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1. Introduction

Interval-censored failure time data arise commonly in biomedical or epidemiological research,

where the event of interest cannot be observed directly but is only known to have occurred within a

time interval. For example, in the study of human immunodeficiency virus infection and acquired

immune deficiency syndrome (HIV/AIDS), the development of clinical symptoms usually takes

eight to ten years since the infection of HIV. In practice, patients are followed up on a regular

basis, and the exact time to onset of clinical symptoms cannot be determined but is known to fall

within two consecutive follow-up times. There are many existing studies on HIV/AIDS employing

various analysis methods for interval-censored data (Betensky et al., 2001; Xue et al., 2006).

Failure time data are often clustered. For example, in studies of time to tooth emergence/loss,

the event times for the teeth of an individual are clustered as the teeth share the same oral condi-

tion. Frailty models are commonly used in the literature to accommodate the association among

members of the same cluster. A review of frailty models can be found in Hougaard (2000). Cook

et al. (2008) considered a four-state Markov model for characterizing the association of interval-

censored failure times in the bivariate case, while Kim (2006), Zuma et al. (2007) and Lam et al.

(2010) proposed methods for estimating the parameter of interest based on the log-normal or

gamma frailty Cox models; the theoretical properties of the estimators were not studied. Zeng

et al. (2017) proposed a semiparametric transformation model with normal random effects for

multivariate interval-censored data. They showed that the proposed nonparametric maximum like-

lihood estimators of the regression and dependence parameters are consistent and asymptotically

efficient. Zhou et al. (2017) considered a semiparametric frailty transformation model for bivariate

interval-censored failure time data and proposed a sieve estimation method based on the Bernstein

polynomials. The asymptotic properties of the estimators of the regression and dependence param-

eters were established. In the literature on transformation models, the transformation parameter,

usually estimated using grid search, is typically treated as known, and inference on the regression
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and frailty parameters is made without accounting for the variability involved in the estimation of

the transformation parameter. Methods that properly account for this variability and allow valid

inference for the transformation parameter are needed.

Generalized partly linear model has received increasing attention recently. As advocated by Lin

and Carroll (2001), one can make inference on the effects of some covariates of interest X (e.g.,

treatment effect) while making minimal assumptions on the effects of other covariates Z (e.g., age,

which is known to be an important factor but may not be of major interest) using nonparametric

functions. Indeed, nonlinear covariate effects are common in practice. For example, in clinical

studies, the effect of the amount of dosage of a certain medication on the time to reaction may

attain its maximum at some dosage level and then retain at the maximum level or decreases beyond

the dosage level.

This work is motivated by a longitudinal dental study, where one is interested in the association

between the emergence of permanent teeth and various covariates among children. In the study,

tooth emergence was not directly observed but was only known to occur between two consecutive

dental visits. The times to emergence of teeth of a child are naturally clustered, and certain covari-

ates are expected to exhibit strong and nonlinear effects. Our goal is to develop flexible models

with reliable estimation and inference methods that accommodate the special features of the data.

In this article, we consider a class of semiparametric partly linear transformation models for

the analysis of clustered interval-censored failure time data. The model involves a nonparametric

baseline function that characterizes the cumulative hazard function for a subject at baseline and

a nonparametric function for the effect of a continuous covariate. The dependence among the

failure times within a cluster is induced by an unobserved frailty. A sieve maximum likelihood

estimation method is proposed, where the nonparametric functions are approximated by piecewise

linear functions. The proposed estimation method is applicable to any frailty distributions with an

explicit Laplace transform, including the gamma and positive stable distributions.
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We structure the article as follows. The model specifications and estimation method are described

in Section 2. Theoretical properties of the estimators are presented in Section 3. The computational

details are provided in Section 4. The finite-sample performance of the estimators is investigated

through a large-scale simulation study, and the results are reported in Section 5. The proposed

method is applied to the aforementioned dental study in Section 6. Lastly, some concluding re-

marks are made in Section 7. Proofs of the theoretical results are given in the Appendix.

2. Model, Likelihood, and Sieve Estimation

Suppose that there are n independent and identically distributed clusters with Ni subjects in the

ith cluster for i = 1, . . . , n, where Ni is possibly random. For the jth subject in the ith cluster

(j = 1, . . . , Ni), let Tij denote the failure time, Xij denote a p-dimensional vector of covariates,

and Zij denote a continuous covariate with a possibly nonlinear effect on the response variable.

Assume that Ni is independent of the failure times given (Xij, Zij). Let ξi denote an unobserved

frailty shared among all subjects in the ith cluster. Conditional on (Xij, Zij, ξi), Ti1, . . . , Ti,Ni are

mutually independent, and Tij has cumulative hazard function

Λij(t |Xij, Zij, ξi) = ξiG[Λ(t) exp{XT
ijβ + g(Zij)}; ρ], (1)

where G(·; ρ) is an increasing parametric function indexed by the parameter ρ, Λ(·) is an un-

specified increasing function, g(·) is an unspecified smooth function, and β is a vector of regres-

sion parameters. We assume that ξi follows a parametric distribution with a Laplace transform

Φ(u; γ) ≡ E(e−ξiu), where γ is the parameter of the frailty distribution. The frailty terms ξi’s

characterize the heterogeneity across clusters. Two commonly used frailty distributions, namely

the gamma distribution Ga(γ−1, γ−1) and the positive stable distribution Po(γ), are considered

(Lam and Kuk, 1997; Kosorok et al., 2004). Their respective Laplace transforms are given by

Φ(u; γ) = (1 + γu)−1/γ for γ > 0 and Φ(u; γ) = exp(−uγ) for 0 < γ < 1. Zeng and Lin

(2007) considered two transformation functions G, namely the Box-Cox transformation and the

logarithmic transformation, both with a single transformation parameter. In this article, we focus
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on the Box-Cox transformation, which takes the form G(x; ρ) = {(1 + x)ρ − 1}/ρ for ρ > 0.

Note that lim
ρ→0

G(x; ρ) = log(1 + x) and G(x; 1) = x correspond to the proportional odds model

(Rossini and Tsiatis, 1996; Lam and Leung, 2001) and the Cox proportional hazards model (Cox,

1972; Andersen and Gill, 1982), respectively, in the absence of the frailty.

Under the proposed model, log Λ(Tij) = −XT
ijβ − g(Zij) + log{G−1(εij; ρ)}, where εij is a

random variable that follows the exponential distribution with rate parameter ξi conditional on ξi

(j = 1, . . . , Ni; i = 1, . . . , n). Thus, the covariates (besides Zij) act additively on a monotone,

nonparametric transformation of the failure time as in the Cox model (Cheng et al., 1995). Dif-

ferent choices of the transformation function or frailty distribution yield different distributions or

association structures of the error terms (log{G−1(εi1; ρ)}, . . . , log{G−1(εiNi ; ρ)}) but does not

alter the interpretation of the covariate effects.

Suppose that the failure time Tij is not observed directly but is only known to fall within the

interval (Lij, Rij] for some Rij > Lij . For left-censored or right-censored subjects, we set Lij =

0 or Rij = ∞, respectively. Let θ ≡ (β, γ, ρ,Λ, g) denote the set of all parameters. The log-

likelihood function of θ is

`n(θ) =
n∑
i=1

log

∫ Ni∏
j=1

[
exp{−ξiSij(Lij;θ)} − exp{−ξiSij(Rij;θ)}

]
fξ(ξi; γ) dξi

=
n∑
i=1

log

( ∑
r∈SNi

(−1)|r|Φ

[ Ni∑
j=1

{
(1− rj)Sij(Lij;θ) + rjSij(Rij;θ)

}])
,

where fξ(·; γ) is the density of the frailty, rj is the jth component of r, SNi = {0, 1}Ni , and

Sij(t;θ) = G[Λ(t) exp{XT
ijβ + g(Zij)}; ρ]. For example, if ξi ∼ Ga(γ−1, γ−1) and Ni = 2

(i = 1, . . . , n), then the log-likelihood contribution of the ith cluster is

log

(
[1 + γ {Si1(Li1;θ) + Si2(Li2;θ)}]−1/γ − [1 + γ {Si1(Li1;θ) + Si2(Ri2;θ)}]−1/γ

− [1 + γ {Si1(Ri1;θ) + Si2(Li2;θ)}]−1/γ + [1 + γ {Si1(Ri1;θ) + Si2(Ri2;θ)}]−1/γ

)
.

Because the likelihood involves two nonparametric functions, namely Λ and g, maximum like-
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lihood estimation of θ is not feasible. We propose a sieve maximum likelihood approach and

estimate Λ and g using piecewise linear functions. Let [a1, b1] be the support of Lij and Rij ,

[a2, b2] be the support of Zij . Let τ ≡ (τ0, . . . , τm1n) be a set of grid points over [a1, b1] and

ς ≡ (ς0, . . . , ςm2n) be a set of grid points over [a2, b2], where a1 = τ0 < · · · < τm1n = b1, and

a2 = ς0 < · · · < ςm2n = b2. Suppose that m1n = O(nν1) and m2n = O(nν2) for some fixed

ν1, ν2 ∈ (0, 1), and the grid points are chosen such that K−1n−ν1 < τj − τj−1 < Kn−ν1 for

j = 1, . . . ,m1n and K−1n−ν2 < ςj − ςj−1 < Kn−ν2 for j = 1, . . . ,m2n, where K is some positive

constant. For a given m1n-dimensional vector ω, let

H (t;m1n,ω, τ ) ≡
m1n∑
j=1

ωj {(t− τj−1) I (τj−1 6 t < τj) + (τj − τj−1) I (t > τj)}

be a piecewise linear function over the grid points τ . We define the sieve spaces for Λ and g

respectively as AΛn = {Λn(t) = H(t;m1n,ω, τ ), t ∈ [a1, b1], ωj > 0 for j = 1, . . . ,m1n} and

Agn = {gn(z) = H(z;m2n,ψ, ς), z ∈ [a2, b2]} . The sieve maximum likelihood estimator is

θ̂n ≡ (β̂n, γ̂n, ρ̂n, Λ̂n, ĝn) = arg max
θ:Λ∈AΛn,g∈Agn

`n(θ).

In Section 3, we present some regularity conditions and the asymptotic properties of the pro-

posed sieve maximum likelihood estimator. In particular, we show that the sieve maximum like-

lihood estimator is consistent, estimators of the nonparametric functions attain the optimal rates

of convergence, and the estimators of the Euclidean parameters are asymptotically normal with a

covariance matrix that equals the inverse of the efficient information matrix. Because the efficient

information matrix does not have an explicit form, we adopt the approach of Huang (1999) and

Chen et al. (2012) to approximate the standard error of ζ̂n ≡ (β̂n, γ̂n, ρ̂n). In particular, we treat

the finite-dimensional sieve parameter space as the true parameter space and compute the negative

Hessian matrix of `n(θ) with respect to (β, γ, ρ,ω,ψ). The variance of ζ̂n is then estimated by

the corresponding elements of the inverse of the negative Hessian matrix. Previous extensive

simulation studies (Xue et al., 2004; Lam and Xue, 2005) suggested that this standard error
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estimation approach is computationally efficient and numerically stable even for large values of

m1n and m2n.

3. Asymptotic Properties of the Sieve Estimators

Suppose that the interval (Lij, Rij] is derived from a sequence of monitoring time points Uij1 <

· · · < Uij,Mij
that are independent of the failure times given the observed covariates, where Mij

is the number of monitoring times for i = 1, . . . , n; j = 1, . . . , Ni. The interval (Lij, Rij] is the

shortest time interval that brackets Tij , so that Lij = max{Uijk : Uijk < Tij, k = 0, . . . ,Mij} and

Rij = min{Uijk : Uijk > Tij, k = 1, . . . ,Mij + 1}, where Uij0 = 0, and Uij,Mij+1 = ∞. Let

∆ijk = I(Lij = Uijk) for k = 0, . . . ,Mij . The log-likelihood can be written as

`n(θ) =
n∑
i=1

log

[ ∑
r∈SNi

(−1)|r|Φ

{ Ni∑
j=1

Mij∑
k=0

∆ijkSij(Uij,k+rj ;θ)

}]
.

Let ζ ≡ (β, γ, ρ) denote the set of all Euclidean parameters, and ζ0 ≡ (β0, γ0, ρ0), Λ0, and g0

denote the true values of ζ, Λ, and g, respectively. In the sequel, we use (N,Mj, Ujk,∆jk, Zj,Xj)

(j = 1, . . . , N, k = 1, . . . ,Mj) to denote the observed data for a generic cluster. Without loss of

generality, assume that a2 = 0 and b2 = 1. To simplify the technical derivations, in this section and

the Appendix, we adopt an alternative identifiability constraint on g and assume that E {g(Z1)} = 0

(instead of g(0) = 0); similar conditions are imposed in work on additive models (Stone, 1985;

Huang, 1999). Let BV[c1, c2] be the space of functions with bounded total variation on [c1, c2]. We

assume the following conditions.

(C1) The parameter value ζ0 lies in the interior of a known compact set Aζ ⊂ Rp+2. Also,

Λ0 is strictly increasing and twice continuously differentiable on [a1, b1]. In addition, g0 is twice

continuously differentiable on [0, 1].

(C2) For some positive constant C, Pr(‖Xj‖ + N + Mj < C) = Pr(Zj ∈ [0, 1]) = 1 for

j = 1, 2, . . .. Also, the conditional density of Zj given U is twice continuously differentiable and

bounded between [C−1, C] on [0, 1] almost surely, where U denotes the set of all monitoring times.
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In addition, given (N,Mj), Pr(Uj,k+1−Uj,k > C−1) = 1 for k = 1, . . . ,Mj and j = 1, . . . , N , the

density of Ujk is twice continuously differentiable, and the union of the support of (Uj1, . . . , UjMj
)

is [a1, b1] for j = 1, 2, . . ..

(C3) For any j = 1, 2, . . ., if h0 +hT
1Xj + h2(Zj) = 0 almost surely for some h0 ∈ R, h1 ∈ Rp,

and h2 ∈ BV[0, 1], then h0 = 0, h1 = 0, and h2(z) = 0 for z ∈ [0, 1]. Also, there exists a constant

η ∈ (0, 1) such that for any d ∈ Rp, dTvar(Xj | U , Zj)d > ηdTE(XjX
T
j | U , Zj)d almost

surely.

(C4) The transformation function G(·; ρ) is strictly increasing, three-times continuously differ-

entiable, and with G(0; ρ) = 0. Also, for any positive constant K,

3∑
j=1

sup
ρ
|G(j)(x; ρ)|+ sup

γ

∫
|f (j)
ξ (ξ; γ)| dξ < C

for all x < K, where the supremums are taken over the parameter spaces of ρ and γ, G(j) is the jth

derivative of the transformation function with respect to the transformation parameter, f (j)
ξ (·; γ) is

the jth derivative of the density of ξ with respect to γ, and C is some constant that depends on K

only.

(C5) For any θ in a small neighborhood around θ0,

E

(
Φ

[ N∑
j=1

G{Λ(UjMj
)eX

T
j β+g(Zj); ρ}; γ

]
− Φ

[ N∑
j=1

G{Λ0(UjMj
)eX

T
j β0+g0(Zj); ρ0}; γ0

])2

&E

[{
Λ(U1M1)eX

T
1 β+g(Z1) − Λ0(U1M1)eX

T
1 β0+g0(Z1)

}2
]

+ |γ − γ0|2 + |ρ− ρ0|2,

where & denotes “greater than up to a scaling factor.”

REMARK 1 Condition (C1) requires the true parameters to lie in the interior of a compact set.

In some cases, the parameters in the transformation function and frailty distribution may lie at the

boundary of a natural parameter space. For example, if ξ ∼ Ga(γ−1, γ−1), then γ = 0 corresponds

to independence of subjects within a cluster, and this value of γ is on the boundary of the (natural)

parameter space {γ : 0 6 γ 6 C}. To handle this issue, we may follow Kosorok et al. (2004) and
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expand the parameter space to include the parameter value of interest as an interior point. For the

gamma frailty, we can set the parameter space of γ to be [−c0, C], where

c0 =
1

C supX,Z,β,g,Λ,ρG{Λ(b1)eXTβ+g(Z); ρ}
,

and the supremum is taken over the parameter space and the support of the variables. A negative

γ cannot be interpreted as the variance of a frailty, but the resulting likelihood can still be well-

defined.

REMARK 2 Condition (C2) pertains to typical regularity conditions for modeling interval-censored

data. Condition (C3) guarantees that the covariates are not degenerated; this condition is necessary

for model identifiability. Condition (C4) imposes regularity conditions on the transformation func-

tion and the distribution of the frailty. Condition (C5) is a technical condition, which requires that

changes in the transformation or frailty parameters would result in changes in the survival proba-

bility. This condition guarantees that the transformation and frailty parameters can be identified.

Let θ0 = (β0, ρ0, γ0,Λ0, g0) and d(·, ·) be a distance function such that

d(θ,θ0)2 = ‖β − β0‖2 + |γ − γ0|2 + |ρ− ρ0|2 + ‖Λ− Λ0‖2
[a1,b1] + ‖g − g0‖2

[0,1],

where ‖ · ‖[c1,c2] is the L2-norm over the interval [c1, c2]. In the sequel, we suppress the subscript

of the norms. The following theorems give the consistency and rate of convergence of the sieve

maximum likelihood estimator and the asymptotic normality of the estimators of the Euclidean

parameters.

THEOREM 1 Under Conditions (C1)–(C5), d(θ̂n,θ0) converges to 0 almost surely with

d(θ̂n,θ0) = Op[max{n−2ν1 , n−(1−ν1)/2, n−2ν2 , n−(1−ν2)/2}].

THEOREM 2 Assume that Conditions (C1)–(C5) hold and that the grid points τ and ς are chosen

such that 1/8 < ν1 < 1/2, 1/8 < ν2 < 1/4, and ν2 < min(4ν1, 1− ν1)/3. We have

n1/2(ζ̂n − ζ0)
d→ N(0, Ĩ−1),
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where Ĩ is the efficient information matrix for ζ defined in Lemma 2 of the Appendix.

4. Computation of the Sieve Estimators

We propose to adopt a gradient-based method for the computation of θ̂n. In the objective function,

the parameters ω, ρ and γ under the gamma frailty are subject to sign constraints, while the

parameter γ under the positive stable frailty is restricted to (0, 1). To facilitate the computation,

we reparametrize the model by applying the logarithmic or logit transformation on the constrained

parameters to reduce the original constrained nonlinear optimization problem to an unconstrained

one. The optimization is then performed using the Broyden-Fletcher-Goldfarb-Shanno algorithm,

which is implemented by the function optim in R (V. 3.5.2).

One crucial task in the proposed estimation approach is to determine the numbers and locations

of the grid points for Λn and gn, which potentially affect the estimation of the Euclidean and

infinite-dimensional parameters. Huang and Rossini (1997), in the context of sieve approximation

of the baseline log-odds function under the proportional odds model for interval-censored data,

reported that the choice of the number of grid points would affect the precision of the estimates.

When m1n or m2n is too small, the shape of the nonparametric functions cannot be approximated

closely by piecewise linear functions, while a large value of m1n or m2n may cause overfitting and

pose substantial computational burden. Practical guidelines for the selection of the grid points are

warranted.

Under the proposed methods, asymptotic normality of ζ̂n holds under m1n = O(nν1) for ν1 ∈

(1/8, 1/2), so we set m1n = C1n
1/3 for some positive constant C1; the choice of C1 is discussed in

Section 5. On the other hand, the number of grid points required for gn depends greatly on the shape

of g, which is very flexible due to the absence of monotonicity constraints on g. Under a fixed set

of grid points for Λn, we adopt the following algorithm to select the grid points for gn. Analogous

to Lam et al. (2018), the basic idea is to set m2n to be initially large. Then, grid points are removed
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in a stepwise manner, where a grid point is removed if g is approximately linear around the point.

The proposed algorithm is based on the Akaike information criterion (AIC), given by

AIC = −2`n(θ̂n) + 2(p+m1n +m2n + 2),

and is summarized below.

[1] At step 0:

(i) Fix the number of grid points m1n and choose a sufficiently large initial value for m2n, say

m
(0)
2n = 10.

(ii) Set the grid points for Λn at τ = (τ0, . . . , τm1n) and that for gn at ς(0) = (ς
(0)
0 , . . . , ς

(0)
m2n),

where τh is the 100(h/m1n)th empirical percentile of the combined values of Lij’s and Rij’s

(h = 0, . . . ,m1n), and ς(0)
h is the 100(h/m

(0)
2n )th percentile of the covariate values Zij’s (h =

0, . . . ,m
(0)
2n ). These locations of grid points are fixed throughout the following iterative proce-

dures to ensure a sensible coverage.

(iii) Compute the sieve maximum likelihood estimator and evaluate the AIC, denoted by AIC(0).

[2] At step k = 1, 2, . . . :

(i) Set m(k)
2n = m

(k−1)
2n − 1.

(ii) For h = 1, . . . ,m
(k)
2n , remove the hth inner grid point from ς(k−1) to form ς(k,h). For each

h, fit the model using τ and ς(k,h) as the grid points for Λn and gn respectively, and record

the AIC value, denoted by AIC(k,h). Let AIC(k) = min
(

AIC(k,1), . . . ,AIC(k,m
(k)
2n )
)

and h∗ ={
h∗ : AIC(k,h∗) 6 AIC(k,h) for 1 6 h 6 m

(k)
2n

}
.

(iii) Delete ς(k−1)
h∗ from ς(k−1) to form a new set of grid points ς(k) = ς

(k−1)
−h∗ .

[3] Repeat [2] until AIC(k) > AIC(k−1). The final model possesses (m∗2n − 1) = (m
(k−1)
2n − 1) inner

grid points with the locations given by ς(k−1).
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5. Simulation Studies

First, we conduct a simulation study for the general choice of m1n. We simulate samples in a

paired data setting (i.e., Ni = 2 for i = 1, . . . , n) with n = 250 or 500 independent clusters.

The frailty ξi is assumed to follow either Ga(γ−1, γ−1) (γ = 0.5 or 1) or Po(γ) (γ = 0.6 or

0.8), and the transformation function is set to be G(x; ρ) = {(1 + x)ρ − 1}/ρ with ρ = 0.5. We

set p = 2 and generate Xij1 from i.i.d. Normal(0, 0.25) and Xij2 from i.i.d. Bernoulli(0.5). The

corresponding parameter values are β1 = β2 = 1. We generate Zij from i.i.d. Uniform(0, 2π) and

set g(z) = sin(z). The covariatesXij1,Xij2, and Zij are mutually independent. We set the baseline

function Λ(t) = 0.4t1.6. The interarrival times between the observation times (Uijk−Uij,k−1) follow

Uniform(0.1, 0.5), and an administrative censoring occurs at t = 5. The right-censoring proportion

varies from 10% to 30% in the scenarios. We fix m1n = C1n
1/3 (C1 = 1, 2, 3, 4) and m2n = 3

and set the interior knots of gn at (0.5π, 1.5π), which are the essential turning points of g. The

simulation results are summarized in Table S1 of the Supporting Information. For both n = 250

and n = 500, the estimates for β, γ and ρ are nearly unbiased with close agreement between the

empirical standard deviation and estimated standard error in all scenarios with C1 > 2. Therefore,

we suggest to adopt C1 = 3 for applying the proposed methods in general.

Second, we study the finite-sample performance of the proposed sieve maximum likelihood

estimator. We set the total number of observations to be 1000, with n = 500 and a uniform cluster

size of 2, or n = 250 and a uniform cluster size of 4. We consider ρ = 0, 0.5, and 1. We set

m1n = 3n1/3 and select the grid points of gn by the algorithm detailed in Section 4 withm(0)
2n = 10.

The other specifications are identical to the first set of simulations. The results are reported in Table

1, and the average of the estimated curves Λ̂n and ĝn under n = 500 and Ni = 2 (i = 1, . . . , n)

are plotted in Figure 1 and Figure 2, respectively. The corresponding curves under n = 250 and

Ni = 4 (i = 1, . . . , n) are given in Figures S1 and S2 in the Supporting Information. In all cases, the

estimates for β, γ, and ρ are nearly unbiased. The empirical standard deviations agree with their
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corresponding estimated standard errors, whereas the coverage probabilities match quite closely

with the 95% nominal level in each scenario; when ρ = 0, the coverage for ρ is not computed

because ρ̂n is not asymptotically normal. We note that, however, the point and interval estimation

of some parameters can be relatively poor when the true value of ρ is set at the boundary of the

parameter space. The proposed methods provide good approximations for Λ and g by capturing the

turns of the curves efficiently, confirming the effectiveness of the proposed grid points selection

algorithm.

[Table 1 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

6. Analysis of Signal Tandmobiel Data

We apply the proposed method to analyze the data from the Signal Tandmobiel study. This is a

longitudinal prospective dental study performed in Flanders, Belgium between 1996 and 2001.

The original dataset contains 4430 randomly sampled children. They were examined annually,

with up to 6 dental observations for each child. See Vanobbergen et al. (2000) for more details

about the study. Here, we consider a subsample of n = 500, which is publicly available in the R

package icensBKL. The outcome of interest is the time to emergence of the four first permanent

premolars, referred to as teeth 14, 24, 34, and 44 in the European dental notation. The observations

are either interval-censored or right-censored, with a right-censoring proportion of 35%.

In this application, the frailty ξi represents the heterogeneity of the oral health condition among

the children. To further illustrate the proposed methods, in addition to the gamma distribution and

the positive stable distribution, we consider the inverse Gaussian distribution for the frailty. The

Laplace transform of the inverse Gaussian distribution (IG(γ)) with unit mean and variance (2γ)−1

is Φ(u; γ) = exp
{

2γ − 2γ1/2(γ + u)1/2
}

. Let (Lij, Rij] be the observed time interval covering the
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emergence time Tij of the jth tooth of child i, and let Xij1 and Xij2 be the indicators of the right

first premolar and maxillary first premolar, respectively for i = 1, . . . , n and j = 1, 2, 3, 4. Gender

is considered to be an important factor associated with the emergence time and thus is included into

the model as a covariate (Xij3), which takes values 0 and 1 for males and females, respectively.

The number of decayed, missing, and filled deciduous teeth (DMFT) index, which measures the

prevalence of dental caries, is also a variable of interest in the dataset. Previously, Komárek and

Lesaffre (2007) used a Bayesian accelerated failure time model to analyze the data and reported

that, after controlling for the effect of gender, the bad status of the primary predecessor (DMFT

index > 0) accelerates the emergence of the maxillary teeth (i.e., teeth 14 and 24). In the current

model, we relax the linearity assumption and set the DMFT index as Z with its effect captured by

the function g.

Since there are only a few observations with DMFT index > 10, we truncate the index value at

10. We select the grid points for gn using the proposed algorithm with m(0)
2n = 10. For Λn, we set

m1n = C1n
1/3 with C1 = 3 irrespective of the frailty distributions, as suggested in the simulation

study. The estimates for the Euclidean parameters are given in Table 2, whereas the estimated

survival function for a subject with zero covariate values and ĝn are plotted in Figure 3. For each

frailty model, it takes approximately 4 hours to complete the estimation using an ordinary desktop

computer (Windows, i7 3.4GHz CPU with 8 GB RAM).

[Table 2 about here.]

[Figure 3 about here.]

The grid points selection algorithm suggests 4 inner grid points for gn under the positive stable

and gamma distributions and 2 inner grid points under the inverse Gaussian distribution. The

estimate for ρ is close to 0 under all three frailty distributions, suggesting that the proportional

odds model may be more appropriate than the Cox proportional hazards model in this application.

Besides, the estimated baseline survival functions for all three frailty distributions agree with the
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expectation that the emergence of teeth occurs around the age of 10 (Moslemi, 2004). Also, the

three estimated g-functions in Figure 3 suggest that the effect of DMFT index is nonlinear with

a drastic change near DMFT = 2. This echoes the findings of Komárek and Lesaffre (2007) that

poor conditions of the primary predecessor tend to accelerate the emergence of the studied teeth.

Based on the AIC, the positive stable distribution for the frailty provides the best fit. In this model,

the emergence rates of contralateral first premolars do not differ significantly (β̂1 = 0.0068 with

p-value = 0.9404). The mandibular first premolars have comparatively higher rates as compared

to the maxillary first premolars (β̂2 = −0.2972 with p-value = 0.0016). Previous studies have

reported that the difference in emergence times of contralateral teeth is minimal and that mandibu-

lar teeth tend to emerge faster than their maxillary counterparts (Eskeli et al., 1999; Leroy et al.,

2003). The effect of gender is significant (β̂3 = 0.6176 with p-value = 0.0152), suggesting that the

emergence time of the first permanent premolars in female is earlier than that in male on average.

7. Discussion

In this article, we propose a class of semiparametric partly linear frailty models for the anal-

ysis of clustered interval-censored data. The two nonparametric functions, which characterize

the baseline survival function and the nonlinear effect of a covariate, are estimated using sieve

maximum likelihood estimation. We proved that the sieve maximum likelihood estimator of the

Euclidean parameters are strongly consistent and asymptotically normal and the estimators of the

two nonparametric functions are also strongly consistent and attain optimal rates of convergence.

In particular, we demonstrate theoretically and through empirical studies that the transformation

parameter ρ, which is typically assumed to be known in the literature, can be consistently estimated

with a valid inference procedure.

A key difference between the proposed model and some existing transformation models for

multivariate failure time data (Zeng and Lin, 2007; Zeng et al., 2017) is that the frailty acts

multiplicatively on the transformation function G instead of the argument of G. When the frailty
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is inside the argument of G, the frailty acts multiplicatively to the G−1-transformed cumulative

hazard and can be thought of as an unobserved covariate. Under our formulation, by contrast, the

frailty is a latent multiplicative effect on the cumulative hazard function. While the appropriateness

of the formulations depend on the actual applications, our formulation results in a closed-form

expression for the likelihood whenever the frailty distribution has an explicit Laplace transform.

This simplifies the computation of the sieve maximum likelihood estimator and allows for direct

maximization of the log-likelihood function using gradient methods.

In the framework presented in this article, both the transformation function G and the frailty

distribution are indexed by a single parameter. One can easily extend the framework to allow for,

for example, the two-parameter family of frailty distributions considered by Lam and Kuk (1997).

Another interesting yet challenging extension is to consider a nonparametric transformation func-

tion G. This would pose substantial computational and theoretical challenges.

Another possible direction of extension is to allow for a multivariate covariate Zij . Due to the

curse of dimensionality, a fully nonparametric g is generally infeasible. One may adopt an additive

model with g(Zij) =
∑K

k=1 gk(Zijk), where Zijk is the kth component of Zij , K is the dimension

of Zij , and gk is an unspecified function (k = 1, . . . , K). Alternatively, one may consider a single

index model and set g(Zij) = g̃(αTZij) for some regression parameter vector α and univariate,

unspecified function g̃. For both extensions, the unspecified functions can be estimated using the

sieve maximum likelihood estimation approach, and the theoretical properties of the estimators can

be established along the lines of the proofs of Theorems 1 and 2. Nevertheless, the computation of

the estimators may be challenging due to the extra parameters to be estimated.
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APPENDIX

TECHNICAL PROOFS

Before proving the theorems, we present the following lemmas. Proofs of the lemmas are provided

in Section S1 of the Supporting Information. Let Fn = {`(θ) : θ ∈ Θn}, where `(θ) is the log-

likelihood for a generic cluster of subjects, and Θn = Aζ × AΛn × Agn. Let Pn and P denote the

empirical and true probability measures, respectively.

LEMMA 1 Under Conditions (C1)–(C4),

‖Pn − P‖Fn = sup
θ∈Θn

∣∣∣(Pn − P)`(θ)
∣∣∣→a.s. 0.

Let ˙̀
ζ(θ) denote the score statistic for ζ, ˙̀

Λ(θ)[hΛ] denote the score statistic for Λ along the

direction hΛ, and ˙̀
g(θ)[hg] denote the score statistic for g along the direction hg. For a vector of

functions hΛ = (h1,Λ, . . . , hp,Λ), ˙̀
Λ(θ)[hΛ] denotes the vector ( ˙̀

Λ(θ)[h1,Λ], . . . , ˙̀
Λ(θ)[hp,Λ]). The

vector ˙̀
g(θ)[hg] is defined similarly for a vector of functions hg. Let AΛ = {Λ ∈ `∞[a1, b1] :

Λ(a1) = 0,Λ is monotone nondecreasing,Λ(b1) < C}, Ag = {g ∈ `∞[0, 1] : ‖g‖TV < C}, and

Θ = Aζ ×AΛ ×Ag, where ‖ · ‖TV denotes the total variation norm, and C is some large enough

constant.

LEMMA 2 Under Conditions (C1)–(C5), there exist h∗Λ ∈ L2[a1, b1]p+2 and h∗g ∈ L2[0, 1]p+2

such that

P
(

˙̀
Λ(θ0)[hΛ]

{
˙̀
ζ(θ0)− ˙̀

Λ(θ0)[h∗Λ]− ˙̀
g(θ0)[h∗g]

})
= 0

P
(

˙̀
g(θ0)[hg]

{
˙̀
ζ(θ0)− ˙̀

Λ(θ0)[h∗Λ]− ˙̀
g(θ0)[h∗g]

})
= 0

for all hΛ ∈ L2[a1, b1] and hg ∈ L2[0, 1]. Also, the classes G1 = { ˙̀
ζ(θ) : θ ∈ Θ}, G2 =

{ ˙̀
Λ(θ)[hΛ] : θ ∈ Θ, hΛ ∈ BV[a1, b1]}, and G3 = { ˙̀

g(θ)[hg] : θ ∈ Θ, hg ∈ BV[0, 1]} are

Donsker. In addition, the efficient information matrix for ζ, defined by

Ĩ ≡ P
{

˙̀
ζ(θ0)− ˙̀

Λ(θ0)[h∗Λ]− ˙̀
g(θ0)[h∗g]

}⊗2
,

is positive definite.
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PROOF OF THEOREM 1. We show that there exists a local maximum of the log-likelihood

function over the sieve space that is consistent. By Schumaker (2007), there exist functions Λ̃n and

g̃n, such that ‖Λ̃n − Λ0‖∞ = O(n−2ν1) and ‖g̃n − g0‖∞ = O(n−2ν2). Let θ̃n = (ζ0, Λ̃n, g̃n). By

definition of the sieve maximum likelihood estimator, Pn`(θ̂n) > Pn`(θ̃n), such that

P`(θ̂n)− P`(θ0) > P{`(θ̃n)− `(θ0)}+ (Pn − P){`(θ̃n)− `(θ̂n)}.

The first term on the right-hand side of the above inequality is o(1), and by Lemma 1, the second

term goes to 0 almost surely. Therefore, the right-hand side of the above display goes to 0 almost

surely. Let h(U ;θ) = Pr(U1k1 < T1 < U1,k1+1, . . . , UNkN < TN < UN,kN+1;θ) for given N and

(k1, . . . , kN). The left-hand side of the above inequality is

E

{ M1∑
k1=0

· · ·
MN∑
kN=0

∆1k1 · · ·∆NkN log
h(U ; θ̂n)

h(U ;θ0)

}

= E

{ M1∑
k1=0

· · ·
MN∑
kN=0

E(∆1k1 · · ·∆NkN | U) log
h(U ; θ̂n)

h(U ;θ0)

}

= E

{ M1∑
k1=0

· · ·
MN∑
kN=0

h(U ;θ0) log
h(U ; θ̂n)

h(U ;θ0)

}

= E

( M1∑
k1=0

· · ·
MN∑
kN=0

[
h(U ; θ̂n)− h(U ;θ0)− h(U ; θ̂n)q

{
h(U ;θ0)

h(U ; θ̂n)

}])

= − E

[ M1∑
k1=0

· · ·
MN∑
kN=0

h(U ; θ̂n)q

{
h(U ;θ0)

h(U ; θ̂n)

}]
,

where q(x) = x log x−x+1, and the last equality holds because E{
∑M1

k1=0 · · ·
∑MN

kN=0 h(U ;θ)} = 1

for any θ. For θ̂n in a small enough neighborhood of θ0, 0 6 h(U ;θ0)/h(U ; θ̂n) 6 5, such that

q{h(U ;θ0)/h(U ; θ̂n)} > {h(U ;θ0)/h(U ; θ̂n)−1}2/4. In this case, the right-hand side of the above

equation is bounded above (up to a scaling factor) by

−
M1∑
k1=0

· · ·
MN∑
kN=0

E

[
{h(U ;θ0)− h(U ; θ̂n)}2

h(U ; θ̂n)

]
.

M1∑
k1=0

· · ·
MN∑
kN=0

−E
[
{h(U ;θ0)− h(U ; θ̂n)}2

]
.

(A.1)

Consider the term in the summation of the right-hand side of (A.1) at k1 = M1, . . . , kN = MN . By
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Condition (C5), this term is (up to a scaling factor) bounded above by

−E

[{
Λ̂n(U1M1)eX

T
1 β̂n+ĝn(Z1) − Λ0(U1M1)eX

T
1 β0+g0(Z1)

}2
]
− |γ̂n − γ0|2 − |ρ̂n − ρ0|2.

Therefore, we conclude that |γ̂n − γ0|2 + |ρ̂n − ρ0|2 →a.s. 0. We then follow the arguments in the

proof of Theorem 3.2 in Wellner and Zhang (2007) to place a bound on the first term in the above

expression by the differences between the individual parameter estimators and the corresponding

true values. Following the arguments in Wellner and Zhang (2007, pp. 2126–2127), we have

E

[{
Λ̂n(U1M1)eX

T
1 β̂n+ĝn(Z1) − Λ0(U1M1)eX

T
1 β0+g0(Z1)

}2
]

&E
[{
q1(U1M1 ,X1, Z1)h1(U1M1 , Z1) + q2(U1M1 , Z1)

}2]
, (A.2)

where q1(U1M1 ,X1, Z1) = Λ0(U1M1)eg0(Z1)XT
1 (β̂n−β0), h1(U1M1 , Z1) = 1+t1{Λ̂n(U1M1)eĝn(Z1)−

Λ0(U1M1)eg0(Z1)}/Λ0(U1M1)eg0(Z1), q2(U1M1 , Z1) = Λ̂n(U1M1)eĝn(Z1) − Λ0(U1M1)eg0(Z1), and t1 is

some value between 0 and 1. Under Condition (C3), we can show that

[E{q1(U1M1 ,X1, Z1)q2(U1M1 , Z1)}]2 6 (1− η)E{q1(U1M1 ,X1, Z1)2}E{q2(U1M1 , Z1)2},

so that the right-hand side of (A.2) is (up to a scaling factor) bounded below by

E{q1(U1M1 ,X1, Z1)2}+ E{q2(U1M1 , Z1)2} & ‖β̂n − β0‖2 + E{q2(U1M1 , Z1)2}.

We conclude that ‖β̂n − β0‖2 →a.s. 0. By the mean-value theorem, we have

E{q2(U1M1 , Z1)2} = E[{eĝn(Z1)+log Λ̂n(U1M1
) − eg0(Z1)+log Λ0(U1M1

)}2]

> min
z∈[0,1],u∈[C−1,C]t∈[0,1]

{
etĝn(z)+(1−t)g0(z)+t log Λ̂n(u)+(1−t) log Λ0(u)

}2

× E
[{

(ĝn − g0)(Z1) + (log Λ̂n − log Λ0)(U1M1)
}2]

,

where C is defined in Condition (C2), and the minimum term is bounded away from zero under

Condition (C1). Under Condition (C2), we can use the arguments for the proof of Lemma 1 of

Stone (1985) to show that

E{q2(U1M1 , Z1)2} & E{(ĝn − g0)(Z1)2}+ E{(log Λ̂n − log Λ0)(U1M1)2}

& ‖ĝn − g0‖2 + E{(Λ̂n − Λ0)(U1M1)2},

where the second inequality follows because the support of Z1 covers [0, 1] and that Λ0(t) is
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bounded for t ∈ [a1, b1]. We conclude that ‖ĝn − g0‖2 →a.s. 0. Finally, because the support of

(U11, . . . , U1M1) covers [a1, b1], we can use similar arguments to show that the right-hand side of

(A.1) is (up to a scaling factor) bounded above by −‖Λ̂n − Λ0‖2. The desired consistency result

follows.

The proof of the rate of convergence is based on Lemma 3.4.1 of van der Vaart and Wellner

(1996). For θ in a small enough neighborhood of θ0,

P`(θ)− P`(θ̃n) =P`(θ)− P`(θ0)− {P`(θ̃n)− P`(θ0)}

. − d(θ,θ0)2 +O(‖Λ̃n − Λ0‖2
∞ + ‖g̃n − g0‖2

∞),

where the inequality follows from the proof of consistency. Let δn = n−2ν1 + n−2ν2 . We conclude

that for δ > δn and large enough n,

sup
δ/2<d(θ,θ̃n)<δ

θ∈Θn

P`(θ)− P`(θ̃n) . −δ2.

Let Fδ =
{
`(θ) − `(θ̃n) : δ/2 < d(θ, θ̃n) < δ,θ ∈ Θn

}
. Following the arguments of Shen and

Wong (1994, pp. 597), for 0 < ε < δ, we have

logN[]{ε,Fδ, L2(P)} . max(m1n,m2n) log
(δ
ε

)
.

By Lemma 3.4.2 of van der Vaart and Wellner (1996), we have

‖n1/2(Pn − P)‖Fδ . J[]{δ,Fδ, L2(P)}
[
1 +

J[]{δ,Fδ, L2(P)}
δ2n1/2

]
. max(m1n,m2n)1/2δ

{
1 +

max(m1n,m2n)1/2

δn1/2

}
≡ φn(δ),

where J[]{δ,Fδ, L2(P)} ≡
∫ δ

0
[1 + logN[]{η,Fδ, L2(P)}]1/2 dη is the bracketing entropy. Clearly,

φn(δ)/δ is decreasing in δ, and r2
nφn(1/rn) . n1/2 for rn = n(1−ν1)/2 + n(1−ν2)/2. Therefore,

by Theorem 3.4.1 of van der Vaart and Wellner (1996), d(θ̂n, θ̃n) = Op(rn). Combined with

d(θ̃n,θ0) = O(n−2ν1 + n−2ν2), the desired result follows.

PROOF OF THEOREM 2. Clearly, we can write ĝn =
∑m2n

j=1 α̂njBj and g̃n =
∑m2n

j=1 α̃njBj

for some (α̂n1, . . . , α̂n,m2n) and (α̃n1, . . . , α̃n,m2n), where Bj’s are B-spline functions with order 1.
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From the proof of Theorem 1, ‖ĝn − g̃n‖ = Op[n
−min{(1−ν1)/2,(1−ν2)/2,2ν1,2ν2}]. We have

‖ĝn− g̃n‖TV =

∥∥∥∥ m2n∑
j=1

(α̂nj− α̃nj)B′j
∥∥∥∥ 6

m2n∑
j=1

|α̂nj− α̃nj|‖B′j‖∞ 6 O(m
3/2
2n )
{ m2n∑

j=1

(α̂nj− α̃nj)2
}1/2

.

By de Boor (1978, p. 155), the L2-norm between ĝn and g̃n is bounded below by the Euclidean

norm of the corresponding coefficient vectors up to a scaling factor. Therefore, the right-hand

side of the second inequality above is Op[n
3ν2/2−min{(1−ν1)/2,(1−ν2)/2,2ν1,2ν2}], which is op(1) by the

choices of ν1 and ν2. Therefore, ĝn belongs to the space of bounded total variation BV[0, 1].

By definition of the sieve maximum likelihood estimator, Pn ˙̀
ζ(θ̂n) = 0 and Pn ˙̀

g(θ̂n)[h∗n,g] = 0,

where h∗n,g is the (componentwise) projection of h∗g ontoAgn. Also, following the arguments in the

proof of Theorem 5.3 in Huang and Rossini (1997), we can show that Pn ˙̀
Λ(θ̂n)[h∗n,Λ] = op(n

−1/2),

where h∗n,Λ is the projection of h∗Λ onto AΛn. From the equations for solving h∗Λ and h∗g given in

the proof of Lemma A2 and Condition 2, both h∗Λ and h∗g are twice continuously differentiable.

Therefore, ‖h∗n,Λ − h∗Λ‖∞ = O(n−2ν1) and ‖h∗n,g − h∗g‖∞ = O(n−2ν2). By the properties of the

score statistic, P ˙̀
ζ(θ0) = 0, P ˙̀

Λ(θ0)[h∗Λ] = 0, and P ˙̀
g(θ0)[h∗g] = 0. We have

Pn ˙̀
Λ(θ̂n)[h∗Λ] =Pn ˙̀

Λ(θ̂n)[h∗n,Λ] + P ˙̀
Λ(θ0)[h∗Λ − h∗n,Λ] + (Pn − P) ˙̀

Λ(θ̂n)[h∗Λ − h∗n,Λ]

+ P{ ˙̀
Λ(θ̂n)[h∗Λ − h∗n,Λ]− ˙̀

Λ(θ0)[h∗Λ − h∗n,Λ]}.

The first two terms of the right-hand side above are op(n−1/2) (or zero). By Lemma 2, G2 is

Donsker, so that the third term is op(n−1/2). In addition, by Theorem 1 and applying a first-

order linear expansion of ˙̀
Λ(θ̂) at θ0, we can show that the fourth term is Op[{n−(1−ν1)/2 +

n−2ν1 + n−(1−ν2)/2 + n−2ν2}n−2ν1 ], which is op(n−1/2) by the choices of ν1 and ν2. Likewise,

Pn ˙̀
g(θ̂n)[h∗g] = op(n

−1/2). We have

Pn{ ˙̀
ζ(θ̂n)− ˙̀

ζ(θ0)} = −(Pn − P) ˙̀
ζ(θ0)

Pn{ ˙̀
Λ(θ̂n)[h∗Λ]− ˙̀

Λ(θ0)[h∗Λ]} = −(Pn − P) ˙̀
Λ(θ0)[h∗Λ] + op(n

−1/2)

Pn{ ˙̀
g(θ̂n)[h∗g]− ˙̀

g(θ0)[h∗g]} = −(Pn − P) ˙̀
g(θ0)[h∗g] + op(n

−1/2).

Let ῭
ζζ , ῭

Λζ [h1,Λ], and ῭
gζ [h1,g] be respectively the derivatives of ˙̀

ζ , ˙̀
Λ[h1,Λ], and ˙̀

g[h1,g] with

respect to ζ, ῭
ζΛ[h2,Λ], ῭

ΛΛ[h1,Λ, h2,Λ], and ῭
gΛ[h1,g, h2,Λ] be respectively the derivatives of ˙̀

ζ ,

˙̀
Λ[h1,Λ], and ˙̀

g[h1,g] with respect to Λ along the direction h2,Λ, and ῭
ζg[h2,g], ῭

Λg[h1,Λ, h2,g], and
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῭
gg[h1,g, h2,g] be respectively the derivatives of ˙̀

ζ , ˙̀
Λ[h1,Λ], and ˙̀

g[h1,g] with respect to g along

the direction h2,g. Because the classes G1, G2, and G3 are Donsker, the empirical measures on the

left-hand sides of the above display can be replaced by P with an additional op(n−1/2) term. Also,

by the Taylor series expansion, the boundedness of the derivatives of the score statistics, and that

d(θ̂n,θ0) = op(n
−1/4), we conclude that

P ῭
ζζ(ζ̂ − ζ0) + P ῭

ζΛ[Λ̂n − Λ0] + P ῭
ζg[ĝn − g0] = −(Pn − P) ˙̀

ζ(θ0) + op(n
−1/2)

P ῭
Λζ [h

∗
Λ](ζ̂ − ζ0) + P ῭

ΛΛ[h∗Λ, Λ̂n − Λ0] + P ῭
Λg[h

∗
Λ, ĝn − g0] = −(Pn − P) ˙̀

Λ(θ0)[h∗Λ] + op(n
−1/2)

P ῭
gζ [h

∗
g](ζ̂ − ζ0) + P ῭

gΛ[h∗g, Λ̂n − Λ0] + P ῭
gg[h

∗
g, ĝn − g0] = −(Pn − P) ˙̀

g(θ0)[h∗g] + op(n
−1/2).

Subtracting the second and third equalities in the above display from the first equality, we have

P( ῭
ζζ− ῭

Λζ [h
∗
Λ]− ῭

gζ [h
∗
g])(ζ̂−ζ0) = −(Pn−P){ ˙̀

ζ(θ0)− ˙̀
Λ(θ0)[h∗Λ]− ˙̀

g(θ0)[h∗g]}+op(n
−1/2).

The desired result follows from the central limit theorem and the invertibility of the efficient

information matrix Ĩ .
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Figure 1. Estimation of Λ under the gamma and positive stable frailty distributions for n = 500
and Ni = 2 (i = 1, . . . , n). The solid black lines represent the true values and the dashed red lines
are the averaged estimates. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version.
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Figure 2. Estimation of g under the gamma and positive stable frailty distributions for n = 500
and Ni = 2 (i = 1, . . . , n). The solid black line represents the true values and the dashed red lines
are the averaged estimates. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version.
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Figure 3. Estimated survival functions and g-functions for the dental dataset. The solid black,
dotted red, and dashed blue lines represent the results based on the Ga(γ−1, γ−1),Po(γ), and IG(γ)
respectively. This figure appears in color in the electronic version of this article, and any mention
of color refers to that version.
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Table 1
Simulation results under C1 = 3 with 1000 replicates in each scenario

ξ Par. True Bias (ESD, ASE, CP) Par. True Bias (ESD, ASE, CP) Par. True Bias (ESD, ASE, CP)

Ni = 2, n = 500

ξ ∼ Ga β1 1 0.003 (0.142, 0.142, 0.95) β1 1 0.004 (0.135, 0.127, 0.94) β1 1 0.004 (0.121, 0.119, 0.94)
β2 1 0.000 (0.146, 0.141, 0.94) β2 1 0.004 (0.131, 0.127, 0.94) β2 1 0.004 (0.123, 0.119, 0.95)
γ 0.5 0.026 (0.091, 0.093, 0.91) γ 0.5 0.007 (0.093, 0.090, 0.94) γ 0.5 0.006 (0.087, 0.087, 0.94)
ρ 0 0.048 (0.073, 0.080, − ) ρ 0.5 0.023 (0.170, 0.158, 0.96) ρ 1 0.054 (0.287, 0.263, 0.96)
β1 1 0.002 (0.156, 0.155, 0.96) β1 1 0.003 (0.138, 0.139, 0.96) β1 1 0.005 (0.125, 0.127, 0.96)
β2 1 0.007 (0.163, 0.155, 0.94) β2 1 0.006 (0.140, 0.138, 0.94) β2 1 0.001 (0.129, 0.126, 0.94)
γ 1 −0.021 (0.128, 0.130, 0.93) γ 1 −0.002 (0.131, 0.130, 0.94) γ 1 −0.003 (0.126, 0.124, 0.94)
ρ 0 0.052 (0.083, 0.088, − ) ρ 0.5 0.025 (0.162, 0.157, 0.96) ρ 1 0.065 (0.261, 0.246, 0.95)

ξ ∼ Po β1 1 0.001 (0.161, 0.161, 0.96) β1 1 0.016 (0.148, 0.144, 0.94) β1 1 0.006 (0.143, 0.131, 0.92)
β2 1 0.003 (0.159, 0.159, 0.95) β2 1 0.013 (0.143, 0.143, 0.96) β2 1 0.006 (0.137, 0.130, 0.94)
γ 0.6 −0.006 (0.028, 0.028, 0.93) γ 0.6 −0.006 (0.029, 0.028, 0.94) γ 0.6 −0.003 (0.029, 0.028, 0.94)
ρ 0 0.048 (0.073, 0.083, − ) ρ 0.5 0.025 (0.149, 0.142, 0.96) ρ 1 0.063 (0.262, 0.235, 0.95)
β1 1 −0.005 (0.146, 0.141, 0.95) β1 1 0.000 (0.131, 0.126, 0.95) β1 1 −0.003 (0.124, 0.120, 0.95)
β2 1 −0.006 (0.144, 0.141, 0.95) β2 1 0.003 (0.127, 0.126, 0.95) β2 1 −0.005 (0.124, 0.119, 0.94)
γ 0.8 −0.004 (0.033, 0.031, 0.94) γ 0.8 −0.002 (0.032, 0.031, 0.93) γ 0.8 0.000 (0.032, 0.031, 0.94)
ρ 0 0.042 (0.068, 0.066, − ) ρ 0.5 0.035 (0.156, 0.147, 0.95) ρ 1 0.090 (0.284, 0.261, 0.95)

Ni = 4, n = 250

ξ ∼ Ga β1 1 −0.004 (0.138, 0.137, 0.95) β1 1 0.005 (0.126, 0.122, 0.94) β1 1 −0.006 (0.113, 0.113, 0.94)
β2 1 −0.010 (0.137, 0.136, 0.94) β2 1 0.007 (0.121, 0.121, 0.94) β2 1 −0.008 (0.113, 0.113, 0.95)
γ 0.5 0.013 (0.081, 0.079, 0.94) γ 0.5 0.011 (0.078, 0.076, 0.93) γ 0.5 0.004 (0.075, 0.074, 0.94)
ρ 0 0.043 (0.065, 0.070, − ) ρ 0.5 0.033 (0.157, 0.144, 0.95) ρ 1 0.079 (0.265, 0.244, 0.95)
β1 1 0.002 (0.151, 0.147, 0.94) β1 1 −0.006 (0.138, 0.129, 0.93) β1 1 −0.004 (0.122, 0.118, 0.94)
β2 1 −0.005 (0.153, 0.145, 0.95) β2 1 0.001 (0.131, 0.129, 0.94) β2 1 −0.007 (0.122, 0.117, 0.93)
γ 1 0.001 (0.130, 0.126, 0.93) γ 1 0.004 (0.121, 0.122, 0.95) γ 1 0.000 (0.124, 0.117, 0.94)
ρ 0 0.043 (0.068, 0.078, − ) ρ 0.5 0.033 (0.150, 0.142, 0.95) ρ 1 0.063 (0.239, 0.223, 0.95)

ξ ∼ Po β1 1 0.003 (0.144, 0.141, 0.96) β1 1 0.004 (0.128, 0.127, 0.95) β1 1 −0.005 (0.118, 0.116, 0.94)
β2 1 0.011 (0.143, 0.140, 0.94) β2 1 0.007 (0.130, 0.126, 0.94) β2 1 −0.004 (0.119, 0.116, 0.95)
γ 0.6 −0.005 (0.028, 0.027, 0.93) γ 0.6 −0.002 (0.026, 0.027, 0.95) γ 0.6 −0.002 (0.026, 0.026, 0.95)
ρ 0 0.045 (0.070, 0.082, − ) ρ 0.5 0.022 (0.147, 0.137, 0.95) ρ 1 0.071 (0.241, 0.228, 0.95)
β1 1 −0.005 (0.130, 0.132, 0.95) β1 1 −0.003 (0.124, 0.119, 0.93) β1 1 −0.006 (0.119, 0.113, 0.93)
β2 1 −0.003 (0.133, 0.131, 0.94) β2 1 −0.003 (0.121, 0.118, 0.94) β2 1 −0.008 (0.114, 0.113, 0.95)
γ 0.8 −0.004 (0.026, 0.026, 0.95) γ 0.8 −0.002 (0.027, 0.026, 0.94) γ 0.8 0.000 (0.026, 0.026, 0.95)
ρ 0 0.041 (0.062, 0.069, − ) ρ 0.5 0.035 (0.151, 0.143, 0.95) ρ 1 0.099 (0.277, 0.259, 0.95)

ESD: empirical standard deviation of the parameter estimator; ASE: averaged standard error of the parameter estimator; CP: coverage probability of the nominal
95% confidence intervals.
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Table 2
Estimation results for the dental dataset

m∗2n Frailty β̂1 (SE) β̂2 (SE) β̂3 (SE) γ̂ (SE) ρ̂ (SE) AIC

5 Ga(γ−1, γ−1) 0.0135 (0.1064) −0.2449 (0.1075) 0.8281 (0.2175) 2.1360 (0.1888) 0.2107 (0.1170) 4367
5 Po(γ) 0.0068 (0.0909) −0.2972 (0.0944) 0.6176 (0.2545) 0.4927 (0.0203) 0.0001 (0.0004) 4278
3 IG(γ) 0.1094 (0.1421) −0.3510 (0.1451) 0.5041 (0.3155) 0.0139 (0.0034) 0.2092 (0.0318) 4291




