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ABSTRACT

Energy efficiency of relay communications has attracted much interest recently. Most research efforts have focused on
half-duplex systems. As there has been significant progress in practical implementation of self-interference cancellation,
full-duplex systems will have a promising potential in the near future. In this letter, energy efficiency of a full-duplex
relay system under the total power constraint and fixed circuitry power consumption is studied. An optimization problem
is formulated towards maximizing the system energy efficiency. Unfortunately, this problem is non-trivial and cannot
be solved by conventional fractional programming methods, such as the Dinbelbach’s method. To resolve this issue, an
algorithm called sequential parametric convex approximation-Dinbelbach is proposed in this letter. Simulation results show
that the proposed algorithm can converge to the global optimum very quickly. Copyrightc© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that full-duplex (FD) transmission can
achieve higher throughput than half-duplex transmission
theoretically [1]. However, its applications in wireless
communications were rather limited due to a variety of
practical implementation challenges. The major problem is
the so called self-interference. It stems from simultaneous
transmission and reception in the same frequency band,
and causes the strong transmitted signal to couple directly
with the receiving path. Recently, some practical self-
interference cancellation schemes have been developed to
effectively cancel self-interference in FD transmission [2–
6]. These progresses inspire theories and applications of
FD transmission, especially in FD relay systems.

Meanwhile, energy efficiency (EE) has also attracted
much interest in the telecommunications community [7–
17]. Increasing EE has become an important and urgent
task. In relay communications, recent research efforts have
focused on EE in half-duplex relay systems [8, 14–16, 18–
20]. In [8, 15, 16], the main algorithms used to optimize
EE are based on the Dinbelbach’s method [21], which
has been commonly used to solve fractional programming
problems. In [14, 17], the authors have proposed a dual
method that maximizes EE in amplify-and-forward relay

systems. To the best of our knowledge, there is no open
literature focusing on EE of FD relay systems.

In this letter, a FD relay system, in which a relay helps
information delivery from the source to the destination
in FD manner, is considered. The decode-and-forward
relaying protocol is adopted since the relay has to
decode the signals in order to perform self-interference
cancellation. First, an optimization problem is formulated
to maximize the EE in the FD relay system. The
optimization problem is non-trivial and cannot be solved
by conventional fractional programming methods, such
as the Dinbelbach’s method [21]. Then, the optimization
problem is converted into an equivalent problem that
can be further decomposed into two subproblems. The
first subproblem can be solved by the Dinbelbach’s
method directly. The second subproblem is not quasi-
concave because of the non-convex constraint, which
cannot be solved by the Dinbelbach’s method directly.
An effective algorithm called sequential parametric convex
approximation (SPCA) [22] is utilized to iteratively
approach the optimum value at each iteration of the
Dinbelbach’s method. The joint algorithm is called SPCA-
Dinbelbach.
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Figure 1. A full-duplex relay system. Solid lines denote
information transmission and the dashed line denotes self-

interference.

2. SYSTEM MODEL

We consider a three-node cooperative communication
system in which the source S communicates with the
destination D via a relay R, as shown in Fig.1. The
source and destination are equipped with a single antenna,
while the relay is equipped with one receiving antenna
and one transmitting antenna (can receive and transmit
signals simultaneously). Letxs(t) and xr(t) denote the
signals transmitted from S and from the transmitting
antenna of R at the time instantt, respectively,where the
average powers of transmitted symbols equal to 1, i.e.,
E[xs(t)

′xs(t)] = E[xr(t)
′xr(t)] = 1. Let Hsr denote

the channel coefficient of the link between the source S
and the relay R,Hsd denote the channel coefficient of
the link between the source S and the destination D, and
Hrd denote the channel coefficient of the link between the
relay R and the destination D. The transmission powers
of the source S and the relay R are denoted asPs

and Pr, respectively. Then, the received signals at the
receiving antenna of R and D, denoted byyr(t) andyd(t)
respectively, can be written as

yr(t) =
√
PsHsrxs(t) +

√
PrHrrxr(t) + nr(t), (1)

yd(t) =
√
PrHrdxr(t) +

√
PsHsdxs(t) + nd(t), (2)

wherenr(t) and nd(t) are the additive white Gaussian
noises at the relay R and the destination D, respectively,
and follow CN (0, σ2

z). It is assumed that the channel
coefficient between nodei and node j is Hij ∼
CN (0,Ωi,j). HereΩi,j is determined by the path-loss,
i.e.,Ωi,j = (d0/dij)

m, wherem is the path-loss exponent,
dij is the distance between nodei and nodej, and d0
is the reference distance. The self-interference channel
coefficient Hrr is modeled as

√
βHSI , where β is

the self-interference attenuation andHSI ∼ CN (0, 1)∗.
The effective channel gains are then defined asGij =
|Hij |2/σ2

z , i ∈ {s, r}, andj ∈ {r, d}.

∗Before analog domain cancellation, the self-interference channel hasa strong
line-of-sight component. So it can be modeled as a Ricean distribution with
a largeK-factor. It is shown experimentally in [23] that after applying a
sufficiently large analog domain cancellation, the strong line-of-sight component
is attenuated, resulting in a Ricean distribution with a smallK-factor or a
Rayleigh distribution.

The decode-and-forward relaying protocol is adopted at
the relay. Then, the achievable rate is given by [24, eq.7]

RDF(Ps, Pr) = min{RDF,1(Ps, Pr), RDF,2(Ps, Pr)}
(3)

whereRDF,1(Ps, Pr) andRDF,2(Ps, Pr) are defined as

RDF,1(Ps, Pr) = log2(1 +
PsGsr

1 + βPrGrr

), (4)

RDF,2(Ps, Pr) = log2(1 + PsGsd + PrGrd). (5)

However, ifGsd ≥ Gsr, the achievable rate in (3) boils
down to the rate of the direct transmission between the
source and the destination, which is given by

RD(Ps) = log2(1 + PsGsd). (6)

Hence, the overall achievable rate can be re-written as:

R(Ps, Pr) = max{RDF(Ps, Pr), RD(Ps)}. (7)

The EE of the FD relay system is studied, and is defined
as

Ueff = R(Ps, Pr)/PT (Ps, Pr) [bits/Joule], (8)

where the total power consumptionPT is calculated by

PT (Ps, Pr) = Ps + Pr + Pc. (9)

In (9), Pc denotes the energy consumed by the circuitry
of the whole relay system, and is assumed to be constant.
Assuming that the total power constraint of the source
and relay is given byPs + Pr ≤ Pmax, the optimal
transmission powersPs andPr will be obtained by solving

Optimization Problem (P1)

max
Ps,Pr

Ueff(Ps, Pr)

s.t. C1 : Ps + Pr ≤ Pmax,

C2 : Ps, Pr ≥ 0.

(10)

3. ALGORITHM

In this section, firstly the optimization problemP1 will
be transformed into an equivalent problem which can
be further decomposed into two subproblems. Then, the
subproblems will be solved one by one. In the optimization
problemP1, the variables to be optimized arePs andPr.
The objective function is a nonlinear fractional function,
in which the numerator is a max-min function. Thus,
this problem is very difficult to solve directly. Then,
the optimization problemP1 will be transformed into a
simpler and equivalent problem, which can be solved.
Assuming all the channel state information is perfectly
known at the source, the source performs the optimization
procedure in a centralized way, and then transmits the
value of the optimized power to the relay.
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Algorithm 1 Dinkelbach’s Method

1: SetImax (maximum number of iterations),
ǫo > 0 (convergence tolerance),

2: q1 = 0 andq0 = 1.
3: i← 1.
4: while qi − qi−1 > ǫo andi < Imax do
5: Solvemax

Ps

{F (qi) = R(Ps)− qiPT (Ps)} subject

to 0 ≤ Ps ≤ Pmax to obtain the optimal solution
Ps.

6: qi ← R(Ps)/PT (Ps).
7: i← i+ 1.
8: end while
9: return

Proposition 1: The solution to the optimization problem
P1 is equivalent to the solution to the optimization problem
P2, as described bellow.

Equivalent Optimization Problem (P2)

P2.1 : max
Ps

RD(Ps)/PT (Ps, 0) (11)

s.t. 0 ≤ Ps ≤ Pmax;

P2.2 : max
Ps,Pr

RDF,2(Ps, Pr)/PT (Ps, Pr) (12)

s.t. Ps + Pr ≤ Pmax, (13)

Ps, Pr ≥ 0, (14)

RDF,1(Ps, Pr) ≥ RDF,2(Ps, Pr), (15)

whereRDF,1(Ps, Pr), RDF,2(Ps, Pr), andRD(Ps) are
defined in (4), (5), and (6), respectively. If Gsd ≥
Gsr, solve the subproblemP2.1; otherwise, solve the
subproblemP2.2.

Proof: Please refer to the Appendix 1.

3.1. Solution to Problem P2.1

It is not hard to prove that the objective function of the
problemP2.1 is a quasi-concave function with respect to
Ps, and the constraint is affine. Thus, we can directly use
the traditional Dinkelbach’s method to solve the problem
seen inAlgorithm 1 . The detail of the Dinkelbach’s
method is given in the Appendix 2. It is worth to mention
that at step 5 ofAlgorithm 1, we can derive a closed-
form solution in each iteration. As follows, by applying
the Karush-Kuhn-Tucker (KKT) conditions [25], it can be
obtained that

Ps =

[

1

qi
− 1

Gsd

]Pmax

0

(16)

where [∗]Pmax

0 = min(Pmax,max(0, ∗)) is the box
constraint.

3.2. Solution to Problem P2.2

Due to the non-convex constraint (15) , the problem
P2.2 is not a quasi-concave problem. It is not possible

to use the traditional Dinkelbach’s method because that
convex optimization algorithm is not valid at step 5 of
the Dinkelbach’s Method inAlgorithm 1. Specifically, the
constraint (15) in the problemP2.2 is extended as

α1Ps + α2Pr + α3PrPs + α4P
2
r ≤ 0, (17)

whereα1 = Gsd −Gsr, α2 = Grd, α3 = βGsdGrr, and
α4 = βGsdGrr.

Note that (17) is obviously a non-convex function. To
deal with the non-convex constraint, a SPCA method is
utilized to iteratively solve the problem. Herein, we give
the key lemma for the SPCA method.

Lemma 1: Considering an optimization problem with
non-convex constraintg(x). If the function G(x, λ)
have the following properties: i) for anyx, g(x) ≤
G(x, λ), λ > 0; ii) for a given feasible pointx0, there
exists a λ = ψ(x0) satisfying g(x) = G(x, λ) and
∇g(x) = ∇G(x, λ), thenG(x, λ) can replaceλ(l) by
ψ(x(l−1)) such that the relaxed problem with convex
constraintG(x, λ) is solved iteratively until convergence.
The iterative solution would finally converge to a KKT
point.

Proof: see [22].
It is observed in the constraint (15) that the unique

effective part for non-convexity isPsPr. Thus, one only
need to find a convex upper-bound to approachPsPr

iteratively. To do this, the following function is defined:

G([Ps, Pr], λ) =
1

2λ
P 2
s +

λ

2
P 2
r , (18)

which is a convex function used to over-estimatePrPs.
Additionally, λ(l+1) is updated byP (l)

s /P
(l)
r iteratively.

It is very easy to verify that the functionG([Ps, Pr], λ)
satisfiesLemma 3 (see Page 5).

ReplacingPrPs in (17) by G([Ps, Pr], λ), the relaxed
constraint is expressed as

α1Ps + α2Pr +
α3

2λ
P 2
s +

α3λ

2
P 2
r + α4P

2
r ≤ 0, (19)

which can be proved as a convex constraint by the Hessian
function [25].

The proposed SPCA-Dinkelbach algorithm is depicted
as Algorithm 2. The algorithm is a dual iterative
algorithm, in which the outer iteration is based on
the Dinkelbach method and the inner iteration is based
on SPCA. Although SPCA is converged to a solution
satisfying the KKT conditions (i.e., local optimum is
achieved), we conclude through extensive numerical
simulations that the solution is in fact the global optimal.

4. SIMULATION RESULTS

This section presents the results of applying the
proposed SPCA-Dinkelbach algorithm to the FD relay
system. The reference distance isD0 = 1 m. The distance
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Algorithm 2 SPCA-Dinkelbach Algorithm

1: SetI0max (maximum number of outer iterations),
ǫo > 0 (convergence tolerance of outer itera-

tions),
2: SetI lmax (maximum number of inner iterations),

ǫl > 0 (convergence tolerance of inner itera-
tions),

3: q1 = 0 andq0 = 1,
4: λ(1) = 0 andλ(0) = 1.
5: i← 1.
6: while qi − qi−1 > ǫo andi < Imax do
7: while |λ(l) − λ(l−1)| > ǫl andl < I lmax do
8: Using the standard convex optimization (e.g.,

interior-point method) to solve the problem
max
Ps,Pr

F (qi) = RDF,2(Ps, Pr)− qiPT (Ps, Pr),

s.t. (13), (14), and (19).
Obtain the optimal transmission powersP (l)

s and
P

(l)
r .

9: λ(l+1) ← P
(l)
s /P

(l)
r .

10: l ← l + 1.
11: end while
12: qi ← R(P

(l−1)
s , P

(l−1)
r )/PT (P

(l−1)
s , P

(l−1)
r ).

13: i← i+ 1.
14: end while
15: return

between the source and the destination is10 m, and the
relay is at the mid-point of the line connecting the source
and the destination. The path-loss exponent ism = 3 and
the noise power isσ2

z = 10−6. The power consumption of
circuitry isPc = 20 dBm [26]. The convergence tolerance
ǫo and ǫl are set asǫ = 10−5. The results are retrieved
by averaging over 1000 different channel realizations.We
assume that the optimization process would be completed
within one channel realization such that adaptive power
can be optimally assigned from the source to the relay.

4.1. Convergence of the Proposed Algorithm

Fig. 2 illustrates the convergence behavior of the
proposed SPCA-Dinkelbach algorithm. As seen in Fig.2,
the proposed algorithm converges to the optimal value
within five outer iterations. We also study the number of
inner iterations required during the second outer iteration.
We find that the SPCA method converges within five
inner iterations. The result demonstrates that the proposed
algorithm indeed obtains the global optimal solution, even
though the SPCA method only reaches the KKT conditions
theoretically. We also find that the convergence speed is not
highly related toβ (the self-interference attenuation factor)
in both inner and outer iterations.It is trivial to obtain
that the computational complexity of the exhaustive search
algorithm is proportional to1/ǫ = 105. It is hard to derive
the computational complexity of the SPCA-Dinkelbach
method directly. However, based on the simulation results
seen in Fig.2, we can see that the maximal number of

iterations of the outer iteration and the inner iteration inthe
SPCA-Dinkelbach method are both fixed as4. In addition,
the computational complexity of interior-point method to
solve the convex problem in step 8 of algorithm 2 is
n3.5 log(1/ǫ) [25], in which n represents the number of
optimized variables. To sum up, in this our optimization
problem, the approximate computational complexity is
4 ∗ 4 ∗ 23.5 log(1/ǫ) = 905 which is much lower than that
of exhaustive search algorithm.

4.2. Effects of Pmax and β on Average EE

Fig. 3 illustrates the average EE againstPmax for
EE-maximization and rate-maximization schemes with
differentβ. The EE-maximization scheme is implemented
by our proposed SPCA-Dinkelbach algorithm. It can be
observed in Fig.3 that the average EE increases upon
increasingPmax, and remains unchanged whenPmax

reaches a certain threshold. Specifically, whenPmax is
larger than25 dBm, the average EE no longer increases
under our simulation settings. It can be also obtained that
the average EE increases asβ decreases. Whenβ equals
−70 dBm and−90 dBm, the average EE under the settings
are nearly the same. It implies that whenβ is very low
and the total power is high (in our simulationβ = −70
dB andPmax = 25 dBm), the optimal average EE does
not change.In order to further exploit the performance
improvement of EE-maximization scheme, we consider
the rate-maximization scheme as a comparison. The rate-
maximisation scheme is achieved by the similar procedure
in Algorithm 2 except for choosingqi = 0, which means
that the outer iteration ofAlgorithm 2 is not needed.
In the rate-maximization scheme, whenPmax increases,
the average EE first increases and then decreases. As
the metric is average EE, the EE-maximization scheme
is always better than or equal to the rate-maximization
scheme. Interestingly, at lowPmax, the results are the
same except forβ = −10 dB. The reason is that at
low Pmax, the total power constraint is always satisfied
with equality, i.e., the source and relay would utilize
the total power. Then, according to the expression of
energy consumption in (9), the consumed power is always
constant, i.e.,Pmax + Pc, which is also verified by our
simulations. Due to the limited space, the corresponding
simulation results are not given. Thus, we can conclude
that the average EE of the EE-maximization scheme is
equivalent to that of rate-maximization scheme.

4.3. Effects of Pmax and β on Average
Achievable Rate

We then compare the EE-maximization scheme with
the rate-maximization scheme for the performance metrics
of EE and achievable rate. In Fig.4, it is obvious that
the rate-maximization scheme can have better achievable
rate than the EE-maximization scheme. As a sequel, The
EE-maximization scheme has a performance degradation
in terms of rate. Besides, it can be obtain that the EE-
maximization scheme keeps constant achievable rate in
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Figure 2. Convergence of the SPCA-Dinkelbach algorithm
(Pmax = 30 dBm).
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Figure 3. Average EE against Pmax for the scheme of
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settings of β.

high SNR region, specifically when the SNR is larger
than 25dB. Combining with the results in Fig.3, we
can conclude that when the maximal total transmit power
is increased, the actual total transmit power will be
firstly increased and then fixed, which is similar as the
performance metric of EE. Interestingly, we find that
the achievable rate inβ = −10dB andβ = −30dB are
almost the same while the EE inβ = −30dB is larger than
that inβ = −10dB. This fact explains that the higher the
self-interference is, the more power would be consumed.
However, when the self-interference is very low, i.e.,β =
−70dB andβ = −90dB, the performance of achievable
rate and EE are nearly the same.
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of maximizing EE and maximizing achievable rate under

different settings of β.

5. CONCLUSION

In this paper, energy efficiency of a full-duplex
relay system under the total power constraint and fixed
circuitry power consumption has been studied. The
formulated optimization problem is transformed into
an equivalent problem which is decomposed into two
subproblems. The first subproblem is solved by the
traditional Dinbelbach’s method. Then, a dual iterative
algorithm called SPCA-Dinbelbach method is used to
solve the second subproblem. Simulation results show
that the proposed algorithm can converge to the global
optimum at different levels of self-interference.They also
show that when the total power constraint of source and
relay is large, optimization the energy efficiency will
reduce the maximum achievable rate.

APPENDIX

1. Proof of Proposition 1

It is straightforward that ifGsd ≥ Gsr, R(Ps, Pr) =
RD(Ps) according to (7). Thus, the problem can be
simplified to

Ueff =
RD(Ps)

PT (Ps, Pr)
=

RD(Ps)

PT (Ps, 0)
. (20)

As a result, we need to solve P2.1 whenGsd ≥ Gsr.
WhenGsd < Gsr, we have

Ueff =
RDF(Ps)

PT (Ps, Pr)

=
min{RDF,1(Ps, Pr), RDF,2(Ps, Pr)}

PT (Ps, Pr)
. (21)
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We firstly give some lemmas before proving P2.2 which
are obvious.

Lemma 2RDF,1(Ps, Pr) is an increasing function with
respect to (w.r.t.)Ps, and a decreasing function w.r.t.Pr.

Lemma 3: i) PT (Ps, Pr) is an increasing function w.r.t.
Ps andPr; ii) PT (Ps, Pr) is also a linear function w.r.t.
Ps, Pr.

We are now ready to prove P2.2.
Proof of P2.2: We prove it by self-contradiction. For

the sake of notational simplicity, we define the constraint
set asF . We assume that{P ∗

s , P
∗
r } ∈ F as the optimal

policy with the following constraint:

RDF,1(P
∗
s , P

∗
r ) < RDF,2(P

∗
s , P

∗
r ). (22)

The optimal energy efficiencyU∗
eff is therefore expressed

as

U∗
eff =

min{RDF,1(P
∗
s , P

∗
r ), RDF,2(P

∗
s , P

∗
r )}

PT (P ∗
s , P ∗

r )

=
RDF,1(P

∗
s , P

∗
r )

PT (P ∗
s , P ∗

r )
. (23)

According to Lemma 2 and 3,RDF,1(P
∗
s , P

∗
r ) is

a decreasing function ofP ∗
r and PT (P

∗
s , P

∗
r ) is an

increasing function ofP ∗
r . Consequently, based on (23),

U∗
eff should be optimal whenP ∗

r = 0. SubstitutingP ∗
r = 0

into (4) and (5) gives

RDF,1(P
∗
s , P

∗
r ) = log2(1 + P ∗

sGsr), (24)

RDF,2(P
∗
s , P

∗
r ) = log2(1 + P ∗

sGsd). (25)

Since it is given thatGsd < Gsr, the above results
indicate RDF,1(P

∗
s , P

∗
r ) > RDF,2(P

∗
s , P

∗
r ), which is

contradictory to our assumption in (22). In conclusion,
under anyP ∗

r in the optimal solution,RDF,1 is larger than
RDF,2. Therefore, we prove that P2 is equivalent to P1.

2. Dinkelbach’s Method

Consider a fractional programming problem

max
x∈S0

R(x)/PT (x)

s.t. g(x) ≤ 0.
(26)

This problem is formed by denoting the objective function
value asq so that a subtractive form of the objective
function can be written as

F (q) = max{R(x)− qPT (x))|g(x) ≤ 0}, q ∈ R.
(27)

Additionally, it requires thatPT (x) > 0 for all x ∈ S
where S is the feasible set ofx. Then, the function
F (q) has a series of important properties which are given
in [21]. Explicitly, the solution toF (q∗) is equivalent
to the solution to the fractional programming problem
(26). Dinkelbach has proposed an iterative method to find
increasingq values, which are feasible, by solving the

parameterized problem ofmax
x

{R(x− qi−1PT (x))} at

each iteration. Hence, it can be shown that the method
produces an increasing sequence ofq values, which
converges to the optimal valueF (q∗) = 0. Each iteration
corresponds to solvingmax

x

{R(x)− qi−1PT (x)}, where

qi−1 is a given value of the parameterq, to obtain the
optimum valuex∗ at theith iteration of the Dinkelbach’s
method. For more details and the proof of convergence,
please refer to [21].
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