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a b s t r a c t 

The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation- 

ships has recently become one of the hot and trending topics in energy materials due to the diverse challenges, 

including low success probabilities, high time consumption, and high computational cost associated with the 

traditional methods of developing energy materials. Following this, new research concepts and technologies to 

promote the research and development of energy materials become necessary. The latest advancements in ar- 

tificial intelligence and machine learning have therefore increased the expectation that data-driven materials 

science would revolutionize scientific discoveries towards providing new paradigms for the development of en- 

ergy materials. Furthermore, the current advances in data-driven materials engineering also demonstrate that the 

application of machine learning technology would not only significantly facilitate the design and development of 

advanced energy materials but also enhance their discovery and deployment. In this article, the importance and 

necessity of developing new energy materials towards contributing to the global carbon neutrality are presented. 

A comprehensive introduction to the fundamentals of machine learning is also provided, including open-source 

databases, feature engineering, machine learning algorithms, and analysis of machine learning model. Afterwards, 

the latest progress in data-driven materials science and engineering, including alkaline ion battery materials, pho- 

tovoltaic materials, catalytic materials, and carbon dioxide capture materials, is discussed. Finally, relevant clues 

to the successful applications of machine learning and the remaining challenges towards the development of 

advanced energy materials are highlighted. 
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. Introduction 

With the increasing global environmental issues, it has become a

lobal consensus to earnestly develop clean and renewable energy tech-

ologies to achieve carbon-neutral society in the next few decades [1 , 2] .

ne of the crucial means to attain large-scale application of green energy

s the development of advanced energy materials towards enabling effi-

ient energy conversion and stable power output [3 , 4] . The traditional

ays to discover and design energy materials include laboratory explo-

ation and simulation activities [5] . It is therefore a time-consuming pro-

ess, while the number of explored new material samples is also limited

6] . Additionally, the success probability of these traditional methods

s low [7] . During the last few decades, the density functional theory

DFT) calculation method was frequently applied to screen new mate-

ials [8] . This is majorly because the DFT is able to sustain large space

earching and provides higher computational accuracy [9] . However,
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here are still some disadvantages of employing DFT calculation, such

s high computational cost. 

The recent progress of artificial intelligence (AI) technology in var-

ous research fields has demonstrated the great potentials of the ap-

lication of AI in seeking new and energy-efficient materials [10 , 11] .

hile AI is a technology which enables a machine to simulate human

ehavior; machine learning (ML), a subset of AI, leverages algorithms

nd models to learn from past data or existing knowledge [12 , 13] . ML

an therefore be used to accelerate materials development due to its in-

erent strong ability in processing massive data and high-dimensional

nalysis [14 , 15] . For instance, in order to obtain new polymer mem-

rane materials, Barnett et al. [16] developed an ML model based on

aussian regression process. Using gas permeability data of approxi-

ately 700 polymers, the ML model predicted the gas separation be-

avior of more than 11,000 untested homopolymers. Elsewhere, Gayon-

ombardo et al. [17] applied the Deep Convolution Generative Adver-
article under the CC BY-NC-ND license 
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arial Network (DC-GAN) to generate real n-phase microstructure data

f multiphase porous electrodes. The results reveal that the proposed

ethod can greatly reduce the computational cost of electrochemical

imulations. In addition to the above successful application cases, the

dvancements of data-driven material science in the past decade have

lso shown that the ML technology can significantly contribute towards

he development of new materials [18 , 19] . One of the most common

pplications of ML technology in materials community is to screen high-

erformance materials, which highly relies on the extensive search ca-

abilities and precise classification of ML algorithms [20–22] . Addition-

lly, the use of ML models to realize accurate prediction for materials

roperties has gradually received increasing attention [23 , 24] . The rea-

on is that the information predicted by ML can not only reveal the char-

cteristics of the tested material, but also guide the next round of exper-

ments [25 , 26] . Therefore, a rational materials design can be achieved

ith the help of ML technology [27] . In terms of the previously men-

ioned challenges for developing energy materials, ML was thus consid-

red as an effective tool to address current issues, which can facilitate

he design, discovery, and deployment of advanced energy materials

28–30] . Moreover, the energy materials development process can be

urther accelerated by integrating the ML with intelligent robots [31] .

hese aforementioned prospects and progresses not only verify the fea-

ibility of materials genomics, but also present the potential of acceler-

ting the development of zero-emission society [32] . 

The summary of state-of-the-art attempts on data-driven materials

cience can therefore promote the development of the Materials Ge-

omics Initiative (MGI) and provide insights for future perspectives.

here are a few existing review papers associated with ML for the devel-

pment of advanced materials [33–35] . For example, Liu et al. [36] gave

 detailed review of how ML accelerates the discovery and design of

aterials. However, they did not include the latest developments. Gu

t al. [37] focused on the applications of ML for renewable energy ma-

erials. However, they did not provide detailed information about the

utorial for ML technologies. Li et al. [38] showed how AI strategies

re applied at different stages of the development of materials, while

ase studies mentioned in this paper are less concentrated on energy

aterials. Chen et al. [39] provided an overview of ML techniques and

heir applications in materials research. However, the future prospective

f data-driven materials science should be further expanded. Correa-

aena et al. [40] summarized state-of-the-art attempts via automation

nd ML for the discovery of materials from the perspective of theory,

olicy and investment. However, other important advances were not

ncluded. Moreover, the provision of design rules for the development

f energy materials and the synthesis of materials predicted by ML have

ot received enough attention. 

In this paper, we provide a comprehensive review of the recent

rogress and development in data-driven materials science and engi-

eering, indicating the current research status and future perspectives

n the fundamentals and applications of ML for the development of

dvanced energy materials. First, the roadmap to carbon neutrality is

resented to reveal the importance and necessity of developing new

nergy materials. Second, a comprehensive introduction of fundamen-

al ML tutorials is provided, including open-source databases, feature

ngineering, detailed introduction of typical ML algorithms, and ef-

ectiveness analysis of ML model. Third, the latest progress in data-

riven materials science is introduced and discussed using real case

tudies on alkaline ion battery materials, photovoltaic materials, cat-

lytic materials, and carbon dioxide capture materials. Moreover, rele-

ant means towards successful ML applications and its remaining chal-

enges are highlighted for each of these energy materials. Furthermore,

eneral perspectives for future data-driven materials science are dis-

ussed, such as data infrastructures (data scarcity and standardization),

L techniques (automatic closed-loop optimization framework and vi-

ualization of black box models), experimental exploration (self-driving

aboratory by robots), interdisciplinary communication and supporting

olicies. 
2 
. Discovery of energy materials 

.1. Roadmap to carbon neutrality 

For the purpose of achieving carbon neutrality, reducing CO 2 emis-

ions has become a consensus worldwide. As shown in Fig. 1 , the CO 2 

missions of global fossil from 1970 to 2019 [41] , indicates that the CO 2 

missions of the power industry and transportation sectors exceeded

ore than half of the total CO 2 emissions. Therefore, effective measures

re needed to be taken to reduce CO 2 emissions in the power industry

s well as the transportation sectors. With this regard, governments and

nstitutions have put forward many supporting policies to expedite the

evelopment of renewable energy and achieve zero-emission transporta-

ion [42–44] , including the European BATTERY 2030 + [45] , China’s

3th Five-Year Plan for Renewable Energy [46] , and the Paris Climate

greement [47] . To clearly show the energy application scenarios of a

ossil-free society in the future, Fig. 2 illustrates the roadmap to achieve

arbon neutrality which includes power generation, energy storage and

onversion, and energy utilizations. 

In terms of power generation, the most ideal source is renewable

nergy which is gleaned from natural sources such as water, sunlight,

ind, and biomass [48 , 49] . To realize carbon neutrality, the most feasi-

le way is to develop and apply renewable energy to replace fossil fuels

n a large scale [50] . Current clean energy resources with large-scale

pplications potential include solar energy, wind energy, hydro energy,

nd nuclear energy [51] . In China, for example, to achieve carbon neu-

rality by 2060, it is necessary to deploy negative emissions technologies

nd utilize clean energy at very large scales [52] . Therefore, the devel-

pment of renewable energy technology has significant impacts on the

ealization of carbon neutral society. Based on the above analysis, re-

ewable energy will be the foundation of future energy development.

owever, renewable energy sources are susceptible to the influence of

atural environment, for example, at night or under cloudy weather

onditions, there will be less available solar energy due to the reduction

r absence of sunlight, thereby supplying intermittent energy output. In

his case, it is difficult to guarantee the maximum utilization of these

nergy sources when directly connected to the grid for clean electric-

ty. Thus, exploring new technology of energy storage and conversion

ecomes necessary [53 , 54] . The typical energy storage technologies in-

lude compressed air, pumped hydro power, and flywheel, etc. During

he last decade, advanced energy conversion and storage technologies,

uch as super capacitors, rechargeable batteries, flow batteries, and fuel

ells, etc., have emerged and received rapid development [55–58] . Re-

ently, electrochemical energy storage technologies, represented by hy-

rogen energy, have attracted widespread attention [59 , 60] . This tech-

ology converts clean electric energy into gaseous or liquid fuel, which

s convenient for storage and transportation. In addition, by combin-

ng with CO 2 or N 2 in the air, hydrogen energy can be converted into

nergy-dense carbon-neutral liquid fuels (such as methanol and ammo-

ia) [61–63] . In this way, the energy harvested from renewable energy

ources can be converted and stored to provide unlimited green power

or energy-consuming terminals such as buildings, transportation, and

ndustries. However, the current energy conversion and storage tech-

ologies cannot meet the future energy demand. One of the best promis-

ng perspectives to address the above challenges is to develop advanced

nergy materials, which can greatly improve the efficiency of energy

onversion as well as promote the large-scale applications of novel en-

rgy technologies. In summary, developing new energy materials with

igh-performance is necessary. 

.2. Development technologies 

Traditional energy materials development methods include experi-

ental analysis, theoretical calculation and simulation [40] . As shown

n Fig. 3 , the process of materials development can be accelerated by

ombining experiments and calculations, such as DFT calculation. How-



Y. Liu, O.C. Esan, Z. Pan et al. Energy and AI 3 (2021) 100049 

Fig. 1. Global fossil CO 2 emissions from 1970 until 2019. Reproduced from fossil CO 2 and GHG emissions of all world countries 2020 Report [41] . 

Fig. 2. The roadmap of future energy. 

e  

t  

o  

i  

s  

l  

f  

s  

b  

m  

n  

o  

r  

o  

e

3

 

ver, DFT calculation has its drawbacks such as high time consump-

ion and computational cost [18] . With the introduction and continu-

us advancement of AI and big data techniques, the application of ML

n screening high-performance energy materials has been extensively

tudied [64 , 65] . By using data obtained from experiments or DFT calcu-

ations, a database can be developed. Based on the database and selected

eatures, ML algorithms can implement large-scale data modeling, clas-

ification, and optimization. As a result, the promising candidates will

e screened out. In addition, ML algorithms can be used to predict the

acro and micro properties of energy materials. Moreover, feature engi-

f  

3 
eering can be carried out for the purpose of determining the importance

f different descriptors, thus providing effective guidance for the next

ound of modeling or classification [66] . In summary, the application

f ML technology can greatly facilitate the development of advanced

nergy materials. 

. Machine learning tutorials 

ML is a subset of algorithms in AI, which attempts to discover and in-

er the hidden laws in accordance with the historical data and then pre-
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Fig. 3. Traditional and high-throughput development 

methods of energy materials. 

Fig. 4. General application procedure of ML 

technology in materials development. 
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4  
ict or classify unlabeled data sets [67] . With the development of data

echnology, ML has been successfully applied in many fields. In the last

wo decades, the application of ML technology in screening advanced

nergy materials has gradually become a research focus, accelerating the

iscovery of new energy materials [68 , 69] . Fig. 4 shows the typical ML

pplication process for energy material design and discovery, including

L database construction, feature engineering, ML algorithm selection,

nd ML model application. The details of ML application process will be

llustrated in the following sections. 

.1. Database construction 

Database plays significant roles during the application of ML for en-

rgy material development since the quality of modeling data deter-

ines the accuracy of ML model. According to the development history

f material databases, most of the existing databases were developed

n the past two decades. In 2006, materials scientist Ceder initiated a

esearch project called "Materials Genome Project" at the Massachusetts
4 
nstitute of Technology, which began to apply AI algorithms to the pre-

iction and data collection of lithium-ion battery materials [70] . Four

ears later, approximately 20,000 forecast materials were included in

he project. In 2011, since the American government launched the same

ame project, the Materials Genome Project therefore changed to the

amous Material Project [71] . During the same period, Curtarolo, a for-

er member of the Ceder team, established a new materials genomics

entre at Duke University [72] and created another well-known ma-

erial database, namely, AFLOW. Afterwards, many material databases

ere developed all over the world. For example, Chris Wolverton cre-

ted the Open Quantum Materials Database (OQMD) in 2013, which

ocuses on inorganic crystal structures based on DFT calculations and

ncludes around 400,000 hypothetical materials [73] . EPFL director

arzari developed a database named Materials Cloud, which focuses

n the seamless sharing and dissemination of resources in data-driven

aterials science and engineering [74] . In China, in accordance with the

ational research and development (R&D) plan of 13 th “Five-year Plan ”,

0 projects related to the MGI were funded to promote the development
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Fig. 5. Function modules of the Materi- 

als Genome Engineering Databases (MGED). 

Adopted from the website of Materials Genome 

Engineering Databases [77] . 
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a  
f high-throughput material genomics [75] . Then, China established the

aterials Genome Engineering Databases (MGED) in 2018, which inte-

rates seven different functional modules (see Fig. 5 ). 

Table 1 lists the newly developed material database. Most material

atabases are developed based on the data from experiments, scientific

ublications, and computer calculations. However, the data reported in

he literature usually include only the results of successful experiments,

nd the grey data or failed data in the experiments are generally de-

iberately hidden. In order to effectively use the failed data, a database

amed Dark Reactions Project was constructed by Harvard University,

hich collected information on unpublished failed reactions [76] . With

he continuous development of MGI, it is foreseeable that more online

pen-source materials databases will be established to accelerate the

evelopment of advanced energy materials. 

.2. Feature engineering 

Feature selection plays a key role in data-driven materials science

78] . The reason is that, for a specific energy material, the modeling

eature not only considers the structural parameters of the material, but

lso includes performance characteristics. In order to achieve accurate

odeling of the characteristics of energy materials, it is necessary to se-

ect appropriate features [79] . Feature selection normally includes four

tages (see Fig. 6 ), which are feature extraction, feature analysis, cor-

elation and importance analysis, and feature selection [80] . As shown

n Fig. 6 a , the objective of feature extraction is to transform the ma-

erials space into descriptors space, i.e. input variables X i,j . Based on

he specific application scenarios, the number of X i,j is different. How-

ver, the complexity of feature selection and computational load will

ncrease as the number of independent variables increases. In the pro-

ess of applying ML to the development of energy materials, most of the

xisting feature extraction technologies rely on human decision-making

81] . Feature analysis is the key step after feature extraction. The main
5 
oal is to determine the importance and correlation of the extracted

eatures. Fig. 6 b shows the frequently used feature analysis techniques,

ncluding four typical methods: filter method, embedded method, wrap-

er method, and deep learning method [82] . The filter method can de-

ermine the impacts of input variables on output [79] . As a result, the

mportance of each X i,j can be calculated. Commonly used filter methods

nclude Pearson correlation (PC) and correlation based feature selection

CFS) [83] . The embedded method can simultaneously perform feature

election and construct feature classifiers, thereby achieving higher effi-

iency. Typical embedded methods include least absolute shrinkage and

election operator (LASSO), random forest permutation accuracy impor-

ance (RFPAI), and least absolute shrinkage (LAS), etc. [84] . Another

requently used feature analysis technique is wrapper method. Wrapper

ethod generally uses classification error or accuracy rate as the feature

valuation standard [85] . Wrapper method can analyse the correlation

etween different characteristics. Evolutionary algorithms, such as the

enetic algorithm (GA) and particle swarm optimization (PSO), are often

sed to optimize wrapper model for subsets selection. Recently, with the

apid development of AI, deep learning neural networks have achieved

reat success in many fields because they are widely used in nonlinear

roblems and complex system modeling [86] . After the feature analysis

rocess, the correlation and importance of selected features can be ob-

ained through visible mapping, as shown in Fig. 6 c . Then, according

o the specific requirements of the application scenario, various feature

ubsets can be obtained for further research (see Fig. 6 d ). In short, fea-

ure engineering is a complex problem and directly affects the accuracy

f ML models. Therefore, it is necessary to carry out feature engineering

n data-driven materials science. 

. Machine learning algorithms 

ML is a branch of AI that leverages algorithms and models to learn

nd infer from past data as well as existing knowledge [87–89] . ML algo-
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Table 1. 

ML database for energy materials. 

Database Descriptions URL 

Material Genome Engineering 

Databases (MGED) 

Integrated seven functional modules, including materials database, 

materials design tools, data processing software, and text mining 

system, etc. 

https://www.mgedata.cn/ 

Materials Scientific Data Sharing 

Network (MSDSN) 

An online website of database (experimental and calculation data), data 

mining, material design, application cases, and metadata, etc. 

http://www.materdata.cn/ 

The NIMS Materials Database 

(MatNavi) 

MatNavi includes polymer materials, inorganic materials, metal materials 

and computing electronic structure information. 

https://mits.nims.go.jp/en/ 

AFLOW The AFLOW contains about 3 million material compounds, and the 

calculated properties exceed 560 million. 

http://afowlib.org 

American Mineralogist Crystal 

Structure Database 

A crystal structure database containing data from different mineral 

journals. 

http://rruff.geo.arizona.edu/AMS/amcsd.php 

ChemSpider The structural database of the Royal Society of Chemistry, containing 

experimental data and calculation data. 

http://www.chemspider.com/ 

Citrination AI-driven material data platform, containing about 4 million data sets. https://citrination.com/ 

Computational Materials 

Repository 

An integrated platform shows examples of how to use Python and the 

atomic simulation environment to process data. 

https://cmr.fysik.dtu.dk/ 

Crystallography Open Database Open-source database of inorganic, organic, mineral crystal structure, and 

metal organic compound. 

http://www.crystallography.net/cod/ 

NCCR MARVEL A materials informatics platform focusing on energy materials and 

organic crystals. 

https://nccr-marvel.ch/ 

Materials Cloud A systematic platform for computational materials, including databases, 

tools, and software, etc. 

https://www.materialscloud.org/home 

Materials Platform for Data Science 

(MPDS) 

The MPDS presents the materials data, extracted by the project PAULING 

FILE team from the scientific publications. 

https://mpds.io/#start 

Materials Project The Materials Project provides different material genome databases and 

high-throughput data analysis tools and software. 

https://materialsproject.org/ 

National Renewable Energy 

Laboratory (NREL) Materials 

Database 

The NREL database focuses on renewable energy materials, such as solar 

cell materials and thermoelectric materials. 

https://materials.nrel.gov/ 

NIST Materials Data Repository Establish data exchange protocols and mechanisms to promote data 

sharing and reuse. 

https://materialsdata.nist.gov/ 

NOMAD CoE Focuses on the systematic research and prediction of new materials to 

solve the energy and environmental challenges facing the future 

society. 

https://www.nomad-coe.eu/ 

Open Quantum Materials Database 

(OQMD) 

The OQMD is a database of thermodynamic and structural properties of 

815654 materials calculated by DFT. 

http://oqmd.org/ 

SUNCAT Center for interface science and catalysis http://suncat.stanford.edu/ 

Fig. 6. Feature engineering for ML applications: (a) Feature extraction process. (b) Typical ML feature analysis methods. (c) Correlation and importance analysis of 

selected features. (d) Various feature subsets obtained from feature engineering analysis. 
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Fig. 7. Typical ML algorithms. 

Fig. 8. The application process of supervised 

learning algorithms. 
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ithms generally include supervised learning algorithms, unsupervised

earning algorithms and reinforcement learning algorithms (see Fig. 7 ).

n supervised learning algorithms, there are two types of ML models:

egression model and classification model [90–92] , such as logistic re-

ression and neural networks. For unsupervised learning algorithms, it

s mainly used for clustering and dimensionality reduction, such as K-

earest neighbors and principle components analysis [93] . In addition,

einforcement learning is also a significant part of ML, which can learn

n an interactive environment through trial and error based on feed-

ack. The commonly used reinforcement learning algorithms include

-learning and Markov decision process [94] . The next section will in-

roduce a detailed tutorial for each algorithm. 

.1. Supervised learning algorithms 

The supervised learning algorithm is a typical ML method, which

onstructs a ML model by training labeled historical data (see Fig. 8 )

95] . For each input variable X, there is always a corresponding tar-

et output Y (Y can be a specific data value or classification label). In

ther words, the expected output corresponding to the input variable is

nown. Generally, ML models constructed through supervised learning

nclude regression models and classification models. After the trained

L model is obtained, it can be used for classification or prediction of
7 
nlabeled data (new data). Commonly used supervised learning algo-

ithms are explained in subsequent sections. 

.2. Regression 

.2.1. Linear regression 

Linear regression is one of the most famous and easily understood

lgorithms in statistics and ML. It is a linear approach which assumes a

inear relationship between the input variable and the output variable.

he basic formula for linear regression model is as follow [96] : 

 = 𝜀 + 𝜔𝑥 (1)

If the number of independent variables is greater than one, then

q. 1 would change to the following format, which is known as mul-

iple linear regression: 

 𝑖 = 𝛽0 + 𝛽1 𝑥 𝑖 1 + ⋯ + 𝛽𝑝 𝑥 𝑖𝑝 + 𝜀 𝑖 = 𝑋 

𝑇 
𝑖 
𝛽 + 𝜀 𝑖 , 𝑖 = 1 , … , 𝑛, (2)

The typical linear regression method is ordinary least squares [97] .

dvantages of linear regression include simple implementation, suitabil-

ty for linearly separable data sets, and overfitting avoidance through

egulation. While the disadvantages of linear regression include its vul-

erability to under fitting as well as sensitivity to outliers. In data-driven

aterials science, linear regression is commonly used to predict and
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creen candidate materials to ascertain ideal properties [98] . In addi-

ion, for small data sets derived from material experiments, linear re-

ression algorithms can be applied to provide fast and accurate predic-

ion results. 

.2.2. Logistic regression 

Logistic regression, unlike linear regression which outputs continu-

us values, is a typical classification algorithm that uses a logistic sig-

oid function to transform its output into two discrete classes labeled 0

r 1. Thus, the efficient classification can be realized. However, if only

inear regression is applied, and the estimated value of some data points

ased on the linear regression model may be greater than 1 or less than

, the classification will be challenged. Therefore, logistic regression can

e regarded as the promotion of linear regression model on classification

roblems. The logistic function is defined as follows [99] : 

ogistic ( 𝑦 ) = 

1 
1 + exp ( − 𝑦 ) 

(3) 

During the step from linear regression to logistic regression, the y can

e considered as the linear regression model ( eq. 2 ). Then the logistic

unction transfer to: 

 ( 𝑦 ( 𝑖 ) = 1 ) = 

1 

1 + exp 
(
− 

(
𝛽0 + 𝛽1 𝑥 

( 𝑖 ) 
1 + ⋯ + 𝛽𝑝 𝑥 

( 𝑖 ) 
𝑝 

)) (4) 

Commonly used logistic regression methods include ordinal logis-

ic regression (OLR), binary logistic regression (BLR), and multi logistic

egression (MLR) [100] . The advantage of logistic regression model is

hat it is not only useful for classification model, but also applicable to

robability model. However, it is difficult to capture complex relation-

hips. The typical applications of logistic regression in high-throughput

omputational screening are to search for energy materials with high-

erformance [101] . An obvious advantage of using logistic regression is

hat it can quickly identify potential and suitable candidates from un-

nown materials, thereby reducing computational cost and time. 

.2.3. Gaussian process regression 

Gaussian process regression (GPR) is a typical non-parametric model

i.e. not limited by a specific functional form) that applies Gaussian pro-

ess prior to perform data regression analysis [102] . GPR can infer and

iscover the complex relationship between independent variables and

ependent variables by theoretically using unlimited parameters and

tilizing data to determine complexity level. In addition, GPR is a prob-

bilistic model with versatility and resolvability [103] . The general ap-

lication process of GPR is as follows: For the data used for GPR (take

inear regression Eq. 1 as an example), according to the observed data,

he prior distribution p ( 𝜔 ) can be first calculated and afterwards relocate

robabilities based on Bayes’ rule [104] : 

 ( 𝜔 |𝑦, 𝑋 ) = 

𝑝 ( 𝑦 |𝑋, 𝜔 ) 𝑝 ( 𝜔 ) 
𝑝 ( 𝑦 |𝑋 ) 

(5) 

Thereafter, the updated distribution 𝑝 ( 𝜔 |𝑦, 𝑋 ) , i.e., the posterior dis-

ribution can be obtained. For the purpose of obtaining predictions at

nknown points of interest, x ∗ , the predictive distribution of data can

e obtained through weighting all possible predictions values in accor-

ance with their calculated posterior distribution [105] : 

 ( 𝑓 ∗ |x ∗ , 𝑦, 𝑋 ) = ∫
𝜔 

𝑝 ( 𝑓 ∗ |𝑥 ∗ , 𝜔 ) 𝑝 ( 𝜔 |𝑦, 𝑋 ) 𝑑𝜔 (6) 

Then, the joint multivariate Gaussian distributed for training points

nd test points can be obtained: 
 

𝑦 

𝑓 ∗ 

] 
∼ 𝑁 

( [ 
𝜇

𝜇∗ 

] 
, 

[ 
𝐾 

𝐾 

∗ 𝑇 
𝐾 

∗ 

𝐾 

∗∗ 

] ) 

(7) 

Here μ represents mean value, K represents covariance matrix.

 

∗ ∗ = K (X 

∗ , X 

∗ ); K 

∗ = K (X, X 

∗ ). Then f ∗ ∼ N (μ’, K’). Therefore,

’ = K 

T K 

− 1 f, K’ = K 

∗ ∗ -K 

∗ K 

− 1 K 

∗ T . After the f ∗ has been confirmed, the

redicted value for test input data can also be confirmed. Generally,
8 
PR can be used to predict the performance of various energy mate-

ials, especially for materials with complex structures, interfaces, and

ompositions such as lithium-ion batteries and solar cells [106] . In ad-

ition, the predicted candidates can be screened out in accordance with

he calculated probabilities. 

.2.4. Neural networks 

Neural network is a mathematical or computational model that imi-

ates the structure and function of biological neural network [107 , 108] .

hrough learning from examples, it can complete complex nonlinear

odeling tasks and predictions [109] . One of the most commonly used

eural network algorithms is artificial neural network (ANN) [110] . The

eneral algorithm structure of ANN is shown in Fig. 9 a , which includes

hree layers, namely the input layer, the hidden layer, and the output

ayer, respectively. The input layer is the independent variable x, which

an be set to different variables and numbers according to the feature

ngineering and the expertise of a specific application. The hidden layer

erforms a nonlinear transformation on the input to the network, where

he function applies weights to the input and directs it to the output

hrough the activation function. The internal structure of the hidden

ayer changes according to the function of the neural network. The out-

ut layer consists of the dependent variable y, which is also the super-

ision target of the ANN. The ANN can learn, summarize and induce

o produce an automatic recognition system. The advantages of ANN

nclude fault tolerance, parallel processing capability, and strong non-

inear fitting ability. Compared with the single hidden layer of ANN,

 deep learning neural network with multiple hidden layers ( Fig. 9 b )

an accurately model complex nonlinear systems. Commonly used deep

earning algorithm includes convolutional neural network ( Fig. 9 c ), re-

urrent neural network ( Fig. 9 d ), long short-term memory network, etc.

111] . Neural networks are normally applied to address complex model-

ng problems due to the strong capability of capturing complex nonlin-

ar relationships. The typical applications of neural networks algorithm

n data-driven materials science include prediction of materials prop-

rties and screening of promising candidates [112] . In particular, deep

earning neural networks can not only be used to model the complex re-

ationships between materials structure, composition, and performance,

ut also reveal the underlying mechanisms of various chemical reac-

ions. Therefore, neural networks are often carried out to study materi-

ls with complex structures and multiphase reaction interfaces, such as

attery materials and catalytic materials. In addition, neural networks

an handle a large number of data samples, which will be a powerful

ool when combining ML technology with DFT calculations to develop

ew energy materials. 

.3. Classification 

.3.1. Naïve Bayes 

Naive Bayes (NB) classification method is one of the supervised

earning algorithms based on Bayes’ theorem. Given the value of class

ariables, it is assumed that the conditional independence between each

air of features is naïve. The Naïve Bayesian classifiers have a high de-

ree of scalability, such that it requires the parameters to have a linear

elationship with the features in the problem to be solved. With the

pplication of NB, the maximum likelihood training can be achieved

hrough evaluating closed-form expressions, which is more effective

han iterative approximation clustering method. Although their assump-

ions are obviously oversimplified, the NB classifier can work well in

any practical situations. For specific supervised classification prob-

ems, when the data is discrete, the mostly used formula based on Bayes’

heorem is as follows [113] : 

 

(
𝑦 |𝑥 1 , … , 𝑥 𝑛 

)
= 

𝑝 ( 𝑦 ) 𝑝 
(
𝑥 1 , … , 𝑥 𝑛 |𝑦 )

𝑝 
(
𝑥 1 , … , 𝑥 𝑛 

) (8) 
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Fig. 9. Neural networks structures: (a) Artificial neural network. (b) Deep learning neural network. (c) Convolutional neural network. (d) Recurrent neural network. 

Fig. 10. Conceptual diagram of support vector machine classification. 
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Based on the naive assumptions between different features, it can be

ransformed into its final form as shown below: 

∧
 = arg max 

𝑦 
𝑃 ( 𝑦 ) 

𝑛 ∏
𝑖 =1 

𝑃 
(
𝑥 𝑖 |𝑦 ) (9) 

As the data set becomes continuous, assumptions can be changed to

djust for clustering. The NB algorithm is recommended to be a classifi-

ation tool for the development of energy materials. More importantly,

he latest advancements in data-driven materials science suggest that

he Bayes algorithms can be applied in the close-loop optimization to

ealize material design automation [114] . More relevant case studies

an be found in Section 5 . 

.3.2. Support vector machine 

Support vector machine (SVM) is a supervised ML algorithm that can

ivide unlabeled data sets into two categories (See Fig. 10 ). The applica-

ion process of SVM generally includes two stages: first, the SVM model
9 
an be constructed by training the labeled data set (i.e., the classifica-

ion result of each data point is known). The trained SVM model there-

fter becomes a non-probabilistic binary linear classifier [115] . Second,

he trained SVM model can be used to classify the unlabeled data sets,

hich maps the new instance to the same space and predict its category

ccording to the side of the interval the new instance falls on. Compared

ith other algorithms, the advantage of SVM includes fast classification

rocess and higher classification accuracy in a limited number of sam-

les. However, SVM cannot directly provide probability estimates. In

ddition to linear data set classification, SVM can also be used to clas-

ify non-linear disturbed data set through dimension changes based on

ernel trick. With regard to the applications in materials research com-

unity, SVM can be applied to identify potential candidates through

lassification [116] . Another commonly used algorithm based on sup-

ort vector is support vector regression (SVR), which can be used to

redict materials properties as well. In addition, SVR can be used to

odel complex dynamic reactions, such as the migration characteristics

f lithium ions in lithium batteries. 

.3.3. Decision tree and random forest 

Decision tree (DT) is a typical and easy-to-understand ML algorithm,

hich represents the mapping relationship between different variables

nd can be used for prediction or classification [117] . The DT algorithm

ses a tree structure and inference layer to achieve the final decision of

odeling results. The application process of DT generally contains fea-

ure selection, generation and pruning of DT structure. The DT structure

see Fig. 11 a ) usually consists of three elements, namely the root node

all samples to be classified), internal nodes (feature attributes), and leaf

odes (decision-based classification). When applying DT for prediction,

rst use a certain attribute value to determine the internal routine of

he tree (based on the if-then-else rule), and then determine the branch

o enter and interrupt until the leaf is reached in accordance with the

udgment result. Finally, the result of DT classification can be obtained.

he main advantages of DT include simple algorithm structure, highly

nterpretable, easy implementation, etc. However, DT also has its dis-

dvantages, such as easy overfitting, and unstable or complicated gen-

rated decision tree structure. Furthermore, a single DT model is easily

ffected by noisy data and is prone to over fitting. To solve this prob-
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Fig. 11. The general structure of tree-based models: 

(a) Decision tree (b) Random forest. 
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r  
em, random forest (RF) is proposed. RF randomly selects samples and

eatures based on DT, which is a typical integrated algorithm [118] . As

hown in the Fig. 11 b , unlike DT, RF samples several data subsets in the

riginal training data set and performs model training on each subset.

fter the training is completed, the average output of all models will

e taken, and then the best model will be selected based on the main

ote. The typical applications of tree-based model in materials informat-

cs include classification and regression, which can provide detailed and

ntuitive results with the specified tree structures. For example, based

n the research of Shi et al. [119] , RF was considered as an ideal ML

lgorithm for the development of CO 2 capture material. In addition, the

ommonly used tree-based algorithms in data-driven materials science

nclude gradient-boosted regression trees (GBRT), gradient boosting de-

ision tree (GBDT), etc. 

.4. Unsupervised learning and reinforcement learning 

Unsupervised learning is a method that can automatically classify

r group input data without marking training samples in advance. The

ain applications of unsupervised learning include cluster analysis and

imensionality reduction. It is an alternative to supervised learning and

einforcement learning strategies. K-means clustering is a commonly

sed unsupervised algorithm for clustering unlabeled data into different

roups. The principle of k-means clustering algorithm is to classify the

nlabeled data into k clusters, thereafter connect each data to its near-

st cluster centre. In addition to clustering, unsupervised learning algo-
10 
ithms such as principal component analysis (PCA) and self-organizing

apping (SOM) can also be applied to achieve dimensionality reduction.

or instance, PCA can be used to realize data set dimension reduction,

mprove the interpretability and minimize information loss [120] . SOM

ses unsupervised learning to generate low-dimensional discrete rep-

esentations of input variables. One of the prominent characteristics of

OM is that it uses a competitive learning mechanism instead of an error

orrection learning mechanism. Furthermore, there is no hidden layer

n SOM [121] . It is worth to mention that reinforcement learning is a

mall branch of ML, which emphasizes how to take actions according

o the environment to maximize the expected benefits. The commonly

sed reinforcement learning algorithms is Q-learning [122] . Q-learning

s based on the record of the learning process, and then the information

s expressed to the agent so that the maximum return will be obtained

t a specific circumstance. The common application of unsupervised

earning algorithms in MGI is to classify candidate materials into dif-

erent subsets to achieve reasonable classification. Additionally, unsu-

ervised learning algorithms can be combined with supervised learning

lgorithms to assist the development of energy materials. In summary,

he advantages, disadvantages, and typical applications of each algo-

ithm are summarized in Table 2 . 

.5. Machine learning model analysis 

After obtaining ML model, it is also necessary to evaluate the accu-

acy of ML model. In terms of the general procedures for the effective
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Table 2. 

Introduction of various ML algorithms. 

Algorithms Advantages Disadvantages Typical applications Ref. 

Linear regression Simple implementation and easy to 

understand 

Vulnerability to under fitting and 

sensitivity to outliers 

Properties prediction and materials 

screening 

[98] 

Logistic regression Useful for classification model and 

probability model 

Difficult to capture complex 

relationships 

Properties prediction and materials 

screening 

[101] 

Gaussian process regression Simplified organization, fewer 

parameters, and clear 

probability formula 

Large amount of calculations Properties prediction [106] 

Neural networks Powerful nonlinear modeling 

capabilities 

The model is invisible and difficult 

to explain 

Properties and structure prediction, 

as well as materials screening 

[112] 

Naïve Bayes Stable classification efficiency, 

handles small-scale data, and 

the results are easy to interpret 

Need to calculate the prior 

probability and sensitive to the 

expression of the input data 

Optimization [114] 

Support vector machine Fast classification process and 

higher classification accuracy 

Cannot directly provide probability 

estimates 

Materials screening and properties 

prediction 

[116] 

Decision tree simple algorithm structure, highly 

interpretable, easy-to-implement 

Easy overfitting, and unstable tree 

structure 

Materials screening and properties 

prediction 

[123] 

Random forest It can process high-dimensional 

data and directly gives the 

result of feature analysis 

Sensitive to noise data, high 

computational cost 

Materials screening and properties 

prediction 

[124] 

Principal component 

analysis 

It makes the data set easier to use, 

reduces the calculation cost and 

has no parameter limitation 

There is a small amount of 

information loss; information 

overlap cannot be effectively 

eliminated 

Dimension reduction [125] 
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Fig. 12. Typical structure of lithium-ion batteries. Reproduced with permission 

from [135] . Copyright 2020, IOP Publishing Ltd. 
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nalysis of the ML model, most of the data samples will be employed to

rain the ML model while a small part of data samples are reserved for

esting and validation. The estimated prediction error of the trained ML

odel is then found and recorded. The common evaluation method of

L model is cross-validation. Cross-validation is mainly used in the pro-

ess of modeling applications. The working principle of cross-validation

s similar to the method mentioned above, which first divides the unla-

eled data set into different subsets and then selects a certain number of

ubsets as the training data set while the remaining subsets will be used

or validation. Commonly used validation methods include leave-one-

ut validation, K-fold cross-validation, and holdout validation. Typical

rror calculation formulas include root mean square error, variance, and

verage absolute error [126] : 

𝐴𝑃 𝐸 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

||𝑦 , 𝑖 − 𝑦 𝑖 
||

𝑦 𝑖 
(10)

𝑀𝑆𝐸 = 

√ √ √ √ 

1 
𝑛 

𝑛 ∑
𝑖 =1 

(
𝑦 , 𝑖 − 𝑦 𝑖 

)2 
(11) 

 

2 = 

[∑
𝑛 
𝑖 =1 

(
𝑦 𝑖 − �̄� 

)(
𝑦 , 𝑖 − �̄� 

)]2 
∑𝑛 

𝑖 =1 
(
𝑦 𝑖 − �̄� 

)2 ∙∑𝑛 

𝑖 =1 
(
𝑦 , 𝑖 − �̄� 

)2 (12) 

According to the model analysis results, material prediction and dis-

overy can be also realized through model selection. Regarding the accu-

acy of ML models, one point is worth noting. In the actual application

f ML to develop energy materials, the established ML model should

ot only focus on the accuracy of model prediction, but also the effec-

iveness of the model in solving practical problems. In other words, the

odel accuracy may not necessarily be high. The reason is that other

actors, such as stability, need to be considered comprehensively. For

nstance, Sutton et al. [127] provided a case study to investigate the

pplicability of ML models for developing materials. Although the ac-

uracy of the established ML model is not satisfactory, the developed

odel is still applicable, i.e. it can be used to screen materials in a fixed

ompositional space. In addition, as mentioned before, combining ML

lgorithms with other techniques can further promote the development

f data-driven materials science. For example, the data sources for ML

odeling can be extracted from experimental data, DFT calculation, and

esources collected from literature. Moreover, the development route of

igh-performance materials can be automated through integrated ML
11 
echnology, optimized algorithms, and intelligent robots. The applica-

ions of ML in the development of energy materials will be introduced

nd discussed in the next section. 

. Machine learning applications 

Recently, the application of ML algorithms in the design and discov-

ry of advanced energy materials has become a popular trend [128–

30] . In this section, the recent advancements in data-driven materials

cience and engineering will be introduced and discussed, including al-

aline ion battery materials, photovoltaic materials, catalytic materials,

nd carbon dioxide capture materials. 

.1. Alkaline ion batteries 

Alkaline ion batteries have developed rapidly in the past few decades

ue to its high energy density and environmentally friendly features

131] . However, there are some challenges pertinent to this battery

echnology, such as safety issues and limited raw materials [132] . De-

eloping advanced battery materials is therefore considered as one of

he promising ways to address these challenges [133 , 134] . A typical

tructure of lithium-ion battery is shown in Fig. 12 , consists of cath-

de, anode, and electrolyte [135] . The anode material generally can be
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ade of carbon, graphite, or silicon while the cathode material is nor-

ally composed of lithium-containing metal oxide [136] . In terms of

he electrolyte materials, the liquid and solid electrolytes in lithium-ion

atteries are generally consisted of lithium salt, and lithium metal oxide,

espectively. Recently, the applications of ML to screen high-performing

ithium-ion battery materials have been extensively studied [137 , 138] .

his section thus provides a brief summary on some of these latest in-

estigations. 

.1.1. Electrolytes 

Liquid electrolytes : in order to greatly improve the reliability and

afety of lithium-ion batteries, it is urgent to develop new electrolyte

ystems [139] . Recently, the application of ML methods to find new

lectrolyte materials has received attention from researchers [140] . For

nstance, to measure the disordered characteristics of new electrolyte

aterials, Sodeyama et al. [98] proposed a multi-ML application frame-

ork on the basis of three different linear regression algorithms. The

esults show that exhaustive search of linear regression can provide the

ost accurate estimation of electrolyte liquid properties. In addition,

he weight map of descriptors can also be analysed to identify the com-

lex correlation between computational cost and prediction accuracy,

hereby improving the search efficiency of a large number of new ma-

erials. During the practical application, the transfer process of various

ons between the electrolyte and the electrodes is complicated. The coor-

ination energy of ions and solvents can properly indicate the transfer of

ons at the electrolyte and electrode interface. Therefore, research on co-

rdination energy can supply effective guidance for the development of

dvanced electrolyte materials. Ishikawa et al. [141] later applied quan-

um chemical calculations to study the coordination energy of five alkali

etal ions (Li, Na, K, Rb, and Cs) to electrolyte solvents. Validation re-

ults showed that the linear regression algorithms provide the highest

rediction accuracy of coordination energy of 0.127 eV. In addition to

he material of the electrolyte, the electrolyte additives also have signif-

cant impacts on the performance of lithium-ion batteries. For example,

asuharu et al. [106] combined ab initio calculations and ML methods

Gaussian kernel ridge regression and gradient boosting regression) to

odel and analyse the redox potential of 149 electrolyte additives for

ithium-ion batteries. Results show that the descriptors accurately pre-

icted the redox potentials. Furthermore, the essential characteristics of

he redox potential can be described by a small number of features de-

ived from the analysis of feature engineering. To further speed up the

cientific innovations in aqueous electrolytes for lithium-ion batteries,

ave et al. [142] developed an integrated platform that combines ML

echnology with intelligent robots, which can independently perform

undreds of sequential experiments to optimize battery electrolyte (see

ig. 13 ) . A database consisting 251 aqueous electrolytes was provided

nd a promising candidate of mixed-anion sodium electrolyte was iden-

ified. 

Solid electrolytes : lithium-ion battery that uses solid electrolyte is con-

idered as the future perspective due to its inherent safety and high en-

rgy density [143] . However, there are some critical challenges such as

ow conductivity and poor stability of the battery interfaces that remain

nresolved, thereby hindering the development of solid-state lithium-

on batteries [144] . The recent advancements in battery technology

emonstrate that the tsavorite structure can maintain a fast lithium-ion

nsertion rate for battery cathode applications. Following this motiva-

ion, Jalem et al. [112] therefore explored the LiMTO 4 F tsavorite sys-

em for solid electrolyte. The research objective is to identify potential

omponents with very low lithium migration energy, and to explore the

mpact of structure parameters on migration energy. A crystal structure-

ased migration energy prediction model was therefore constructed

hrough integrating ML technology (neural network) and DFT calcu-

ation. This study identified the key factors affecting migration energy,

uch as the covalent effect of polyanions and the competition between

ocal lattices. By using logistic regression, Sendek et al. [101] proposed

 new screening method to identify high-performance candidate mate-
12 
ials for solid state electrolytes. This research determined 21 promising

tructures from 12,831 potential candidates. For the purpose of unravel-

ng the composition–structure–ionic conductivity relationships, Kireeva

t al. [116] applied the SVR method to analyse the lithium-ion migration

haracteristics of the garnet structure oxide. A reasonable level of pre-

ictive ability of the models was achieved. In order to screen advanced

aterials for solid-state Li-ion conductors, Zhang et al. [145] performed

n unsupervised ML method to prioritize the candidate list from various

i-containing materials and discovered 16 new fast Li-conductors (refer

o Fig. 14 a and b ). Similarly, by using a recommender system coupled

ith the random forest classification algorithm, Suzuki et al. [124] dis-

overed two lithium-ion conductors for solid-state electrolyte battery

hich has never been reported before. Moreover, the synthesis time of

ewly found Li 6 Ge 2 P 4 O 17 was 10 times less than the conventional con-

uctor. To investigate the application potential of using non-flammable

i-conducting ceramics as solid electrolytes, Nakayama et al. [114] pro-

osed two data-driven method for screening materials. The Bayesian

ptimization was applied to process data, thereby the searching effi-

iency was greatly improved. With the same ML algorithm, Wang et al.

146] developed an automated simulation optimization framework to

esign new solid polymer electrolytes. As shown in Fig. 14 c , the materi-

ls design process of solid polymer electrolytes started from discrete con-

entional design space, which thereafter transferred to continue coarse

raining design space by simulation and iterative exploration. Then the

ayesian optimization was applied to optimize the materials design out-

ut. In this way, the complex interactions between the conductivity of

ithium and the intrinsic material properties of the molecule are de-

ermined. In summary, the application of ML technology can help to

iscover high-performing materials for lithium-ion batteries. 

.1.2. Electrodes 

In the past few decades, the continuous development of lithium-ion

attery electrode materials has laid a solid foundation for the successful

ommercialization of lithium-ion batteries. To speed up the develop-

ent of battery electrode materials, the application of ML to explore

ew electrode materials has become a new research focus [147] . For

xample, Shandiz et al. [148] applied 8 different clustering algorithms

o investigate the effects of crystal structure on the performance of bat-

ery electrode. Three typical crystal systems were studied and results

howed that the highest prediction accuracy can be obtained with the

pplication of RF model. Furthermore, the parameter sensitivity analy-

is results of classification model confirmed that the number of sites and

he volume of crystal have a significant impact on determining the type

f crystal system. For the purpose of investigating the most important

arameters that affect the cathode volume of the battery, Wang et al.

149] reported a method combining ab initio calculation and partial

east squares (PLS) analysis. The results of feature analysis confirmed

hat the X octahedron and the radius of X4þ ion are the determining

actors. To accelerate the process of developing new materials of molec-

lar electrode, a DFT-ML framework for developing a high-throughput

creening was proposed by Allam et al. [150] . Both the electronic prop-

rties and structural information were selected as independent variables

or the prediction of redox potentials (see Fig. 15 a ). Through the appli-

ation of a linear correlation analysis, a large number of input variables

ere downsized to six core input variables (see Fig. 15 b ). Moreover, the

esults indicate that the most critical factor affecting the redox potential

s electron affinity. Aiming to explore the mechanism of micro-structure

esign of lithium-ion battery electrode, Takagishi et al. [151] proposed

 comprehensive framework using three-dimensional virtual structures

nd ML (refer to Fig. 15 c ). The results show that the electrode specific

esistance predicted by the ANN model is in good agreement with the

imulated value. In order to promote the discovery of materials for bat-

ery, Joshi et al. [152] developed a web accessible tool by integrating

L technology to predict the voltage of electrode materials in metal-

on batteries. The results show that the developed online tool can esti-

ate the voltage of any bulk electrode material for multiple metal ions
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Fig. 13. Automated ML and robot integration platform 

for exploring liquid electrolytes. Reproduced with per- 

mission from [142] . Copyright 2020, Elsevier. 
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ithin one minute. Moreover, the online platform can be freely accessed

t http://se.cmich.edu/batteries . For the purpose of studying the effect

f the microstructure of the composite electrode on the charge and dis-

harge performance of a single battery, Jiang et al. [153] proposed a

omprehensive framework combining experimental exploration, convo-

utional neural networks, and mathematical modeling ( Fig. 15 d ). The

esults showed that the conductivity is positively correlated with the

egree of particle detachment. Furthermore, this study confirmed that

alancing lithium-ion kinetics and electron diffusion have a significant

mpact on improving battery performance. 

In terms of promoting the application of advanced battery technol-

gy, in addition to developing novel battery materials, other aspects

uch as the manufacturing and application are worth studying. With

his consideration, Turetskyy et al. [154] applied a data-driven technol-

gy to establish a digital and intelligent battery manufacturing system

nd provided a successful case study. To investigate the impact of ma-

erials and battery design on the performance of lithium-sulfur (Li-S)

atteries, Kilic et al. [155] developed a new ML method which coupled

he association rule mining method and Apriori algorithm. Based on the

ata resources extracted from literatures, this study found that the type

nd quantity of encapsulation material play a vital role in increasing

attery capacity and extending cycle life. Moreover, the latest technical

rogresses showed that ML can be used to predict the battery health sta-

us as well as sustainable life cycles [156] . In summary, the above case

tudies and analysis confirm that one of the most promising prospects

n battery technology is the application of data-driven techniques such

s ML and big data to accelerate the development of next-generation

attery technologies. 

.2. Photovoltaic materials 

Exploring materials with high conversion efficiency for solar bat-

ery is a prerequisite for the large-scale application of solar energy

157 , 158] . The exploration of applying ML algorithms to discover new

olar materials with high performance has gradually become a future

rend [159 , 160] . The typical application of ML technology for solar bat-

ery includes prediction of property and conversion efficiency, as well
13 
s the screening of new photovoltaic materials with high-performance

161–163] . 

.2.1. Property prediction and screening 

The screening of high-performance photovoltaic materials and the

ccurate prediction of the relationship between structure and prop-

rties are important pursuits for future solar cell research and ap-

lication [164 , 165] . To predict the stability of perovskite structure,

un et al. [166] applied a data screen method combined with a one-

imensional tolerance factor. Validation results illustrate that the pro-

osed ML framework can accurately identify 92 % of the compounds in

he data set of 576 ABX 3 materials. Based on the known crystal structure

nformation of ABX 3 perovskite, Pilania et al. [167] established a clas-

ification model for prediction of new perovskite halides by using SVM

lgorithm. Results showed that several new ABX 3 compositions with

erovskite crystal structure were discovered. In order to find lead-free

erovskite materials for solar cells, Im et al. [168] applied GBRT method

o predict the formation heat and band gap of candidate halide double

erovskite. For the purpose of discovering advanced two-dimensional

olar cell materials (see Fig. 16 a ), a data-driven screening framework

as proposed by Jin et al. [169] . The searching diagram was shown in

ig. 16 b , which integrated ML model and DFT validation to identify

otential candidates from a large number of experimentally confirmed

rystal structures. 26 two-dimensional photovoltaic materials were fi-

ally identified. In order to search stable and metastable perovskite ma-

erials, Liu et al. [123] developed a classification model in accordance

ith GBDT. 331 candidates (refer to Fig. 16 c ), which are predicted to

ave a perovskite structure, were screened out from 891 ABO 3 . 

.2.2. Solar conversion efficiency 

To accelerate the process of discovering the hybrid organic-inorganic

erovskites for photovoltaics, Lu et al. [170] applied six ML algorithms

ombined with DFT calculations to screen solar battery materials (see

ig. 16 d ). Validation results showed that the gradient boosting re-

ression algorithm provides the highest accuracy. Additionally, six or-

horhombic lead-free hybrid organic-inorganic perovskites were discov-

red for the first time. Similarly, Schmidt et al. [171] constructed a data

et containing DFT calculations of approximately 250,000 cubic per-

http://se.cmich.edu/batteries
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Fig. 14. Data-driven materials science for solid-state battery: (a) Typical crystal structures of existed solid-state lithium-ion conductors. (b) Comparison of ion 

conduction characteristics between predicted and known solid-state lithium ion conductors. Reproduced with permission from [145] , Copyright 2019, Springer 

Nature Limited. (c) The coarse-grained molecular dynamics − Bayesian optimization framework. Reproduced with permission from [146] , Copyright 2020 American 

Chemical Society. 
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vskite systems. Four ML algorithms were thereafter applied to predict

he thermodynamic stability of solids. Their results illustrated that the

xtremely randomized trees give the highest accuracy. It also indicated

hat ML can be used to significantly speed up high-throughput DFT cal-

ulations at least 5 times. Takahashi et al. [172] performed a random

orest algorithm to predict the band gap of 9328 perovskite materials. 11

ew perovskite materials with proper band gap and formation energy

ange were discovered. To find out the most critical features for pre-

iction of the electronic band gap in double perovskites, Pilania et al.

173] adopted a ML model based on Kernel ridge regression. The results

howed that the lowest Kohn-Sham level and the electronegativity of the

lements constituting the atomic species are the most important predic-

ors. Min et al. [174] developed an inorganic ABO 3 perovskite materials

creening platform based on ML and active learning. Their results also

ndicate that the application of ML algorithms can greatly promote the

evelopment of new materials. 
14 
.2.3. Organic photovoltaics 

Organic solar cells are one of the promising technologies for solving

he clean energy crisis in the coming decades [175] . However, searching

or suitable candidates with desirable performance by laboratory explo-

ation is a time-consuming process [176] . The latest advancements in AI

how that the application of ML technology has the potential to expe-

ite the development of organic photovoltaic materials [177 , 178] . Paul

t al. [179] applied a deep neural network to screen organic solar cell by

redicting the highest occupied molecular orbital (HOMO) value. This

tudy verifies that the search for high-performance organic solar cells

an be performed faster by using transfer learning from a larger calcu-

ated data set to a carefully planned data set. To address the challenge

f high-throughput molecular design of organic photovoltaic materials,

agasawa et al. [180] reported a supervised learning screening model of

onjugated molecules for polymer-fullerene organic photovoltaic appli-

ations. Results showed that the RF model expresses the highest predic-
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Fig. 15. ML technology for the development of battery electrode materials: (a) ANN model framework with 10 input variables and two hidden layers. (b) Six 

core input variables determined by feature engineering. Reproduced with permission from [150] . Copyright 2018, The Royal Society of Chemistry 2018. (c) The 

prediction and optimization framework for porous electrode in lithium-ion battery. Reproduced with permission from [151] . Copyright 2020, MDPI. (d) Workflow 

of segmentation based on ML technology. Reproduced with permission from [153] . Copyright 2020, Springer Nature Limited. 
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ion accuracy, which can contribute to the decision making of molecular

esign. Padula et al. [181] studied the effects of the electronic and struc-

ural characteristics of solar cells on their performance by applying lin-

ar and nonlinear ML models. The results show that combining DFT cal-

ulations and solar cell electronic and structural features, the ML model

an achieve higher prediction accuracy. Sahu et al. [182] conducted a

ata-driven virtual screening of 10,170 candidate molecules for organic

hotovoltaic cells. With the application of GBRT and ANN model, 126
15 
romising candidates were screened out. This research demonstrates

hat ML-assisted virtual screening studies have the potential to reveal

idden guidelines that can be used to discover and design promising

olecules. In addition to discovering new materials, the key step in prac-

ical applications is to synthesize ML screened and predicted materials

o confirm the effectiveness of ML models [183] . Sun et al. [184] used a

upervised learning method to study the influence of chemical structure

n the performance of photovoltaic materials. The results show that the
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Fig. 16. The application of ML technology for property prediction and screening of photovoltaic materials: (a) two-dimensional (2D) photovoltaic materials. (b) The 

screening procedure for 2D photovoltaic materials based on ML model. Reproduced with permission from [169] . Copyright 2020, American Chemical Society. (c) The 

prediction result of 331 ABO 3 perovskites. Reproduced with permission from [123] . Copyright 2020, Elsevier. (d) ML algorithms combined with DFT calculations to 

screen solar battery materials. Reproduced with permission [170] . Copyright 2020, Springer Nature Limited. 
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Fig. 17. ML assisted materials design for high-performing organic photovoltaic materials: (a) 10 newly developed molecular donor materials based on ML screening. 

(b) Prediction results versus experimental data for the discovered organic photovoltaic materials. Reproduced with permission from [184] . Copyright 2019, The 

Authors, some rights reserved; American Association for the Advancement of Science. (c) Workflow of ML technology in the development of advanced organic solar 

cells. Reproduced with permission from [185] . Copyright 2020, Springer Nature Limited. 
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eveloped ML model can correctly describe the structure-property rela-

ionship. In addition, validation experiments were conducted based on

0 newly synthesized donor materials (see Fig. 17 a ) to confirm the relia-

ility of the ML model. The results are shown in Fig. 17 b , indicating that

he experimental results are consistent with the model prediction results.

ollowing the same motivation, Wu et al. [185] proposed an integrated

orkflow which combined ML technology and experimental validation.

s shown in Fig. 17 c , five ML algorithms were used to process data.

ased on the prediction results, manually experimental evaluation will

e carried out to synthesize the predicted materials and validate the

eliability of developed ML model. In this case study, six photovoltaic

onor/acceptor pairs were selected and synthesized. Validation results

onfirm that the experimental power conversion efficiency is at the same

evel as the predicted value. In addition to above mentioned research fo-

us, developing new data infrastructures for solar battery is also mean-

ngful. For example, Marchenko et al. [186] developed an open-source

c  

17 
atabase of perovskite materials, including ML predicted information

or crystal structures, band gaps, and atomic partial charges. In sum-

ary, the application of ML can accelerate the design and discovery of

hotovoltaic materials, which can further extend the large application

otential of renewable energy. 

.3. Catalytic reactions 

Catalytic materials play a key role in the application of advanced

nergy technologies [187 , 188] . From the past to the future, the screen-

ng of new catalytic materials has been a goal pursued by industry and

cademia [189 , 190] . Traditional catalytic material development meth-

ds through trial and error cannot meet the current needs of the rapid

evelopment of industry. The latest revolution in the field of data sci-

nce has raised the expectation that the application of ML technology

an accelerate the development of highly efficient catalyst materials
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191–194] . Choi et al. [195] explored the feasibility of applying ML

o predict the activation energy of gas phase reactions. Using molecular

tructure and thermodynamic properties and their differences as input

eatures, six different ML models based on ANNs, SVR and tree boosting

ethods were tested. The verification results show that the tree boosting

ethod shows the best predictive performance. Toyao et al. [196] de-

eloped a ML model to predict the adsorption energy of CH 4 related

ubstances on Cu-based alloys. Based on the database established by

he DFT calculation results, 12 features were selected to construct the

L model with the help of four supervised learning algorithms. The

esults show that the prediction accuracy of the extra tree regression

lgorithm is the highest. Based on the model, the adsorption energy

an be predicted by the model without time-consuming DFT calcula-

ion. Ma et al. [197] proposed an enhanced chemical adsorption model

ased on ANN, which can quickly and accurately predict the surface

eactivity of metal alloys in a wide chemical space. The ANN model

as trained by a group of data obtained from theoretical calculation

f ideal bimetallic surfaces. The trained ML model was applied to cap-

ure the nonlinear interactions of adsorbates on multi-metallic surfaces.

his method is expected to facilitate the screening of high-throughput

atalysts. In order to determine the active sites on the catalyst surface,

hen et al. [198] developed a comprehensive ML model. The model

ouples three modules: ANN, multi-scale simulation, and quantum me-

hanics. Taking the reduction of CO 2 as an example, the properties of

ll 5,000-10,000 surface parts on the surface of Au nanoparticle surface

AuNPs) and dealloyed Au were explored (refer to Fig. 18 a ). In addi-

ion, the activity of the entire surface of the catalyst is visualized by the

apping method (see Fig. 18 b) . The results showed that ML methods

an help guide the design of high-performance CO 2 recovery catalysts.

eyer et al. [199] developed a ML model to predict the oxidative addi-

ion reaction energy between transition metal complexes and substrates.

t can estimate the activity of homogeneous catalyst through combing

he model with a molecular volcano map. A total of 18,062 compounds

ere predicted, and 557 candidate catalysts that fell into the ideal ther-

odynamic window were selected. McCullough et al. [200] summarized

he latest progress in combining AI algorithms with high-throughput ex-

eriments in catalyst discovery. The results show that the AI model can

redict and discover new catalysts that do not exist in the existing ex-

erimental database. Additionally, the prediction accuracy of the ML

odel can be improved by considering more complex parameters such

s absorption energy and band gap. Compared with the traditional cat-

lytic reactions, the emerging electrocatalytic reactions have gradually

eceived attention [201 , 202] , especially in terms of green energy con-

ersion, such as electrolysis of water to generate hydrogen [203 , 204] ,

nd electrocatalytic reduction of carbon dioxide to carbon-neutral fuels

205 , 206] , electrocatalytic nitrogen reduction to ammonia [207 , 208] ,

tc. Aiming to discover efficient electrocatalysts for carbon dioxide re-

uction, Chen et al. [209] developed an ML model to analyse a large

umber of calculated data sources by using the extreme gradient en-

ancement regression (XGBR) algorithm. This research provides clues

or quickly searching for high-performance catalysts using the predicted

alue of Gibbs free energy (see Fig. 18 c ). To screen ideal catalysts for

ydrogen evolution reaction (HER), Sun et al. [210] applied four ML

lgorithms coupled with DFT calculation to predict the values of Gibbs

ree energy of hydrogen adsorption ( ΔG H ∗ ). Results show that a higher

rediction accuracy was obtained through using SVR model with simple

eatures (see Fig. 18 d ). Additionally, 28 candidates were screened out

y ML and five among them were identified as the promising catalysts

or HER (see Fig. 18 e ). 

In addition to the work mentioned above, materials researchers have

xplored other aspects in the application of ML to develop catalyst mate-

ials [211] . For example, Fischer et al. [212] discussed the application of

andom forest regression (RFR) in the development of two-dimensional

atalytic materials. The results show that the RFR model has high predic-

ion accuracy for the binding energy of small molecules. Although most

f the case studies in this section use computational data to build ML
18 
odels, Smith et al. [213] created an ML model based on experimental

ata extracted from the literature. The proposed framework can effec-

ively guide experiments and descriptor selection. In order to further

ower the threshold for applying ML technology to develop new cata-

ysts materials, Palkovits [125] provided a fundamental tutorial with

ode for the application of ML in catalysis. The programming code for

arious ML algorithms is directly provided, enabling a convenient usage

or other materials scientists. Moreover, Toyao et al. [214] summarized

he latest progresses in data-driven science for catalytic materials, in-

luding materials design, synthesis, characterization, and applications,

tc. A close-loop roadmap of future catalysis research coupled with ML

echnology was proposed (see Fig. 19 ), which contains different mod-

les, such as automated synthesis and analysis platform for catalytic

aterials, data resources and human intuition, theoretical calculation,

s well as ML prediction. In summary, the application of ML technology

an speed up the development of high-performance catalytic materials.

.4. CO 2 capture technologies 

Metal-organic framework (MOF) has attracted widespread attention

ecause of its tenable structure, which can realize selective CO 2 phys-

cal adsorption. However, considering the many functions that can be

hanged simultaneously in thousands of MOFs so far, it has become very

hallenging to determine the most critical functions to improve CO 2 

apture capacity. The high-throughput screening method based on ML

rings hope to improve the performance of MOF [119 , 215] . Anderson

t al. [216] used multi-scale DFT, grand canonical Monte Carlo (GCMC),

nd ML methods to study the role of different pore chemistry and topo-

ogical characteristics in enhancing the CO 2 capture indicators of MOFs.

he results show that the simple descriptors proposed by "human intu-

tion" for training ML algorithms can be an effective simulation tool for

redicting CO 2 capture indicators. Searching for electronically conduc-

ive MOFs among thousands of reported MOF structures is a difficult

ask. He et al. [217] used a new strategy that combined ML technology,

tatistical multiple selection and ab initio calculations to screen 2,932

OFs. Six MOF crystal structures with promising performance were de-

ermined. In order to accurately determine the candidate MOFs with

nhanced CO 2 adsorption capacity, Fernandez et al. [218] developed a

uantitative structure-property relationship classifier. The research re-

ults show that the ML classifier can reduce the calculation time by an

rder of magnitude. For the purpose of determining the key factors of

arbon dioxide capture capacity, Zhu et al. [219] established a quanti-

ative structure-attribute relationship model based on the RF algorithm.

he results show that there is a strong correlation between CO 2 adsorp-

ion capacity and pressure (see Fig. 20 a ). In addition, the relative impor-

ance of the three key parameters is shown in Fig. 20 b , which provides

irect clues for the selection of key parameters. To summarize the recent

tate-of-the-arts of applying ML technology to develop novel materials

or CO 2 adsorption. Chong et al. [220] provided a systematic review of

pplications of ML technology in MOFs, which emphasizes the future

rospects of data-driven materials science and engineering in the devel-

pment of carbon dioxide adsorption materials. 

. Future perspectives 

.1. Perspectives for specific energy materials 

.1.1. Alkaline ion batteries materials 

Concerning the development of advanced battery materials, there

re some challenges hindering the continuous innovation and research

n data-driven battery materials. First, when applying the ML algorithm

o study the comprehensive influence of electrode and electrolyte ma-

erials on battery performance, the ML model established for battery

aterials is usually more complicated. The reason includes the complex

elationship between the structure and composition of the battery, and
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Fig. 18. The application of ML technology for screening and prediction of catalytic materials: (a) Neural network predictions for AuNPs. (b) Identified active sites 

for AuNPs surfaces. Reproduced with permission from [198] . Copyright 2019, American Chemical Society. (c) The predicted heat map of the Gibbs free energy 

change of CO adsorption ( ΔG CO ) for 1060 designed single-atom catalysts. Reproduced with permission from [209] . Copyright 2020, American Chemical Society. (d) 

Predicted vs. DFT-calculated value of Gibbs free energy of hydrogen adsorption ( ΔG H ∗ ). (e) 28 candidates for hydrogen evolution reaction catalysts screened by ML. 

Reproduced with permission from [210] . Copyright 2020, Elsevier. 
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Fig. 19. Schematic diagram of ML-aided future catalysis research. Reproduced with permission from [214] . Copyright 2019, American Chemical Society. 

Fig. 20. Using ML technology to explore the key factors of CO2 adsorption capacity: (a) Analysis results of feature correlation. (b) The relative importance of 

comprehensive influencing factors under various pressure ranges. Reproduced with permission from [219] . Copyright 2020, Elsevier. 
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arious chemical reactions that occur at the electrode-electrolyte inter-

ace. Second, battery data resources used for modeling and analysis lack

ystematic collection and standardization. Furthermore, data resources

enerated from practical applications in the battery industry are also

orth collecting. To address these critical challenges mentioned above,

uture research can be performed from the following perspectives. On

ne hand, parameters of ML model can be optimized in accordance with

esults of feature engineering, which indicate the importance of each pa-

ameter. Meanwhile, parameters selection can be further optimized to

implify the model by integrating with optimization algorithms, such as

volutionary algorithm and Bayesian algorithm. On the other hand, it

s also suggested to combine domain expert knowledge of battery tech-

ology with ML modeling process, thereby maintaining the model re-

iability above a certain level. Moreover, the development of battery

aterials can be accelerated by combining various resources, including

FT calculations, ML technologies, and experimental exploration. 
20 
.1.2. Photovoltaic materials 

With regard to photovoltaic materials, several critical challenges

eed to be addressed. First, searching next generation of features, which

an perform accurate prediction and easily accessible, is worth further

tudying. Second, it is recommended to combine domain expert knowl-

dge with feature engineering and modeling process to improve the ef-

ectiveness of the developed ML model. At the same time, validation

xperiments should be carried out to confirm the analysis results of ML

odel, such as the prediction candidate with high-performance. Cur-

ently, only few studies have validated their predicted materials with

xperiments. Model validation should be considered as a necessary step

n the future. Another major issue that exists in the field of data-driven

olar materials science is data scarcity. It is believed that the problem of

mall datasets can be alleviated by the latest developed AI technologies,

uch as text mining and image recognition. Furthermore, by combin-

ng data extracted from DFT calculations and experiments, data sources
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Fig. 21. The future data infrastructures in data-driven materials science and 

engineering. 
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or photovoltaic materials can be enriched. From the perspective of al-

orithm selection, ANN and GA were considered as the two most com-

only used ML algorithms for solar batteries [162] . In addition to prop-

rty prediction and advanced materials screening, ML technology can be

pplied to optimize device structures and fabrication processes of solar

atteries to promote the industrialization process of photovoltaic ma-

erials. Moreover, although there are large number of research articles

elated to data-driven photovoltaic materials science and engineering,

elevant comprehensive review papers in this field are limited. There-

ore, more systematic review papers should be published to point out the

uture directions as well as pave way for the development of advanced

hotovoltaic materials. 

.1.3. Catalytic materials 

The use of ML technology in the development of new catalytic ma-

erials is still in the early stages of exploration and is majorly driven by

xperience. The possible reason is that the catalytic process usually in-

olves multi-dimensional and multi-scale chemical reactions, which is a

omplex and dynamic process. In addition, the experimental conditions

or catalytic reactions reported in the literature are usually too broad,

nd some specific experimental details are deliberately hidden. More-

ver, the method and format of reporting data, especially grey data, dur-

ng the experiment are not uniform. The above behaviors have caused

ifficulties in database establishment and parameter selection, and in

urn hindered the rapid development of advanced catalytic materials.

o promote the development of catalysis informatics, future research

ay consider the following perspectives. First, catalytic materials scien-

ists should pay attention to combining ML technology with the existing

hysical and chemical models of catalytic reactions, which has the po-

ential to improve the overall performance of ML models. Second, the

xploration of unknown catalytic materials as well as reaction mecha-

ism can be accelerated by integrating automated technologies such as

ntelligent robots, and optimization algorithms such as Bayesian algo-

ithm and genetic algorithm. Third, data used for ML modeling should

e collected from various sources, such as online open-source databases,

omputational data sets, and laboratory experimental data. 

.1.4. CO 2 capture materials 

The challenges and perspectives of applying data-driven science to

he development of CO 2 capture materials can be highlighted from fol-

owing prospects. First, the development and adaptation of ML algo-

ithms for different CO 2 capture materials systems is worthy of further

tudy. It is noteworthy that RF algorithm has been widely used in the

esign and discovery of new CO 2 capture materials, thereby showing

reat practical application potential. In addition, algorithms with opti-

ized functions can be used to screen CO 2 capture materials, such as

A and GBRT. Second, future research should focus on providing design

ules to guide the development of new CO 2 capture materials, such as

everse design based on feature engineering. Third, an automatic inte-

rated system for the development of CO 2 capture materials based on

ntelligent robot technology, DFT calculations, and experimental studies

hould be developed. Therefore, the predicted materials can be synthe-

ized to further optimize the ML model. 

In addition to the specific challenges and future perspectives for each

nergy material mentioned above, general perspectives that are appli-

able to all these materials to promote the development of data-driven

nergy materials science and engineering are discussed in the following

ection. 

.2. Perspectives for data-driven energy materials sciences 

.2.1. Improvement and standardization of data infrastructure 

ML algorithms are basically extracted knowledge from previous data

ources which are commonly derived from computational or experimen-

al results. In this case, a large amount of training data can help the ML

odel to achieve higher accuracy. However, a critical issue during the
21 
pplication of data-driven materials science is data scarcity, especially

or the data sources derived from experimental studies. The reason is

hat material scientists report their data in different formats, hence pos-

ng challenges in the unified collection of data. In addition, the grey

ata or failed data in the experiment was deliberately hidden. To solve

he problem of data sparsity, some promising directions can be further

xplored in the future. 

First, the conventional data format reported or published in the ma-

erials community should be changed to facilitate the direct and easy

ollection of data from publications or literature. As shown in Fig. 21 ,

esearchers and scientists can upload data generated from experiments

r calculations to an online open database website. The online database

ill then mark the data with the provider information and classify the

ata into a specific subset based on the intelligent recommendation from

he system. The data provider can also select the subset manually. Af-

erwards, the online system will transform the uploaded data into a gen-

ral machine-readable format. Meanwhile, an exclusive link will also be

enerated for the data provider. Thus, data users can access and down-

oad the data from online database with a specific format and citation.

oreover, for the purpose of accelerating the development of advanced

nergy materials, data providers can as well add such link as one of

he supporting information in their publications. Second, the natural

anguage processing technology, which has been successfully applied

o text and image recognition, can be introduced to help materials sci-

ntists mine large-scale data from existing literature. For instance, us-

ng natural language processing techniques, Kim et al. [221] developed

n entity recognition model to connect scientific literature to inorganic

ynthesis insights. Third, materials engineers should consider exploring

ata fusion in the next few decades, that is, integrating multiple data

ources to generate more consistent and accurate information than any

ingle data source could provide. For instance, Ward et al. [222] im-

roved the accuracy of ML model by 30 % through adding the NIST

ata into original training data. Hence, more application of this tech-

ique should be largely embraced. Fourth, researchers in the materials

ommunity should also pay more attention to the results of failed exper-

ments that are usually overlooked. Scientists from Harvard University

as launched a project for ML assisted materials discovery using failed

xperiments [76] . The results show that the application of grey data can

ave way for materials development. However, the number of meaning-

ul attempts in this topic is still limited. Therefore, more intensive re-

earch in related fields should be carried out. Furthermore, more online

pening databases (such as The Materials Projects and NIST), tools and

oftware (such as Jupyter Notebook and GitHub) need to be developed

o promote the development of data-driven materials science. 
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Fig. 22. Closed-loop autonomous materials ex- 

ploration and optimization. Reproduced with 

permission [223] . Copyright 2020, Springer 

Nature Limited. 
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.2.2. Automatic closed-loop optimization framework and model 

isualization 

Even though ML technology has widely proven to be a useful tool in

ata-driven materials science, no doubt that there are still some chal-

enges that need to be addressed. For example, in the ML modeling pro-

ess, the selection of descriptors and the setting of parameters are largely

ependent on manual decision-making. Meanwhile, the value of each

arameter cannot be automatically updated based on the results of the

revious round, thereby resulting in increased time cost. Furthermore,

L models constructed by certain algorithms such as neural networks

re difficult to interpret because these models are usually not visible. In

his regard, relevant keys and perspectives to successful applications of

L are therefore highlighted as follows. 

First, the closed-loop optimization framework of ML algorithms

hould be developed to accelerate the process of materials discovery.

s shown in Fig. 22 , the main objective of this approach is to develop

 closed-loop iterative process which can formulate hypotheses about

anufacturing materials with given structures and properties. The au-

omatic framework would therefore be able to plan and perform exper-

ments, as well as interpret the results. The knowledge extracted from

revious round can thereafter be applied to design the next round of

xperimental exploration as well as simulation through combing the

ayesian active learning. This method has its own disadvantages such

s autonomous optimization, that is, the optimal candidate obtained by

he optimization process may be a local optimal solution (the ideal so-

ution should be the global optimal solution). In this case, other promis-

ng candidates will be unconsciously excluded. Herein, we suggest that

he closed-loop optimization framework should be used in conjunction

ith algorithms supporting global optimization (for example, evolution-

ry algorithm) to avoid the trap of local optimal solutions. In addition

o the automatic framework mentioned above, the application of deep

earning neural networks in materials science is also recommended. The

eason is that deep learning has a strong nonlinear fitting ability, which
 m

22 
an simulate the complex relationship between various features and re-

eal the material synthesis mechanism. Third, the ML model needs to

e more visible. Although the application of ML can facilitate the pre-

iction of materials properties and screen potential candidates, the in-

erpretability of ML model still deserves further exploration. Once the

L model can be clearly explained, the relationship between various

arameters and material properties would be easily identified, thereby

urther promoting the development of energy materials. 

.2.3. Intelligent robot self-driving laboratory and predictive material 

ynthesis 

The data generated from experiments have significant impacts on

ata-driven material science. However, due to the low success rate and

ime-consumption, data scarcity is a common problem in databases that

s largely composed of experimental data. Thus, more efforts should be

aken to produce large amounts of data samples. With the rapid devel-

pment of intelligent robots and 3-D printing technology, the concept

f self-driving laboratory by robots is gradually coming into fruition.

ecently, Andrew Cooper’s team at the University of Liverpool has de-

eloped an intelligent robot that can operate autonomously over eight

ays, perform 688 experiments within and identify photocatalyst mix-

ures that are six times more active [224] . It is foreseeable that such

I chemists will become powerful assistants for materials scientists. An-

ther major challenge hindering the development of materials genomics

s the manufacture of materials for ML prediction. The possible reason

ay be that the structure or component of the predicted material is dif-

cult to synthesize. Moreover, there are currently no predictive theories

bout which compounds can be synthesized and how they can be synthe-

ized. Thus, research on exploring theories to synthesize ML predicted

aterials will be a promising direction. 
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.2.4. Interdisciplinary communications and supportive policies 

Since all scientists have their own expertise and terminology, de-

eloping a common language among different disciplines plays a key

ole in computational materials science. On this basis, the cooperation

nd joint efforts among computer scientists, chemists, physicists, and

aterials engineers could promote and hasten the development of new

aterials. One feasible suggestion is for universities to organize sem-

nars and summer schools, and also develop courses that bridge these

reas, such as the International Summer School-Deep Materials: Perspec-

ives on Data-Driven Materials Research, hosted by the Italian national

nterprise in nanoscience and nanotechnology. More importantly, the

upportive policies and initiatives from the government, research in-

titutions, and universities can further accelerate the development of

ata-driven materials science and engineering. For example, to achieve

 carbon-neutral Europe by 2050, the BATTERY 2030 + Roadmap was

roposed to invent the batteries of the future. We hope there will be

ore projects to speed up scientific discoveries in data-driven materials

cience. 

. Concluding remarks 

The latest progress in data-driven materials science and engineering

hows that the application of ML technology can greatly facilitate the

iscovery, design, development, and deployment of advanced energy

aterials. In this paper, we first present the roadmap to carbon neu-

rality to illustrate the importance and necessity of developing novel

nergy materials. Second, a comprehensive review of fundamental ML

utorials is provided, including open-source materials databases, feature

ngineering, detailed introduction of typical ML algorithms, and effec-

iveness analysis of ML model. Afterwards, the recent progress in data-

riven materials science and engineering including alkaline ion battery

aterials, photovoltaic materials, catalytic materials, and CO 2 capture

aterials, are introduced and discussed. This consists of performance-

rediction, screening of potential candidates, and closed-loop optimiza-

ion of properties for energy materials. Moreover, the keys to successful

L applications and remaining challenges are highlighted, such as im-

rovement and standardization of data infrastructure, ML techniques

automatic closed-loop optimization and model visualization), experi-

ental exploration (self-driving laboratory by robots), interdisciplinary

ommunications and supporting policies. We further highlight the future

otentials of automatic closed-loop optimization techniques as well as

he application of AI robots. We believe the state-of-the-arts in the ap-

lication of ML within materials community summarized in this paper

ould pave way for the development of high-performing energy mate-

ials. 
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