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ABSTRACT

This study compares several advanced machine learning models to obtain the most accurate method
for predicting the aeration efficiency (Ezp) through the Parshall flume. The required dataset is
obtained from the laboratory tests using different flumes fabricated in National Institute Technology
Kurukshetra, India. Besides, the potential of K Nearest Neighbor (KNN), Random Forest Regression
(RFR), and Decision Tree Regression (DTR) models are evaluated to predict the aeration efficiency.
In this way, several input combinations (e.g. M1-M15) are provided using the laboratory parameters
(e.g. W/L, S/L, Fr, and Re). Different predictive models are obtained based on those input combi-
nations and machine learning models proposed in the present study. The predictive models are
assessed based on several performance metrics and visual indicators. Results show that the KNN-M11
model (RMSEesting = 0.002, R2 = 0.929), which includes W/L, S/L, and Fr as predictive variables

testing
outperforms the other predictive models. Furthermore, an enhancement is observed in KNN model

estimation accuracy compared to the previously developed empirical models. In general, the pre-
dictive model dominated in the present study provides adequate performance in predicting the
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aeration efficiency in the Parshall flume.

1. Introduction

Parshall flume is one of the most commonly used fixed
hydraulic structures to measure the surface water and
irrigation flows. For a long time, numerous investigators
focused on one or more flume components to simplify,
improve, and refine its design and operation. Result of
those intense experimental researches, the Parshall flume
was eventually developed. A brief review of Parshall
flume development is offered to benefit those unfamiliar
with its history. Cone (1917) initiated a flume made up
of a converging section, a diverging section, and a short
throat section in-between them. His ‘venturi flume” had
the ground part as flat throughout the length. Parshall
and Rohwer (1921) and Parshall (1928) had designed
the present flume and expanded its applications in agri-
culture. His designed Parshall flume has an upstream
converging section, end with downstream diverging exit
section & in-between flat throat that has defined width
with a downward sloped floor & upward slope section.
Various shape weirs & Venturi flumes were used to mea-
sure flow at that time, but these devices had various

limitations and disadvantages. Six years after his work
began on the development of ‘modified venturi flume’,
Dr. Parshall filed for the patent of his construction of a
new Parshall flume’. Then these flumes were installed in
various American irrigation facilities (Heiner & Barfuss,
2011).

A Parshall flume includes i) converging, ii) throat, and
iii) diverging portions. The converging portion made up
of an upstream narrowing approach with a level floor fol-
lowed by a throat portion with downward-sloping, then
flow continues to the diverging downstream portion with
upward-sloping as shown in Figure 1 (Mustonen, 1986;
Parshall, 1950).

The accelerated velocity causes the air injection pro-
cess in the Parshall flume (Reclamation et al., 1997).
The flow velocity accelerates through contracting side-
walls in the converging portion; then, the flow condition
changes from subcritical to supercritical in the throat
portion due to contraction and drop. Afterward, aera-
tion is performed in the diverging portion by changes the
supercritical flow to subcritical.
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Figure 1. Definition sketch of Parshal flume.

The dissolved oxygen (DO) concentration is an influ-
ential factor in biological and chemical activities in
aquatic ecosystems, such as the self-purification of the
rivers (Asadollah et al., 2020; Sharafati et al., 2020a). A
minimum level of DO is necessary for the survival of the
aquatic life, and thus several problems would be raised for
the aquatic life when the DO concentration drops down
to 5mg/l. Aeration is a common approach to inject air
into the water body to increase the DO level. Besides, it
is an essential treatment process in wastewater treatment
plants.

(Wilhelms et al., 1993), (Gulliver et al., 1998), (Ervine,
1998) and (Chanson, 1995) examined the aeration pro-
cess in hydraulic structures. (Kaya & Emiroglu, 2010)
studied oxygen transfer at baftled chutes. Although weir
is a common hydraulic structure to increase DO lev-
els into the treatment channels, it is inappropriate in
channels with mild slopes. In contrast, flume provides
an efficient aeration system in treatment plants (Dursun,
2016).

The oxygen disperses in the flowing water by turbu-
lent mixing (hydraulic jump) and molecular diffusion
(bubble formation). There are two laminar layers on each
side of the water—air interface to control the oxygen dis-
persion. The oxygen transfer rate is directly related to
the concentration gradient and would be computed as
follows:

dt A

gy i loNe
LV( S )

T (1)

where C and Cs are the absorbed and saturated concen-
tration of oxygen, respectively. K[, is the coefficient of the

Elevation

liquid layer, A and V are the area, and the volume of
transferred oxygen and t signifies time.

(Gulliver et al., 1998) developed a time-independent
formula to compute the oxygen aeration efficiency, E, as
follows:

Cp—Cy Cs —Cp ) 1

E= 2= _q1_x =D _
Cs—Cu Cs —Cy

r @

where, Cy and Cpare the oxygen concentration in
upstream and downstream zones, respectively, R repre-
sents the oxygen aeration deficient ratio.

The aeration efficiency is unity in the full transfer of
oxygen to water, while the zero value indicates that no
oxygen can be transferred. To preserve the homogeneity
in measured experiments, the results obtained in dif-
ferent temperatures are normalized at 20°C using the
following equation (Gulliver et al., 1998):

1—Eyp=(1-BY (3)

where, Ey is the oxygen transfer efficiency at 20°C and
f, which is the aeration exponent, would be computed as
follows:

f=1+21%10"3(T —20) 4+ 8.25% 107>(T — 20)*
(4)

Several conventional empirical formulas were developed
by previous authors (Markofsky & Kobus, 1978; Preul &
Holler, 1969; Wormleaton & Tsang, 2000). The details of
the models are presented in Table 1.

Several investigations have been conducted to assess
the aeration efficiency of hydraulic structures. (Dur-
sun, 2016) and (Tiwari & Sihag, 2020) assessed the
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Table 1. Conventional formulas proposed in the previous studies
to estimate the aeration efficiency.

Formula
1 1
1+ 666Fr—333

Scholar

Preul and Holler (1969) Ey =

1 1.115
Avery and Novak (1978
y (1978) 14 0.24 % 1074Fr178R053 ]

Exy=1+ |:
Markofsky and Kobus

1 1.115
o= oo
(1978) 1+ 0.1Fr"

Wormleaton and Tsang Eyo =1 —[1 4 0.385 % 107 6Fr2297R0.684)-1

(2000)

Note; Fr: Froude number, Re: Reynolds number.

aeration efficiency using the experiments on Parshall
flumes. (Emiroglu & Baylar, 2003) performed aeration on
a steeped channel either with or without end sills. (Chan-
son, 2002) calibrated the gas-liquid interface through a
stepped channel.

The application of soft computing models has been
drastically increased in different engineering fields (Sihag
and Vajesnayee, 2018; Kumar et al., 2018, 2020; Sihag
et al., 2017, 2019; Tiwari et al,, 2019). Very few stud-
ies have been conducted to assess the aeration mech-
anism in flumes (i.e. Parshall and modified venture
flumes). (Dursun, 2016) provided an experimental labo-
ratory dataset to assess the aeration of the small. (Tiwari
et al., 2019) examined the potential of soft computing
models, including adaptive neuro-fuzzy inference sys-
tem (ANFIS), fuzzy logic (FL), and artificial neural net-
work (ANN), to simulate the transfer efficiency of oxygen
through the Parshall flumes.

Machine learning models, which are the newest subset
of soft computing, are divided into various subcategories
from such supervised, unsupervised, and reinforced
learning methods can be highlighted. Supervised learn-
ing proved to be more applicable to machine learning,
consisting of several algorithms employed on hydraulic
problems. As a widely employed supervised method, the
Support Vector Machines were used in various predic-
tion tasks related to a diverse range of problems such
as optical lenses (Petkovi¢ et al., 2014b), robotics (Jovi¢
etal., 2016) as well as the hydraulic jump oxygen transfer
(Tiwari, 2019). The Fuzzy-based algorithms also proved
to be a highly efficient forecasting technique which uti-
lized in various scientific problems like underwater laser
cutting parameter selection (Nikoli¢ et al., 2016), man-
agement of precipitation concentration (Petkovi¢ et al.,
2017), wind turbines (Petkovi¢ et al., 2014a) and many
more (Mohammed et al., 2020; Sharafati et al., 2020b,
2021).

While these methods are considered the machine
learning most commonly used algorithms, newer models

such as tree-based and extreme learning models have
also represented high prediction accuracy. For example,
MS5P, as a basic tree-based model, has been utilized in the
assessment of Parshall flumes aeration efficiency (Ranjan
& Tiwari, 2019; Sangeeta & Tiwari, 2019) and proved to
be highly efficient against alternative Al algorithms. As
another novel algorithm, Extreme Machine Learning also
proved to be a useful prediction tool for weirs discharge
coefficient problems (Gharib et al., 2020; Yarmohammadi
etal., 2019).

Overall, the measurement of Parshall flow aeration
efficiency is very costly and time-consuming, which
requires laboratory experiments. Due to this matter, the
primary motivation of the current study is to evaluate the
E20 using novel machine learning algorithms by employ-
ing the least experimental parameters and saves time,
money, and effort. So, this study is helpful for hydraulic
researchers and scientists.

This study evaluates the accuracy of three supervised
machine learning approaches, in the particular Deci-
sion tree and Random forest as advanced tree-based
algorithms and K Nearest Neighbor as an instant based
algorithm to predict the oxygen aeration efficiency (E20)
in the small Parshall flumes with different forms. To
the best of the authors” knowledge, the proposed algo-
rithms have not been developed yet to predict the oxygen
aeration efficiency of the Parshall flumes. Furthermore,
the results obtained from the best predictive model are
compared with the empirical models reported in the
literature.

2. Materials and methods
2.1. K-Nearest Neighbor

As a pattern recognition regression technique, K Near-
est Neighbors (KNN) usually implemented two general
tasks, including density function evaluation and subse-
quently classification of test dataset due to their distri-
bution and pattern. The initial phase of the algorithm
consists of finding an approach to measure the dis-
tance related to training and testing data. The Euclidean
method is the most common technique for distance
determination between the mentioned two sets of data:

de,p)= | (xi—y)’ (5)
i=1

Where o and § denote the training data [x1, ..., x,] and
their corresponding [y1, . . ., y»] parameters, respectively.
The dataset samples were sorted from minimum to maxi-
mum based on the assessed Euclidean distance (d), which
symbolized the most and least similarity, respectively.
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Table 2. Values of parameter used in KNN, RFR and DTR algorithms.

KNN RFR DTR
Parameters Value Parameters Value Parameters Value
N_neighbors 5 N_estimators 10 Splitter Random
Weights uniform Max_depth 100 Max depth 5
Algorithm brute Min samples split 20 Min samples split 30
Leaf size 30 Random state 0 Random state 3

In the next stage, the K, an essential parameter in eval-
uating a specific dataset features, must be determined.
Measuring the number of neighbors (K) is crucial, and
the effectiveness of this regression method depends on
choosing the most similar samples from the original
dataset. A small K results in single-point sensitivity, while
large-scale K outcomes overlap samples from other clus-
ters into the desired neighborhood. It is evident from
previous literature that the optimal value of K assessed by
employing the cross-validation technique (Shabani et al,,
2020; Wu et al., 2008).

2.2. Decision tree

A decision tree, a supervised algorithm in machine learn-
ing, can undertake both regression and classification
tasks. The Decision Tree Regression (DTR) technique
extracts major features from a database and structure
them in a tree-shaped architecture, where internal and
terminal nodes, respectively, exhibit splits and leaves. By
gathering individual trees, which have their specific rules,
a collection of rules is starting to form that would be
utilized in the regression stage (Witten & Frank, 2002).

Initially, tree bough is established using the original
training data. Then the DTR algorithm creates branches
from the main body of the tree and subsequently new
branches from the old one by separating the data using a
binary split procedure. The advance of this process stops
when a branch becomes too small and impossible to seg-
regate, which in that case, the related node constructs the
leave of a tree or the terminal node (Kaminski et al., 2018;
Quinlan, 1987).

What makes the DTR an applicable machine learning
method is the easy interpretation of rules originated from
the trees, which usually exhibit a logical pattern instead
of mathematical relations. Though, the inability to han-
dle nonlinear and noisy data and time series problems are
considered major DTR drawbacks (Mitchell, 1997; Tso &
Yau, 2007).

2.3. Random forest

Random forest is an ensemble algorithm that originated
from tree practice, widely used in machine learning and
artificial intelligence (Liaw & Wiener, 2002). It is mostly

used in a classification problem, such as regression (Goel
et al., 2017). The random forest regression (RFR) func-
tion is to grow several decisions or predicting trees dur-
ing the learning process. All of these trees are trained
individually. Finally, the result is obtained by identifying
the specified category based on classified states and/or
the averaged prediction of individual trees (Barandiaran,
1998; Ho, 1995).

The random forest learning algorithm employs
generic bootstrap and bagging techniques to train the
tree. Bootstrap enhances the model performance by
reducing the variance and without introducing any
changes in the bias.

Breiman (2001) considered RF as a set of n stochas-
tic decision trees {DT(x, ®;,1),i = 1,...,n}, where DT
(x, ©;,]) indicates the i-th predicting stochastic tree or
DT (x), which is grown by {®;} as a uniform independent
stochastic distribution vector. This vector encrypts the
stochastic arrangement needed for constructing the tree,
and [ is the growth learning data. {®;} is selected prior to
the tree growth and is independence from learning data.
All the predicting trees are integrated and averaged so
that an estimator forest of DT (x) is constructed.

1 n

DT(xO1,..., Opl) = ;DT(X.G,.I) (6)
The algorithms evaluated in the current study are devel-
oped utilizing the Scikit learn library on Python pro-
gramming language over the Anaconda platform. While
there are numerous effective parameters in the KNN,
DTR, and RFR algorithms, in the current study, only the
parameters listed in Table 2 proved to be highly influen-
tial on final results, and the other variables have been set
to default.

2.4. Description of laboratory experiments

The oxygen transfer efficiency of small Parshal flumes
was obtained experimentally in hydraulics at the National
Institute Technology in Kurukshetra, India (Sangeeta,
2018). Several flumes were fabricated at the workshop
of the mechanical department of the same institute. The
dimensional details of the flumes are presented in Table 3.

The models are firmly fixed in tilting rectangular rigid
steel channel of 0.25 x 0.30 x 4.00m as width, height,
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Table 3. Description of test-models dimension.

Experimental models W (cm) L (cm) S (cm)
EM-1 2.54 7.62 1.91
EM-2 2.54 7.62 3.91
EM-3 2.54 7.62 591
EM-4 2.54 10 1.91
EM-5 2.54 10 391
EM-6 2.54 10 591
EM-7 5.08 11.45 222
EM-8 5.08 11.45 422
EM-9 5.08 11.45 6.22
EM-10 5.08 15 222
EM-11 5.08 15 422
EM-12 5.08 15 6.22

Note; W: Throat width, L: Throat length, S: Sill height.

and length dimensions, respectively. The tilting channel
has a transparent acrylic sheet in the middle for 1.8 m
in length. To supply the flow required for experiments,
a centrifugal pump is utilized with a discharge capac-
ity of 6mT3 to provide the water recirculation. A headbox
is used at the begging of the flume, while the upstream
entry of the flume is equipped with a metal screen to
damp the water fluctuation. The water discharge is reg-
ulated and measured using a regulating valve and orifice-
meter, respectively. The measurement procedure of water
depth is performed by a digital gauge with an accuracy of
0.01 mm. Figure 2 illustrates the schematic structure of
the test setup.

To find out the oxygen aeration performance of the
experimental models, the storage cum aeration tank is
filled with a fixed volume of water through each experi-
ment. The sodium sulphite (Na2SO3) and cobalt chloride
(CoCl2) are thoroughly mixed in the aeration tank to

reduce DO level in the range of 1-2 mg/1. Several samples
of water are collected to measure the initial DO con-
centration. Then, the other samples are obtained after
1-minute of running the flume. It is essential to preserve
the level of DO less saturation condition. The Azide mod-
ification method is used to compute the level of DO.
Besides, a mercury thermometer is employed to measure
the temperature of water in the tank. Then, the oxy-
gen aeration efficiency, E20, is computed using Eqs.2-4.
A similar procedure is conducted for each experimen-
tal model. Ultimately, 237 test runs are obtained while
the doubtful tests are repeated twice to achieve reliable
results.

2.5. Description of the proposed predictive models

The combinations of non-dimensional predictors (e.g.
W/L,S/L,Fr, and Re) are defined to obtain the best
predictive model for simulating the aeration efficiency
in the Parshall flume. In this way, fifteen combinations
(M1 — M15)are defined to assess supervised machine
learning models (e.g. DTR, KNN and RFR). The details
of input combinations defined in the present study are
illustrated in Table 4.

2.6. Description of dataset

Several non-dimensional physical and hydraulic parame-
ters, including W/L, S/L, Fr, andRe are measured to pro-
vide a dataset for simulating the aeration efficiency in
Parshal flume (E20). The collected experimental dataset

~ 4.0 m R

A J 25m " i

: p 0.6 m R : :

' e :
gl = A =
2 22 STORAGE
Bl g5 TANK

v
MODIFIED SMALL
PARSHALL FLUME
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GAUGE

CENTRIFUGAL PUMP

‘----9

v

ORIFICE METER

Figure 2. A schematic view of test set up.
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Table 4. Description of different proposed input variable combi-
nations to predict the aeration efficiency.

Predictive variables

Input combinations models W/L S/L Fr Re

M1 v
M2 e

=
wv
SENEN
\

=

@
AEENENEN
AN
SN N N NN
N N RN

is split into the training and testing subsets to develop the
soft computing models—the training subset employed
for model preparation. In contrast, the testing dataset is
used for model validation. The dataset is divided into
163-74 observations for the training-testing stages. The
division is obtained by trial and error search to provide
the best performance. Table 5 demonstrates the ranges of
measured target and input variables over both training
and testing stages.

2.7. Description of performance metrics

To analyze the capability of various modeling meth-
ods to predict the Eyg, coefficient of determination (R?),
root mean square error (RMSE), Nash-Sutcliffe efficiency
(NSE), and mean absolute error (MAE) indices are calcu-
lated in both training and the testing stages as following
equations:

R2 _ n Z thsEpred - (Z Eobs) (Z Epred) (7)
(B — (X B
1 Bpred®) = (X Eprea)?

1
MAE = ;|Eobs - Epred| (8)

1
RMSE = | ~(}_ (Eobs — Eprea)” 9)
i=1
Z?:l (Eobs — Epred)z
=2
Z?:l (Eobs — Eobs)

Where, Egps and Epyeq are observed and predicted aer-
ation efficiency, respectively. # is the total number of
observations.

NSE=1-— (10)

3. Results and discussions:

Several predictive models with various input combina-
tions are developed to achieve the best predictive model
for predicting the aeration efficiency (E20) at Parshall
flumes. In this way, fifteen possible input combinations
are obtained based on the four input variables (Table 4).
The predictive models proposed in the present study,
including Decision Tree, K nearest neighbor, and Ran-
dom Forest Regression models, use those combinations
to predict the Ey¢ at Parshall flumes.

Tables 6-8, respectively, report the performance
indices obtained for different combinations of DTR,
KNN, and RFR models in both training and testing
stages. From Table 6, it is clear that the DRT- M15 model
(RMSEtest = 0.003 and NSE(¢ = 0.867) provides bet-
ter performance compared to other input combinations.

Table 5. Statistical characteristics of the datasets used in training and testing stages.

Statistical
characteristic Stage W/L S/L Fr Re E20
Minimum Training 0.254 0.148 0.109 3139.38 0.033
Testing 0.254 0.148 0.109 3139.38 0.033
Maximum Training 0.444 0.776 0.175 41573.13 0.093
Testing 0.444 0.776 0.175 41573.13 0.093
Mean Training 0.342 0.384 0.141 20065.633 0.061
Testing 0.344 0.397 0.142 19734.552 0.061
Median Training 0.333 0.369 0.117 20786.560 0.060
Testing 0.339 0.391 0.141 18836.290 0.059
Standard Deviation Training 0.068 0.183 0.028 10767.624 0.012
Testing 0.068 0.185 0.028 11549.004 0.013
Kurtosis Training —1.007 —0.589 —1.931 —0.893 —0.177
Testing —0.993 —0.550 —1.918 —1.043 —0.052
Skewness Training 0.293 0.563 0.145 0.188 0.421
Testing 0.269 0.528 0.122 0.291 0.394
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Table 6. Performance indices parameters for different input combination based DTR models.

Training stage

Testing stage

Input Combination MAE RMSE R2 NSE MAE RMSE R2 NSE

M1 0.004 0.006 0.769 0.769 0.005 0.006 0.768 0.767
M2 0.006 0.007 0.669 0.669 0.006 0.007 0.671 0.670
M3 0.008 0.009 0.454 0.454 0.008 0.009 0.460 0.458
M4 0.009 0.011 0.174 0.174 0.009 0.012 0.065 0.057
M5 0.005 0.006 0.744 0.744 0.005 0.006 0.749 0.749
Mé 0.004 0.005 0.848 0.848 0.004 0.005 0.836 0.834
M7 0.010 0.012 0.024 0.024 0.010 0.012 0.007 0.001
M8 0.007 0.008 0.534 0.534 0.007 0.009 0.528 0.527
M9 0.008 0.010 0.353 0.353 0.008 0.010 0.397 0.395
M10 0.008 0.009 0.466 0.466 0.008 0.010 0.389 0.388
M11 0.004 0.005 0.840 0.840 0.004 0.005 0.833 0.833
M12 0.006 0.008 0.560 0.560 0.005 0.007 0.657 0.650
M13 0.004 0.005 0.806 0.806 0.005 0.006 0.745 0.741
M14 0.005 0.006 0.725 0.725 0.005 0.006 0.732 0.732
M15 0.003 0.004 0.878 0.878 0.003 0.005 0.868 0.867

Table 7. Performance indices parameters for different input combination based KNN models.

Training Phase

Testing Phase

Input Combination MAE RMSE R2 NSE MAE RMSE R2 NSE

M1 0.004 0.006 0.750 0.741 0.005 0.006 0.740 0.735
M2 0.004 0.006 0.771 0.769 0.004 0.006 0.754 0.753
M3 0.008 0.010 0.398 0.380 0.008 0.011 0.300 0.284
M4 0.008 0.009 0.430 0.422 0.008 0.010 0.323 0.295
M5 0.004 0.006 0.793 0.789 0.004 0.006 0.787 0.783
Mé 0.003 0.004 0.869 0.869 0.004 0.005 0.818 0.818
M7 0.004 0.006 0.799 0.795 0.006 0.008 0.576 0.563
M8 0.002 0.003 0.932 0.931 0.003 0.004 0.916 0.915
M9 0.008 0.009 0.524 0.523 0.008 0.009 0.482 0.470
M10 0.008 0.009 0.418 0.410 0.008 0.010 0.323 0.294
M11 0.002 0.003 0.936 0.935 0.002 0.003 0.929 0.928
M12 0.007 0.008 0.570 0.566 0.008 0.009 0.492 0.482
M13 0.004 0.006 0.801 0.797 0.006 0.008 0.590 0.577
M14 0.008 0.009 0.523 0.523 0.008 0.009 0.481 0.470
M15 0.007 0.008 0.572 0.568 0.007 0.009 0.498 0.486

Table 8. Performance indices parameters for different input combination based RFR models.

Training Phase

Testing Phase

Input Combination MAE RMSE R2 NSE MAE RMSE R2 NSE

M1 0.004 0.006 0.768 0.768 0.005 0.006 0.770 0.768
M2 0.004 0.005 0.818 0.818 0.004 0.005 0.843 0.842
M3 0.008 0.009 0.461 0.461 0.008 0.010 0.409 0.409
M4 0.008 0.010 0.362 0.341 0.009 0.012 0.149 0.147
M5 0.004 0.005 0.820 0.820 0.004 0.005 0.839 0.839
Mé 0.003 0.005 0.866 0.866 0.004 0.005 0.822 0.821

M7 0.003 0.004 0.868 0.868 0.004 0.005 0.828 0.827
M8 0.004 0.005 0.849 0.844 0.004 0.005 0.844 0.840
M9 0.004 0.005 0.824 0.814 0.004 0.005 0.867 0.845
M10 0.008 0.009 0.463 0.463 0.008 0.010 0.381 0.378
M11 0.003 0.004 0.913 0.910 0.003 0.004 0.886 0.884
M12 0.003 0.004 0.886 0.886 0.003 0.005 0.870 0.870
M13 0.003 0.004 0.867 0.867 0.004 0.005 0.825 0.823
M14 0.004 0.005 0.842 0.835 0.004 0.005 0.842 0.833
M15 0.003 0.004 0.912 0.910 0.003 0.004 0.882 0.881

Besides, KNN-M11 (RMSE;est = 0.003 and NSEest =
0.938) offers the most accurate prediction among all
KNN models (Table 7). Furthermore, better prediction
performance is observed in RFR-M11 (RMSEst = 0.004
and NSEis = 0.884) compared with the other RFR-
based models (Table 8).

The result obtained from the comparison between the
best predictive models (e.g. DRT-M15, KNN-M11, and
RFR-M11) indicates that the KNN-M11 provides bet-
ter performance prediction than other machine learning
techniques. In contrast, the KNN-M11 model comprises
a simpler input combination including W/L, S/L, and Fr.
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Figure 3. Agreement plot among actual vs predicted values of
Exo with various soft computing techniques using (a) training
dataset (b) testing data set.

The superiority is notified as a significant reduction in
RMSE & MAE and considerable improvement in R?* &
NSE obtained by KNN rather than other techniques. Out-
comes of training and testing stages suggest that both
these stages have the same results, which means the
developed models are not data sensitive and have similar
behavior with different data samples.

To investigate the linear relation among observed and
predicted values of Ey at Parshall flumes, the agreement
plots of the predictive models are shown in Figure 3.
Although all the predictive models provide acceptable
performance in predicting the Ey¢ at Parshall flumes, the
KNN-M11 model has the highest value of the coeflicient
of determination (R?) value as 0.929 for the testing stage.
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Figure 4. Heat plot of the observed and the predicted values of
Eyp at Parshall flumes. (a) training dataset (b) testing dataset.

It is indicated that the values predicted by KNN-M11
models are lying significantly closer to the line of per-
fect agreement (R? = 1.00). This indicates that the KNN
learning method is more suitable than other models for
predicting E20 at Parshall flumes.

The graphical comparison among predictive models
in terms of standardized performance evaluation param-
eters is also shown in the heat-map plot. As shown in
Figure 4, the KNN-M11 model (dark red) offers the
best prediction performance compared to other mod-
els. In contrast, the lowest performance is found in the
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Figure 5. Violin diagram of the observed and the predicted values of E;q at Parshall flumes. (a) training dataset (b) testing dataset.

DTR-M15 model (Yellow) to predict the aeration effi-
ciency (Exp) at Parshall flumes.

To evaluate the consistency of the predicted Ejg
against the observed values, the 25%, 50%, 75% quantile
values of the experimental and predicted Ey¢ and their
corresponding Inter Quartile Range (IQR) are assessed
using a combination of Violin and Box plots. From
Figure 5, it is evident that in the training stage, KNN-
MI11 (IQR = 0.017) profoundly mimics the observed
data (IQR =0.017), in the testing stage, the KNN-
M11 (IQR = 0.016) and RFR-M11 (IQR = 0.011) mod-
els represent very close prediction to the experimental
values (IQR = 0.013), and the DTR-M15 (IQR = 0.007)
exhibits the least accurate prediction.

The relative error diagrams of DTR-M15, KNN-M11,
and RFR-M11 and their boxplots in the testing stage are
depicted in Figure 6. The figure indicates that the low-
est confidence limit of the relative error is observed in
KNN-M11 in the range of —8.67% to 12.12%. In contrast,
the RFR-M11 provides the biggest confidence limit in the
range of —17.16% to 18.32%.

As one of the most commonly utilized graphical eval-
uation approaches, the Taylor diagram is represented in
Figure 7. This diagram combines the statistical mea-
surement with the correlation coefficient and assigns a
colorful shape to predictive models. The performance of
models then assessed by considering their distance with
experimental values. The figure shows that the KNN-C11
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Figure 6. Relative error plot of the predicted values of E;q at Parshall flumes.

(orange dot) is the closest shape with the experimen-
tal (dark blue dot) and subsequently considered a more
accurate model. Meanwhile, with a slightly more dis-
tance, the DTR-C15 is ranked as least precise among
others.

Overall it can be concluded that, while all three
employed machine learning algorithms in the current
study provide the acceptable prediction performance, the
KNN using the M11 combination, which includes W/L,
S/L, and Fr input parameters, shows a slightly higher pre-
diction accuracy compare to Decision Tree and Random
forest models based on both statistical and graphical eval-
uations. It was evident that the KNN-M11 improved the
prediction accuracy by reducing the RMSE by nearly 40%
as well as enhancing the R? by 7% over the testing phase
compare to other alternatives.

From Tables 6-38, it is evident that the prediction per-
formance significantly decreases in M4 (R2 =

testing average —
0.179) and M3 (Rf,ying average = 0-389) combinations
which indicate the low correlation of Re and Fr input
parameters to the Epg values, respectively. However, the
most important input parameters find to be the W/L with

average Rfesﬁng of 0.76 compared to other inputs.

Table 9 compares the outcome of the current study
and the result obtained from calculating the E20 with
the previous experimental formula proposed by (Avery
& Novak, 1978; Markofsky & Kobus, 1978; Preul &
Holler, 1969; Wormleaton & Tsang, 2000). As presented
in Table 8, it is clear that the machine learning algorithm
proposed in the present study significantly outperforms
the empirical formulas in predicting E20.

4. Conclusions

Prediction of the aeration efficiency (Eyg) values at Par-
shall flumes is essential because it has a proper appli-
cation in irrigation canals, mine discharge, dam seep-
age, sewage treatment plants. In this study, experimental
data are used to investigate the performance of machine
learning approaches, namely K Nearest Neighbor (KNN),
Random Forest Regression (RFR), and Decision Tree
Regression (DTR). Laboratory parameters consist of
W/L, S/L, Fr, and Re are employed as inputs of predic-
tion models, and subsequently, by arranging these four
parameters, 15 input combinations are established, which
are noted as M1 ~ M15. A total of 237 experimental
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Table 9. Comparison of Performance indices between current
study outcome and previous experimental results in testing stage.

Scholars RMSE R?

Current study 0.003 0.929
(Preul & Holler, 1969) 0.959 0.460
(Avery & Novak, 1978) 0.041 0.322
(Markofsky & Kobus, 1978) 0.030 0.458
(Wormleaton & Tsang, 2000) 0.041 0.324

samples used in predictive models is divided into train-
ing and testing stages, with 163 and 74 samples, respec-
tively. To assess the performance of developed mod-
els, few performance indices (i.e. RMSE, MAE, R? &

WI) and some graphical representations (i.e. Agree-
ment plot, Heat-map, Violin diagram, and Relative error
plot) are used for both training and testing stages. Sta-
tistical results and graphical comparisons suggest that
the KNN model with M11 combination (MAEtesing =

0.002, Ry, i, = 0.929), which includes W/L, S/L, and

Fr input parameters is outperforming other models.
The RFR-M11 (MAEtesting = OOO?),R2 = 0.886) and

testing
DTR-M15 (MAEtesting = 0.003, R? g = 0.868) model

testin
achieves the next rank for predicting (Ej) values at

Parshall flumes, respectively. The input sensitivity anal-
ysis also indicates the Re and W/L as the least and
most influential parameter on the prediction results,
respectively. With relatively high-performance indices
for all three predictive models and superiority to previous
experimental results, this study reveals that the machine
learning algorithms are highly accurate and versatile to
solve the problems of hydraulic system engineering and
management.
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