
1

Joint Shuffled Scheduling Decoding Algorithm for
DP-LDPC Codes-Based JSCC Systems

Zhiping Xu, Lin Wang, Senior Member, IEEE, Shaohua Hong, Francis C. M. Lau, Senior Member, IEEE and
Chiu-Wing Sham, Member, IEEE

Abstract—In this letter, a joint shuffled scheduling decoding
algorithm for double-protograph low-density parity-check (DP-
LDPC) codes-based joint source-channel coding (JSCC) schemes
is presented. The proposed algorithm adopts the shuffled schedul-
ing method to both source decoder and channel decoder, and can
improve convergence speed and reduce the decoding complexity.
In addition, a unique phenomenon named unequal convergence
rates is revealed at the same time. The proposed algorithm can
terminate this phenomenon with faster decoding. The results
show that this algorithm has faster convergence speed and better
error performance, compared with the traditional joint belief
propagation (BP) decoding algorithm.

Index Terms—JSCC, DP-LDPC codes, belief propagation,
shuffled scheduling

I. INTRODUCTION

Recently, a joint source-channel coding (JSCC) system
based on double-protograph low-density parity-check (DP-
LDPC) codes [1] has drawn significant interest because of
its low-power and low-cost properties. DP-LDPC systems
adopt protograph low-density parity-check (P-LDPC) codes
as both source code and channel code. This type of codes
has the advantages of fast encoding and linear decoding
implementation. Compared with double low-density parity-
check (D-LDPC) JSCC [2], this system achieves better error
performance in the waterfall region and the error-floor region.

Several optimized schemes have been proposed for the DP-
LDPC systems. In [3] and [4], the optimized source code and
the re-designed channel code have been used, respectively, to
improve the error performance in the error-floor region and
the waterfall region. The source code and the channel code are
also jointly optimized in [5]. Optimizing the edge connections
in this system has been studied for enhancing its performance
in [6]. With unequal power allocation, the system can obtain
better performance by utilizing the source statistics at the
decoder [7]. But there is a lack of research on the decoding
algorithms though it is very important for the practical usage
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of this system. At present, the decoding algorithm used in
this system is the joint belief-propagation (BP), which has a
disadvantage of high decoding complexity.

As we all know, the complexity of decoding algorithms
has a great impact on power consumption. The decoding
complexity of LDPC codes can be roughly measured by the
number of edges and the maximum number of iterations
[8]. The former is determined and fixed by the code design.
Thus, reducing the number of iterations will be an effective
method to reduce complexity, and can further reduce the
power dissipation to adapt to low-power practical application
scenarios.

The scheduling algorithms which control the order that
messages are passed along the edges of a Tanner graph
affect the convergence speed of the decoding process. The
flooding schedule [9] is the standard scheduling algorithm. In
the DP-LDPC system, the joint BP algorithm is also called
joint flooding scheduling decoding algorithm. The flooding
schedule is a kind of parallel scheduling algorithm, which is
very practical though its convergence rate is not high. On the
other hand, it has been proved that serial scheduling algorithms
converge twice as fast as the flooding scheduling algorithms in
a channel coding system [13]. Broadly speaking, there are two
types of serial scheduling algorithms: Variable-Nodes-Based
(VNB) algorithms [8], [10], [11] and Check-Nodes-Based
(CNB) algorithms [12], which are also known as shuffled and
layered scheduling decoding algorithms. However, the effect
of applying serial scheduling algorithms to DP-LDPC systems
is unknown.

In this letter, we will focus on the convergence of the decod-
ing algorithms for DP-LDPC systems. The main contributions
of this paper are as follows.

1) This work provides a hardware-friendly decoding algo-
rithm for DP-LDPC systems, which is different from joint BP.

2) The joint shuffled scheduling decoding algorithm is de-
signed for the DP-LDPC system to improve convergence speed
and reduce decoding complexity, which also can terminate
unequal convergence rates phenomenon at the same time.

In Section II, the DP-LDPC system model is briefly re-
viewed. The joint shuffled decoding algorithm is detailed in
Section III. Simulation results are presented and the complex-
ity is analyzed in Section IV. Finally, conclusions are drawn
in Section V.

II. DP-LDPC SYSTEM MODEL

The system model and the corresponding joint decoder are
shown in Fig. 1 and Fig. 2, respectively. Let s = (s1, s2, . . .)
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Fig. 1. A DP-LDPC system model.

Fig. 2. Joint decoder of the DP-LDPC system.

be a source sequence (si ∈ {0, 1}) generated by a binary
independent and identically distributed (i.i.d.) Bernoulli source
with entropy H(s) = −plog2(p)− (1− p)log2(1− p), where
p = Pr(si = 1) and p 6= 0.5. The source sequence s is
compressed into a sequence b by a P-LDPC code with rate
Rsc = Msc/Nsc. The compressed sequence is then protected
by another P-LDPC code of rate Rcc =Mcc/Ncc to realize a
reliable transmission. Finally, the sequence c produced by the
channel code is modulated by binary-phase-shift keying (i.e.,
bit 0/1 mapped to +1/− 1) and transmitted over an additive
white Gaussian noise (AWGN) channel as x. The received
signal y is a corrupted version of x.

As shown in Fig. 2, the joint decoder runs in parallel via
a joint Tanner graph taking advantages of the BP algorithm
and the source statistics. The edges between the two decoders
connect the variable nodes (VNs) of the channel code (left) to
the check nodes (CNs) of the source code (right), and are used
to exchange extrinsic messages between the two decoders.

Through observing the iterative decoding process of the DP-
LDPC system, we find that the channel decoder and the source
decoder do not converge at the same rate. As shown in Fig. 3,
the average numbers of iterations required for convergence by
these two decoders in the joint BP algorithm are not the same
at a given Eb/N0. This phenomenon, which we call unequal
convergence rates (UCR) and is unique to this system, leads
to higher decoding complexity and power consumption.

III. JOINT SHUFFLED DECODING ALGORITHM

Based on [2], [10], we consider the i-th iteration of the joint
decoder. For ease of exposition, six types of log-likelihood
ratios (LLRs) are defined as follows and are shown in Fig. 2.

• ε
cc,(i)
mn represents the LLR sent from the m-th CN to the
n-th VN and z

cc,(i)
mn represents the LLR sent from the

n-th VN to the m-th CN in the channel decoder.
• ε

sc,(i)
mn represents the LLR sent from the m-th CN to the
n-th VN and z

cc,(i)
mn represents the LLR sent from the

n-th VN to the m-th CN in the source decoder.
• `

sc→cc,(i)
n is the LLR sent from the corresponding CN in

source decoder to the n-th VN in channel decoder, and
`
cc→sc,(i)
n is the LLR sent from the n-th VN in channel

decoder to the corresponding CN in source decoder.
These two types of LLRs are indexed only by n because
each CN in the source decoder is connected to only a
single VN in the channel decoder.

We denote M(n) as all CNs connected to the n-th VN, and
M(n)/m as all CNs connected to the n-th VN excluding the
m-th CN. Similarly, we denote N(m) as all VNs connected to
the m-th CN, and N(m)/n as all VNs connected to the m-th
CN excluding the n-th VN. We also use F cc

n (n = 1, . . . , Ncc)
to represent the channel LLR of the n-th VN in the channel
decoder and F sc

n (n = Ncc + 1, . . . , Ncc +Nsc) to represent
the source LLR of the n-th VN in the source decoder. We
denote the parity check matrices of the channel protograph and
source protograph as Hcc and Hsc, respectively. We set the
maximum number of decoding iterations to Imax and assume
an AWGN channel with zero mean and variance σ2.

Based on the above definitions, the proposed algorithm is
described as follows.

Initialization:
For all m and n, set εsc,(0)mn = 0, ε

cc,(0)
mn = 0, `

sc→cc,(0)
n = 0.

For n = 1, . . . , Ncc, set zcc,(0)mn = F cc
n = 2yn/σ

2 where
yn = (1 − 2xn) + Gn and Gn ∼ N(0, σ2). For n =

Ncc + 1, . . . , Ncc +Nsc, set zsc,(0)mn = F sc
n = ln((1 − p))/p).

Set i = 1.
Step 1: LLRs updating.
Channel decoder:
1) For 1 ≤ n ≤ Ncc, and each m ∈M(n), process the next

two steps jointly.
1.1) Horizontal Step: Compute εcc,(i)mn using

tanh(
ε
cc,(i)
mn

2
) =∏

n′∈N(m)/n
n′<n

tanh(
z
cc,(i)
mn′

2
)×

∏
n′∈N(m)/n

n′>n

tanh(
z
cc,(i−1)
mn′

2
). (1)

1.2) Vertical Step: When 1 ≤ n ≤ Ncc −Msc, compute

zcc,(i)mn = F cc
n +

∑
m′∈M(n)/m

ε
cc,(i)
m′n . (2)

When Ncc −Msc + 1 ≤ n ≤ Ncc, compute

zcc,(i)mn = F cc
n + `sc→cc,(i−1)

n +
∑

m′∈M(n)/m

ε
cc,(i)
m′n . (3)

2) For Ncc −Msc + 1 ≤ n ≤ Ncc and each m ∈ M(n),
compute

`cc→sc,(i)
n = F cc

n +
∑

m∈M(n)

εcc,(i)mn . (4)
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Source decoder:
1) For Ncc + 1 ≤ n ≤ Ncc +Nsc and each m ∈ M(n),

process the next two steps jointly.
1.1) Horizontal Step: Compute εsc,(i)mn using

tanh(
ε
sc,(i)
mn

2
) = tanh(

`
cc→sc,(i)
n

2
)×∏

n′∈N(m)/n
n′<n

tanh(
z
sc,(i)
mn′

2
)×

∏
n′∈N(m)/n

n′>n

tanh(
z
sc,(i−1)
mn′

2
). (5)

1.2) Vertical Step: Compute

zsc,(i)mn = F sc
n +

∑
m′∈M(n)/m

ε
sc,(i)
m′n . (6)

2) For 1 + Ncc ≤ n ≤ Nsc + Ncc and each m ∈ M(n),
compute `sc→cc,(i)

n using

tanh(
`
sc→cc,(i)
n

2
) =

∏
n′∈N(m)

tanh(
z
sc,(i)
mn′

2
). (7)

Step 2: Hard decision.
Compute the a posteriori LLRs zcc,(i)n of the VNs in the

channel decoder using (8) for n = 1, ..., Ncc −Msc and (9)
for n = Ncc −Msc + 1, ..., Ncc. Set ĉ = {ĉ(i)n } where
ĉ
(i)
n = 0 if zcc,(i)n ≥ 0, and ĉ(i)n = 1 otherwise.

zcc,(i)n = F cc
n +

∑
m′∈M(n)

ε
cc,(i)
m′n (8)

zcc,(i)n = F cc
n + `sc→cc,(i)

n +
∑

m′∈M(n)

ε
cc,(i)
m′n (9)

Compute the a posteriori LLRs zsc,(i)n of the VNs in the
source decoder using (10) for n = Ncc + 1, ..., Ncc + Nsc.
Set ŝ = {ŝ(i)n } where ŝ(i)n = 0 if zsc,(i)n ≥ 0, and ŝ

(i)
n = 1

otherwise.

zsc,(i)n = F sc
n +

∑
m′∈M(n)

ε
sc,(i)
m′n (10)

Step 3: Stopping condition.
If Hscŝ = 0 and Hccĉ = 0 are both satisfied, or i = Imax,

the iteration will be stopped and go to Step 4. If the conditions
are not met, set i = i+ 1 and go to Step 1.

Step 4: Output ŝ as the decoded source sequence.
The joint shuffled method contains the same steps as the

traditional joint BP method, except that the LLR-updating
process is different. We consider the i-th iteration. In the
joint BP method, firstly all check-to-variable (C2V) messages
are updated by utilizing the variable-to-check (V2C) messages
calculated in the (i−1)-th iteration, i.e., every εsc,(i)mn is updated
by utilizing {zsc,(i−1)mn′ : n′ ∈ N(m)/n}, and εcc,(i)mn is updated
by utilizing {zcc,(i−1)mn′ : n′ ∈ N(m)/n}. Secondly, all the V2C
messages are updated by using C2V messages that have been
updated in the last step, i.e., every z

sc,(i)
mn /z

cc,(i)
mn is updated

from {εsc,(i)m′n : m′ ∈M(n)/m}/{εcc,(i)m′n : m′ ∈M(n)/m}.
Different from joint BP method, the joint shuffled method

uses partly z
sc,(i)
mn′ and z

cc,(i)
mn′ , which have been updated by
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Fig. 3. The average number of iterations for the channel decoder (dashed
curves) and the source decoder (solid curves) to converge under different
decoding algorithms. p = 0.02. Other simulation parameters are detailed in
Section IV.

ε
sc,(i)
mn and ε

cc,(i)
mn , to replace z

sc,(i−1)
mn′ and z

cc,(i−1)
mn′ . Then

the remaining values of εsc,(i)mn and ε
cc,(i)
mn are calculated by

the updated V2C messages. In this way, more independent
information can be utilized to allow the iterative process
converging faster.

IV. SIMULATION RESULTS

In this section, we illustrate the advantages of the joint
shuffled decoding algorithm through simulations, and the
simulation environment is in C++ using Visual Studio 2013.
Besides the joint shuffled algorithm and BP algorithm [1], a
partial shuffled decoding algorithm is also simulated. A partial
shuffled algorithm can adopt the shuffled method to either
the source or the channel decoder, while the other decoder
keeps applying the BP algorithm. In the joint BP algorithm,
the convergence speed of the source decoder is slower than that
of the channel decoder. In order to improve source decoder’s
convergence speed, the shuffled method is adopted to the
source decoder in the partial shuffled algorithm.

In all the simulations, the frame length is set as 3200
bits and the maximum number of decoding iterations Imax

as 30. The rate-1/4 R4JA code is used as the source code
and the rate-1/2 AR4JA code is used as channel code. Their
corresponding base matrices are given as follows.

BR4JA =

[
3 1 3 1 3 1 1 1
1 2 1 3 1 3 1 2

]
, BAR4JA =

1 2 0 0 00 3 1 1 1
0 1 2 2 1

 (11)

Fig. 3 and Fig. 4 plot the average number of iterations
versus Eb/N0. p = 0.02 is assumed. In Fig. 3, the UCR
phenomenon is clearly observed. The source decoder (solid
curves) converges more slowly than channel decoder (dashed
curves) in the joint BP algorithm (two red curves). Moreover,
the partial shuffled algorithm can significantly outperform
the joint BP algorithm by improving the convergence rate
of the source decoder. For example, the average number of
iterations is reduced from 16.4 to 13.3 at Eb/N0 = 0.5 dB.
Note that the partial shuffled algorithm not only directly
improves the convergence rate of the source decoder, but
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Fig. 4. The average number of iterations for different types of decoding
algorithms. p = 0.02.
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Fig. 5. BER performance of the decoding algorithms. p = 0.02.

also indirectly improves that of the channel decoder. Among
the three algorithms, the joint shuffled algorithm achieves
the lowest average number of iterations for both the source
decoder and the channel decoder. In addition, the numbers of
iterations required for convergence in both decoders are very
similar. Fig. 4 shows that compared with those of the joint
BP method and partial shuffled method, the average number
of iterations for the joint shuffled algorithm is, respectively,
44% and 27% lower at Eb/N0 = 2 dB. In other words, the
convergence speed of the proposed algorithm is the fastest.

Fig. 5 and Fig. 6 plot the bit error rate (BER) performance
of the different decoding algorithms for the DP-LDPC system
under p = 0.02 and p = 0.01, respectively. Compared with
joint BP scheme, the partial shuffled scheme can achieve
improvement in both waterfall region and error-floor region.
Moreover, among the three algorithms, the proposed joint
shuffled algorithm can achieve the best BER performance
in both waterfall region and error-floor region. For exam-
ple, Fig. 6 shows that the BER performance of the joint
shuffled scheme outperforms the joint BP method and the
partial shuffled scheme by 0.2 dB and 0.1 dB, respectively,
at BER = 10−6.

Finally, we compare the overall decoding complexity of
the proposed joint shuffled algorithm and the joint BP al-
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Fig. 6. BER performance of the decoding algorithms. p = 0.01.

gorithm. In both algorithms, all the edge messages (i.e.,
ε
cc,(i)
mn , z

cc,(i)
mn , `

cc→sc,(i)
n , ε

sc,(i)
mn , z

sc,(i)
mn , `

sc→cc,(i)
n ) are updated

only once in each iteration. These two scheduling methods
therefore have the same complexity per iteration. As the joint
shuffled algorithm requires a smaller number of iterations to
converge, its decoding complexity is lower than that of the
joint BP algorithm.

V. CONCLUSIONS

In this letter, we have proposed a joint shuffled scheduling
decoding algorithm to speed up the convergence speed of
the DP-LDPC system. The algorithm can mitigate unequal
convergence rate phenomenon, effectively reduce the number
of iterations required for convergence, and hence lower the de-
coding complexity and power consumption. Simulation results
show that the proposed algorithm achieves faster convergence
speeds and better error performances in both the waterfall
region and the error-floor region compared with the joint BP
algorithm and the partial shuffled algorithm. Moreover, our
proposed algorithm is applicable to other D-LDPC systems.
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