
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

THE USES AND ABUSES OF AN AGE-PERIOD-COHORT
METHOD: ON THE LINEAR ALGEBRA AND STATISTICAL
PROPERTIES OF INTRINSIC AND RELATED ESTIMATORS

Qiang Fu∗

Department of Sociology, The University of British Columbia,
Vancouver, BC V6T 1Z1, Canada

Xin Guo

Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong; and

School of Mathematics and Physics, The University of Queensland,
Brisbane, QLD 4072, Australia

Sun Young Jeon

School of Medicine, University of California, San Francisco,
San Francisco, CA 94121, USA

Eric N. Reither

Department of Sociology, Social Work, and Anthropology, Utah State University,
Logan, UT 84322, USA

Emma Zang

Department of Sociology, Yale University,
New Haven, CT 06511, USA

Kenneth C. Land

Department of Sociology and Social Science Research Institute, Duke University,
Durham, NC 27708, USA

(Communicated by the associate editor name)

2010 Mathematics Subject Classification. Primary: 91D20; Secondary: 15A06.
Key words and phrases. Intrinsic estimator, Age-period-cohort analysis, Statistics, Asymptotic

property, Ridge regression, Principal components regression.
This research was partially supported by the Research Grants Council of Hong Kong [Project

No. PolyU 15334616] and partially based on class notes provided by Qiang Fu during the course
“Age-Period-Cohort Analysis: Principles, Models and Application”, given in the Institute for
Empirical Social Science Research (IESSR) at Xi’an Jiaotong University (July 2015) and in the
School of Public Administration at Zhongnan University of Economics and Law (July 2018).

∗ Corresponding author: Qiang Fu.

1

This article has been published in a revised form in Mathematical Foundations of Computing http://dx.doi.org/10.3934/mfc.2021001. This version is free 
to download for private research and study only. Not for redistribution, re-sale or use in derivative works.

This is the Pre-Published Version.

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 FU∗, GUO, JEON, REITHER, ZANG, AND LAND

Abstract. As a sophisticated and popular age-period-cohort method, the In-
trinsic Estimator (IE) and related estimators have evoked intense debate in
demography, sociology, epidemiology and statistics. This study aims to pro-
vide a more holistic review and critical assessment of the overall methodological
significance of the IE and related estimators in age-period-cohort analysis. We
derive the statistical properties of the IE from a linear algebraic perspective,
provide more precise mathematical proofs relevant to the current debate, and
demonstrate the essential, yet overlooked, link between the IE and classical
statistical tools that have been employed by scholars for decades. This study
offers guidelines for the future use of the IE and related estimators in demo-
graphic research. The exposition of the IE and related estimators may help
redirect, if not settle, the logic of the debate.

1. Introduction. For several decades, the classical age-period-cohort accounting
(multiple) classification model (APCMC model [26]) has been a subject of method-
ological attention and commentary. The reason for this is clear: Age-period-cohort
(APC) analysis has played a critical role in studying time-specific phenomena in
epidemiology, demography, and sociology for the past 90 years [28]. This approach
to analysis distinguishes three types of time-related variation/temporal dimensions
in the phenomena of interest: age effects, or variation associated with different age
groups, period effects, or variation over time periods that affects all age groups
simultaneously, and cohort effects, or changes across groups of individuals who ex-
perience an initial event such as birth in the same year or years.

These distinctions have important implications for measurement and analysis.
The considerable regularity of age variations in many outcomes across time and
place reflects the developmental nature of age changes across the life course. In
contrast, period and cohort effects reflect the influences of social, demographic,
economic, and other structural forces. Period variations often result from shifts
in social, historical, and cultural environments. Cohort variations are conceived
as the essence of social change and may reflect the effects of early life exposure
to socioeconomic, behavioral, and environmental factors that act persistently over
time to produce differences in life-course outcomes for specific cohorts [52].

The APCMC model serves as a general framework for cohort analysis when all
three temporal dimensions of age, period, and cohort are potentially of interest
and the data to be analyzed are in the form of tables of percentages or occur-
rence/exposure rates of events such as births, deaths, disease incidence, crimes,
etc. In spite of its theoretical merits and conceptual relevance, APC analysis of
tabulated data suffers from the identification problem induced by the exact linear
dependency between age, period, and (birth) cohort: Period = Age+Cohort. This
can be viewed as a special case of collinear regressors that produces, in this case, a
singular matrix (of one less than full rank) used in the statistical estimation pro-
cess. Since a singular matrix produces multiple estimators of the three effects, it is
difficult to identify the unique true age, period, and cohort effects.

A number of methodological contributions to the specification and estimation
of APCMC models have been developed in a wide variety of disciplines, including
social and demographic research (e.g., [6, 7, 14, 18, 32, 49]) and biostatistics and
epidemiology (e.g., [5, 19, 35, 37, 46, 45]). Developments in APCMC methodology
in biostatistics emphasized the utility of estimable functions that are invariant to
the selection of constraints on parameters [5, 19, 22, 21, 38]. This is the approach
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applied by Fu [10] in the derivation of a new APC estimator — termed the intrinsic
estimator (IE).

Yang, Fu, and Land [51] compared two approaches to the identification problem
in APCMC models, namely, the IE method and the constrained generalized linear
models (CGLM) estimator that has been conventional among demographers and
other social scientists for more than two decades [6, 7, 27]. Based on their results,
Yang et al. [51] concluded that the IE offered a useful alternative to conventional
methods for the APC analysis of tables of rates. Yang, Schulhofer-Wohl, Fu, and
Land [53] further described the IE algebraically, geometrically, and verbally, re-
ported results of model validation assessments of the IE both from empirical exam-
ples and simulation experiments, and introduced a software package that interested
users can readily access. While there have been extensive debates over statistical
properties of the IE [24, 33] and its applicability in the APC context [25], more
recent studies possibly suggest that the IE remains a useful tool for estimating age,
period, cohort effects [11, 8, 9].

The publication of these and related articles on the IE for APCMC models stim-
ulated considerable commentary in the past decade as well as the development of
related statistical estimators. The purpose of this paper is to investigate the linear
algebra and statistical properties of the IE and related estimators1 of the APCMC
model, provide further mathematical proofs that are essential but currently lacking
in the existing literature, assess fundamental perspectives in the application of the
IE and related estimators, and suggest future directions for the IE approach to APC
analysis.

2. Algebra of the APCMC Model and the Intrinsic and Related Estima-
tors. The APCMC model can fall into the class of generalized linear models (GLM;
see McCullagh and Nelder [29] or McCulloch and Searle [30] for expositions) and
take a log-linear regression form via a log link as:

log(Eij) = log(Pij) + µ+ αi + βj + γk, (1)

where Eij denotes the expected number of deaths in cell (i, j) that is assumed to
be distributed as a Poisson variate, and log(Pij) is the logarithm of the exposure
Pij in (1) and is called the “offset” or an adjustment for the log-linear contingency
table model. µ denotes the intercept (e.g., adjusted mean death rate), αi denotes
the i-th row age effect or the coefficient for the i-th age group; βj denotes the j-th
column period effect or the coefficient for the j-th time period; γk denotes the k-th
diagonal cohort effect or the coefficient for the k-th cohort for k = 1, . . . , (a+ p− 1)
cohorts, with k = a− i+ j. Models of this type are widely used in demography and
epidemiology where the counts of demographic events such as deaths or the incidence
of diseases generally follow Poisson distributions and the rates are estimated through
log-linear models [1].

Regression model (1) can be treated as fixed-effects generalized linear models
after a re-parametrization to have centered parameters:∑

i

αi =
∑
j

βj =
∑
k

γk = 0. (2)

1As noted later, several approaches to estimation of the APCMC model based on different
principles of statistical estimation yield estimates that are equivalent to the IE. We thus refer to
them throughout as related estimators.
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After re-parameterization in (4), these APCMC models can be written in the con-
ventional matrix form of a least-squares regression:

Y = Xb+ ε, (3)
where Y is a vector of mortality rates or log-transformed rates, X is the regression
design matrix consisting of dummy-variable column vectors for the vector of model
parameters b, which is of dimension m = 1 + (a− 1) + (p− 1) + (a+ p− 2):

b = (µ, α1, · · · , αa−1, β1, · · · , βp−1, γ1, · · · , γa+p−2)
T . (4)

The ordinary least squares/maximum likelihood estimator (OLS/MLE) of the
matrix regression model (3) is the solution b of the normal equations:

b̂ = (XTX)−1XTY. (5)
But this estimator does not exist (i.e., there is no uniquely defined vector of co-
efficient estimates). This is because the design matrix X is singular with one less
than full column rank (Kupper et al. [21]), which further originates from the perfect
linear relationship between the age, period and cohort effects:

Period − Age = Cohort.

Therefore, (XTX)−1 does not exist. This is the model identification problem of
APC analysis. It implies that there are an infinite number of possible solutions of
the matrix Equation (5), one for each possible linear combination of column vectors
that result in a vector identical to one of the columns of X. Therefore, it is not
possible to estimate the separate effects of cohort, age, and period without imposing
at least one constraint on the coefficients in addition to the re-parameterization in
(2). Since the work of Fienberg and Mason [6, 7], the conventional approach to
APCMC models has been a coefficients-constraints approach, which takes the form
of placing (at least) one additional identifying constraint on the parameter vector
in (4), e.g., constraining the effect coefficients of the first two periods to be equal,
β1 = β2. With this additional constraint, the model (3) is just-identified, the matrix
XTX becomes non-singular, and the least-squares estimator in (5) exists.

Since the design matrix X of the unconstrained APCMC model is one less than
full column rank, the parameter space of the model can be decomposed into the
direct sum of two linear subspaces that are perpendicular to each other (Yang et al.
2004, 2008). One subspace corresponds to the unique zero eigenvalue of the matrix
XTX of Equation (5) and is of dimension one; it is termed the null space of the
design matrix X,2 and the other subspace is the complement subspace orthogonal
to the null space and is of dimension one less than the number of columns of the
design matrix.

Due to this orthogonal decomposition of the parameter space, each of the infinite
number of solutions of the unconstrained APC accounting model can be written as

b̂ = B + sB0, (6)
where s is a scalar corresponding to a specific solution and B0 is a unique eigenvector
of the Euclidean norm or length one (Yang et al. [51, 53]). The eigenvector B0 does
not depend on the observed rates Y , it only depends on the design matrix X and
thus is completely determined by the numbers of age groups and period groups
regardless of the event rates. It is important to note that the vector B0 is fixed or

2Since the design matrix X of the APCMC model is of rank one less than the number of
columns of X, the null space of X is spanned by a single column vector, the null vector B0.



INTRINSIC AND RELATED ESTIMATORS 5

non-random, because this vector is a function solely of the dimension of the design
matrix X, or the number of age groups (a) and periods (p). The fact that the fixed
vector B0 is independent of the response variable Y suggests that it should not
play any role in the estimation of effect coefficients. But this principle is frequently
violated in the conventional CGLM approach if the scalar s in Equation (6) is
nonzero [21, 51, 53]. This is a key point, as intuition suggests that the eigenvector
corresponding to the zero eigenvalue should be an arbitrary vector. And, indeed,
sB0 is arbitrary. On the other hand, B0 is not arbitrary; it is fixed by the design
matrix. Furthermore, as indicated in Equation (6):

• any APC estimator, obtained by placing any identifying constraint(s) on the
design matrix can be written as a linear combination B + sB0,

• where B is the intrinsic estimator (IE) that lies in the parameter subspace
that is orthogonal to the null space.

The IE B in Equation (6) is determined by the Moore-Penrose generalized inverse
[12].3

Corresponding to the decomposition of the estimators in equation (6), the un-
constrained parameter vector (4) can be decomposed into

b = b0 + sB0, (7)
where the parameter vector b0 = Pprojb is a linear map of b corresponding to the
projection of the unconstrained parameter vector (6) to the row space of X [51, 53].
Specifically, the constrained parameter vector b0 corresponding to s = 0 satisfies
the geometric projection:

b0 = (I −B0B
T
0 )b, (8)

where b is the parameter vector (6). Since B0 is a normalized vector orthogonal to
b0, Equation (8) holds because BT

0 b0 = 0 and BT
0 B0 = 1 such that

(I −B0B
T
0 )b = (I −B0B

T
0 )(b0 + sB0) = b0 −B0B

T
0 b0 + sB0 −B0B

T
0 sB0

= b0 − 0 + sB0 − sB0 = b0.

Yet, it is also important to understand Equation (8) from a linear algebra perspec-
tive. Since B0(B

T
0 B0)

−1BT
0 defines a projection matrix which projects b onto the

null vector B0, we obtain b0 once b subtracts its component in the direction of B0:
b0 = b− sB0 = b− Pprojb = b−B0(B

T
0 B0)

−1BT
0 b

= b−B0B
T
0 b = (I −B0B

T
0 )b. (9)

This projection is illustrated geometrically in Yang and Land [52]. The projection is
independent of the arbitrary real number/scalar s. Corresponding to the projection
of the parameter vector b onto b0, we have the following projection of the estimators
of equation (8) onto the intrinsic estimator B (e.g., [10, 51]):

B = (I −B0B
T
0 )b̂. (10)

In brief, the basic idea of the IE is to remove the influence of the null space
of the design matrix on coefficient estimates [51, 53]. This is done by projecting
the APCMC coefficient vector b onto the non-null space of the design matrix X,
which is equivalent to setting the scalar s (through which the design matrix affects

3See, e.g., Searle [41, pages 16-19] for a definition of the Moore-Penrose generalized inverse and
its properties. In some expositions of generalized inverse matrices (e.g., [3]) the Moore-Penrose
generalized inverse is termed a pseudoinverse.
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the vector b) in Equation (7) equal to zero and yields the constrained parameter
vector b0 to be estimated. Corresponding to this projection of b onto b0, the IE B

is obtained by projecting any equality constrained APCMC estimator b̂ onto the
non-null space of X. The IE also can be viewed as a special form of principal
components regression estimator4 that removes the influence of the null space of
the design matrix X on the estimator. In order to facilitate interpretability of the
estimated A, P, and C coefficients, the IE uses an extra step of inverse orthonormal
transformation of the coefficient estimates of the principal components regression
back to the original space of age, period, and cohort coordinates.

Remark 1 (Related Estimators). As O’Brien [34, page 88] noted, several other
approaches to estimation of the APCMC model yield estimates that are equivalent
to those estimated by the Moore-Penrose generalized inverse matrix and the IE. This
includes the principal components estimator of Kupper et al. [21], the singular value
decomposition solution [36], the partial least squares estimator of Tu et al. [47], and
the maximum entropy estimator of Browning et al. [4]. And while Fu [10] derived
the IE as the limit of a ridge regression estimator for singular design matrices as
the shrinkage penalty diminishes, Xu and Powers [50] showed that a Bayesian ridge
regression model with a common prior for the ridge parameter yields estimates of
age, period, and cohort effects similar to those based on the IE and to those based
on a ridge estimator.

3. The Linear Algebra of the Intrinsic Estimator. Given the foregoing defi-
nitions and algebraic properties, we now place the intrinsic and related estimators
in a broader context of matrix analysis and demonstrate their essential (albeit often
overlooked) link with established regression models. More specifically, we prove:

Theorem 1. The IE is an estimator of principal component regression (PCR) after
the principal component corresponding to eigenvalue 0 is removed.

Proof. To express principal components of variables in the design matrix, we first
perform a singular value decomposition of Xn×m, which has n rows (observations)
and m columns (variables):

Xn×m = Pn×n∆n×mQT
m×m, (11)

where Pn×n = (p1, p2, · · · , pn) contains n eigenvectors of XXT , entries of the diag-
onal matrix ∆n×m are the singular values of Xn×m, and Qm×m = (q1, q2, · · · , qm)
contains m eigenvectors of XTX. Since Qm×m is an orthogonal matrix, we have

QTQ = QQT =


1

1
. . .

1

 = I, (12)

where the transpose of Q is also the inverse of Q, i.e., QT = Q−1. To describe
the relations among the square (symmetric) matrix XTX, its eigenvectors and

4For a standard exposition of principal components regression, see, e.g., [42].
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eigenvalues, we have [44]:

XTXQ = XTX(q1, q2, · · · , qm) = (XTXq1, X
TXq2, · · · , XTXqm)

= (q1, q2, · · · , qm)


λ1

λ2

. . .
λm

 = QΛ, (13)

where λi is the corresponding eigenvalue of the eigenvector qi and Λ = ∆T∆ is a
diagonal matrix consisting of all these eigenvalues. Or,

XTX = QΛQ−1. (14)

Since QT = Q−1 and Q−1Q = I, each side of Equation (14) can be pre-multiplied
by QT and post-multiplied by Q to yield:

QTXTXQ = Q−1QΛQ−1Q = Λ = ZTZ, (15)

where

Z = XQ =


x1

x2

...
xn

(
q1 q2 · · · qm

)

=


⟨x1, q1⟩ ⟨x1, q2⟩ · · · ⟨x1, qm⟩
⟨x2, q1⟩ ⟨x2, q2⟩ · · · ⟨x2, qm⟩

...
... . . . ...

⟨xn, q1⟩ ⟨xn, q2⟩ · · · ⟨xn, qm⟩


actually projects the original design matrix Xn×m onto eigenvectors of XTX (or
right-singular vectors of Xn×m) and produces principal components of X. In this
regard, eigenvectors qi are also known as principal component directions of X [17].
If we rewrite the design matrix Xn×m in terms of its principal components, Equation
(5) can now be rewritten as:

Y = Xb+ ε = XQQT b+ ε = ZbZ + ε, (16)

where Z = XQ and bZ = QT b are the new design matrix and the new coefficient
vector, respectively. The regression estimator of Equation (16) can be denoted by
Moore-Penrose generalized inverse matrices (see the Appendix) as:

b̂Z = QT b̂ = QT (XTX)†XTY = QT (QΛQT )†XTY

= QTQΛ†QTXTY = Λ†QTXTY

= (QTXTXQ)†QTXTY = (ZTZ)†ZTY. (17)

Once b̂Z is calculated, the PCR estimator b̂PCR with all the principal components
can be obtained by:

b̂PCR = Qb̂Z = QQT b̂. (18)

Given that QQT = I, it is easy to see b̂PCR = b̂. Considering the eigenvector in
the null space of Xn×m, one can address the identification problem by removing
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the eigenvector B0 from Qm×m and then perform principal-component-regression
analysis. More specifically, we define:

Q∗ = (q2, · · · , qm), (19)
where without loss of generality we assume that the first eigenvector q1 is associated
with eigenvalue λ1 = 0. Correspondingly, the PCR estimator becomes the following
since Λ∗ is now nonsingular:

b̂PCR∗ = Q∗b̂Z∗ = Q∗Λ
−1
∗ QT

∗ X
TY. (20)

Next, we prove that b̂PCR∗ is the intrinsic estimator B, namely, b̂PCR∗ = (I−B0B
T
0 )b̂

in the following two steps:
(1). b̂PCR∗ is a least squares solution to equation (5). Since λ1 = 0, we have

Q∗Λ
−1
∗ QT

∗ =

m∑
i=2

λ−1
i qiq

T
i =

m∑
i=2

λ−1
i qiq

T
i + 0q1q

T
1 = QΛ†QT ,

and b̂PCR∗ is thus a least squares solution to equation (5):

b̂PCR∗ = Q∗Λ
−1
∗ QT

∗ X
TY = QΛ†QTXTY = (XTX)†XTY.

(2). Next, we further show that b̂PCR∗ = (I − B0B
T
0 )b̂PCR∗. This equation

holds when BT
0 b̂PCR∗ = 0. Since BT

0 qi = 0 for any i ≥ 2, we have BT
0 b̂PCR∗ =

BT
0 Q∗Λ

−1
∗ QT

∗ X
TY = 0.

Therefore, we conclude that b̂PCR∗ = (I −B0B
T
0 )b̂PCR∗ = (I −B0B

T
0 )b̂ and b̂PCR∗

is the intrinsic estimator B.

4. Statistical Properties of the Intrinsic and Related Estimators. The pre-
vious section on the linear algebra of the intrinsic estimators clearly shows the essen-
tial link between the IE and an established regression method, principal component
regression, which has been widely applied in areas such as ecology, chemistry and
genomics for years (e.g., [2, 16, 31]). Given that the recent discussion on the IE
has been characterized by sometimes heated debates about its statistical properties
[23, 24, 33], we further critically investigate statistical properties of the IE based on
the mathematical proof of Theorem 1 presented above.

The fact that these various principles of statistical estimation yield estimates
of the coefficient vectors of the APCMC model that are equivalent suggests that
they are identifying certain fundamental features of the resulting coefficient vector
estimates. For context, we consider an APC dataset for a finite number of time
periods, p. That is, suppose that an APCMC analysis is to be conducted for a fixed
matrix of observed rates or event counts. This implies that the corresponding design
matrix X is fixed (i.e., X has a fixed number of age groups and time periods).

Property 1 – Estimable: For a finite number of time periods p, the IE and
related estimators of the APCMC model are estimable, where estimable functions5
are invariant with respect to whatever solution is obtained to the normal equations.6

5See [41, pages 180-188] or [30, pages 120-121] for expositions of this concept.
6In the history of discussions of the APC accounting model in sociology, Rodgers [39] was

early to argue that analysts should seek estimable functions of the unidentified parameter vector
(Equation (6)); see also the comment by Smith, Mason, and Fienberg [43] and the response by
Rodgers [40]. In some respects, the IE can be regarded as providing a practical method for
calculating estimates of estimable functions from data in the form of age by time period tables
of rates, as called for by Rodgers over two decades ago. The estimability referred by Rodgers,
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Remark 2. This property of the IE and related estimators of the APCMC account-
ing model has been a source of contention. Yang et al. [51, page 101] stated that the
IE satisfies a condition for estimability of linear functions of the parameter vector b
that was established by Kupper et al. [21, Appendix B]. Specifically, the condition for
estimability of a constraint on the parameter vector that was established algebraically
by Kupper et al. [21] is, in the notation defined above, that lTB0 = 0, where lT is a
constraint vector (of appropriate dimension) that defines a linear function lT b of b.
Yang et al. [51, page 101] noted the IE imposes the constraint that s = 0, i.e., that
the arbitrary vector B0 has zero influence, lT = (I − B0B

T
0 ) for the IE and since

BT
0 B0 = 1, it then follows that

lTB0 = (I −B0B
T
0 )B0 = B0 −B0B

T
0 B0 = B0 −B0 = 0, (21)

i.e., the Kupper et al. condition holds for the IE. We have (a) Any coefficient equality
constraint on an APCMC model suffices to identify the model and is associated
with a generalized inverse matrix that yields a corresponding estimated coefficient
vector. (b) All such generalized inverse matrices correspond to a single, unique
Moore-Penrose generalized inverse matrix that is associated with the IE and related
estimators of a specific APCMC model with a corresponding specific design matrix.
Thus, these estimators meet the estimability condition of being invariant to the
constraint used to solve the normal equations. Finally, it should be noted that,
using linear model theory, a proof of the estimability of the IE has recently been
provided by Fu [11].

Property 2 – Unbiased: For a finite number of time periods p, the IE and
related estimators of the APCMC model are unbiased estimators of the parameter
vector b0 = Pprojb defined above in Equation (12), that is, of the projection of the
unidentified coefficient vector of the APCMC model onto the non-null space of the
design matrix X.

This property follows from Property 1 and the property of estimable functions
that they are linear functions of the unidentified parameter vector that can be
estimated without bias, i.e., the Moore-Penrose generalized inverse matrix yields
unbiased estimates of b0 (see Yang et al. [51, page 107]. Note that this unbiased
estimator property is specific to the projection of the unidentified coefficient vector
b of the APCMC model onto the vector b0 in the non-null space of the design matrix
X.

Property 3 – Relative Efficiency: For a finite number of time periods p, the
IE and related estimators of the APCMC model have a variance smaller than that
of any Constrained Generalized Linear Model APCMC estimator b̂, i.e., Var(b̂) −
Var(B) is non-negative for a nontrivial identifying constraint that corresponds to
b̂. This property states that the IE is relatively efficient compared to any possible
CGLM-class estimator. It was proven in Yang et al. [51, page 108].

Property 4 – Minimum Quadratic Norm and Best Approximate So-
lution: (a) For a finite number of time periods p, the IE and related estimators
of the APCMC model are minimum quadratic norm estimators, where the qua-
dratic norm of an estimated coefficient vector of the APCMC model is defined as
the square root of the sum of the estimated elements of the coefficient vector. (b)
For a finite number of time periods, the IE and related estimators of the APCMC

however, essentially means identifiability that can be achieved by any linear constraints, which
differs from statistical estimability defined for APC models by Kupper et al. [21].
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model are the best approximate solutions of the APCMC model (see Appendix for
a proof).
Remark 3. The minimum quadratic norm (Property 4a) is a property of the Moore-
Penrose generalized inverse matrix of the unidentified APCMC model design matrix
X [13, page 238]. The best approximate solution property (4b) responds to an
observation of Norval Glenn [15, page 20], a long-time critic of attempts to provide
general solutions to the APCMC identification and estimation problem stated that
such a general method “may prove to be useful …if it yields approximately correct
estimates ‘more often than not,’ if researchers carefully assess the credibility of the
estimates by using theory and side information, and if they keep their conclusions
about the effects tentative”.7

Property 5 – Uniqueness: The IE and related estimators, that is, estimators
that are based on the Moore-Penrose generalized inverse matrix, are the unique
solutions to the estimation of the APCMC model that satisfy the normal equations
of the model (Equation (7) above) and the collinearity constraints of the covariates
of the model (i.e., Age−Period+Cohort = 0). This property was stated and proved
by Tu et al. [47].
Remark 4. In age-period-cohort analysis, the asymptotic properties of estimators
raise two different yet related questions. First, as the time periods of observations
increase without bound, will an estimator converge to the “true” population param-
eter? Second, with an increase in the number of observations, does an estimator
converge towards the “true” population parameter? For the first question, it has been
adequately proven in a recent article that as the number of time periods increases
without bound, the IE produces consistent estimation of population parameters [11,
Section 4]. The second question is nevertheless more relevant to typical empirical
applications of the APCMC model since only a finite and usually moderate num-
ber of time periods of data are available for analysis. The IE’s consistency as the
number of observations increases can be demonstrated as follows:

B = Q∗Λ
−1
∗ QT

∗ X
TY = Q∗Λ

−1
∗ QT

∗ X
T (Xb+ ε)

= (XTX)†XTXb+ (XTX)†XT ε = b0 + (XTX)†XT ε, (22)

where (XTX)† denotes the Moore-Penrose generalized inverse of XTX. Since XT ε
converges to zero as N → ∞ under the strict exogeneity assumption and (XTX)†

does not depend on N , we know from the Slutsky’s theorem (see, e.g., [48, page 11])
that (XTX)†XT ε also converges to zero as N → ∞, which shows the consistency
of IE as sample size increases.

5. Conclusions and Discussion. In this paper, we have reviewed and further
demonstrated the mathematical foundations and statistical properties of the Intrin-
sic Estimator for Age-Period-Cohort Multiple Classification models that originally
was derived as the limit of a ridge regression estimator for singular design matri-
ces as the shrinkage penalty diminishes [10]. We also have noted that the IE is
essentially equivalent to estimators of the APCMC model that have been derived
by applications of various generally accepted principles of estimation of statistical
models, including the principal components estimator, the singular value estimator,
the partial least squares estimator, the maximum entropy estimator, and Bayesian

7For extensive simulation analyses that demonstrate the veracity of Glenn’s observation for the
IE, see Jeon [20].
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ridge regression. In particular, we illustrate the inherent link between the IE and
principal-component-regression estimators.

The IE is a sophisticated yet practical age-period-cohort method. It is useful
not because its concept is new. On the contrary, the IE is inherently related to
classical statistical tools that have been employed by scholars for decades. By and
large, existing critiques of the IE focus on two methodological possibilities, namely,
whether the IE method per se is valid, and/or whether it is valid to apply the IE to
APC data. For the first issue, the statistical properties of the IE (e.g., unbiasedness
and consistency) have been questioned [24, 33]; for the second issue, it has been
suggested that the IE is sensitive to the choice of coding schemes in age-period-
cohort analysis [9, 25]. Because a flawed method and an inappropriate application
of a valid method can both contribute to misleading results, the ongoing debates
over the validity of the IE exactly highlight our failure in ruling out either one of
these two methodological possibilities. By thoroughly investigating its statistical
properties, this research demonstrates that the IE per se remains a valid estimator.
Once we rule out the first methodological possibility, new IE-related methods that
are specifically designed to address the second methodological challenge can provide
a reasonable solution. In particular, the Orthogonal Estimator [8, 9], which is not
affected by the choice of coding schemes, can provide a promising alternative when
reasonable assumptions are employed following Glenn’s [15] recommendation to use
“theory and side information” as a basis for APC analysis and perform good enough
to meet his criterion of “approximately correct estimates, ‘more often than not’ ”.

Moreover, a key lesson we learn from this debate is that a statistically sound
tool does not readily render itself as a perfect or universal solution in empirical
research. Results of statistical models are also a function of procedures, algorithms
and metrics chosen by scholars, which may not reflect different social realities at
stake: 1.609344 kilometers and 1 mile may look different but they refer to the same
geographic distance. It is also noteworthy to mention that parametric estimation
with constraints can hardly produce a satisfactory solution to the nonlinearity issue
in age-period-cohort analysis; instead, non-parametric methods such as kernel den-
sity estimation may be considered to address this issue. Likewise, more powerful
statistical packages, such as the “glm” function in R, may provide a more viable
way for scholars to overcome challenges in existing tools for computing the IE. Since
mathematical proof is the ultimate arbiter of methodological truth, this study crit-
ically investigates the linear algebra and statistical properties of the IE to provide
a more holistic understanding of this method.
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Appendix A. Generalized Inverses and Intrinsic Estimators. For a real
matrix A, in the following matrix equations (adopted from Boullion and Odell [3]),
(·)† is used to denote generalized inverse and (·)T denotes the matrix transpose.

AXA = A, (23)
XAX = X, (24)

(XA)T = XA, (25)
(AX)T = AX. (26)

Definition 1. A generalized inverse of a matrix A is a matrix X = Ag satisfying
(23).

Definition 2. A reflexive generalized inverse of a matrix A is a matrix X = Ar

satisfying (23) and (24).

Definition 3. A left weak generalized inverse of a matrix A is a matrix X = Alw

satisfying (23), (24), and (25).

Definition 4. A right weak generalized inverse of a matrix A is a matrix X = Arw

satisfying (23), (24), and (26).

Definition 5. A Moore-Penrose generalized inverse of a matrix A is a matrix
X = A† satisfying (23) through (26).

Best Approximate Solution: Adapted from Boullion and Odell [3, pages 42-
43], if A is an m×n real matrix, the notation ∥A∥2 denotes the non-negative square
root of the sum of squares of the elements of A. Note that ∥A∥2 = tr(ATA) and
∥A∥ > 0 unless A = 0, then ∥A∥ = 0.

Definition 6. The matrix X0 is a best approximate solution of the equation f(X) =
G if for all X, either

∥f(X)−G∥ > ∥f(X0)−G∥, (27)
or

∥f(X)−G∥ = ∥f(X0)−G∥ and ∥X∥ ≥ ∥X0∥. (28)

Theorem 2. The best approximate solution of the equation AX = B is X0 = A†B,
where A† denotes the Moore-Penrose generalized inverse matrix.

Proof. It is readily established for matrices P and Q that∥∥AP + (I −AA†)Q
∥∥2 = ∥AP∥2 +

∥∥(I −AA†)Q
∥∥2 . (29)

In particular, then

∥AX −B∥2 =
∥∥A(X −A†B) + (I −AA†)(−B)

∥∥2
=

∥∥A(X −A†B)
∥∥2 + ∥∥(I −AA†)(−B)

∥∥2
=

∥∥AX −AA†B
∥∥2 + ∥∥AA†B −B

∥∥2
≥

∥∥AA†B −B
∥∥2 .

Equiality holds only when ∥AX −AA†B∥ = 0 or
AX = AA†B. (30)
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Replacing A by A† in (29) and using the fact that AA†A = A, it follows that∥∥A†B + (I −A†A)X
∥∥2 =

∥∥A†B
∥∥2 +

∥∥(I −A†A)X
∥∥2 Then if (30) holds, A†AA†

gives ∥X∥2 =
∥∥A†B

∥∥2 +
∥∥X −A†B

∥∥2, which is minimal if
∥∥X −A†B

∥∥ = 0 or
X −A†B = 0 implying X0 = A†B.

Note: Applied to estimation of the APCMC model, the matrix equation of
the theorem, AX = B, is the normal equations in matrix form of the APCMC
model XTXb = XTY and the best approximate solution X0 = A†B becomes b =
(XTX)−1XTY = (XTX)†XTY , where (XTX)† is the Moore-Penrose generalized
inverse matrix.
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