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Abstract: Evaluation of potential fatigue for the elderly could minimize their risk of injury and thus
encourage them to do more physical exercises. Fatigue-related gait instability was often assessed by
the changes of joint kinematics, whilst planar pressure variability and asymmetry parameters may
complement and provide better estimation. We hypothesized that fatigue condition (induced by the
treadmill brisk-walking task) would lead to instability and could be reflected by the variability and
asymmetry of plantar pressure. Fifteen elderly adults participated in the 60-min brisk walking trial
on a treadmill without a pause, which could ensure that the fatigue-inducing effect is continuous
and participants will not recover halfway. The plantar pressure data were extracted at baseline,
the 30th min, and the 60th min. The median of contact time, peak pressure, and pressure-time integrals
in each plantar region was calculated, in addition to their asymmetry and variability. After 60 min of
brisk walking, there were significant increases in peak pressure at the medial and lateral arch regions,
and central metatarsal regions, in addition to their impulses (p < 0.05). In addition, the variability
of plantar pressure at the medial arch was significantly increased (p < 0.05), but their asymmetry
was decreased. On the other hand, the contact time was significantly increased at all plantar regions
(p < 0.05). The weakened muscle control and shock absorption upon fatigue could be the reason for
the increased peak pressure, impulse, and variability, while the improved symmetry and prolonged
plantar contact time could be a compensatory mechanism to restore stability. The outcome of this
study can facilitate the development of gait instability or fatigue assessment using wearable in-shoe
pressure sensors.

Keywords: prolonged walking; gait parameters; gait instability; pedobarography; balance

1. Introduction

Population aging is a global triumph challenging the existing models of social and
healthcare. There are approximately 700 million elderly people, which accounts for about
10% of the world’s population [1]. The elderly population is expected to increase to over
1.5 billion in the next 30 years [1]. Healthy and active aging becomes the top priority to
enable wellbeing at older ages and relieve the burden of public health resources. Different
research and campaigns have endeavored to maintain and improve physical fitness for
elderly people.

Elderly people shall integrate regular physical exercises into daily routines [2,3],
such as walking and jogging [4,5]. It was suggested that older adults shall walk 7000
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to 10,000 steps a day for health benefits. Walking at least 5000 steps a day can maintain
muscular strength and functional mobility for the elderly that could effectively reduce
the risk of falling [6]. Unfortunately, the majority of the elderly people could barely reach
the goal and could only take approximately 3500 steps a day [7,8]. Fear of falling could
be one plausible reason since the elderly are believed to more easily get fatigued and
fall [9]. Falling is a significant cause of morbidity and mortality in elderly people [2].
To this end, we believe that recognizing the fatigue state and gait derivation/instability
could provide a timely reminder to elderly people, which can minimize the risk of falls.
In addition, this could help the elderly overcome fears and encourage them to do more
physical exercises; improving their muscle strength, coordination, and balance ability;
and thus reducing the risks of falling [10].

The influence of fatigue or instability on the gait parameters from different per-
spectives has been reported in previous studies, such as spatiotemporal parameters [11],
ground reaction force [12], joint angle and angular velocity [13], the center of gravity
displacement [14], etc. The variability of temporal measures of stance and swing [15],
cadence [16,17], stride velocity [15,18,19], step width [9], and center of mass [17,20] have
been proved to be related to lower limb fatigue, instability or fall risk of elder adults.
Elderly with fall experiences walked with smaller ankle plantar flexion and hip extension
in the dominant leg during push-off in addition to the reduction of peak moment of the
knee muscles [17,21,22]. Fatigue was also found to induce the asymmetry of ankle angular
velocity, the variability of ankle angular velocity on both sides, and the variability of the
knee at the non-dominant side [13]. Minimum foot clearance was another measure to
evaluate aging-associated gait instability [23,24], while its asymmetry and variability were
regarded as an indicator of fall risks [9,25].

However, these experiments were highly dependent on laboratory-based measure-
ments, such as using the motion capture system and force platform. Nowadays, the devel-
opment of wearable devices, such as inertial measurement units [26,27], surface electromyo-
graphy [28], and in-shoe plantar pressure measurement [29,30] enables gait assessments of
fatigue in a field setting. In particular, studies using plantar pressure measurement discov-
ered pressure shifts due to local fatigue of toe flexors and an attenuated shock absorption
ability explained by weakened muscular control [31–33]. The advantage of this study was
that the plantar pressure sensors are portable and thus measurement or assessment would
not be confined into a laboratory setting with mounted equipment. We believed that the dy-
namical system theory [34], including the asymmetry [35] and variability parameters [36],
may also apply to the plantar pressure measurements to assess instability, and thus fatigue.
The objective of this study was to explore the changes of asymmetry and variability of
plantar pressure metrics in different plantar foot regions upon prolonged brisk walking on
treadmills among the elderly. We presumed that fatigue was induced by the brisk walking
and would be verified by their verbal feedback. The hypothesis of this study was that the
elderly would experience fatigue after the brisk walking tasks and may have an elevated
asymmetry and variability in plantar pressure.

2. Materials and Methods
2.1. Participants

The sample size of this study was estimated by a priori power analysis using the
software, G*Power 3.1.9.7 (Universität Düsseldorf, Düsseldorf, Germany) [37]. The esti-
mation was 15 based on a significance level of 0.05, statistical power of 0.8, and a single
factor with 3 repeated measures at a correlation level of 0.5 using an F-test within-factor
model. The assumed effect size was medium to large (Cohens f = 0.35) based on a review
summary on relevant studies [38]. Eighteen older adults were recruited from the university
campus by posters and leaflets. Three of them were excluded due to left foot data errors
and re-visits could not be arranged. There were 15 participants (6 males and 9 females) that
completed the experiment. Their average age, height, and weight were 59.6 ± 8.3 years,
160.9 ± 8.3 cm, and 60.3 ± 11.2 kg, respectively. They were all independent walkers. The ex-
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clusion criteria included persistent knee pain, osteoarthritis, unstable ankle, severe flat foot,
severe hallux valgus, toe deformities, and other chronic diseases that might induce risks
in the experiment. The participants also had no history of injuries in the past six months.
All participants signed the informed consent, and this study was approved by the Human
Subjects Ethics Sub-committee of The Hong Kong Polytechnic University (Reference No:
HSEARS20190919001).

2.2. Experimental Procedures

All participants wore the same brand model of running shoes (ARHQ025-4, Li-Ning
Inc., Beijing, China) in different shoe sizes, from EU size 36 to 43. The plantar pressure was
measured using an in-shoe pressure distribution measuring system, Novel Pedar-X system
(Novel Inc., Munich, Germany), which was proven to have excellent reproducibility [39].
The plantar pressure measurement insole (left foot) is shown in Figure 1a, and each insole
has 99 capacitive type pressure sensors with a sampling frequency of 100Hz. In addition,
the area of single sensor ranges from 151 to 161 mm2, with a resolution of 2.5 kPa. The dom-
inant limb was determined by the side of the limb that the participants would use to kick a
ball five meters away from the goal [40].
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Figure 1. (a) The plantar pressure insole used in this study and the number of sensors in each region; (b) the plantar pressure
distribution of the left foot.

The procedures of the experiment and safety precautions were introduced to the
participants before the experiment. The brisk walking task was carried out on a tread-
mill (Unisen Inc., Tustin, CA, USA). The whole experiment consisted of two parts: the
adaptation phase, and a 60-min brisk-walking task. The whole experiment is continuous
without pausing.

During the adaptation phase, participants accelerated to their preferred comfortable
brisk walking speed (4.1 ± 0.7 km/h) by 0.5 km/h every 30 s [41], then continued to walk
at this speed for another 5 min. They achieved the preferred speed in 3.6 ± 0.7 min.

The 60-min brisk walking task was then proceeded at the preferred speed and all
participants managed to complete the task. Data collection was carried out during the
60-min brisk walking task only but not for the adaptation phase. Baseline data (1st min)
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referred to the first min of the 60-min brisk walking. After the walking task, participants
were asked to indicate verbally whether their level of fatigue was mild, moderate, or severe.

2.3. Data Processing

In this study, three time-period data, the baseline (1st min), the 30th min, and the
60th min, were exported. The duration of each time-period is 1 min. As mentioned above,
the time here is counted from the beginning of the 60-min walking task. Segmenting
the extracted plantar pressure time-series data by stride, a complete stride starts from
heel strike to heel strike of the next step in the same side using vertical force and plantar
pressure multiplied by area (10 N threshold [42]). The incomplete stride data segment was
discarded, and the complete stride data segment was analyzed in this study. The average
strides of all time-period data collections are 56.4 ± 3.2.

We divided the plantar foot into nine regions as shown in Figure 1b. The divided
regions included hallux (Hx), lesser toes (LT), medial metatarsal (MM), central metatarsals
(CM), lateral metatarsals (LM), medial arch (MA), lateral arch (LA), medial heel (MH),
and lateral heel (LH) [29,31,32]. The number of sensors contained in the nine regions is as
Figure 1a.

Figure 2 illustrated the regional average plantar pressure versus time in one stride.
Contact time, peak pressure, and impulse (pressure-time integrals) in each stride were
calculated. The contact time is the projection of the pressure curve above the threshold on
the horizontal axis. The pressure thresholds of Hx, LT, MH, and LH are 5 N (1/2 of stride
threshold); MM, CM, LM, and MA are 3.33 N (1/3 of stride threshold); LA is 6.67 N (2/3 of
stride threshold).
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The outcome variables are the median of these variables in all strides in each time condition.
For the calculation of asymmetric index (ASI) of plantar pressure in each region, each piece

of stride data is normalized into 101 data time-points (0 to 100% gait cycle) [43]. The average
ASI of peak and average plantar pressure are shown in Equations (1) and (2) [13,44]:
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ASIpp,reg,t =
1
nt

nt

∑
i = 1

∣∣ppN,t,reg,i − ppD,t,reg,i
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ppN,t,reg,i + ppD,t,reg,i
× 100%, (1)

ASIap,reg,t =
1
nt

nt

∑
i = 1

1
101

101

∑
j = 1

∣∣apN,t,reg,i,j − apD,t,reg,i,j
∣∣

apN,t,reg,i,j + apD,t,reg,i,j
× 100%, (2)

where ap is the average plantar pressure; pp is the peak plantar pressure; reg is the plantar
regions; t is the three-time conditions: the baseline, the 30th min, and the 60th min; nt is the
strides number in the t-th time condition; i is the i-th stride; N and D are the non-dominant
and dominant feet; and j is the j-th timepoints (j% gait cycle) data.

As a commonly adopted variability index, the median absolute deviation (MAD)
is defined as the median of the deviations from the data median [13]. Similar to the
average ASI of plantar pressure, each piece of stride data is also normalized into 101 data
time-points (0 to 100% gait cycle) for the calculation of MAD of each foot region. Then,
the average MADs (all MADs in the corresponding time-series) were obtained for analysis.
The data processing procedure was completed by customized program codes (Matlab
2020a, The MathWorks Inc., Natick, MA, USA).

2.4. Statistical Analysis

The outcome variables at baseline, the 30th min, and the 60th min were compared
using the nonparametric Friedman test with a significance level α at 0.05 since some
variables did not satisfy the assumption of normality. A post-hoc pairwise comparison
using the Wilcoxon signed-rank test with Bonferroni correction at < 0.017 was conducted if
significance was found in the Friedman test.

3. Results

Eleven participants (73.3%) reported a severe level of fatigue, while there were three
(20%) and one participant (6.7%) that reported a moderate level of fatigue and mild fatigue,
respectively. Table 1 shows the Friedman test comparing the outcome variables among the
three time-periods. In general, the contact time is significantly different in all foot regions;
peak pressure in regions except hallux and lateral metatarsal; impulse in regions except
hallux and medial metatarsal; ASI of peak plantar pressure in the arch; MAD of average
plantar pressure in the arch and medial heel (p < 0.05).

Table 1. The Friedman test comparing the three-time periods for the outcome variables, ASI, and MAD.

Variables Hx LT MM CM LM MA LA MH LH

CTN 0.001 * 0.021 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * 0.007 *

CTD 0.023 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * 0.002 * 0.022 *

PPN 0.437 0.492 0.003 * 0.001 * 0.252 0.001 * 0.015 * 0.061 0.148

PPD 0.402 <0.001 * 0.030 * <0.001 * 0.074 <0.001 * <0.001 * 0.001 * 0.003 *

IMN 0.42 0.247 0.344 0.015 * 0.155 0.001 * 0.001 * <0.001 * 0.006 *

IMD 0.074 <0.001 * 0.127 <0.001 * 0.002 * <0.001 * 0.001 * <0.001 * 0.038 *

ASIap 0.074 0.549 0.549 0.420 0.420 0.420 0.627 0.449 0.247

ASIpp 0.282 0.344 0.282 0.074 0.282 0.008 * 0.038 * 0.766 0.247

MADavg,N 0.127 0.344 0.819 0.42 0.449 0.005 * 0.038 * 0.005 * 0.057

MADavg,D 0.819 0.189 0.189 0.936 0.091 <0.001 * 0.015 * 0.038 * 0.155

* Statistical difference (p < 0.05) using Friedman test; CTN (contact time of non-dominant foot), CTD (contact time of dominant foot), PPN
(peak pressure in the non-dominant foot), PPD (peak pressure in the dominant foot), IMN (impulse in the non-dominant foot), IMD (impulse
in the dominant foot), ASIap (the ASI of average plantar pressure), ASIap (the ASI of peak plantar pressure), MADavg,N (the average MAD of
plantar pressure in the non-dominant foot), MADavg,D (the average MAD of plantar pressure in the dominant foot), Hx (hallux), LT (lesser
toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch), LA (lateral arch), MH (medial heel),
and LH (lateral heel).
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3.1. Contact Time, Maximum Pressure, and Impulse

A post hoc pairwise comparison with Bonferroni correction was conducted on signifi-
cant variables according to Table 1, and the results are shown in Table 2.

Table 2. The pairwise comparisons of contact time, peak pressure, and impulse.

Variables Regions
Baseline-30th min Baseline-60th min 30–60th min

p p
(Adjusted) p p

(Adjusted) p p
(Adjusted)

CTN Hx 0.075 0.225 <0.001 <0.001 * 0.039 0.118

LT 0.519 1.000 0.008 0.023 * 0.043 0.129

MM 0.002 0.007 * <0.001 <0.001 * 0.098 0.293

CM 0.033 0.098 <0.001 <0.001 * 0.016 0.047 *

LM 0.223 0.670 <0.001 <0.001 * 0.009 0.026 *

MA 0.028 0.085 <0.001 <0.001 * 0.028 0.085

LA 0.043 0.129 <0.001 <0.001 * 0.004 0.013 *

MH 0.053 0.160 <0.001 <0.001 * 0.027 0.081

LH 0.118 0.353 0.002 0.005 * 0.118 0.353

CTD Hx 0.645 1.000 0.010 0.030 * 0.034 0.103

LT 0.012 0.037 * <0.001 <0.001 * 0.164 0.491

MM 0.011 0.032 * <0.001 <0.001 * 0.144 0.432

CM 0.053 0.160 <0.001 <0.001 * 0.013 0.039 *

LM 0.080 0.241 <0.001 <0.001 * 0.004 0.013 *

MA 0.028 0.085 <0.001 <0.001 * 0.028 0.085

LA 0.010 0.030 * <0.001 <0.001 * 0.021 0.064

MH 0.144 0.432 0.001 0.002 * 0.045 0.134

LH 0.273 0.820 0.006 0.019 * 0.100 0.301

PPN MM 0.162 0.485 0.001 0.002 * 0.046 0.137

CM 0.089 0.267 <0.001 0.001 * 0.047 0.142

MA 0.032 0.096 <0.001 0.001 * 0.126 0.377

LA 0.190 0.569 0.004 0.011 * 0.111 0.334

PPD LT 0.095 0.284 <0.001 <0.001 * 0.002 0.007 *

MM 0.083 0.250 0.009 0.028 * 0.386 1.000

CM 0.239 0.718 <0.001 <0.001 * 0.008 0.024 *

MA 0.005 0.016 * <0.001 <0.001 * 0.054 0.163

LA 0.014 0.043 * <0.001 <0.001 * 0.014 0.043 *

MH 0.773 1.000 0.001 0.002 * 0.001 0.004 *

LH 0.437 1.000 0.001 0.003 * 0.012 0.035 *

IMN CM 0.584 1.000 0.006 0.019 * 0.028 0.085

MA 0.100 0.301 <0.001 <0.001 * 0.028 0.085

LA 0.068 0.204 <0.001 0.001 * 0.068 0.204

MH 0.201 0.604 <0.001 <0.001 * 0.003 0.010 *

LH 0.715 1.000 0.003 0.010 * 0.011 0.032 *

IMD LT 0.028 0.085 <0.001 <0.001 * 0.028 0.085

CM 0.584 1.000 <0.001 <0.001 * 0.001 0.003 *
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Table 2. Cont.

Variables Regions
Baseline-30th min Baseline-60th min 30–60th min

p p
(Adjusted) p p

(Adjusted) p p
(Adjusted)

LM 0.045 0.134 0.001 0.002 * 0.144 0.432

MA 0.006 0.019 * <0.001 <0.001 * 0.028 0.085

LA 0.018 0.053 <0.001 0.001 * 0.201 0.604

MH 0.201 0.604 <0.001 <0.001 * 0.003 0.010 *

LH 0.715 1.000 0.045 0.134 0.018 0.053

p (adjusted) is p-value adjusted using Bonferroni adjustment; * all pairwise comparison using Wilcoxon signed-rank test demonstrated
statistical difference (p < 0.05); CTN (contact time of non-dominant foot), CTD (contact time of dominant foot), PPN (peak pressure
in non-dominant foot), PPD (peak pressure in dominant foot), IMN (impulse in non-dominant foot), IMD (impulse in dominant foot);
Hx (hallux), LT (lesser toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch), LA (lateral
arch), MH (medial heel), and LH (lateral heel).

3.1.1. Contact Time

For the contact time, all regions in both non-dominant and dominant feet showed
significant differences in contact time among three-time conditions (p < 0.05, Table 1).

The post hoc pairwise comparison test (Table 2, Figure 3) showed that there was a
significant increase in the 30th min compared with the baseline at the medial metatarsal in
both non-dominant and dominant feet (p = 0.007, p = 0.032), and the lateral toes (p = 0.037)
and lateral arch (p = 0.030) in the dominant foot. Similarly, there was a statistically sig-
nificant increase in the 60th min compared with the baseline in both non-dominant and
dominant feet’s hallux (p < 0.001, p = 0.030), lateral toes (p = 0.023, p < 0.001), medial
metatarsal heads (p < 0.001, p < 0.001), center metatarsal heads (p < 0.001, p < 0.001),
lateral metatarsal heads (p < 0.001, p < 0.001), medial arch (p < 0.001, p < 0.001), lateral
arch (p < 0.001, p < 0.001), medial heel (p < 0.001, p = 0.002), and lateral heel (p = 0.005,
p = 0.019). In addition, there was also a significant increase in the 60th min compared with
the 30th min in the non-dominant foot’s lateral metatarsal (p = 0.026) and arch (p = 0.013),
and the dominant foot’s center metatarsal (p = 0.039) and lateral metatarsal (p = 0.013).

3.1.2. Peak Pressure

For the peak pressure, the forefoot (MM and CM) and arch (MA and LA) of two
feet showed significant differences among the three-time conditions (p < 0.05, Table 1).
Similarly, the lateral toes and hindfoot (MH and LH) of the dominant foot also have
significant differences among these three-time conditions.

The post hoc pairwise comparison test (Table 2, Figure 4) revealed that there was a
statistically significant increase in 30th min compared with the baseline in the medial and
lateral arch (p = 0.016 and p = 0.043), for the dominant foot. Similarly, there was a significant
increase in the 60th min compared with the baseline in both non-dominant and dominant
feet’s medial metatarsal (p = 0.002 and p = 0.028), center metatarsal (p = 0.001, p < 0.001),
medial arch (p = 0.001, p < 0.001) and lateral arch (p = 0.011, p < 0.001), and in the dominant
foot’s lateral toes (p < 0.001) and medial and lateral heel (p = 0.002 and p = 0.003). There was
also a significant increase in 60th min compared with the 30th min in the dominant foot’s
lateral toes (p = 0.007), center metatarsal (p = 0.024), lateral arch (p = 0.043), medial heel
(p = 0.004), and lateral heel (p = 0.035).

3.1.3. Impulse

In this study, pressure time-integral is treated as the impulse. For the impulse, the cen-
tral metatarsal, arch (MA and LA), and heel (MH and LH) in both feet, and lateral toes and
lateral metatarsal in the dominant foot demonstrated significant statistically significant
differences among the three-time conditions (p < 0.05, Table 1).
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Figure 3. The contact time of each region of the non-dominant and dominant feet at baseline,
30th min, and 60th min. Bracket denotes statistical significance (p < 0.05) in the post hoc analysis
with Bonferroni correction; BL (baseline), 30 (the 30th min), 60 (the 60th min); Hx (hallux), LT (lesser
toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch),
LA (lateral arch), MH (medial heel), and LH (lateral heel).

The post hoc pairwise comparison test (Table 2, Figure 5) revealed that there was a
statistically significant increase in the 30th min compared with the baseline in the dominant
foot in the medial arch (p = 0.019). Similarly, there was a significant increase in the 60th min
compared with the baseline in both non-dominant and dominant feet’s center metatarsal
(p = 0.019, p < 0.001), medial arch (p < 0.001, p < 0.001), lateral arch (p = 0.001, p = 0.001),
and medial heel (p < 0.001, p < 0.001), along with in the non-dominant foot’ lateral heel
(p = 0.010), and dominant foot’s lateral toes (p < 0.001) and lateral metatarsal (p = 0.002).
In addition, there was also a significant increase in the 60th min compared with the 30th min
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in the medial and lateral heel in the non-dominant foot (p = 0.010, p = 0.032), and lateral
metatarsal heads (p = 0.003) and medial heel (p = 0.010) in the dominant foot.
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Figure 4. The peak pressure of each region of the non-dominant and dominant feet at at baseline,
30th min, and 60th min. Bracket denotes statistical significance (p < 0.05) in the post hoc analysis
with Bonferroni correction; BL (baseline), 30 (the 30th min), 60 (the 60th min); Hx (hallux), LT (lesser
toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch),
LA (lateral arch), MH (medial heel), and LH (lateral heel).
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Figure 5. The impulse of each region of the non-dominant and dominant feet at at baseline, 30th min,
and 60th min. Bracket denotes statistical significance (p < 0.05) in the post hoc analysis with Bonferroni
correction; BL (baseline), 30 (the 30th min), 60 (the 60th min); Hx (hallux), LT (lesser toes), MM (medial
metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch), LA (lateral arch),
MH (medial heel), and LH (lateral heel).
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3.2. Asymmetry Index and Variability

A post hoc pairwise comparison of asymmetry and variability using Bonferroni
correction was conducted on significant variables according to Table 1, and the results are
shown in Table 3.

Table 3. The results of ASI and variability.

Variables Regions
Baseline-30th min Baseline-60th min 30–60th min

p p
(Adjusted) p p

(Adjusted) p p
(Adjusted)

ASIpp MA 0.002 0.006 * 0.201 0.604 0.068 0.204
LA 0.018 0.053 0.045 0.134 0.715 1.000

MADavg,N MA 0.100 0.301 0.001 0.003 * 0.100 0.301
LA 0.045 0.134 0.018 0.053 0.715 1.000
MH 0.018 0.053 0.002 0.006 * 0.465 1.000

MADavg,D MA 0.006 0.019 * <0.001 <0.001 * 0.100 0.301
LA 0.028 0.085 0.006 0.019 * 0.584 1.000
MH 0.715 1.000 0.018 0.053 0.045 0.134

p (adjusted) is p-value adjusted using Bonferroni adjustment; * all pairwise comparison using Wilcoxon signed-rank test demonstrated
statistical difference (p < 0.05); ASIpp (the ASI of peak plantar pressure), MADavg,N (the average MAD of plantar pressure in the non-
dominant foot), MADavg,D (the average MAD of plantar pressure in the dominant foot), Hx (hallux), LT (lesser toes), MM (medial
metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch), LA (lateral arch), MH (medial heel), and LH (lateral heel).

3.2.1. Asymmetry Index

For the ASI of peak plantar pressure between the non-dominant and dominant feet,
the medial arch (p = 0.008), and the lateral arch (p < 0.038) showed significant differences
among three-time conditions (Table 1). The post hoc pairwise comparison test (Table 3,
Figure 6b) revealed that there was a significant decrease in the 30th min compared with the
baseline in the medial arch (p = 0.006), along with a non-significant decrease in the lateral
arch (p = 0.053). Similarly, there was a non-significant decrease in the 60th min compared
with the baseline in the lateral arch.

For the ASI of average plantar pressure, no pairwise tests were performed since the
result of the Friedman test did not show a significant difference. However, data distribution
showed that there was a decrease in the 30th min and 60th min compared with the baseline
in the hallux, lateral toes, medial and center metatarsal, and arch (Figure 6a).

3.2.2. Variability

For the average of MAD, medial arch (p = 0.005, p < 0.001), lateral arch (p = 0.038,
p = 0.015), and medial heel (p = 0.005, p = 0.038) in both non-dominant and dominant
feet showed significant differences among three-time conditions (Table 1). The post hoc
pairwise comparison test (Table 3, Figure 7) revealed that there was a significant increase in
the 30th min compared with the baseline in the medial arch (p = 0.019) in the dominant foot.
Similarly, there was a significant increase in the 60th min compared with the baseline in
the medial arch (p = 0.003, p < 0.001) in both non-dominant and dominant feet, in the non-
dominant foot’s medial heel (p = 0.006), and in the dominant foot’s lateral arch (p = 0.019).
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Figure 6. The Asymmetry Index (ASI) of the plantar pressure of each region at baseline, 30th min,
and 60th min: (a) average plantar pressure; (b) peak plantar pressure. Bracket denotes statistical
significance (p < 0.05) in the post hoc analysis with Bonferroni correction; Hx (hallux), LT (lesser
toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral metatarsals), MA (medial arch),
LA (lateral arch), MH (medial heel), and LH (lateral heel).
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Figure 7. The average median absolute deviation of pressure in each region of the non-dominant
and dominant feet at baseline, 30th min, and 60th min. Bracket denotes statistical significance
(p < 0.05) in the post hoc analysis with Bonferroni correction; BL (baseline), 30 (the 30th min), 60 (the
60th min); Hx (hallux), LT (lesser toes), MM (medial metatarsal), CM (central metatarsals), LM (lateral
metatarsals), MA (medial arch), LA (lateral arch), MH (medial heel), and LH (lateral heel).

4. Discussion

This study explored the changes of plantar pressure and its asymmetry and variability
in elderly adults with fatigue induced by brisk walking. The findings of this study provided
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preliminary evidence and fundamental confidence for us to develop a fatigue-related
instability assessment using plantar pressure sensors in our next step. In this study, after the
brisk walking trial, the participants experienced higher peak pressure at the medial and
center metatarsal, and midfoot regions, accompanied by an elevated impulse at the center
metatarsal, midfoot, and medial rearfoot. In addition, the plantar pressure of the medial
arch showed higher variability after the brisk walking trial. Interestingly, the participants
attempted to improve symmetry at the medial side of the foot, in addition to an overall
increase of contact time. In short, this study demonstrated the impact of lower-limb muscle
fatigue on plantar pressure distribution, asymmetry, and variability.

Neuromuscular fatigue could impair muscular control on the ability to attenuate
shock at heel strike [45], resulting in an increase of peak pressure and impulse at the heel
region. Compared to the baseline, peak pressure and impulse at heel increase by 2.90% and
7.79% at the 30th min; and 6.05% and 17.43% at the 60th min. The increase of peak pressure
and impulse at the heel was aligned with [46], while different to another walking test [32],
in which the medial heel showed significantly decreased peak pressure. The difference
could be attributed to the fatigue-inducing methods, in which running was adopted in the
existing study.

Reduced supination by the fatigued triceps surae contributed to the increased load
at the arch and center metatarsal region [29]. During the midstance phase, compared
to the baseline, peak pressure and impulse increased by 6.16% and 20.14% respectively
at the 30th min, and 9.96% and 29.85% respectively at the 60th min. At the end of the
midstance, peak pressure and impulse at the center metatarsal region increased by 3.53%
and 6.71% respectively at the 30th min, and 6.71% and 11.85% respectively at the 60th min.
The peak pressure at the medial metatarsal also showed an increase by 3.19% and 6.71%
at the 30th min and the 60th min, respectively. These results may explain the reason why
metatarsalgia happens after long walking. The impulse at lateral toes in the dominant foot
showed a significant increase, which hypothesized that decreased function of the great
toe and aims to relieve the pain in the medial and center metatarsal heads affected the
rollover process. However, other studies demonstrated mixed findings in the pressure of
medial metatarsals and toes, which could be due to the different experimental protocols
and characteristics of participants [29,32].

The variability of the plantar pressure along the arch and medial heel increased by
13.68% and 4.67% respectively at the 30th min, and 17.92% and 9.20% respectively at the
60th min compared to the baseline. Similarly, center and lateral metatarsal, and lateral heel
also increased variability, though not significantly. These results demonstrated a deteriora-
tion in stability control [17,20]. The phenomena were supported by other literature [13,26].
In addition, the diminished muscular control over the foot-shank segments may induce
external tibial rotation [32], pronounced foot pronation [31], and disturb the normal center
of pressure (COP) trajectory [46], which could be the reason for the elevated peak pres-
sure and impulse at the midfoot in this study and that of the previous studies [16,29].
Interestingly, participants showed improvement of peak plantar pressure symmetry at
the medial forefoot, medial midfoot, and medial rearfoot, especially at the medial arch
by 15.34% and 6.60% respectively at the 30th min and the 60th min, compared to the
baseline. They also demonstrated improvement of average plantar pressure symmetry
at the medial forefoot and midfoot, though not significant. The improvement could be
regarded as a compensatory mechanism in an attempt to restore balance upon further
fatigue [13,47]. The compensatory mechanism was facilitated by the prolonged contact
time with an increase of 2.73% and 5.82% respectively at the 30th min and 60th min at the
whole foot, especially with an increase of 6.50% and 15.32% at 30th min and 60th min at
the medial arch. Existing studies suggested that prolonging contact time is beneficial to the
adjustment of micro-balance to improve gait stability [9]. For the increased contact time
findings, it was consistent with that of existing studies [29,46,48], different from [16,32],
possibly due to the different protocol was adopted in this study.
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Some studies targeted the joint kinematics and variability measures to assess the
fatigue response of elderly during and after exercises. Elhadi et al. [21] and Yeung et al. [49]
suggested that the ankle power of the dominant limb was significantly reduced after
prolong walking since the plantar flexors were more vulnerable to fatigue. Wong et al.
discovered that older adults have a higher variability of joint angular velocity of the ankle
joints for both limbs; and that of the knee joint for the non-dominant limb after long-distance
walking among older individuals [13]. In another study conducted by Zhang, they mounted
an IMU over the heels of elderly subjects [26]. After 60 min of brisk walking, the elderly
participants demonstrated significant differences in heel pronation angle, range of angular
motion, and variability of angular velocity. On the other hand, Paterson et al. linked the
variability of spatiotemporal gait parameters, including step width and step stance, to the
falling risks in older adults [50]. Asymmetry and Instability induced by fatigue was also
related to poor motor control and thus a predictor of fall and imbalance [51], whereas some
research made use of a local dynamic stability methods, such as the maximum Lyapunov
exponents, to predict global gait stability during walking [52]. However, it shall be noted
that the changing trend of asymmetry and instability during fatigue is not linear, and a
sudden restoration may appear due to a compensatory mechanism in an attempt to restore
balance [13,47].

Some limitations existed in this study. First of all, “fatigue” is a very broad and
abstract concept and can be categorized into neuromuscular, mental, and metabolic [53],
and there is no non-invasive method to precise evaluate objectively fatigue so far. In this
study, the overall “fatigue” was induced by the long-time brisk walking [26] since most
participants reported fatigue after this walking task. In addition, this study heavily relied
on the presupposition of the indirect relationship between fatigue and plantar pressure
distribution (parameter changes) supported by some literature [16,29,31,32,48]. Physical
fitness level, age, sports habits, and footwear could be confounding factors that affected
endurance and time-to-fatigue and may induce variabilities along with the time series.
This study predicts that participants with similar physiological data could be recruited
through inclusion and exclusion criteria. We did not consider the effects of gender, since lit-
erature suggested that gender was not associated with the kinematics and kinetics of
walking [54]. In addition, treadmill walking may not be the same as overground walk-
ing [31], though studies suggested that the kinematic and kinetic gait parameters of these
two types of walking are similar [55], while the difference is that participants can reduce
the forward propulsion force and still maintain the current speed. This research is limited
to the load in the vertical direction and does not consider the load in the medial-lateral
and anterior-posterior directions. This study adopted a convenient sampling approach,
and future study should consider random sampling in addition to a larger sample size to
accommodate for co-covariates for better external validity.

While this study has the abovementioned limitations, it is worth noting that this
research facilitates understandings of plantar pressure variables, and their asymmetry and
variability upon elderly fatigue and may be considered as an assessment index for gait
instability for clinical evaluations. In addition, this article illuminates the prospects for
the development of smart devices that identify fatigue levels based on pressure sensors,
to enable elderly adults to enjoy fitness keeping while reducing the risk of injury due
to fatigue. Future studies may consider the differentiation of myoelectric and metabolic
fatigue using electromyography and near-infrared spectroscopy [56]. Future studies can
also consider using repeatability analysis of plantar pressure to access the stability of
gait [57,58]. In addition, future studies may adopt the inertial measurement unit to achieve
wearability [26] and a biofeedback system [59] to achieve interactivity.

5. Conclusions

This study explored the effects of long brisk walking induced fatigue on the changes
in plantar pressure distribution and its asymmetry and variability in elderly adults. The in-
crease in peak pressure and impulse at the medial heel region may indicate an impaired
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shock attenuation capability, while the elevated variability along the medial arch may
represent gait instability. The improved symmetry and prolonged plantar contact time
could be a compensatory mechanism to restore stability upon fatigue.

In this study, we endeavored to induce fatigue-related instability to the elderly through
brisk-walking which was proven by their feedback. Some of our targeted asymmetry and
variability measures were found to change with the fatigue condition. We therefore believed
that these measures could help recognize fatigue-related instability. The outcome of this
study can facilitate the development of gait instability or fatigue assessment using wearable
in-shoe pressure sensors.
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