0) = f ′1(0, (0, 0)) and g(M) = α1, where the constant M is sufficiently large that M >

m1(0, 1) ∨m1(0, 0). Indeed, on (0,+∞) \ {m1(0, 1)}, g is C2 and satisfies (3.26). On the other

hand, similar to (3.22), we can derive that

lim
x↑m1(0,1)

g′′(x) = lim
x↑m1(0,1)

f ′′′1 (x, (0, 1)) ≥ 0,

as well as that limx↓m1(0,1) g
′′(x) = 0. Hence

D+(2)g(m1(0, 1)) =

{
(0, p) : p ≥ lim

x↑m1(0,1)
f ′′′1 (x, (0, 1))

}
,

D−(2)g(m1(0, 1)) = {(0, p) : p ≤ 0} .

Here, we denote D+(2) and D−(2) the second order Super-Jet and Sub-Jet respectively. For (0, p) ∈

D+(2)g(m1(0, 1)), we have that

max

{
1

2
b2

1 · p+ a1 · 0− (r + λ1(0, 0) + λ2(0, 0))g(m1(0, 1)), α1 − g(m1(0, 1))

}
≥ 0,
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while for (0, p) ∈ D−(2)g(m1(0, 1)), we have

max

{
1

2
b2

1 · p+ a1 · 0− (r + λ1(0, 0) + λ2(0, 0))g(m1(0, 1)), α1 − g(m1(0, 1))

}
≤ 0.

Therefore g is the viscosity solution of (3.26).

Let us define ĝ(x) := f ′1(x, (0, 1)). Following the same arguments above, we have that ĝ is the

viscosity supersolution to (3.26), or equivalently, the viscosity solution to

max {A1ĝ(x1) + λ2(0, 0)f ′1(x1, (0, 1)), α1 − ĝ(x1)} ≥ 0, (3.27)

with ĝ(0) = f ′1(0, (0, 1)) and ĝ(M) = α1.

Because we have shown that

f1(x, (0, 0)) ≥ f1(x, (0, 1)), f1(0, (0, 0)) = f1(0, (0, 1)) = 0,

it follows that f ′1(0, (0, 0)) ≥ f ′1(0, (0, 1)), i.e., g(0) ≥ ĝ(0). Moreover, g(M) = ĝ(M) = α1. The

comparison result of viscosity solutions gives that g(x) ≥ ĝ(x), x ∈ [0,M ]. That is, f ′1(x, (0, 0)) ≥

f ′1(x, (0, 1)). We thus deduce that

α1 = f ′1(m1(0, 0), (0, 0)) ≥ f ′1(m1(0, 0), (0, 1)) ≥ α1,

which implies that f ′1(m1(0, 0), (0, 1)) = α1. As f ′1(x, (0, 1)) > α1, for x ∈ (0,m1(0, 1)), we can

obtain the desired order that m1(0, 1) ≤ m1(0, 0). �

Based on solution forms in (3.23) and (3.24) and Corollary 3.5, we have mi(0, 0) ≥ mi(zi),

i = 1, 2, and the solution of the auxiliary variational inequality (3.6) satisfies the piecewise form
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that

fi(xi, (0, 0)) =



fi11(xi) + Ci(0, 0)fi2(xi, (0, 0)), 0 ≤ xi < mi(zi),

fi12(xi) + Ci(0, 0)fi2(xi, (0, 0)), mi(zi) ≤ xi ≤ mi(0, 0),

fi12(mi(0, 0)) + Ci(0, 0)fi2(mi(0, 0), (0, 0))

+αi(xi −mi(0, 0)), xi > mi(0, 0).

(3.28)

We can continue to verify the important conjecture f(x, (0, 0)) = f1(x1, (0, 0))+f2(x2, (0, 0))

in (3.5) and prove the existence of a classical solution to HJBVI (3.3) in the next theorem.

Theorem 3.6. There exists a C2 solution to HJBVI (3.3) that admits the form

f(x, (0, 0)) := f1(x1, (0, 0)) + f2(x2, (0, 0)), (3.29)

where fi(xi, (0, 0)) given in (3.28) is the C2 solution to the auxiliary variational inequality (3.6),

i = 1, 2.

Proof. Thanks to Proposition 3.4, the auxiliary variational inequality (3.6) admits C2 solution, for

i = 1, 2. Let fi be the solution to (3.6), i = 1, 2. By setting f(x, (0, 0)) := f1(x1, (0, 0)) +

f2(x2, (0, 0)) and plugging into (3.4), we have

L(0,0)f(x, (0, 0)) =− rf1(x1, (0, 0))− rf2(x2, (0, 0))

+

(
a1∂1f1(x1, (0, 0)) +

1

2
b2

1∂
2
11f1(x1, (0, 0))

)
−
(
λ1(0, 0) + λ2(0, 0)

)
f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1))

+

(
a2∂2f2(x2, (0, 0)) +

1

2
b2

2∂
2
22f2(x2, (0, 0))

)
−
(
λ1(0, 0) + λ2(0, 0)

)
f2(x2, (0, 0)) + λ2(0, 0)f(x1, (0, 1)).
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It readily yields that

L(0,0)f(x, (0, 0)) =A1f1(x1, (0, 0)) + λ2(0, 0)f1(x1, (0, 1))

+A2f2(x2, (0, 0)) + λ1(0, 0)f2(x2, (1, 0)),

α1 − ∂1f(x, (0, 0)) =α1 − f ′1(x1, (0, 0)),

α2 − ∂2f(x, (0, 0)) =α2 − f ′2(x2, (0, 0)).

As fi solves the variational inequality (3.6), i = 1, 2, we have that

max
{
L(0,0)f(x, (0, 0)), α1 − ∂1f(x, (0, 0)), α2 − ∂2f(x, (0, 0))

}
≤ 0.

Moreover, if L(0,0)f(x, (0, 0)) < 0, we get that

A1f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1)) < 0 or A2f2(x2, (0, 0)) + λ1(0, 0)f(x2, (1, 0)) < 0.

Without loss of generality, we assume that A1f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1)) < 0. By (3.6),

we have that α− ∂1f(x, (0, 0)) = α− f ′1(x1, (0, 0)) = 0, and hence

max
{
L(0,0)f(x, (0, 0)), α− ∂1f(x, (0, 0)), 1− α− ∂2f(x, (0, 0))

}
= 0.

This shows that f(x, (0, 0)) in (3.29) is the solution of the HJBVI (3.3). �

4 Analysis of HJBVIs: Multiple Subsidiaries

This section generalizes the previous results to the case with N ≥ 3 subsidiaries by employing

mathematical induction. To this end, let us start to focus on the case that there are k ≤ N sub-

sidiaries defaulted at the initial time and show the existence of classical solution to the associated

variational inequality. The final verification proof of the optimal reflection dividend strategy for N
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initial subsidiaries is given in the next section.

For 0 ≤ k ≤ N , let us consider the initial default state that k subsidiaries have defaulted

and denote z = 0j1,...,jk as the N dimensional vector that j1, . . ., jk components are 1 and all

other components are 0 if k ≥ 1 and denote z = 0j1,...,jk as the N-dimensional zero vector 0

if k = 0. We also denote by {jk+1, . . . , jN} := {1, 2, . . . , N} \ {j1, . . . , jk}. For example, if

(j1, . . . , jk) = (1, 2, . . . , k), then (jk+1, · · · , jN) = (k + 1, . . . , N).

Consider z = 01,...,k, x = (0, . . . , 0, xk+1, . . . , xN), and define the operator

Lzf(x, z) :=−

(
r +

N∑
i=k+1

λi(z)

)
f(x, z) +

N∑
i=k+1

(
ai∂if(x, z) +

1

2
b2
i∂

2
iif(x, z)

)
(4.1)

+
N∑

i,l=k+1
i<l

biblρil∂
2
ilf(x, z).

With the notation above, we introduce the recursive system of HJBVIs

max
k+1≤i≤N

{
Lzf(x, z) +

N∑
l=k+1

λl(z)f(x(l), zl), αi − ∂if(x, z)

}
= 0. (4.2)

Similar to the previous section, we seek for the solution in the separation form

f(x, z) =
N∑

i=k+1

fi(xi, z),

so that xk+1, . . ., xN are decoupled, where we define, for any x ≥ 0, that

fi(x, z) =


fi,1(x, z) + Ci(z)fi,2(x, z), 0 ≤ x ≤ mi(z),

fi,1(mi(z), z) + Ci(z)fi,2(mi(z), z) + αi(x−mi(z)), x ≥ mi(z).

(4.3)
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In particular, for k + 1 ≤ i ≤ N ,


αi − ∂if(x, z) = 0, x ∈ Ui(z),

Lzf(x, z) +
N∑

l=k+1

λl(z)f(x(l), zl) = 0, x ∈ U(z),

where we have introduced

Ui(z) :=
{
xi ≥ mi(z)

}
, and U(z) :=

N⋂
i=k+1

U c
i (z). (4.4)

For z = 0j1,...,jk and x = (x1, . . . , xN) with xji = 0, 1 ≤ i ≤ k, we can define Ui(z), U(z) and the

operator Lz in the same manner as (4.4) and (4.1), except that the notation i and l in the expression,

satisfying k + 1 ≤ i, l ≤ N , is replaced with ji and jl, satisfying k + 1 ≤ i, l ≤ N .

With the discussion and notations above, we now proceed to prove by induction that the fol-

lowing statement (Sn) holds, for 1 ≤ n ≤ N :

(Sn) For N − n ≤ k ≤ N and z = 0j1,...,jk , there exists a solution f to HJBVI

max
k+1≤i≤N

{
Lzf(x, z) +

N∑
l=k+1

λjl(z)f(x(jl), zjl), αji − ∂jif(x, z)

}
= 0, (4.5)

where f admits the form f(x, z) =
∑N

i=k+1 fji(xji , z), satisfying

fji(x, z) =


fji,1(x, z) + Cji(z)fji,2(x, z), 0 ≤ x ≤ mji(z),

fji,1(mji(z), z) + Cji(z)fji,2(mji(z), z) + αji(x−mji(z)), x ≥ mji(z).

(4.6)
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In particular, for k + 1 ≤ i ≤ N ,


αji − ∂jif(x, z) = 0, x ∈ Ui(z),

Lzf(x, z) +
N∑

l=k+1

λjl(z)f(x(jl), zjl) = 0, x ∈ U(z),
(4.7)

and fji(0, z) = 0, fji ≥ 0, f ′ji > 0, f ′′ji ≤ 0, limx→+∞ fji(x, z) = +∞.

The expressions of (3.2) and (3.18), Proposition 3.4 and Theorem 3.6 in the previous section

imply that (Sn) holds when n = 1, 2.

Let n be any fixed integer satisfying 1 ≤ n < N . Assuming that statement (Sn) holds true, we

continue to show by induction that statement (Sn+1) is also true. Due to symmetry, it suffices to

show that HJBVI (4.5) admits a solution f(x, z), for z = 01,...,k when k = N − n − 1, as well as

that f(x, z) should admit the form specified in (4.6) and (4.7). In the case where z = 01,...,k and

k = N − n− 1, the previous HJBVI (4.5) turns out to be

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
l=N−n

(∑
j 6=l

λl(z)fj(xj, z
l)

)
, αi − ∂if(x, z)

}
= 0. (4.8)

In the same fashion of the previous section with two subsidiaries, it is sufficient to study the

auxiliary variational inequality, for N − n ≤ i ≤ N , with one dimensional variable x ≥ 0 that

max

Az,ifi(x, z) +

 N∑
l=N−n
l 6=i

λl(z)fi(x, z
l)

 , αi − f ′i(x, z)

 = 0. (4.9)

Here, we define the operator

Az,if := −
(
r + λ̃(z)

)
f + aif

′ +
1

2
b2
i f
′′,

where λ̃(z) :=
∑N

l=N−n λl(z).

Lemma 4.1. Suppose that statement (Sn) is true, then the auxiliary variational inequality (4.9)
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with the boundary condition f(0, z) = 0 admits a C2 solution fi(x, z), N − n ≤ i ≤ N , where

z = 01,...,N−n−1, and

fi(x, z) =


fi,1(x, z) + Ci(z)fi,2(x, z), 0 ≤ x ≤ mi(z),

fi,1(mi(z), z) + Ci(z)fi,2(mi(z), z) + αi(x−mi(z)), x > mi(z).

(4.10)

Moreover, for x ≥ 0 and N − n ≤ i ≤ N , it holds that


Az,ifi(x, z) +

 N∑
l=N−n
l 6=i

λl(z)fi(x, z
l)

 = 0, x ∈ [0,mi(z)],

αi − f ′i(x, z) = 0, x ∈ [mi(z),+∞),

(4.11)

as well as that fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0, and limx→+∞ fi(x, z) = +∞.

Proof. Note that for any N − n ≤ l ≤ N , zl = 01,...,N−n−1,l. Our induction assumption (Sn) gives

the boundary condition
∑

l 6=i λl(z)fi(0, z
l) = 0 as well as the results

∑
l 6=i

λl(z)fi(x, z
l) ≥ 0,

(∑
l 6=i

λl(z)fi(x, z
l)

)′
> 0,

(∑
l 6=i

λl(z)fi(x, z
l)

)′′
≤ 0,

for N − n ≤ i ≤ N . Therefore, for N − n ≤ i ≤ N , we can conclude the existence of

C2 solution fi(x, z) by using the same argument in the proof of Proposition 3.4 and obtain the

existence of free boundary points mi(z) with z = 01,...,N−n−1 such that (4.11) holds. Moreover,

we have fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0, x ≥ 0. In view of (4.10), we also have

limx→+∞ fi(x, z) = +∞. �

Lemma 4.2. Suppose that statement (Sn) is true, then the variational inequality (4.8) admits a C2

solution, which is in the separation form of

f(x, z) =
N∑

i=N−n

fi(xi, z), (4.12)
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where each fi(x, z) defined in (4.10) is the solution to the auxiliary variational inequality (4.9).

In particular, for x ≥ 0, fi(x, z) satisfies (4.11), fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0, and

limx→+∞ fi(x, z) = +∞. Therefore statement (Sn+1) is also true.

Proof. It suffices to investigate the C2 solution of the variational inequality (4.8). Let f be the

function defined in (4.12). It is then obvious that f is C2. In view of (4.9), we have

Lzf(x, z) +
N∑

i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
=

N∑
i=N−n

Az,ifi(xi, z) +
N∑

i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)

=
N∑

i=N−n

(
Az,ifi(xi, z) +

(∑
l 6=i

λl(z)fi(xi, z
l)

))

≤ 0.

Furthermore, αi − ∂if(x, z) = αi − f ′i(xi, z) ≤ 0, i = N − n, . . . , N . It follows that

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
, αi − ∂if(x, z)

}
≤ 0. (4.13)

Now we claim that

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
, αi − ∂if(x, z)

}
= 0.

Fix xi ≥ 0,N−n ≤ i ≤ N and z = 01,...,N−n−1. If Lzf(x, z)+
∑N

i=N−n

(∑
l 6=i λl(z)fi(xi, z

l)
)

=

0, then the equality trivially holds. If Lzf(x, z) +
∑N

i=N−n

(∑
l 6=i λl(z)fi(xi, z

l)
)
< 0 , it follows

that Az,ifi(xi, z) +
(∑

l 6=i λl(z)fi(xi, z
l)
)
< 0, for some i. As fi is chosen to solve (4.9), it holds

that αi− ∂if(x, z) = αi− f ′i(xi, z) = 0. Therefore, our claim holds that f(x, z) is the C2 solution

to the variational inequality (4.8). Moreover, for x ≥ 0, we have by Lemma 4.1 that fi(x, z)

defined in (4.10) satisfies fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0 and limx→+∞ fi(x, z) = +∞.

Meanwhile, (4.11) in Lemma 4.1 yields the desired property in (4.7).

Given the results above, we conclude that, for z = 01,...,N−n−1, HJBVI (4.5) has a solution
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f(x, z), which admits the form in (4.6) and (4.7). This completes the proof of the statement

(Sn+1). �

By mathematical induction, we can present the following main result.

Theorem 4.3. Statement (SN ) is true. In particular, for 0 ≤ k ≤ N and z = 01,...,k, the recursive

system of HJBVI (4.5) admits a C2 solution in the separation form of

f(x, z) =
N∑

i=k+1

fi(xi, z), (4.14)

where each fi(x, z) is defined in (4.10), with n = N−1, i.e., fi(x, z) is the solution to the auxiliary

variational inequality (4.9) and satisfies (4.11), k + 1 ≤ i ≤ N .

Remark 4.4. It can be observed from (4.9) that each function fi(xi, z) in the separation form (4.12)

is actually independent of the correlation coefficient matrix Σ. Therefore, the solution f(x, z) to

the recursive system of HJBVI (4.5), for 0 ≤ k ≤ N , is also independent of the correlation

coefficient matrix Σ = (ρij)N×N .

5 Proof of Verification Theorem

In this section, we construct the optimal dividend strategy using the C2 solution of the recursive

system HJBVI (4.5) and complete the proof of the main theorem.

Proof of Theorem 2.1.

Thanks to Theorem 4.3, we can readily conclude that variational inequality (2.10) for the case

k = 0 (i.e. z = 0 and N subsidiaries are alive) also admits the C2 solution in the separation form

(4.14). Moreover, as statement (SN ) holds, the existence of mapping mji(z) : {0, 1}N 7→ (0,+∞)

is also guaranteed, for any z = 0j1,...,jk , 1 ≤ i ≤ k as well as z = 0.

Let τ be an arbitrary stopping time, and D(t) = (D1(t), . . . , DN(t)) be an arbitrary admissible
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strategy. By using Itô’s formula, we first get

N∑
i=1

αi

∫ τ

0

e−rsdDi(s) + e−rτf (X(τ),Z(τ))− f(x, z)

=

∫ τ

0

e−rs

[
LZ(s)f(X(s),Z(s)) +

N∑
l=k+1

λl(Z(s))f(X(l)(s),Zl(s))

]
ds

+
N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X(s),Z(s))] dDc
i (s)

+
∑

0<s≤τ,∆Z(s)6=0

e−rs
N∑
j=1

∆Zj(s)

[
f
(
X(j)(s−)−∆Dj(s),Zj(s−)

)
− f

(
X(j)(s−),Zj(s−)

)
+

N∑
i=1
i 6=j

αi∆Di(s)

]
+

∑
0<s≤τ,∆Z(s)=0

e−rs

[
f (X(s)−∆D(s),Z(s−))− f (X(s−),Z(s−))

+
N∑
i=1

αi∆Di(s)

]
+Mτ

=:I + II + III + IV +Mτ . (5.1)

As f solves (4.5), we have that I, II, IV ≤ 0. Moreover, by noting that f(x, zj) also solves (4.5),

we deduce that III ≤ 0. Note thatMt∧τ is a local martingale. There exists a sequence of stopping

times {Tn}∞n=1 satisfying Tn ↑ ∞, and

E

[
N∑
i=1

αi

∫ τ

0

e−rsdDi(s)

]

≤ lim
n→∞

E

[
N∑
i=1

αi

∫ τ∧Tn

0

e−rsdDi(s) + e−r(τ∧Tn)f(X(τ ∧ Tn),Z(τ ∧ Tn))

]

≤f(x, z) + lim
n→∞

E[Mτ∧Tn ] = f(x, z). (5.2)

In view that D(t) is arbitrary, we obtain by sending τ in (5.2) to +∞ that

sup
D
J(x, z,D) ≤ f(x, z). (5.3)
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Let us continue to prove that “=” holds in (5.3). Consider the càdlàg strategy

D∗i (t) := max

{
0, sup

0≤s≤t

{
X̃i(s)−mi (Z(s))

}}
,

X∗i (t) = X̃i(t)−D∗i (t).

We set Ai(t) := 1{D∗i (t)=X̃i(t)−mi(Z(t))}. It follows that

X∗i (t) = X̃i(t)−D∗i (t) ≤ mi (Z(t)) , (5.4)

dD∗i (t) = Ai(t)dD
∗
i (t). (5.5)

On
{
D∗i (t) = X̃i(t)−mi (Z(t))

}
, we have that

X∗i (t) = X̃i(t)−D∗i (t) = mi (Z(t)) ,

and vise versa. It then follows that

dD∗i (t) = Ai(t)dD
∗
i (t) = 1{X∗i (t)=mi(Z(t))}dD

∗
i (t).

Furthermore, we have on {X∗i (t) = mi (Z(t))} that

X∗i (t−) = X∗i (t) + ∆D∗i (t) ≥ X∗i (t) = mi (Z(t)) . (5.6)

In view of (5.4), (4.7), we have that

LZ(s)f(X∗(s),Z(s)) +
N∑

l=k+1

λl(Z(s))f((X∗)(l)(s),Zl(s)) = 0. (5.7)

Note that for xi ≥ mi (z), ∂if(x, z) = f ′i(xi, z) = αi. Hence, it holds that ∂if(X∗(s),Z(s)) = αi
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on {X∗i (t) = mi (Z(t))}, which then entails that

N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X∗(s),Z(s))] (D∗i )
c(s) (5.8)

=
N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X∗(s),Z(s))]1{X∗i (t)=mi(Z(t))}d(D∗i )
c(s) = 0. (5.9)

By virtue of (5.6), we can see that whenever ∆D∗i (s) 6= 0, it holds that X∗i (s−) > X∗i (s−) −

∆D∗i (s) = X∗i (s) = mi (Z(s)). By using the fact that ∂if(x, z) = f ′i(xi, z) = αi, for xi ≥ mi (z),

again, we obtain that

N∑
j=1

∆Zj(s)

[
f
(

(X∗)(j)(s−)−∆(D∗)(j)(s),Zj(s−)
)
− f

(
(X∗)(j)(s−),Zj(s−)

)
+

N∑
i=1
i 6=j

αi∆D
∗
i (s)

]

=

N∑
j=1

∆Zj(s)

[
f
(

(X∗)(j)(s−)−∆(D∗)(j)(s),Z(s)
)
− f

(
(X∗)(j)(s−),Z(s)

)
+

N∑
i=1
i 6=j

αi∆D
∗
i (s)

]

=0. (5.10)

Similarly, we obtain the equality that

∑
0<s≤τ,∆Z(s)=0

e−rs

[
f (X∗(s−)−∆D∗(s),Z(s−))− f (X∗(s−),Z(s−)) +

N∑
i=1

αi∆D
∗
i (s)

]

=
∑

0<s≤τ,∆Z(s)=0

e−rs

[
f (X∗(s−)−∆D∗(s),Z(s))− f (X∗(s−),Z(s)) +

N∑
i=1

αi∆D
∗
i (s)

]

= 0.

(5.11)

Putting all the pieces together, we conclude from (5.1) and (5.7)-(5.11) that

N∑
i=1

αi

∫ τ

0

e−rsdD∗i (s) + e−rτf (X∗(τ),Z(τ))− f(x, z) =Mτ , τ ≥ 0, (5.12)

whereMτ is a local martingale. Hence, there exists a sequence of stopping times {Tn}∞n=1 satis-
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fying Tn ↑ ∞, and

E

[
N∑
i=1

αi

∫ τ∧Tn

0

e−rsdD∗i (s) + e−r(τ∧Tn)f (X∗(τ ∧ Tn),Z(τ ∧ Tn))

]
− f(x, z)

=E [Mτ∧Tn ] = 0. (5.13)

In view of (5.4), we have 0 ≤ X∗i (τ) ≤ mi (Z(τ)), τ ≥ 0, which entails that X∗i (τ) is a bounded

process. It follows that f (X∗(τ),Z(τ)) is also bounded. Note that

lim
n→∞

e−r(τ∧Tn)f (X∗(τ ∧ Tn),Z(τ ∧ Tn)) = e−rτf (X∗(τ),Z(τ)) a.s..

By passing the limit in (5.13), we arrive at

E

[
N∑
i=1

αi

∫ τ

0

e−rsdD∗i (s) + e−rτf (X∗(τ),Z(τ))

]
− f(x, z) = 0. (5.14)

Note that limτ→+∞ e
−rτf (X∗(τ),Z(τ)) = 0 a.s.. Sending τ to +∞ in (5.14) yields that

E

[
N∑
i=1

αi

∫ τi

0

e−rsdD∗i (s)

]
− f(x, z) = 0, (5.15)

which completes the proof. �

Remark 5.1. Similar to the derivation of (5.12), for i = 1, . . . , N , if we extend the definition of fi

in such a way that fi(xi, z) = 0 whenever the i-th component of z is 1, then, following the proof

of Theorem 2.1 and using (4.9), we can show

αi

∫ τ

0

e−rsdD∗i (s) + e−rτfi (X
∗
i (τ),Z(τ))− fi(xi, z) = M̃(i)

τ , i = 1, . . . , N,

where M̃(i)
τ are local martingales, for xi ∈ [0,+∞), i = 1, . . . , N, and z = 0. In the same fashion
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to obtain (5.15), one can also get

E
[
αi

∫ τi

0

e−rsdD∗i (s)

]
− fi(xi, z) = 0, i = 1, . . . , N.

This equality implies a natural linear separation form of f(x, z) in (4.12) because we can see that

f(x, z) = E

(
N∑
i=1

αi

∫ τi

0

e−rtdD∗i (t)

)
=

N∑
i=1

E
[
αi

∫ τi

0

e−rtdD∗i (t)

]
,

and each fi(xi, z) stands for the expected value that fi(xi, z) = E
[
αi
∫ τi

0
e−rtdD∗i (t)

]
given the

optimal dividend policy D∗i for the subsidiary i. However, we also point out that D∗i is the i-th

component of the optimal control D∗ which solves the group dividend problem. One can not

simply interpret that fi(xi, z) is the value function or D∗i is the optimal control when we purely

solve a dividend optimization problem for the single subsidiary i without taking account all other

subsidiaries. The vector process D∗ is the solution that is optimal for a whole group and it has a

coupled nature because the variational inequality (4.9) or the solution form (4.10) for each fi(xi, z)

depends on the default intensities of all surviving subsidiaries and the value functions given that

one more subsidiary has defaulted.

6 Conclusions

We formulate and investigate an optimal dividend problem for a multi-line insurance group. Each

subsidiary within the group runs a product line and all subsidiaries are exposed to some external

contagious default risk. By using the backward recursive scheme and the smooth-fit principle,

the associated recursive system of HJBVIs is studied and the value function of the expected total

dividend is proved to be its classical solution that has a separation form. We verify that the optimal

dividend fits the type of barrier control and the barrier for each surviving subsidiary is dynamically

modulated by the default state.

Some future research can be conducted along different directions. Firstly, one can consider
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the more general model of X̂i with jumps such as the classical Cramér-Lundberg model or other

jump-diffusion models. Secondly, we note that the real life default events from credit assets can

hurt the surplus management but may not lead to domino bankruptcies of subsidiaries due to strict

regulations of the whole insurance sector. It is more realistic to consider the problem when Zi(t)

can take values in [0, 1] so that the default event only leads to a large size downward jump of

the surplus process and certain recovery rate can be incorporated. Moreover, the default intensity

λi (Z(t), Xi(t)) of Zi(t) may also depend on the surplus level Xi(t) of the i-th subsidiary to depict

the situation that a larger surplus level guarantees a smaller default probability. The inclusion of

these factors will complicate the analysis of HJBVIs significantly because the backward induction

can not be applied in a simple way and it is an open problem whether the optimal dividend of

each subsidiary is still of the barrier type. It will be interesting to study these model extensions

by applying some distinctive PDE arguments. Another appealing future work is to accommodate

the collaborating bail-out dividend (see [1], [25] and [24]) in the present setting with contagious

default risk so that each subsidiary can perform capital injection to other subsidiaries within the

group whenever their financial ruins or credit default events happen.

A Appendix: Derivation of (3.3)

For the default process starting from Z(0) = z = (0, 0), we present here the argument to derive

the associated HJBVI using Itô’s lemma. For a given function ψ(·, z) ∈ C2(R2), let us rewrite

α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s) + e−rτψ (X(τ),Z(τ))− ψ(x, z)

=

∫ τ

0

e−rsL̃(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s) +

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)

+ α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s)

+
∑

0<s≤τ

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))] +Mτ

=

∫ τ

0

e−rsL̃(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s) +

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)
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+ α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s)

+
∑

0<s≤τ,∆Z(s)6=0

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]

+
∑

0<s≤τ,∆Z(s)=0

e−rs [ψ (X(s) + ∆D(s),Z(s−))− ψ (X(s−),Z(s−))] +Mτ

=

∫ τ

0

e−rsL(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s) +

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)

+
∑

0<s≤τ,∆Z(s)6=0

e−rs∆Z1(s) [ψ (0, X2(s−)−∆D2(s), (1, 0))− ψ (X(s−), (0, 0)) + α2∆D2(s)]

+
∑

0<s≤τ,∆Z(s)6=0

e−rs∆Z2(s) [ψ (X1(s−)−∆D1(s), 0, (0, 1))− ψ (X(s−), (0, 0)) + α1∆D1(s)]

+
∑

0<s≤τ,∆Z(s)=0

e−rs
[
ψ (X(s)−∆D(s),Z(s−))− ψ (X(s−),Z(s−))

+ α1∆D1(s) + α2∆D2(s)
]

+Mτ , (A.1)

whereMτ is a local martingale.

Let us turn to the jump terms. According to assumptions that no simultaneous jumps can occur

in the sense of (2.3) and (2.7), it follows that

∆Z1(s)∆D1(s) = ∆Z2(s)∆D2(s) = ∆Z1(s)∆Z2(s) = 0.

On {∆Z(s) 6= 0}, let us consider Z(s−) = (0, 0). We have

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]

=e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (X(s−), (0, 0))]

+ e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X(s−), (0, 0))] ,

as well as

e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (X(s−), (0, 0))]
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=e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (0, X2(s−), (1, 0))]

+ e−rs∆Z1(s) [ψ ((0, X2(s−)), (1, 0))− ψ (X(s−), (0, 0))] .

Similarly, one can get

e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X(s−), (0, 0))]

=e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X1(s−), 0, (0, 1))]

+ e−rs∆Z2(s) [ψ ((X1(s−), 0), (0, 1))− ψ (X(s−), (0, 0))] .

On {∆Z(s) = 0}, we have

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]

=e−rs [ψ (X(s−)−∆D(s),Z(s−))− ψ (X(s−),Z(s−))] ,

and also

αi

∫ τ

0

e−rsdDi(s) =
∑

0<s≤τ,∆Z2(s)6=0

αie
−rs∆Di(s) +

∑
0<s≤τ,∆Z2(s)=0

αie
−rs∆Di(s).

Thanks to the martingale property in (2.2) and the fact that, for any h ∈ C1(R) and y ∈ R,

h(y −∆Di(s))− h(y) = −
∫ ∆Di(s)

0

h′(y − u)du,

we obtain the desired HJBVI (3.3).
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