
Dynamic Memory based Attention Network for Sequential Recommendation

Qiaoyu Tan 1, Jianwei Zhang 2, Ninghao Liu 1, Xiao Huang 3

Hongxia Yang 2, Jingren Zhou 2, Xia Hu 1

1 Department of Computer Science and Engineering, Texas A&M University
2 Alibaba Group

3 The Hong Kong Polytechnic University
{qytan,nhliu43,xiahu}@tamu.edu, xiaohuang@comp.polyu.edu.hk
{zhangjianwei.zjw, yang.yhx, jingren.zhou}@alibaba-inc.com

Abstract

Sequential recommendation has become increasingly essen-
tial in various online services. It aims to model the dynamic
preferences of users from their historical interactions and pre-
dict their next items. The accumulated user behavior records
on real systems could be very long. This rich data brings
opportunities to track actual interests of users. Prior efforts
mainly focus on making recommendations based on rela-
tively recent behaviors. However, the overall sequential data
may not be effectively utilized, as early interactions might af-
fect users’ current choices. Also, it has become intolerable to
scan the entire behavior sequence when performing inference
for each user, since real-world system requires short response
time. To bridge the gap, we propose a novel long sequen-
tial recommendation model, called Dynamic Memory-based
Attention Network (DMAN). It segments the overall long be-
havior sequence into a series of sub-sequences, then trains the
model and maintains a set of memory blocks to preserve long-
term interests of users. To improve memory fidelity, DMAN
dynamically abstracts each user’s long-term interest into its
own memory blocks by minimizing an auxiliary reconstruc-
tion loss. Based on the dynamic memory, the user’s short-
term and long-term interests can be explicitly extracted and
combined for efficient joint recommendation. Empirical re-
sults over four benchmark datasets demonstrate the superi-
ority of our model in capturing long-term dependency over
various state-of-the-art sequential models.

Introduction
Recommender systems have become an important tool in
various online systems such as E-commerce, social me-
dia, and advertising systems to provide personalized ser-
vices (Hidasi et al. 2015; Ying et al. 2018b). One core stage
of live industrial systems is candidate selection and rank-
ing (Covington, Adams, and Sargin 2016), which is respon-
sible for retrieving a few hundred relevant items from a mil-
lion or even billion scale corpus. Previously, researchers re-
sort to collaborative filtering approaches (Sarwar et al. 2001)
to solve it by assuming that like-minded users tend to exhibit
similar preferences on items. Typical examples including
models based on matrix factorization (Sarwar et al. 2001),
factorization machines (Rendle 2010), and graph neural net-
works (Ying et al. 2018b; Wang et al. 2019b; Tan et al.
2020). However, these methods ignore the temporal dynam-
ics of user behaviors.

To capture sequential dynamics for user modeling, var-
ious sequential recommendation methods have been pro-
posed to make recommendations based on user’s past be-
haviors (Hidasi et al. 2015; Tang and Wang 2018; Tan et al.
2021). They aim to predict the next item(s) that a user is
likely to interact with, given her/his historical interactions.
Recently, a myriad of attempts that build upon sequential
neural networks, such as recurrent neural network (RNNs),
convolutional neural networks (CNNs), and self-attention
networks, have achieved promising results in various recom-
mendation scenarios (Hidasi and Karatzoglou 2018; Yuan
et al. 2019; Yan et al. 2019; Sun et al. 2019; Zhang et al.
2018). The basic paradigm is to encode a user’s historical
interactions into a vector using various sequential modules
based on the behavior sequence, which is obtained by sort-
ing her/his past behaviors in chronological order.

However, as many E-commerce and social media sys-
tems keep accumulating users’ records, the behavior se-
quences have become extraordinarily long. For example,
more than twenty thousand customers on the Alibaba e-
commerce platform have interacted with over one thousand
items from April to September 2018 (Ren et al. 2019). De-
spite the fertile information contained in these long behavior
sequences, existing sequential recommendation algorithms
would achieve sub-optimal performance in modeling long
behavior sequences. The reason is that standard sequential
architectures (e.g., RNNs, CNNs, attention networks) are in-
sufficient to capture long-term dependencies confirmed in
sequence learning (Graves, Wayne, and Danihelka 2014; Yu
and Koltun 2015; Dai et al. 2019). Directly applying them
to model long behavior sequences would result in signifi-
cant performance degeneration. Thus, in this paper, we tar-
get at exploring sequential recommendation with extraordi-
nary long user behavior sequences.

There are three major challenges in learning from long
behavior sequences. 1) Given that the response time in
real-world systems is limited, it has become expensive to
scan over the entire behavior sequence at each prediction
time (Zhu et al. 2018). Existing sequential recommender
systems often require read the whole behavior sequence.
A few recent long sequential recommendation methods ex-
plore splitting the whole input behavior sequence into short-
term and long-term behavior sequences and then explicitly
extracting a user’s temporal and long-term preferences (Ying

This is the Pre-Published Version.

et al. 2018a; Lv et al. 2019). Despite their simplicity, they
still suffer from high computation complexity since they
need to scan over the whole behavior sequence during in-
ference. 2) It is crucial to model the whole behavior se-
quence for a more accurate recommendation. A few attempts
have been made to focus only on short-term actions (Li,
Wang, and McAuley 2020; Hidasi and Karatzoglou 2018)
and abandon previous user behaviors. Nevertheless, stud-
ies (Ren et al. 2019; Belletti, Chen, and Chi 2019) have
demonstrated that user preferences may be influenced by
her/his early interactions beyond the short-term behavior se-
quence. 3) It is hard to explicitly control the contributions of
long-term or short-term interests for user modeling. Some
studies resort to memory neural network (Graves, Wayne,
and Danihelka 2014) to implicitly preserve the long-term in-
tentions for efficient sequential modeling (Chen et al. 2018;
Ren et al. 2019). But they may suffer from long-term knowl-
edge forgetting (Sodhani, Chandar, and Bengio 2018), due
to that the memory is optimized by predicting the next-item.
Therefore, an advanced sequential model is needed to ex-
plicitly model both long-term and short-term preferences, as
well as supporting efficient inference.

To address the limitations above, we propose a novel
dynamic memory-based self-attention network, dubbed
DMAN, to model long behavior sequence data. It offers
standard self-attention networks to capture long-term depen-
dencies for user modeling effectively. To improve model
efficiency, DMAN truncates the whole user behavior se-
quence into several successive sub-sequences and optimizes
the model sequence by sequence. Specifically, a recurrent at-
tention network is derived to utilize the correlation between
adjacent sequences for short-term interest modeling. Mean-
while, another attention network is introduced to measure
dependencies beyond consecutive sequences for long-term
interest modeling based on a dynamic memory, which pre-
serves user behaviors before the adjacent sequences. Finally,
the two aspect interests are adaptively integrated via a neu-
ral gating network for the joint recommendation. To enhance
the memory fidelity, we further develop a dynamic memory
network to effectively update the memory blocks sequence
by sequence using an auxiliary reconstruction loss. To sum-
marize, the main contributions of this paper are as follows:

• We propose a dynamic memory-based attention net-
work DMAN for modeling long behavior sequences,
which conducts an explicit and adaptive user model-
ing and supports efficient inference.

• We derive a dynamic memory network to dynami-
cally abstract a user’s long-term interests into an ex-
ternal memory sequence by sequence.

• Extensive experiments on several challenging bench-
marks demonstrate our method’s effectiveness in
modeling long user behavior data.

The Proposed DMAN Model
In this section, we first introduce the problem formulation
and then discuss the proposed framework in detail.

Notation Description
u a user
t an item
x an interaction record
U the set of users
V the set of items
Sn the n-th behavior sequence
K the number of candidate items
N the number of sliced sequences
L the number of self-attention layers
m the number of memory slots
D the number of embedding dimension
H̃ the short-term interest embedding
Ĥ the long-term interest embedding
M the memory embedding matrix
V the output user embedding

Table 1: Notations summary.

Notations and Problem Formulation
Assume U and V denote the sets of users and items, respec-
tively. S = {x1,x2, . . . ,x|S|} represents the behavior se-
quence in chronological order of a user. xt ∈ V records the
t-th item interacted by the user. Given an observed behavior
sequence {x1,x2, . . . ,xt}, the sequential recommendation
task is to predict the next items that the user might be inter-
acted with. Notations are summarized in Table ??.

In our setting, due to the accumulated behavior se-
quence S is very long, we truncate it into a series of
successive sub-sequences with fixed window size T , i.e.,
S = {Sn}Nn=1, for the model to process efficiently. Sn =
{xn,1,xn,2, . . . ,xn,T } denotes the n-th sequence. Tradi-
tional sequential recommendation methods mainly rely on
a few recent behaviors SN for user modeling. Our paper fo-
cuses on leveraging the whole behavior sequence for a com-
prehensive recommendation. We first illustrate how to ex-
plicitly extract short-term and long-term user interests from
historical behaviors, and then describe an adaptive way to
combine them for joint recommendation. Finally, we intro-
duce a novel dynamic memory network to preserve user’s
long-term interests for efficient inference effectively.

Recurrent Attention Network
This subsection introduces the proposed recurrent attention
network for short-term interest modeling. Given an arbitrary
behavior sequence Sn as input, an intuitive way to estimate
a user’s short-term preferences is only consider her/his be-
haviors within the sequence. However, the first few items
in each sequence may lack necessary context for effective
modeling, because previous sequences are not considered.

To address this limitation, we introduce the notion of re-
currence in RNNs into self-attention network and build a
sequence-level recurrent attention network, enabling infor-
mation flow between adjacent sequences. In particular, we
use the hidden state computed for last sequence as additional
context for next sequence modeling. Formally, let Sn−1 and
Sn be two successive sequences, and H̃l

n−1 ∈ RT×D denote
the l-th layer hidden state produced for sequence Sn−1. We

Recurrent Attention Net

Long-term Attention Net

!"

#—%&"

'"

(&"

)"

'"*+'+

…

Dynamic Memory
Net

,"*+,+ ,"*+,.,"*+,/ ,",+ ,",/ ,",.,+,+ ,+,/ ,+,. …

Knowledge transfer

Sigmoid function

Current input sequence

Dynamic Memory Net

Attention Attention

(&"

ℒ12

3145

(&"*+

(&"*+

6 6

6

Dynamic memory

Recurrent hidden state

7"

Figure 1: Illustration of DMAN for one layer. It takes a series of sequences as input and trains the model sequence by sequence.
When processing the n-th sequence Sn, the recurrent attention network is applied to extract short-term user interest by using
the previous hidden state H̃n−1 as context. Meanwhile, the long-term attention network is utilized to extract long-term interest
based on the memory blocks M . Next, the short-term and long-term interests are combined via a neural gating network for
joint user modeling. Finally, the dynamic memory network updates the memory blocks via fusing the information in H̃n−1, and
the model continues to process the next sequence. The overall model is optimized by maximizing the likelihood of observed
sequence, while the dynamic memory network is trained based on a local reconstruction loss Lae.

calculate the hidden state of sequence Sn as follows.

H̃l
n = Attenlrec(Q̃

l
n, K̃

l
n, Ṽ

l
n) = softmax(Q̃l

n(K̃l
n)>)Ṽl

n,

Q̃l
n = H̃l−1

n W̃>
Q, and K̃l

n = Hl−1
n W̃>

K ,

Ṽl
n = Hl−1

n W̃>
V ,

Hl−1
n = H̃l−1

n ‖ SG(H̃l−1
n−1),

(1)
where Attenl

rec(·, ·, ·) is the l-th layer self-attention network,
in which the query, key and value matrices are denoted by Q,
K and V, respectively. The input of the first layer is the se-
quence embedding matrix Xn = [xn,1, . . . ,xn,T] ∈ RT×D.
Intuitively, the attention layer calculates a weighted sum of
embeddings, where the attention weight is computed be-
tween query i in Sn and value j obtained from previous se-
quences. The function SG(·) stands for stop-gradient from
previous hidden state H̃l−1

n−1, and ‖ denotes concatenation.
In our case, we use the extended context as key and value
and adopt three linear transformations to improve the model
flexibility, where {W̃Q,W̃K ,W̃V } ∈ RD×D denote the
parameters. The extended context not only provides precious
information for recovering the first few items, but also al-
lows our model to capture the dependency across sequences.
In practice, instead of computing the hidden states from
scratch at each time point, we cache the hidden state of
last sequence for reuse. Besides, masking strategy and po-
sitional embeddings are also included to avoid the future in-
formation leakage problem (Yuan et al. 2019) and capture
sequential dynamics (Kang and McAuley 2018; Wang et al.
2019a). The final short-term interest embedding is defined
as H̃n = H̃L

n .

Long-term Attention Network
In this subsection, we present another attention network for
long-term interest modeling. With the recurrent connection
mechanism defined in Eq. 1, our model can capture corre-
lations between adjacent sequences for interest modeling.
However, longer-range dependencies beyond successive se-
quences may still be ignored, since the recurrent connec-
tion mechanism is limited in capturing longer-range correla-
tions (Sodhani, Chandar, and Bengio 2018; Sukhbaatar et al.
2015). Hence, additional architecture is needed to effectively
capture long-term user preferences.

To this end, we maintain an external memory matrix
M ∈ Rm×D to explicitly memorize a user’s long-term pref-
erences, where m is the number of memory slots. Each user
is associated with a memory. Ideally, the memory comple-
ments with the short-term interest modeling, with the aim to
capture dependencies beyond adjacent sequences. We leave
how to effectively update the memory in later section and
now focus on how to extract long-term interests from the
memory. Specifically, let Ml ∈ Rm×D denote the l-th layer
memory matrix, we estimate the long-term hidden state of
sequence Sn using another self-attention network as

Ĥl
n = Attenl(Q̂l

n, K̂
l
n, V̂

l
n),

Q̂l
n, K̂

l
n, V̂

l
n = Ĥl−1

n Ŵ>
Q,M

l−1Ŵ>
K ,M

l−1Ŵ>
V .

(2)

Similarly, Attenl(·, ·, ·) is a self-attention network. It takes
the last layer hidden state Ĥl−1

n as query and uses the
layer-wise memory matrix Ml−1 as key (value). The in-
put of the query is Xn. By doing so, the output hidden
state Ĥl

n ∈ RT×D is a selective aggregation of m mem-
ory blocks, where the selection weight is query-based and

varies across different queries. {ŴQ,ŴK ,ŴV } are train-
able transformation matrices to improve model capacity.
Since the memory is maintained to cache long-term user in-
terests that beyond adjacent sequences, we refer to the above
attention network as long-term interest modeling. The final
long-term interest embedding for sequence Sk is denoted as
Ĥn = ĤL

n .

Neural Gating Network
After obtaining the short-term and long-term interest em-
beddings, the next aim is to combine them for comprehen-
sive modeling. Considering that a user’s future intention can
be influenced by early behaviors, while short-term and long-
term interests may contribute differently for next-item pre-
diction over time (Ma et al. 2019), we apply a neural gating
network to adaptively control the importance of the two in-
terest embeddings.

Vn = Gn � H̃n + (1−Gn)� Ĥn,

Gn = σ(H̃nWshort + ĤnWlong),
(3)

where Gn ∈ RT×D is the gate matrix learned by a non-
linear transformation based on short-term and long-term em-
beddings. σ(·) indicates the sigmoid activation function, �
denotes element-wise multiplication, and Wshort, Wlong ∈
RD×D are model parameters. The final user embedding
Vn ∈ RT×D is obtained by a feature-level weighted sum
of two types of interest embeddings controlled by the gate.

Dynamic Memory Network
In this subsection, we describe how to effectively update the
memory M to preserve long-term user preferences beyond
adjacent sequences. One feasible solution is to maintain a
fixed-size FIFO memory to cache long-term message. This
strategy is sub-optimal for user modeling due to two reasons.
First, the oldest memories will be discarded if the memory is
full, whether it is important or not. This setting is reasonable
in NLP task (Rae et al. 2019) as two words that too far away
in the sentence are often not correlated. But it is not held in
recommendation because behavior sequence is not strictly
ordered (Yuan et al. 2019) and users often exhibit monthly
or seasonal periodic behaviors. Second, the memory is re-
dundant and not effectively utilized, since user interests in
practice is often bounded in tens (Li et al. 2019).

To avoid these limitations, we propose to abstract a user’s
long-term interests from the past actively. Assume the model
was processed sequence Sn, then the memory is updated as

Ml ← f labs(M
l, H̃l

n−1), (4)

where f labs : R(m+T)×D → Rm×D is the l-th layer ab-
straction function. It takes the old memory and the context
state H̃l

n−1 as input and updates memory Ml to represent
user interests. In theory, fabs requires to effectively pre-
serve the primary interests in old memories and merges con-
textual information. Basically, fabs can be trained with the
next-item prediction task end-to-end. Nevertheless, memo-
ries that differ from the target item may be discarded. There-

fore, we consider train the abstraction function with an aux-
iliary attention-based reconstruction loss Lae as follows.

L∑
l=1

||attentlrec(Q̃
l, K̃l, Ṽl)− attentlrec(Q̃

l, K̂l, V̂l)||2F

Q̃l = H̃l
n, K̃

l = Ṽl = Ml ‖ H̃l
n−1, K̂

l = V̂l = Ml,
(5)

where attenl
rec(·, ·, ·) is the self-attention network defined in

Eq. (1). We reuse the recurrent attention network but keep
the parameters fixed and not trainable here. We employ the
hidden state H̃l

n of Sn as query for two attention networks.
The first attention outputs a new representation for the query
via a weighted sum from the old and new memories, while
the second from the abstracted memories. By minimizing
the reconstruction loss, we expect the primary interests can
be extracted by fabs as much as possible. Note that we con-
sider a lossy objective here because the information that is
no longer attended to in Sn can be discarded in order to cap-
ture the shifting of user interests to some extent.

Implementation of abstraction function fabs We pa-
rameterize fabs with the dynamic routing method in Cap-
sNet (Sabour, Frosst, and Hinton 2017) for its promising
results in capturing user’s diverse interests in recommenda-
tion (Li et al. 2019). Suppose we have two layers of capsules,
we refer capsules from the first layer and the second layer
as primary capsules and interest capsules, respectively. The
goal of dynamic routing is to calculate the values of interest
capsules given the primary capsules in an iterative fashion.
In each iteration, given primary capsules vectors xi (input
vector), i ∈ {1, . . . , T + m} and interest capsules x̄j (out-
put vector), j ∈ {1, . . . ,m}, the routing logit bij between
primary capsule i and interest capsule j is computed by

bij = x̄>j Wijxi, (6)

where Wij is a transformation matrix. Given routing logits,
sj is computed as weighted sum of all primary capsules

sj =

m+T∑
i=1

αijWijxi, (7)

where αij = exp(bij)/
∑m+T

j′=1 exp(bij′) is the connection
weight between primary capsule i and interest capsule j. Fi-
nally, a non-linear ”squashing” function (Sabour, Frosst, and
Hinton 2017) is proposed to obtain the corresponding vec-
tors of interest capsules as

x̄j = squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

. (8)

The routing process between Eq. (6) and Eq. (8) usually re-
peats three times to converge. When routing finishes, the
output interest capsules of user u are then used as the mem-
ory, i.e., M = [x̄1, . . . , x̄m].

Model Optimization
As the data is derived from the user implicit feedback, we
formulate the learning problem as a binary classification

Dataset #Users #Items T K
MovieLens 6,040 3,952 20 10
Taobao 987,994 4,162,024 20 10
JD.com 1,608,707 378,457 20 10
XLong 20,000 3,269,017 50 20

Table 2: The dataset statistics.

task. Given the training sample (u, t) in a sequence Sn with
the user embedding vector Vn,t and target item embedding
xt, we aim to minimize the following negative likelihood

Llike = −
∑
u∈U

∑
t∈Sn

logP (xn,t|xn,1,xn,2, · · · ,xn,t−1)

= −
∑
u∈U

∑
t∈Sn

log
exp(x>t Vn,t)∑

j∈V exp(x>j Vn,t))
.

(9)
The loss above is usually intractable in practice because the
sum operation of the denominator is computationally pro-
hibitive. Therefore, we adopt a negative sampling strategy
to approximate the softmax function in experiments. When
the data volume is large, we leverage Sampled Softmax tech-
nique (Covington, Adams, and Sargin 2016; Jean et al. 2014)
to further accelerate the training. Note that Eqs. (9) and (6)
are separately updated in order to preserve long-term inter-
ests better. Specifically, we first update Eq. (9) by feeding a
new sequence and then updating the abstraction function’s
parameters by minimizing Eq. (6).

Experiments and Analysis
Datasets
We conduct experiments over four public benchmarks.
Statistics of them are summarized in Table 2. MovieLens 1

collects users’ rating scores for movies. JD.com (Lv et al.
2019) is a collection of user browsing logs over e-commerce
products collected from JD.com. Taobao (Zhu et al. 2018)
and XLong (Ren et al. 2019) are datasets of user behav-
iors from the commercial platform of Taobao. The behavior
sequence in XLong is significantly longer than other three
datasets, thus making it difficult to model.

Baselines
To evaluate the performance of DMAN, we include three
groups of baseline methods. First, traditional sequential
methods. To evaluate the effectiveness of our model in deal-
ing with long behavior sequence, three state-of-the-art rec-
ommendation algorithms for sequences with a normal length
have been employed, including GRU4Rec (Tang and Wang
2018), Caser (Kang and McAuley 2018) and SASRec (He
and Chua 2017). Second, long sequential methods. To eval-
uate the effectiveness of our model in extracting long-term
user interests with dynamic memory, we include SDM (Lv
et al. 2019) and SHAN (Ying et al. 2018a), which are tai-
lored for modeling long behavior sequences. To evaluate
the effectiveness of our model in explicitly capturing user’s

1https://grouplens.org/datasets/movielens/1m/

short-term and long-term interests, we also set HPMN (Ren
et al. 2019) as a baseline. It is based on the memory network.
Thrid, DMAN variants. To analyze the contribution of each
component of DMAN, we consider three variants. DMAN-
XL discards the long-term attention network to verify the
effectiveness of capturing long-term interests. DMAN-FIFO
adopts a FIFO strategy to validate the usefulness of the ab-
straction function in extracting primary interests. DMAN-
NRAN replaces the recurrent attention network with vanilla
attention network to demonstrate the effectiveness of ex-
tending context for effective user modeling.

Experimental Settings
We obtain the behavior sequence by sorting behaviors in
chronological order. Following the traditional way (Kang
and McAuley 2018), we employ the last and second last in-
teractions for testing and validation, respectively, and the re-
maining for training. We follow the widely-adopted way (Li
et al. 2017; Lv et al. 2019) and split the ordered training se-
quence into L consecutive sequences. The maximum length
of a sequence is T . The statistics of four datasets are listed in
Table 2. We repeatedly run the model five times and report
the average results.

Evaluation metrics For each user in the test set, we treat
all the items that the user has not interacted with as neg-
ative items. To estimate the performance of top-K recom-
mendations, we use Hit Rate (HR@K) and Normalized Dis-
counted Cumulative Gain (NDCG@K) metrics, which are
widely used in the literature (He and Chua 2017).

Parameter settings For baselines, we use the source code
released by the authors, and their hyper-parameters are tuned
to be optimal based on the validation set. To enable a fair
comparison, all methods are optimized with the number
of samples equals 5 and the number of embedding dimen-
sions D equals 128. We implement DMAN with Tensor-
flow and the Adam optimizer is utilized to optimize the
model with learning rate equals 0.001. The batch size is
set to 128 and the maximum epoch is 8. The number of
memory slots m and attention layers L are searched from
{2, 4, 6, 8, 10, 20, 30} and {1, 2, 3, 4, 5}, respectively.

Comparisons with SOTA
In this section, we compare our model with different base-
lines. Tables 3 and 4 report the results. In general, we have
three aspects of observations.

Influence of modeling long behavior sequence for tra-
ditional sequential methods From Table 3, we observe
that GRU4Rec, Caser, and SASRec improve their perfor-
mance when considering longer behavior sequence. There-
fore, modeling longer behavior sequence has proved to be
effective for user modeling. Besides, different sequential
modules have varied abilities in handling long behavior se-
quence. Specifically, SASRec, GRU4Rec, and Caser im-
prove 24.74%, 29.36%, and 13.42% on Taobao in terms of
HR@50, while SASRec consistently performs the best. It in-
dicates the ability of self-attention network in extracting se-

Models MovieLens Taobao JD.com
HR@10 HR@50 NDCG@100 HR@50 HR@100 NDCG@100 HR@10 HR@50 NDCG@100

GRU4Rec∗ 17.69 43.13 16.90 10.42 14.01 4.23 27.65 38.73 23.40
Caser∗ 18.98 45.64 17.62 13.71 16.51 6.89 29.27 40.16 24.25
SASRec∗ 21.02 47.28 19.05 16.41 22.83 9.23 33.98 44.89 27.41
GRU4Rec 19.78 47.40 18.75 13.48 16.53 5.81 35.28 47.52 27.64
Caser 20.80 48.12 19.28 15.55 17.91 7.35 36.76 49.13 28.35
SASRec 22.96 50.09 20.36 20.47 24.48 9.84 38.99 52.64 31.32
SHAN 21.34 49.52 19.55 18.87 21.94 8.73 37.72 50.55 29.80
HPMN 22.84 50.54 19.77 19.98 24.37 9.66 39.14 53.22 32.24
SDM 23.42 51.26 20.44 21.66 25.42 10.22 40.68 55.30 34.82
DMAN 25.18 53.24 22.03 24.92 29.37 11.13 44.58 58.82 36.93
Improv. 7.51% 3.86% 7.77% 15.05% 15.53% 8.90% 9.58% 6.36% 6.05%

Table 3: Sequential recommendation performance over three benchmarks. ∗ indicates the model only use the latest behavior
sequence for training; otherwise, the whole behavior sequence. The second best results are underlined.

Method Recall@200 Recall@500
GRU4Rec∗ 0.079 0.098

Caser∗ 0.084 0.105
SASRec∗ 0.105 0.123
GRU4Rec 0.046 0.063

Caser 0.023 0.041
SASRec 0.061 0.096
SHAN 0.091 0.115
HPMN 0.118 0.136
SDM 0.107 0.129

DMAN 0.132 0.163

Table 4: Performance on long user behavior data XLong.

quential patterns, and also validates our motivation to extend
self-attention network for long behavior sequence modeling.

Comparison with baselines on general datasets As
shown in Table 3, our model DMAN achieves better re-
sults than baselines across three datasets. In general, long
sequential models perform better than traditional sequen-
tial methods, excepting SASRec. SASRec performs better
than SHAN and comparable to HPMN in most cases. This
further implies the effectiveness of self-attention network
in capturing long-range dependencies. The improvement of
SDM over SASRec shows that explicitly extract long-term
and short-term interests from long sequence is beneficial.
Considering DMAN and SDM, DMAN consistently out-
performs SDM over all evaluation metrics. This can be at-
tributed to that DMAN utilizes a dynamic memory network
to actively extract long-term interests into a small set of
memory blocks, which is easier for the attention network
to effectively attend relative information than from a long
behavior sequence.

Comparison with baselines on long behavior dataset
Table 4 summarizes the results of all methods on XLong,
where the length of behavior sequence is larger than 1000 on
average. Obviously, DMAN significantly outperforms other
baselines. Compared with the findings in Table 3, one in-
terest observation is that traditional sequential methods, i.e.,
GRU4Rec, Caser, and SASRec, performs poorly when di-

Dataset Method Recall@100 NDCG@100

Taobao

DMAN-XL 0.237 0.094
DMAN-FIFO 0.263 0.108
DMAN-NRNA 0.257 0.104

DMAN 0.293 0.111

XLong

DMAN-XL 0.021 0.013
DMAN-FIFO 0.036 0.017
DMAN-NRAN 0.043 0.019

DMAN 0.054 0.022

Table 5: Ablation study of DMAN.

rectly handling long behavior sequence, and lose to long se-
quential models in all cases. These results demonstrate the
necessity of developing new architectures tailored for long
behavior sequence modeling. Another unexpected observa-
tion is that HPMN outperforms SDM on average. It further
implies the ineffectiveness of attention network in attending
relative messages over long sequence. By equipping atten-
tion network with the dynamic memory, our model allows
us to actively update user’s long-term interests in the mem-
ory and outperforms HPMN.

Ablation Study
We also conduct experiments to investigate the effectiveness
of several core components of the proposed DMAN. Table 5
reports the results on two representative datasets. Obviously,
DMAN significantly outperforms the other three variants.
The substantial difference between DMAN and DMAN-XL
shows that recurrent connection is not enough to capture
user’s long-term interests. The improvement of DMAN over
DMAN-FIFO validates that the proposed abstraction func-
tion is effective to extract user’s primary long-term inter-
ests. Besides, DMAN outperforms DMAN-NRAN in gen-
eral, which verifies the usefulness of extending current con-
text with previous hidden sequence state for short-term in-
terest extraction.

Hyper-parameter Analysis
We further study the impacts of our model w.r.t. the num-
ber of memory slots m and attention layers L on Movie-
Lens. As we can see in Figure 2(a), DMAN achieves satis-

2 4 6 8 10 20 30

HR
@
50

0.54

0.53

0.52

0.51

0.50

0.49

0.48

(a) Memory slots m

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

Hit
Ra
te

Top-10 Top-30 Top-50

(b) Layer size L

3.00.5 1.0 1.5 2.0 2.5 3.5 4.0 4.5 5.0

8

7

6

5
4

3
2

1

0

(c) Learning curve

Figure 2: The proposed DMAN analysis

factory results when m = 20 and the gain slows down with
less than 2% improvement when m further increases. In ex-
periments, we found 20 is enough for MovieLens, Taobao,
JD.com and XLong. From Figure 2(b), we observe that the
number of attention layers has positive impacts in our model.
To trade-off between memory costs and performance, we
set L = 2 for all datasets since it already achieves satis-
factory results. Besides, we also plot the learning curve of
DMAN on Taobao dataset in Figure 2(c), we can observe
that DMAN converges quickly after about 2 epochs. Similar
observations have been observed on other datasets. Specif-
ically, DMAN tends to converge after 2 epochs on Taobao,
JD.com and XLong datasets, while 50 epochs for Movie-
Lens data. These results demonstrate the training efficiency
of our model.

Related Work
General Recommendation
Early recommendation works largely focused on explicit
feedback (Koren 2008). The recent research focus is shift-
ing towards implicit data (Li and She 2017; Hu, Koren, and
Volinsky 2008). The typical examples include collaborative
filtering (Sarwar et al. 2001; Schafer et al. 2007), matrix
factorization techniques (Koren, Bell, and Volinsky 2009),
and factorization machines (Rendle 2010). The main chal-
lenge lies in representing users or items with latent embed-
ding vectors to estimate their similarity. Due to their ability
to learn salient representations, neural network-based mod-
els (Guo et al. 2017; Su and Khoshgoftaar 2009; Tan, Liu,
and Hu 2019) are also attracted much attention recently.
Some efforts adopt neural networks to extract side attributes
for content-aware recommendation (Kim et al. 2016), while
some aim to equip matrix factorization with non-linear inter-
action function (He and Chua 2017) or graph convolutional
aggregation (Wang et al. 2019b; Liu et al. 2019). In general,
deep learning-based methods perform better than traditional
counterparts (Sedhain et al. 2015; Xue et al. 2017).

Sequential Recommendation
Sequential recommendation takes as input the chronologi-
cal behavior sequence for user modeling. Typical examples
belong to three categories. The first relies on temporal ma-
trix factorization (Koren 2009) to model user’s drifting pref-
erences. The second school uses either first-order (Ren-

dle, Freudenthaler, and Schmidt-Thieme 2010; Cheng et al.
2013) or hider-order (He and McAuley 2016; He et al. 2016;
Yan et al. 2019) Markov-chains to capture the user state dy-
namics. The third stream applies deep neural networks to
enhance the capacity of feature extraction (Yuan et al. 2019;
Sun et al. 2019; Hidasi and Karatzoglou 2018). For exam-
ple, Caser (Tang and Wang 2018) applies CNNs to pro-
cess the item embedding sequence, while GRU4Rec (Hidasi
et al. 2015) uses gated recurrent unit GRU for session-based
recommendation. Moreover, SASRec (Kang and McAuley
2018) employs self-attention networks (Vaswani et al. 2017)
to selectively aggregate relevant items for user modeling.

However, these methods mainly focus on making recom-
mendations based on relatively recent behaviors. Recently,
a few efforts attempt to model long behavior sequence data.
For instance, SDM (Lv et al. 2019) and SHAN (Ying et al.
2018a) split the whole behavior sequence into short-term
and long-term sequences and then explicitly extract long-
term and short-term interest embeddings from them. But
they are difficult to capture long-term interests shifting and
suffer from high computation complexity. HPMN (Ren et al.
2019) uses the memory network (Graves, Wayne, and Dani-
helka 2014; Chen et al. 2018) to memorize important histor-
ical behaviors for next-item prediction. Nevertheless, mem-
ory network may suffer from long-term dependency forget-
ting dilemma, as the memory is optimized by recovering the
next item. Our model focuses on combing external memory
and attention networks for effective long user behavior se-
quence modeling, which conducts an explicit and adaptive
modeling process.

Conclusions
In this paper, we propose a novel dynamic memory-based
attention network DMAN for sequential recommendation
with long behavior sequence. We truncate a user’s overall
behavior sequence into a series of sub-sequences and train
our model in a dynamic manner. DMAN can explicitly ex-
tract a user’s short-term and long-term interests based on the
recurrent connection mechanism and a set of external mem-
ory blocks. To improve the memory fidelity, we derive a dy-
namic memory network to actively abstract a user’s long-
term interests into the memory by minimizing a local re-
construction loss. Empirical results on real-world datasets
demonstrate the effectiveness of DMAN in modeling long
user behavior sequences.

References
Belletti, F.; Chen, M.; and Chi, E. H. 2019. Quantifying
Long Range Dependence in Language and User Behavior to
improve RNNs. In KDD, 1317–1327.

Chen, X.; Xu, H.; Zhang, Y.; Tang, J.; Cao, Y.; Qin, Z.; and
Zha, H. 2018. Sequential recommendation with user mem-
ory networks. In WSDM, 108–116.

Cheng, C.; Yang, H.; Lyu, M. R.; and King, I. 2013. Where
you like to go next: Successive point-of-interest recommen-
dation. In IJCAI.

Covington, P.; Adams, J.; and Sargin, E. 2016. Deep neural
networks for youtube recommendations. In RecSys, 191–
198.

Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q. V.; and
Salakhutdinov, R. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860 .

Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural tur-
ing machines. arXiv preprint arXiv:1410.5401 .

Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. DeepFM:
a factorization-machine based neural network for CTR pre-
diction. arXiv preprint arXiv:1703.04247 .

He, R.; Fang, C.; Wang, Z.; and McAuley, J. 2016. Vista:
a visually, socially, and temporally-aware model for artistic
recommendation. In RecSys, 309–316.

He, R.; and McAuley, J. 2016. Fusing similarity models
with markov chains for sparse sequential recommendation.
In ICDM, 191–200. IEEE.

He, X.; and Chua, T.-S. 2017. Neural factorization machines
for sparse predictive analytics. In SIGIR, 355–364.

Hidasi, B.; and Karatzoglou, A. 2018. Recurrent neural net-
works with top-k gains for session-based recommendations.
In CIKM, 843–852.

Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2015. Session-based recommendations with recurrent neural
networks. arXiv preprint arXiv:1511.06939 .

Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative fil-
tering for implicit feedback datasets. In ICDM, 263–272.
Ieee.

Jean, S.; Cho, K.; Memisevic, R.; and Bengio, Y. 2014. On
using very large target vocabulary for neural machine trans-
lation. arXiv preprint arXiv:1412.2007 .

Kang, W.-C.; and McAuley, J. 2018. Self-attentive sequen-
tial recommendation. In ICDM, 197–206. IEEE.

Kim, D.; Park, C.; Oh, J.; Lee, S.; and Yu, H. 2016. Con-
volutional matrix factorization for document context-aware
recommendation. In RecSys, 233–240.

Koren, Y. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD, 426–
434.

Koren, Y. 2009. Collaborative filtering with temporal dy-
namics. In KDD, 447–456.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer (8):
30–37.
Li, C.; Liu, Z.; Wu, M.; Xu, Y.; Zhao, H.; Huang, P.; Kang,
G.; Chen, Q.; Li, W.; and Lee, D. L. 2019. Multi-interest net-
work with dynamic routing for recommendation at Tmall. In
CIKM, 2615–2623.
Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; and Ma, J. 2017.
Neural attentive session-based recommendation. In CIKM,
1419–1428.
Li, J.; Wang, Y.; and McAuley, J. 2020. Time Interval Aware
Self-Attention for Sequential Recommendation. In WSDM,
322–330.
Li, X.; and She, J. 2017. Collaborative variational autoen-
coder for recommender systems. In GKDD, 305–314.
Liu, N.; Tan, Q.; Li, Y.; Yang, H.; Zhou, J.; and Hu, X. 2019.
Is a single vector enough? exploring node polysemy for net-
work embedding. In KDD, 932–940.
Lv, F.; Jin, T.; Yu, C.; Sun, F.; Lin, Q.; Yang, K.; and Ng,
W. 2019. SDM: Sequential deep matching model for online
large-scale recommender system. In CIKM, 2635–2643.
Ma, C.; Ma, L.; Zhang, Y.; Sun, J.; Liu, X.; and Coates,
M. 2019. Memory Augmented Graph Neural Net-
works for Sequential Recommendation. arXiv preprint
arXiv:1912.11730 .
Rae, J. W.; Potapenko, A.; Jayakumar, S. M.; and Lillicrap,
T. P. 2019. Compressive Transformers for Long-Range Se-
quence Modelling. arXiv preprint arXiv:1911.05507 .
Ren, K.; Qin, J.; Fang, Y.; Zhang, W.; Zheng, L.; Bian, W.;
Zhou, G.; Xu, J.; Yu, Y.; Zhu, X.; et al. 2019. Lifelong Se-
quential Modeling with Personalized Memorization for User
Response Prediction. In SIGIR, 565–574.
Rendle, S. 2010. Factorization machines. In ICDM, 995–
1000. IEEE.
Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized markov chains for next-
basket recommendation. In WWW, 811–820.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In NIPS, 3856–3866.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In WWW, 285–295. ACM.
Schafer, J. B.; Frankowski, D.; Herlocker, J.; and Sen, S.
2007. Collaborative filtering recommender systems. In The
adaptive web, 291–324. Springer.
Sedhain, S.; Menon, A. K.; Sanner, S.; and Xie, L. 2015. Au-
torec: Autoencoders meet collaborative filtering. In WWW,
111–112.
Sodhani, S.; Chandar, S.; and Bengio, Y. 2018. On train-
ing recurrent neural networks for lifelong learning. CoRR,
abs/1811.07017 .
Su, X.; and Khoshgoftaar, T. M. 2009. A survey of collabo-
rative filtering techniques. Advances in artificial intelligence
2009.

Sukhbaatar, S.; Weston, J.; Fergus, R.; et al. 2015. End-to-
end memory networks. In NeurIPS, 2440–2448.
Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang, P.
2019. BERT4Rec: Sequential recommendation with bidirec-
tional encoder representations from transformer. In CIKM,
1441–1450.
Tan, Q.; Liu, N.; and Hu, X. 2019. Deep Representation
Learning for Social Network Analysis. Frontiers in Big Data
2: 2.
Tan, Q.; Liu, N.; Zhao, X.; Yang, H.; Zhou, J.; and Hu, X.
2020. Learning to Hash with Graph Neural Networks for
Recommender Systems. In WWW, 1988–1998.
Tan, Q.; Zhang, J.; Yao, J.; Liu, N.; Zhou, J.; Yang, H.; and
Hu, X. 2021. Sparse-interest network for sequential recom-
mendation. In WSDM.
Tang, J.; and Wang, K. 2018. Personalized top-n sequential
recommendation via convolutional sequence embedding. In
WSDM, 565–573.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NIPS, 5998–6008.
Wang, B.; Zhao, D.; Lioma, C.; Li, Q.; Zhang, P.; and Si-
monsen, J. G. 2019a. Encoding word order in complex em-
beddings. arXiv preprint arXiv:1912.12333 .
Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua, T.-S.
2019b. Neural graph collaborative filtering. In SIGIR, 165–
174.
Xue, H.-J.; Dai, X.; Zhang, J.; Huang, S.; and Chen, J. 2017.
Deep Matrix Factorization Models for Recommender Sys-
tems. In IJCAI, volume 17, 3203–3209. Melbourne, Aus-
tralia.
Yan, A.; Cheng, S.; Kang, W.-C.; Wan, M.; and McAuley,
J. 2019. CosRec: 2D Convolutional Neural Networks for
Sequential Recommendation. In CIKM, 2173–2176.
Ying, H.; Zhuang, F.; Zhang, F.; Liu, Y.; Xu, G.; Xie, X.;
Xiong, H.; and Wu, J. 2018a. Sequential recommender sys-
tem based on hierarchical attention network. In IJCAI.
Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018b. Graph Convolutional Neural
Networks for Web-Scale Recommender Systems. In KDD,
974–983. ACM.
Yu, F.; and Koltun, V. 2015. Multi-scale context aggregation
by dilated convolutions. arXiv preprint arXiv:1511.07122 .
Yuan, F.; Karatzoglou, A.; Arapakis, I.; Jose, J. M.; and He,
X. 2019. A simple convolutional generative network for next
item recommendation. In WSDM, 582–590.
Zhang, S.; Tay, Y.; Yao, L.; and Sun, A. 2018. Next
item recommendation with self-attention. arXiv preprint
arXiv:1808.06414 .
Zhu, H.; Li, X.; Zhang, P.; Li, G.; He, J.; Li, H.; and Gai,
K. 2018. Learning tree-based deep model for recommender
systems. In KDD, 1079–1088.

