
Analysis and Improvement of Error-Floor
Performance for JSCC Scheme Based on Double

Protograph LDPC Codes
Qiwang Chen, Francis C. M. Lau, Senior Member, IEEE, Huihui Wu, Member, IEEE, Chen Chen

Abstract—In a joint source-channel coding (JSCC) system,
excessive source compression can cause an error floor. In the
original JSCC scheme based on double protograph LDPC (DP-
LDPC) codes, only connections exist between check nodes (CNs)
of the source protograph and variable nodes (VNs) of the
channel protograph, and error floors are observed. In this paper,
we investigate the joint protograph that forms the basis of
a DP-LDPC code. The joint protograph consists of a source
protograph, a channel protograph, and connections between the
two protographs. Our main focus is on the complete-source-
variable-linking (CSVL) protomatrix of the joint protograph,
which determines the error floor of the DP-LDPC code. We
propose a generalized source protograph extrinsic information
transfer (GSP-EXIT) algorithm for evaluating the source decod-
ing thresholds of the CSVL protomatrix. Based on the proposed
algorithm, we analyze CSVL protomatrices with regular or
irregular source protographs. We present design criteria for
connections between VNs of the source protograph and CNs of
the channel protograph. Such design rules will result in a higher
source decoding threshold, which implies a lower error floor. We
also propose a differential evolution algorithm for optimizing
the source protograph. We present/compare analytical results
and/with simulation results, and conclude that they are consistent.

Index Terms—complete-source-variable-linking protomatrix,
double protograph LDPC code, error floor, GSP-EXIT algorithm,
joint source-channel coding.

I. INTRODUCTION

IN the coming Internet-of-Things (IoT) era, billions of sen-
sors and devices will be connected to the Internet. Informa-

tion will be passed from one device to another, and a massive
amount of data traffic will be created. To ensure that data are
being efficiently and effectively transmitted/received, source
coding that compresses source information and channel coding
that protects the data integrity should be designed to perform in
an optimal manner. Using properly optimized schemes based
on source-channel separation can obtain near-optimal perfor-
mance when the transmission blocklength tends to infinite.

This work was supported by the National Natural Science Foundation of
China (Grant No. 61901182), a grant from the RGC of the Hong Kong SAR,
China (Project No. PolyU 152170/18E) and the Scientific Research Funds of
Huaqiao University (20BS105). (Corresponding author: Francis C. M. Lau)

Qiwang Chen and Chen Chen are with Xiamen Key Laboratory of Mobile
Multimedia Communications, College of Information Science and Engineer-
ing, Huaqiao University, Xiamen 361021 (e-mail: chenqiwang@hotmail.com,
xmucecc@163.com);

Francis C. M. Lau is with the Department of Electronic and Information
Engineering, Hong Kong Polytechnic University, Hong Kong (email: francis-
cm.lau@polyu.edu.hk);

Huihui Wu was with the Department of Electrical and Computer En-
gineering, McMaster University, Hamilton, ON L8S 4K1, Canada (Email:
huihui.wu.phd@gmail.com).

But the complexity of encoding or decoding infinite-length
blocks is too high and thus the transmission schemes are not
practical. An alternate strategy is to use finite-length joint
source-channel coding (JSCC) schemes [1], [2], [3], [4], which
can provide significant improvement over the separated source-
channel schemes in terms of system complexity and energy
efficiency. Most JSCC schemes apply variable-length source-
coding algorithms. Thus the length of the compressed source
sequence may not match the requirement of the linear-block
channel coding. The mismatch causes an increase in system
complexity as well as error floors, i.e., the minimum bit-
error-rate (BER) level even if the signal-to-noise ratio (SNR)
increases [5].

A fixed-length to fixed-length JSCC scheme based on
double low-density parity-check (D-LDPC) codes has been
proposed in [4], where one code is used for source coding
and another one for channel coding. Moreover, the check
nodes (CNs) of the source LDPC code and the variable nodes
(VNs) of the channel LDPC code are connected. Subsequently,
the protograph concept [6], [7], [8] is incorporated into the
D-LDPC codes, resulting in double protograph low-density
parity-check (DP-LDPC) codes [9], [10], [11]. A joint pro-
tograph extrinsic information transfer (JP-EXIT) algorithm is
also designed to analyze the channel threshold of DP-LDPC
codes, i.e., error performance in the waterfall region [9]. With
the use of the JP-EXIT algorithm, the channel threshold can
be improved by (i) modifying the connections between the
CNs of the source protograph and the VNs of the channel
protograph [10], [11]; (ii) re-designing the channel protograph
[9]; (iii) optimizing source protograph and channel protograph
in a pairwise manner [12]; and (iv) allocating unequal power
to the transmitted bits [13].

Error floors appear in D-LDPC codes when the source
coding fails to match the source entropy. To lower the error
floor, an information shortening algorithm for D-LDPC coding
system has been designed [14]. Alternatively, source LDPC
codes are designed to match source information with high
entropy. In a spatially-coupled D-LDPC code, the error-floor
performance gradually improves as the size of the decoding
window increases [15]. Although these techniques can improve
the error-floor performance, they need to sacrifice other per-
formance metrics such as transmission efficiency.

In [16], a general D-LDPC encoding scheme is proposed.
In this general coding scheme, the original source bits can
join the channel coding procedures but are punctured before
transmission. In other words, VNs of the source LDPC code

This is the Pre-Published Version.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2

are connected to CNs of the channel LDPC code. This scheme
therefore allows the transmitted (channel code) parity bits
to capture more source information. It is observed that the
introduction of the additional links improves the error-floor
level but degrades the waterfall region performance. Several
principles in designing the additional links have been proposed
with an aim to improving the performance in the waterfall
region [17], but then the performance in the error-floor region
becomes degraded. In general, there is a lack of theoretical
analyses on how the D-LDPC code design affects the error-
floor level. Though a source protograph EXIT (SP-EXIT)
algorithm has been proposed to evaluate a “source decoding
threshold” and hence to predict the error-floor level, the
algorithm assumes no connections between VNs of the source
protograph and CNs of the channel protograph [18].

In this paper, we continue to use the “source decoding
threshold” as an indicator of the error-floor level in a DP-
LDPC code. We propose a generalized source protograph
EXIT (GSP-EXIT) algorithm for evaluating the source decod-
ing threshold of a DP-LDPC code. We also determine that
only the complete-source-variable-linking protomatrix (i.e.,
part of joint protomatrix of the DP-LDPC code) is needed
for the evaluation of the source decoding threshold. Using the
GSP-EXIT algorithm, we investigate the error performance
of different DP-LDPC code designs. We further propose an
algorithm for optimizing the source decoding threshold. We
verify our analytical findings with simulation results.

The novelty and contribution of this paper can be summa-
rized as follows.

1) A GSP-EXIT algorithm is proposed for evaluating
the source threshold of complete-source-variable-linking
(CSVL) protomatrices. The theoretical source thresholds
can be readily used to compare the relative error-floor
levels of different DP-LDPC codes formed.

2) Given a regular or irregular source protomatrix, the ef-
fect of the source-variable-channel-check (SV-CC) link-
ing protomatrix on the source threshold is fully eval-
uated. Design criteria of SV-CC linking protomatrices
that give large source thresholds are also presented.

3) A differential evolution algorithm is proposed for de-
signing optimal source protomatrices for a given SV-
CC linking protomatrix. The proposed algorithm can
optimize the source threshold of the overall code design.

4) Bit-error-rate performance of DP-LDPC codes are pre-
sented under different channel conditions.

This paper is organized as follows. Section II presents some
other works related to JSCC systems. Section III reviews dou-
ble protograph LDPC codes, including the representation of a
protograph by a protomatrix, the structure of a double proto-
graph, the corresponding DP-LDPC code construction, and the
encoding and decoding processes. Section IV introduces the
complete-source-variable-linking (CSVL) protomatrix, which
consists of the source protomatrix and the source-variable-
channel-check (SV-CC) linking protomatrix. This section also
provides details of our proposed GSP-EXIT algorithm, which
evaluates the source threshold of CSVL protomatrices. Sec-
tion V investigates CSVL protomatrices with regular and

irregular source protomatrices. Using the proposed GSP-EXIT
algorithm, the source thresholds of the CSVL protomatri-
ces are analyzed under different SV-CC-linking-protomatrix
structures. DP-LDPC codes are constructed and simulations
are performed to evaluate their bit error rates (BERs) under
different conditions. In particular, the simulated error-floor
levels are used to correlate with the source thresholds of
the codes. This section further introduces an optimization
algorithm for designing irregular source protomatrices under
a given SV-CC-linking protomatrix, and presents the BER
performance of the optimized codes. Section VI compares
the BER performance of DP-LDPC codes under additive-
white-Gaussian-noise (AWGN) and Rayleigh fading channels.
Finally, Section VII concludes the paper.

II. RELATED WORKS

LDPC codes have been widely investigated for more than
two decades [19], [20], [21]. They have been mainly stud-
ied as channel codes in, for example, an AWGN channel
[6], [22], a non-ergodic blocking fading channel [7] and a
multi-relay coded-cooperative network [8]. By replacing the
single-parity-check codes in LDPC codes with Hadamard
codes, LDPC-Hadamard codes and protograph-based LDPC-
Hadamard codes are designed and shown to work as close
as 0.16 dB compared to the ultimate Shannon limit (i.e.,
−1.59 dB) [23], [24]. Moreover, LDPC codes are used as
source codes in Slepian-Wolf (SW) schemes [25], [26]. High
rate LDPC codes are used in concatenation with Luby trans-
form (LT) codes [27], forming the Raptor codes. Raptor
codes have been applied in distributed source coding [28],
video transmission over wireless networks [29], [30], and joint
source-channel coding of video [31].

In [1], Huffman coding, a type of variable-length source
code, is used in tandem with channel codes like recursive
systematic convolutional codes and LDPC codes. It has been
found that by performing joint iterative source/channel decod-
ing, additional coding gains can be achieved. In [32], iterative
joint source-channel decoding techniques that achieve near-
capacity performance under H.264 multimedia communica-
tions are presented. In [2], a low-complexity JSCC scheme
for transmitting JPEG-2000 images over a two-way multi-
relay network has been studied. In [3], source messages are
categorized into different classes and encoded by different
channel codes. It is shown that as the number of classes
increases, the coding scheme approaches the performance of
JSCC scheme. In this paper, we focus on DP-LDPC codes.

III. DOUBLE PROTOGRAPH LDPC CODE

A. Joint Protograph

A protograph can be represented by a small protomatrix (or
base matrix) B = {b(i, j)} where each column represents a
VN, each row represents a CN, and the (i, j)-element b(i, j)
(a non-negative integer) indicates the number of parallel edges
connecting the i-th CN and the j-th VN. A corresponding
parity-check matrix H can be obtained by a two-step “copy-
and-permute” (also called “‘lifting”) operation. First, the pro-
tomatrix is lifted by a factor of q1 to remove all parallel

3

edges, i.e., each element b(i, j) is replaced by a q1×q1 square
matrix with (i) exactly b(i, j) “1”s in each row and in each
column, and (ii) “0”s elsewhere. Then, the resultant matrix
is lifted again with a factor of q2. In this step, each element
“1” is replaced by a q2× q2 circulant permutation matrix, and
each “0” is replaced by a q2 × q2 zero matrix. In both lifting
processes, the progressive-edge-growth (PEG) algorithm [33]
is applied to maximize the girth (i.e., smallest cycle) of the
resultant Tanner graph.

We refer to Fig. 1 where the joint protograph of a DP-LDPC
code is shown. The joint protograph is represented by

BJ =

[
Bs BL1

BL2
Bc

]
(1)

where
• Bs is a source protomatrix of size ms × ns;
• Bc is a channel protomatrix of size mc × nc;
• BL1 is a source-check-channel-variable (SC-CV) linking

protomatrix of size ms × nc, indicating the connections
between the CNs of Bs and the VNs of Bc, and its
structure can be represented by

BL1
=
[

Ims
0
]
, (2)

with Ims being an identity matrix of size ms × ms, 0
being a zero matrix of appropriate size (ms×mc in this
case), and nc = ms +mc;

• BL2
is a source-variable-channel-check (SV-CC) linking

protomatrix of size mc × ns indicating the connections
between the CNs of Bc and the VNs of Bs.

We denote Ms = q1q2ms, Ns = q1q2ns, Mc = q1q2mc and
Nc = q1q2nc. After the aforementioned two-step “copy-and-
permute” operation, a q1q2(ms + mc) × q1q2(ns + nc) joint
parity-check matrix HJ is obtained [33], i.e.,

HJ =

[
Hs HL1

HL2 Hc

]
=

[
Hs IMs 0

HL2 Hc

]
(3)

where
• Hs is the source coding matrix of size Ms × Ns and

corresponds to the source P-LDPC (protograph LDPC)
code;

• Hc is the channel coding matrix of size Mc × Nc and
corresponds to the channel P-LDPC code;

• HL1 is the source-check-channel-variable (SC-CV) link-
ing matrix of size Ms×Nc and represents the connections
between the CNs of the source coding matrix and the
VNs of channel coding matrix, IMs

is an identity matrix
of size Ms ×Ms, and Nc = Ms +Mc;

• HL2
is the source-variable-channel-check (SV-CC) link-

ing matrix of size Mc×Ns and represents the connections
between the VNs of the source coding matrix and the CNs
of channel coding matrix.

The overall code rate of the DP-LDPC code is given by

Roverall =
Ns
Ms
× Nc −Mc

Nc
. (4)

In case Np code bits (among the Nc code bits) are punctured
and not sent through the channel, the rate becomes

R′overall =
Ns
Ms
× Nc −Mc

Nc −Np
. (5)

B. Encoding Process

Let a source sequence s ∈ {0, 1}1×Ns be generated from a
binary independent and identically distributed (i.i.d) Bernoulli
source with the probability of a “1” equal to p. The encoding
procedures with a non-zero SV-CC matrix HL2

are described
as follows [11].

1) Obtain the compressed source bits c of size 1×Ms by
computing c = s(Hs)

T , where (·)T indicates the matrix
transposition operation.

2) Combine s and c to form a vector [s c] of size
1× (Ns +Ms).

3) Based on the parity-check matrix [HL2
Hc] of size

Mc × (Ns +Nc), construct a corresponding generator
matrix G of the form [I(Ns+Ms) Gp], where I(Ns+Ms)

is an identity matrix of size (Ns + Ms) × (Ns + Ms)
and Gp is of size (Ns +Ms)×Mc.

4) Obtain the parity bits p of size 1×Mc by computing
p = [s c]Gp.

5) The channel codeword is given by d = [c p] and the
code bits are sent to the channel after puncturing.

6) The vector combining both the source bits and the chan-
nel code bits, denoted by u and given by u = [s d] =
[s c p], can be readily shown to satisfy u(HJ)T = 0.

C. Decoding Process

We assume a binary-phase-shift keying (BPSK) modulation
and an AWGN channel model. In the decoding process,
the log-likelihood-ratio (LLR) values of all VNs are first
initialized. The LLRs corresponding to the original source bits
are initialized with the value zs = ln((1−p)/p). For each VN
corresponding to a transmitted bit, its LLR is initialized with
zc = 2r/σ2, where r is the received signal and σ2 is the noise
variance, and the LLR for any un-transmitted bit is 0. Here
the noise variance is given by

σ2 =
1

2×Roverall × (Es/N0)
(6)

where Es is the average transmitted energy per source infor-
mation bit and N0 is the noise power spectral density. Each of
the VN-to-CN message is then set with the initial LLR value of
the corresponding VN. Subsequently with reference to Fig. 1,
the iterative decoding algorithm is performed as follows [11].

1) Update all the CN-to-VN messages for each of the Mc

CNs in the channel code of the DP-LDPC code.
2) Update all the VN-to-CN messages for each of the Ns

VNs in the source code of the DP-LDPC code.
3) Update all the CN-to-VN messages for each of the Ms

CNs in the source code of the DP-LDPC code.
4) Update all the VN-to-CN messages for each of the Nc

VNs in the channel code of the DP-LDPC code.
5) Estimate the source bits and channel code bits, denoted

by û, based on the a posterior LLRs at the VNs.
6) Repeat Step 1) to Step 5) unless (i) the estimated bits

û satisfy û(HJ)T = 0 or (ii) the maximum number of
iterations is reached.

4

1 s
m 1

s
m + s c

m m+

1 s
n 1

s
n +

s c
n n+

()Avc Evc

s s
I I

()Acv Ecv

s s
I I

1

Avc

L
I

2

Acv

L
I

Fig. 1. The joint protograph of a DP-LDPC code, where the pecked lines (red) represent the edges in the SC-CV linking protomatrix BL1 and the dash lines
(blue) represent the edges in the SV-CC linking protomatrix BL2

.

IV. GENERALIZED SOURCE PROTOGRAPH EXIT
(GSP-EXIT) ALGORITHM

A. Error Floor and Source Decoding Threshold

In the source compression procedure c = s(Hs)
T , it is

possible that different source sequences s may result in the
same compressed vector c. Hence even when the transmission
channel does not produce any errors, using only the source
coding matrix Hs to try to reconstruct the original source
sequence will result in errors. Hence an error-floor will appear
at the high channel SNR region. For a given Hs, a larger
source statistic p implies a higher chance that two different
source sequences result in the same compressed vector, and
thus a higher error-floor level. To ensure a low error floor, Hs

should match the source statistic p.
In [18], a SP-EXIT chart has been proposed to evaluate

the source decoding threshold pth of a source protograph
(or the corresponding source protomatrix). In the SP-EXIT
chart, the inner-code and outer-code EXIT curves correspond,
respectively, to the VNs and CNs of the source protograph.
Moreover, the shape of the inner-code curve is related to p. The
gap between the inner-code curve and the outer-code curve is
called the decoding tunnel. As p increases, the gap between the
two curves becomes narrower. When the two curves touch each
other except at the point (1, 1), the corresponding p is defined
as the source decoding threshold pth. In general, a larger pth
implies a lower error-floor level. The SP-EXIT algorithm in
[18], however, can only analyze the cases where there is no
connection between VNs of the source protograph and CNs
of the channel protograph, i.e., BL2

= 0.
Referring to (3), besides the source coding matrix Hs,

the SV-CC matrix HL2
connects the source bits. The design

of HL2 will hence affect the error performance and the
error-floor level. Similar to Hs, HL2 should be designed to
match the source statistic p. In order to analyze the matching
criterion between p and the DP-LDPC code, we consider the
source coding matrix Hs and the SV-CC matrix HL2

together

and define
[

Hs

HL2

]
as the complete-source-variable-linking

(CSVL) matrix.
Instead of analyzing the CSVL matrix directly, we can in-

vestigate the corresponding protomatrix, i.e.,
[

Bs
BL2

]
, which

is defined as the CSVL protomatrix. In the following, we pro-

pose a GSP-EXIT algorithm to evaluate the source threshold
when BL2 (and thus HL2) is not a zero matrix.

B. GSP-EXIT Algorithm

We propose a GSP-EXIT algorithm which considers the
source protomatrix Bs and the SV-CC linking protomatrix
BL2 together, i.e., the CSVL protomatrix. Referring to Fig. 1,
we define six types of mutual information (MI) flowing
into/within the source protograph:
• IEvcs (i, j): extrinsic MI from j-th VN to i-th CN in Bs;
• IEcvs (i, j): extrinsic MI from i-th CN to j-th VN in Bs;
• IAvcs (i, j): a-prior MI from j-th VN to i-th CN in Bs;
• IAcvs (i, j): a-prior MI from i-th CN to j-th VN in Bs;
• IAvcL1

(i, l): a-prior MI from l-th VN to i-th CN in BL1
;

• IAcvL2
(k, j): a-prior MI from k-th CN to j-th VN in BL2

.
In [4], a function J(·) is defined as

J(σ) = 1−
∫ ∞
−∞

e−(ξ−σ
2/2)2/2σ2

√
2πσ2

· log2(1 + e−ξ)dξ

and J−1(·) represents its inverse function. Another function
JBSC(·) is defined as

JBSC(µ, p) = (1− p)× I(s;χ(1−p)) + p× I(s;χ(p)),

where I(s;χ) is the MI between the source bits s and χ;
χ(1−p) ∼ N(µ + zs, 2µ) and χ(p) ∼ N(µ − zs, 2µ) with
zs = ln((1− p)/p).

1) Inner-code curve: We consider Bs and BL2 together,

i.e., we use
[

Bs
BL2

]
. Given (i) IAcvs (i, j) ∈ [0, 1] for all i

and j; (ii) IAcvL2
(k, j) ∈ [0, 1] for all k and j; and (iii) p;

IEvcs (i, j) is calculated as follows. For i = 1, 2, ..,ms and
j = 1, 2, ..., ns, IEvcs (i, j) = 0 if bs(i, j) = 0. Otherwise
IEvcs (i, j) is computed using

IEvcs (i, j) = JBSC

(
Γvcs (Bs, i, j) + ΓL2(BL2 , j), p

)
, (7)

where

Γvcs (Bs, i, j) =
∑
t6=i

bs(t, j)× [J−1(IAcvs (t, j))]2

+ (bs(i, j)− 1)× [J−1(IAcvs (i, j))]2 (8)

ΓL2
(BL2

, j) =

mc∑
k=1

bL2
(k, j)× [J−1(IAcvL2

(k, j))]2. (9)

5

To obtain an inner-code curve, we assume (i) the same
IAcvs (i, j) for all i and j, i.e., IAcvs (i, j) = IAcvs ; and (ii)
the same IAcvL2

(k, j) for all k and j, i.e., IAcvL2
(k, j) = IAcvL2

.
Then, (8) and (9) are simplified to, respectively,

Γvcs (Bs, i, j) =[J−1(IAcvs)]2

∑
t6=i

bs(t, j) + (bs(i, j)− 1)


=[J−1(IAcvs)]2(ws,∗,j − 1) (10)

and

ΓL2
(BL2

, j) =[J−1(IAcvL2
)]2

mc∑
k=1

bL2
(k, j)

=[J−1(IAcvL2
)]2wL2,∗,j (11)

with ws,∗,j and wL2,∗,j being the weight of the j-th column in
Bs and BL2

, respectively. Then the average IEvcs is computed
by

IEvcs =
∑
i

∑
j

IEvcs (i, j)× bs(i, j)/
∑
i

∑
j

bs(i, j) (12)

for every set of {IAcvs , IAcvL2
, p}.

2) Outer-code curve: We consider Bs and BL1
together,

i.e., we use [Bs BL1
]. Given (i) IAvcs (i, j) ∈ [0, 1] for all

i and j; and (ii) IAvcL1
(i, l) ∈ [0, 1] for all i and l; the

average IEcvs is calculated as follows. For i = 1, 2, ...,ms

and j = 1, 2, ..., ns, IEcvs (i, j) = 0 if bs(i, j) = 0. Otherwise,
IEcvs (i, j) is computed using

IEcvs (i, j) = 1.0− J
(

Γcvs (Bs, i, j) + ΓL1
(BL1

, i)
)

(13)

where

Γcvs (Bs, i, j) =
∑
t6=j

bs(i, t)× [J−1(1− IAvcs (i, t))]2

+ (bs(i, j)− 1)× [J−1(1− IAvcs (i, j))]2

(14)

ΓL1
(BL1

, i) =

nc∑
l=1

bL1
(i, l)× [J−1(1− IAvcL1

(i, l))]2. (15)

To obtain an outer-code curve, we assume the same IAvcs (i, j)
for all i and j, i.e., IAvcs (i, j) = IAvcs . We further assume that
perfect LLR messages are passed from the l-th VN to i-th CN
in BL1 , i.e., IAvcL1

(i, l) = 1 for all i and l. Then, (14) and (15)
are simplified to, respectively,

Γcvs (Bs, i, j) =[J−1(1− IAvcs)]2

∑
t6=j

bs(i, t) + (bs(i, j)− 1)


=[J−1(1− IAvcs)]2(ws,i,∗ − 1) (16)

and

ΓL1
(BL1

, i) = 0 ∀i when IAvcL1
(i, l) = 1 ∀i, l (17)

with ws,i,∗ being the weight of the i-th row in Bs. The average
IEcvs is computed by

IEcvs =
∑
i

∑
j

IEcvs (i, j)× bs(i, j)/
∑
i

∑
j

bs(i, j). (18)

for a given value of IAvcs ∈ [0, 1].

3) GSP-EXIT curves: Using the above steps, we can obtain
(i) IEvcs for every set of {IAcvs , IAcvL2

, p}, and (ii) IEcvs for
every IAvcs ∈ [0, 1]. Using the fact that IEvcs = IAvcs and
IEcvs = IAcvs , we can plot the GSP-EXIT curves on the same
figure, i.e.,
• plot IEvcs versus IAcvs when IAcvs increases from 0 to 1

while fixing IAcvL2
and p;

• plot IAvcs versus IEcvs curve when IAvcs increases from
0 to 1.

C. Source Decoding Threshold Estimation
As mentioned in Sect. IV-A, the SP-EXIT chart is used to

evaluate the source decoding threshold pth only when BL2
=

0, i.e., IAcvL2
= 0. In our proposed GSP-EXIT algorithm, the

scenario where BL2
6= 0 and hence IAcvL2

6= 0 is also analyzed.
We consider the following CSVL protomatrix

[
Breg

s

BL2

]
=



1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1

b1,1L2
b1,2L2

b1,3L2
b1,4L2

b1,5L2
b1,6L2

b1,7L2
b1,8L2

b2,1L2
b2,2L2

b2,3L2
b2,4L2

b2,5L2
b2,6L2

b2,7L2
b2,8L2

b3,1L2
b3,2L2

b3,3L2
b3,4L2

b3,5L2
b3,6L2

b3,7L2
b3,8L2

b4,1L2
b4,2L2

b4,3L2
b4,4L2

b4,5L2
b4,6L2

b4,7L2
b4,8L2


,

(19)

where
• Bregs is a 4× 8 regular protomatrix with column weight

being 3 and row weight being 6;
• BL2

is of size 4×8, bk,jL2
= bL2

(k, j) represents the (k, j)-
th element of BL2

, and unless otherwise stated bk,jL2
= 0

for all k and j.
We consider the case when b2,6L2

= b3,7L2
= b4,8L2

= 2 and
p = 0.12. We plot the GSP-EXIT chart in Fig. 2 under
the condition that IAvcL1

= 1, i.e., perfect LLR messages are
passed from the VNs of the channel protograph to the CNs
of the source protograph via BL1

. Referring to the figure,
the decoding tunnel between the inner-code curves (indicated
with blue lines) and the outer-code curve (indicated with a
dashed line) signifies the resilience of the source information
and correlates with the level of error-floor — the wider the
tunnel, the lower the error floor. The decoding tunnel is closed
when IAcvL2

= 0.0 (representing the case BL2
= 0) and is open

when IAcvL2
≥ 0.4. The results indicate that a non-zero BL2

can improve the error-floor performance of the JSCC scheme.
Moreover, the tunnel becomes wider and wider as IAcvL2

is
gradually increased to 1.

We further consider the scenario when perfect LLR mes-
sages are also passed from the CNs of the channel protograph
to the VNs of the source protograph via BL2 , i.e., IAcvL2

= 1,
and (11) becomes

ΓL2
(BL2

, j) = wL2,∗,j . (20)

Combining with the previous assumption that perfect LLR
messages are passed from the VNs of the channel protograph
to the CNs of the source protograph via BL1

, we therefore
assume all LLR messages passed from the channel decoder to
the source decoder are perfect, i.e, IAvcL1

= 1 and IAcvL2
= 1.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
Acv

s
/I

Ecv

s

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

IE
v
c

s
/I

A
v
c

s outer code

inner-code with I
L2

Acv
 = 0

inner-code with I
L2

Acv
 = 0.2

inner-code with I
L2

Acv
 = 0.4

inner-code with I
L2

Acv
 = 0.6

inner-code with I
L2

Acv
 = 0.8

inner-code with I
L2

Acv
 = 1.0

inner-code with I
L2

Acv
 = 1.0 (b

L2

6,6
=b

L2

6,7
=b

L2

6,8
=2)

inner-code with I
L2

Acv
 = 1.0 (b

L2

1,1
=b

L2

2,2
=b

L2

3,3
=2)

increasing I
Acv

L2

Fig. 2. The GSP-EXIT chart for the CSVL protomatrix (19). BL2 contains
three non-zero columns with only one “2” in each non-zero column: blue lines
denote the inner-code curves with b4,6L2

= b5,7L2
= b6,8L2

= 2 at different IAcv
L2

values; pink line and green line denote the inner-code curves with b6,6L2
=

b6,7L2
= b6,8L2

= 2 and b1,2L2
= b2,2L2

= b3,3L2
= 2, respectively, at IAcv

L2
= 1.

The red (dashed) line denotes the outer-code curve. IAvc
L1

= 1 and p = 0.12.

Fig. 3 shows the GSP-EXIT chart for different source statistic
p. We can observe that as p increases, the decoding tunnel be-
tween the inner-code curve and the outer-code curve becomes
narrower. The value of p when the tunnel is nearly closed
is the source decoding threshold pth. As shown in Fig. 3, the
inner-code curve and outer-code curve almost touch each other
when p = 0.19, and thus pth = 0.19.

Given Bs and BL2
, the pseudo-code used for finding the

source decoding threshold pth is shown in Algorithm 1. The
parameters used are as follows: maximum number of iterations
tmax = 200, step size p′ = 10−3 and tolerance δ = 10−7.

V. CSVL PROTOMATRICES WITH REGULAR AND
IRREGULAR SOURCE PROTOGRAPHS

In this section, we continue to study CSVL protomatrices
under the condition that all LLR messages passing from
the channel decoder to the source decoder are perfect, i.e,
IAvcL1

= 1 and IAcvL2
= 1. To be more general, we analyze

the CSVL protomatrix assuming both regular and irregular
source protomatrices. We apply (7), (10), and (20) to (12) for
evaluating the inner-code curve IEvcs ; and apply (13), (16),
and (17) to (18) for evaluating the outer-code curve IEcvs .

A. Regular Source Protomatrix

We consider a regular source protomatrix, i.e., all column
weights are the same and all row weights are the same. We
also denote the column weight by ws,c and row weight by
ws,r; and hence ws,∗,j = ws,c ∀j and ws,i,∗ = ws,r ∀i. The
Bregs in (19) is one example, which has a size of 4 × 8 with
all column weights (degree of VNs) being ws,c = 3 and all
row weights (degree of CNs) being ws,r = 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
s

Acv
/I

s

Ecv

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I sE
v

c /I
sA

v
c

outer-code curve

p=0.09

p=0.11

p=0.13

p=0.15

p=0.17

p=0.19

p=0.21

p=0.23

increasing p

Fig. 3. The GSP-EXIT chart for the CSVL protomatrix (19) at different
source statistic p. BL2

contains three non-zero columns with only one “2”
in each non-zero column: b4,6L2

= b5,7L2
= b6,8L2

= 2. The red (dashed) line
denotes the outer-code curve. IAvc

L1
= 1 and IAcv

L2
= 1.0 and p = 0.12.

For a regular Bs, (16) is simplified to

Γcvs (Bs, i, j) = [J−1(1− IAvcs)]2(ws,r − 1). (21)

Substituting (13), (17), and (21) to (18), it can be shown that
the outer-code curve IEcvs becomes a function depending only
on IAvcs and ws,r, i.e.,

IEcvs = 1.0− J
(

[J−1(1− IAvcs)]2(ws,r − 1)
)
. (22)

Considering the inner-code curve, (10) is simplified to

Γvcs (Bs, i, j) = [J−1(IAcvs)]2(ws,c − 1) ∀i, j . (23)

Moreover, (20) depends only on the column weight of BL2 ,
but not on the distribution of the non-zero entries in the same
column. Substituting (7), (20) and (23) to (12), the inner-code
curve IEvcs becomes

IEvcs =
∑
j

JBSC

(
[J−1(IAcvs)]2(ws,c − 1) + wL2,∗,j , p

)
/ns,

(24)

which is a function of IAcvs , ws,c, the column-weight distri-
bution of BL2 ({wL2,∗,j}), p and ns (number of columns in
Bs).

1) BL2 with the same column-weight distribution: (24)
indicates that BL2 with the same column-weight distribution
produces the same inner-code curve. To verify this, we con-
sider the following three different BL2

that have the same
column-weight distribution.
• b4,6L2

= b5,7L2
= b6,8L2

= 2, and 0 elsewhere
• b6,6L2

= b6,7L2
= b6,8L2

= 2, and 0 elsewhere
• b1,1L2

= b2,2L2
= b3,3L2

= 2, and 0 elsewhere
In these three cases, three columns have a weight of 2 and all
other columns have a weight of 0. Fig. 2 plots the inner-code
curves for the above three cases based on the Bregs in (19) and
p = 0.12. It can be observed that all the three curves overlap
completely, verifying our theoretical findings.

7

Algorithm 1 GSP-EXIT algorithm for evaluating the source
decoding threshold pth

1: Given Bs and BL2
, evaluate the source decoding threshold

pth.
2: Initialization: Set the maximum number of iterations tmax,

step size p′ and tolerance δ. Set IAvcL1
(i, l) = IAvcL1

=
1 ∀i, l and IAcvL2

(k, j) = IAcvL2
= 1 ∀k, j.

3: for a given p (assume p > pth and hence too large) do
4: Set t = 1; IAvcs (i, j) = IAvcs = 0 ∀i, j; IAcvs (i, j) =
IAcvs = 0 ∀i, j; IEvcs = 0; IEcvs = 0.

5: while
(
(1.0 − IEvcs) > δ or (1.0 − IEcvs) > δ

)
and

t ≤ tmax do
6: for i = 1, ...,ms, j = 1, ..., ns do
7: Compute IEvcs (i, j) using (7).
8: Set IAvcs (i, j) = IEvcs (i, j).
9: Compute IEvcs using (12).

10: end for
11: for i = 1, ...,ms, j = 1, ..., ns do
12: Compute IEcvs (i, j) using (13).
13: Set IAcvs (i, j) = IEcvs (i, j).
14: Compute IEcvs using (18).
15: end for
16: t = t+ 1.
17: end while
18: if

(
(1.0− IEvcs) ≤ δ and (1.0− IEcvs) ≤ δ

)
then

19: pth = p, goto final [Comment: Largest p to allow
the iterations to converge almost to (1, 1) is found.]

20: else
21: p = p − p′. [Comment: p too large and needs to

be decreased].
22: end if
23: end for
24: final

2) Number of non-zero columns in BL2 : Supposing the
weight of a column in BL2 is either 0 or a constant value,
say 2, (24) shows that more columns with the constant
weight will produce a higher IEvcs . As a result, the decoding
tunnel between the corresponding inner-code curve and the
outer-code curve becomes wider, resulting in a larger source
decoding threshold pth. Fig. 4 plots the GSP-EXIT chart for
the CSVL protomatrix (19) at p = 0.12. BL2 contains 1 to 5
non-zero column(s) with only one entry “2” in each non-zero
column. Table I lists the corresponding threshold versus the
number of non-zero columns. The results verify our theory
that more columns with the constant weight of 2 produces a
wider decoding tunnel, and hence a larger source decoding
threshold.

In summary, for a regular source protomatrix, the source
decoding threshold pth is determined by the distribution of
column weights in BL2

. In general, more non-zero-weight
columns in BL2

gives a higher pth and hence a lower error
floor.

3) Bit-error-rate (BER) simulations: Next we perform bit-
error-rate (BER) simulations. The CSVL protomatrix in (19)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
s

Acv
/I

s

Ecv

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I sE
v

c /I
sA

v
c

outer-code curve

no. of non-zero column = 1

no. of non-zero column = 2

no. of non-zero column = 3

no. of non-zero column = 4

no. of non-zero column = 5

increasing number of

non-zero columns

Fig. 4. The GSP-EXIT chart for the CSVL protomatrix (19) at p = 0.12.
BL2

contains 1 to 5 non-zero column(s) with only one entry “2” in each non-
zero column. The red (dashed) line denotes the outer-code curve. IAvc

L1
= 1

and IAcv
L2

= 1.

TABLE I
SOURCE DECODING THRESHOLD pth FOR THE CSVL PROTOMATRIX (19).
BL2

CONTAINS 1 TO 5 NON-ZERO COLUMN(S) WITH ONLY ONE ENTRY “2”
IN EACH NON-ZERO COLUMN.

Number of non-zero columns in BL2
pth

1 0.1029

2 0.1345

3 0.1875

4 0.2790

5 0.4973

is used jointly with

[
BL1

Bregc

]
=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 0 1 1 1 0

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1


, (25)

in which the channel protomatrix Bregc is of size 4 × 8; and
is regular with column weight 3 and row weight 8. For BL2

,
each non-zero column has a weight of 2 and contains two “1”s.
The positions of “1” are selected with an aim to (i) connecting
more VNs in Bs and CNs in Bregc ; and (ii) minimizing the
channel threshold (SNRth) (e.g., evaluated by using the JP-

8

-2 -1 0 1 2 3 4

E
s
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

no. of non-zero columns=1, p=0.1

no. of non-zero columns=2, p=0.1

no. of non-zero columns=3, p=0.1

no. of non-zero columns=2, p=0.12

no. of non-zero columns=3, p=0.12

no. of non-zero columns=4, p=0.12

no. of non-zero columns=3, p=0.16

no. of non-zero columns=4, p=0.16

no. of non-zero columns=5, p=0.16

Fig. 5. BER performance of the DP-LDPC code derived from (19) and (25)
at source statistic p = 0.1, 0.12, 0.16. The number of non-zero columns in
BL2

varies from 1 to 3 for p = 0.1; 2 to 4 for p = 0.12; and 3 to 5 for
p = 0.16. Each non-zero column in BL2 has a weight of 2.

EXIT algorithm in [9]). For example, BL2
is given by

BL2
=


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


when the first two columns are selected to be the non-zero
columns. Lifting factors of q1 = 4 and q2 = 100 are used to
form the DP-LDPC code based on (19) and (25). Thus, Ns =
Nc = 3200, and Ms = Mc = 1600. We assume an AWGN
channel and BPSK modulation. In the decoding process, a
maximum of 100 iterations is used and a maximum of 2×106

blocks is simulated for every Es/N0.
Fig. 5 plots the BER results. At source statistic p = 0.1,

an error floor occurs when there is only one non-zero column
in BL2 ; the error floor disappears when there are two or three
non-zero columns. Similarly, at p = 0.12 (p = 0.16), an error
floor occurs when there are two (three) non-zero columns in
BL2

; the error floor disappears when there are three (four) or
four (five) non-zero columns. The results are consistent with
our finding in Table I that more non-zero columns in BL2

provides a higher pth and hence a smaller chance of having
an error floor. Fig. 5 also shows that more non-zero columns
in BL2

gives a worse BER in the waterfall region. Thus,
depending on p and the actual operating region, a smaller
number of non-zero columns in BL2

may be selected. For
example, at p = 0.16 and Es/N0 ∈ [1 dB, 2 dB], we may
decide to use a BL2 with three (instead of four or five) non-
zero columns.

B. Irregular Source Protomatrix

We consider an irregular source protomatrix, i.e., the rows
and columns of Bs can have different weights. We use the rate-
1/2 source protograph in [18] as an example and denote the

corresponding protomatrix as B[18]
s . B[18]

s has been optimized
in [18] under BL2 = 0 and has a source threshold of pth =
0.0977 (value also listed in Table IV under B[18]

s and ψ0 =
{∅}). With B[18]

s , the CSVL protomatrix can be written as

[
B[18]
s

BL2

]
=


3 2 1 1 0 1 0 0

2 3 1 0 1 0 1 0

3 3 0 0 0 0 0 1

3 0 1 2 2 1 1 1

BL2

 , (26)

where BL2
is assumed to be the same size as that in (19), i.e.,

4× 8.
1) Selection of columns with non-zero weights: In the

following, we define ψ as the set of columns in BL2 with
non-zero weights. For example, ψ = {1, 3, 5} indicates that
the weights of the 1st, 3rd and 5th columns in BL2

are non-
zero while the weights of other columns are zero. As in the
previous section, we assume that there is only one entry with
a value of “2” in each non-zero-weight column while other
entries in the same column are “0”.

We evaluate the source threshold of the CSVL protomatrix
in (26) when the number of columns with non-zero weights
equals 1, 2, 3 and 4. Denoting Ckn = n!(n−k)!

k! , the number
of the non-zero columns in BL2

being 1, 2, 3 and 4 have,
respectively, a total of C1

8 = 8, C2
8 = 28, C3

8 = 56 and C4
8 =

70 possible combinations. For each of these combinations, we
evaluate the source threshold using the GSP-EXIT algorithm,
i.e., Algorithm 1. Table II lists the 4 combinations with the
best pth and another 4 combinations with the worst values for
each case.

Referring to the table, if only one column in BL2
is allowed

to have non-zero weights, the 3rd column should be selected
because it can achieve the highest source decoding threshold,
i.e., ψ={3} and pth = 0.1156. Note that the corresponding
3rd column in B[18]

s has neither the largest or smallest column
weight. Table II also shows that the best pth increases as the
number of non-zero columns in BL2

increases from 1 to 4. The
result is consistent with that in the previous section where
a regular source protomatrix has been considered. However,
if the non-zero columns in BL2 are randomly selected, pth
may decrease with the number of non-zero columns, e.g.,
compare pth values for the following sets — {3}v.s.{1, 8},
{2, 4}v.s.{1, 2, 8}, {1, 3, 5}v.s.{5, 6, 7, 8}. Another observation
from Table II is that the best non-zero-column combination in
each case does not contain the column numbers 6, 7 or 8 in
Bs, which correspond to weight-2 columns in the irregular
source protomatrix B[18]

s . Comparing the results in Table I and
Table II also indicates that under the same number of non-zero
columns in BL2

, the CSVL protomatrix with the irregular B[18]
s

can achieve a higher pth than that with the regular Bregs .
In summary, for a given source protomatrix Bs with irreg-

ular weight distribution, (i) the number of non-zero-weight
columns in BL2 and (ii) the columns in BL2 that should be
given non-zero weights, need to be selected with care in order
to maximize the source decoding threshold. In particular, to
obtain the best source decoding threshold, non-zero-weight

9

TABLE II
SET OF COLUMNS ψ IN BL2 WITH NON-ZERO WEIGHTS VERSUS SOURCE DECODING THRESHOLD pth . THE NUMBER OF NON-ZERO-WEIGHT COLUMNS

IN BL2
EQUALS 1, 2, 3, AND 4. ONLY THE 4 SETS SHOWING THE BEST (HIGHEST) pth AND THE 4 SETS SHOWING THE WORST pth ARE LISTED FOR EACH

CASE. THE CSVL PROTOMATRIX IN (26) IS USED.

ψ with cardinality 1 pth ψ with cardinality 2 pth ψ with cardinality 3 pth ψ with cardinality 4 pth
{3} 0.1156 {2, 4} 0.1498 {1, 3, 5} 0.2076 {1, 2, 4, 5} 0.3632
{4} 0.1117 {2, 5} 0.1494 {1, 5, 7} 0.2047 {1, 2, 3, 4} 0.3352
{5} 0.1117 {1, 5} 0.1493 {1, 3, 4} 0.2037 {1, 2, 3, 5} 0.3352
{6} 0.1101 {1, 4} 0.1482 {2, 3, 4} 0.2029 {1, 2, 4, 6} 0.3352
{7} 0.1101 {6, 7} 0.1201 {6, 7, 8} 0.1393 {4, 5, 6, 7} 0.1650
{8} 0.1058 {1, 2} 0.1058 {4, 6, 7} 0.1388 {1, 2, 7, 8} 0.1650
{2} 0.1035 {1, 8} 0.1058 {5, 6, 7} 0.1386 {3, 6, 7, 8} 0.1626
{1} 0.1031 {1, 7} 0.1057 {1, 2, 8} 0.1058 {5, 6, 7, 8} 0.1584

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
s
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

ψ={3} at p=0.09

ψ={2,4} at p=0.09

ψ={1,3,5} at p=0.09

ψ={1,2,4,5} at p=0.09

ψ={1,8} at p=0.09

ψ={3} at p=0.11

ψ={2,4} at p=0.11

ψ={1,3,5} at p=0.11

ψ={1,2,4,5} at p=0.11

ψ={1,2,8} at p=0.11

Fig. 6. BER performance of the DP-LDPC code derived from (26) and (25)
at source statistic p = 0.09 and 0.11. The number of non-zero columns in
BL2

varies from 1 to 4. ψ indicates the set of non-zero columns and each
non-zero column has a weight of 2.

columns in BL2 are not recommended to align with weight-2
columns in the irregular source protomatrix.

2) BER simulations: We simulate the BER performance
of the DP-LDPC code formed by (26) and (25). The same
simulation setting (e.g., column weight, lifting factors) as in
Sect. V-A3 is used. Fig. 6 plots the BER results. We consider
the cases when the optimal column sets under different number
of non-zero columns in BL2 are applied, i.e., we consider
ψ = {3}, ψ = {2, 4}, ψ = {1, 3, 5} and ψ = {1, 2, 4, 5}. At
source statistic p = 0.09, no error floor occurs and the BER
performance in the waterfall region degrades as the number
of non-zero columns increases. At source statistic p = 0.11,
similar observations can be obtained except that ψ = {3} gives
an error floor. We also consider two column sets in Table II that
are among the worst ones — ψ = {1, 8} and ψ = {1, 2, 8}. At
p = 0.09, ψ = {1, 8} shows an error floor, and is outperformed
by ψ = {3} when Es/N0 is beyond −1.5 dB. At p = 0.11,
ψ = {1, 2, 8} shows an error floor, and is always outperformed
by ψ = {3} and ψ = {2, 4} over all Es/N0. The BER
results are consistent with our finding in Table II — when
the optimal non-zero-column combinations are selected, more

non-zero columns in BL2
provides a higher pth and hence a

smaller chance of having an error floor. It also verifies that BL2

with a higher number of non-zero columns can give a much
worse BER performance if the non-zero-column combination
is randomly selected. Again, like what we have observed in
Sect. V-A3, the selection of ψ here will depend on p and the
operating region. For example, at p = 0.09 and p = 0.11,
respectively, ψ = {3} and ψ = {2, 4} should be selected.

Next, we compare the BER performance of the DP-LDPC
codes with the same number of non-zero columns in BL2 but
under different non-zero column sets. We consider BL2

with
the non-zero column sets shown in Table III, which also lists
the corresponding pth of the CSVL protomatrix based on (26).
Figs. 7, 8, and 9 plot, respectively, the BER curves at p =
0.10, p = 0.12 and p = 0.14, under BL2 with one, two and
three non-zero columns. The results again verify our previous
analytical finding that for BL2

with the same number of non-
zero columns, different non-zero column sets can produce very
different BER results and error-floor levels. For example, in
Fig. 7 case-1 achieves an error-floor level of 2 × 10−4 while
case-4 achieves an error-floor level of around 2 × 10−2; in
Fig. 9 case-9 does not shown any error floor while case-12
achieves an error-floor level of 10−2. The BER results also
confirms that a higher pth produces a lower error floor.

C. Optimization of Irregular Source Protomatrices

In the previous two subsections, we have analyzed the effect
of non-zero BL2

on the source decoding threshold pth under a
regular or irregular source protomatrix. With the same number
of non-zero columns in BL2 , results have shown that the CSVL
protomatrix with the irregular B[18]

s can achieve a higher pth
than that with the regular Bregs . Optimized in [18] for pth (and
hence low error floor) under the assumption that BL2 = 0,
the irregular B[18]

s used in the previous subsection may not
be optimal for BL2 6= 0. In this subsection, we attempt to
optimize Bs for a given BL2

.
1) Optimization algorithm: For easy comparison with re-

sults in the previous subsection, we use similar BL2
designs

here, i.e., BL2 is assumed to have one, two or three non-zero
columns and each non-zero column has a weight of 2. Without
loss of generality, we further assume that the non-zero-column
sets are given by ψ1 = {1}, ψ2 = {1, 2} and ψ3 = {1, 2, 3},
corresponding to, respectively, one, two and three non-zero

10

TABLE III
NON-ZERO COLUMN SET ψ OF BL2 AND THE CORRESPONDING SOURCE

DECODING THRESHOLD pth OF THE CSVL PROTOMATRIX IN (26).

Case no. Non-zero column set ψ pth

case-1 {3} 0.1156

case-2 {7} 0.1101

case-3 {8} 0.1058

case-4 {1} 0.1031

case-5 {2, 4} 0.1498

case-6 {2, 7} 0.1444

case-7 {3, 8} 0.1361

case-8 {7, 8} 0.1299

case-9 {1, 3, 5} 0.2076

case-10 {2, 6, 8} 0.1686

case-11 {3, 5, 7} 0.1586

case-12 {4, 5, 8} 0.1472

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
s
/N

0
 (dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

case-1

case-2

case-3

case-4

Fig. 7. BER performance of the DP-LDPC codes formed by (26) and (25).
BL2 in (26) contains one non-zero column and the non-zero column sets are
shown in Table III. Source statistic p = 0.10.

columns; and the empty non-zero-column set is denoted by
ψ0 = {∅}, corresponding to BL2 = 0.

As for Bs, we retain the weight-2 columns of B[18]
s because

such columns can improve error-floor performance [18]. We
also retain them in the same columns, i.e., 6th, 7th, and 8th
columns, because our previous subsection results indicate that
non-zero-weight columns in BL2

are not recommended to
align with weight-2 columns in the irregular source protoma-
trix. Thus, our optimized irregular protomatrix Bopts has the
following structure

Bopts =


b1,1s b1,2s b1,3s b1,4s b1,5s 1 0 0

b2,1s b2,2s b2,3s b2,4s b2,5s 0 1 0

b3,1s b3,2s b3,3s b3,4s b3,5s 0 0 1

b4,1s b4,2s b4,3s b4,4s b4,5s 1 1 1

 , (27)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
s
/N

0
 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

case-5

case-6

case-7

case-8

Fig. 8. BER performance of the DP-LDPC codes formed by (26) and (25).
BL2 in (26) contains two non-zero columns and the non-zero column sets are
shown in Table III. Source statistic p = 0.12.

0 0.5 1 1.5 2 2.5 3

E
s
/N

0
 (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

case-9

case-10

case-11

case-12

Fig. 9. BER performance of the DP-LDPC codes formed by (26) and (25).
BL2 in (26) contains three non-zero columns and the non-zero column sets
are shown in Table III. Source statistic p = 0.14.

where bi,js = bs(i, j) denotes the (i, j)-th element of Bopts .
To search for the remaining elements in Bopts , we propose a

differential evolution [34], [35] searching algorithm, details of
which is given in Algorithm 2. Moreover, the source decoding
threshold pth found by the GSP-EXIT algorithm is used as the
cost function, i.e.,

max
Bs,BL2

Φ(Bs,BL2
)

s.t. Ω(Bs,BL2
) = 1

(28)

where Φ(Bs,BL2) returns the source threshold pth;
Ω(Bs,BL2) = 1 when all the required conditions in
Algorithm 2 are satisfied, and Ω(Bs,BL2

) = 0 otherwise.

11

TABLE IV
SOURCE DECODING THRESHOLD (pth) UNDER DIFFERENT COMBINATIONS

OF Bs AND BL2
. Bs IS GIVEN AS IN (26), AND (29) TO (31). BL2

CONTAINS ONE, TWO OR THREE NON-ZERO COLUMNS AND EACH
NON-ZERO COLUMN HAS A WEIGHT OF 2. ψ DENOTES THE SET OF

NON-ZERO COLUMNS IN BL2
.

Set of non-zero columns B[18]
s Bopt−1

s Bopt−2
s Bopt−3

s

ψ = {∅} 0.0977 0.0867 0.0859 0.0764
ψ = {1} 0.1156 0.1227 0.1152 0.1018
ψ = {1, 2} 0.1498 0.1409 0.1543 0.1439
ψ = {1, 2, 3} 0.2076 0.2048 0.2033 0.2148

The searching space and complexity increase with the
parameters bmaxs , Kc and Kg . In this study, we set bmaxs = 3,
Kc = 5000, Kg = 5000 to limit the searching space. We also
assume a cross-over probability of 0.85, i.e., pc = 0.85.

2) Optimized results and comparisons: Using Algorithm 2,
the optimized source protographs corresponding to the non-
zero-column sets (of BL2

) ψ1 = {1}, ψ2 = {1, 2} and ψ3 =
{1, 2, 3} are found to be, respectively,

Bopt−1s =


3 3 0 2 0 1 0 0

2 3 1 3 1 0 1 0

2 2 0 3 0 0 0 1

1 2 2 0 2 1 1 1

 , (29)

Bopt−2s =


3 1 0 3 0 1 0 0

1 0 1 3 2 0 1 0

3 2 2 3 1 0 0 1

0 2 0 3 0 1 1 1

 (30)

and

Bopt−3s =


3 0 2 1 0 1 0 0

3 0 1 3 3 0 1 0

0 3 3 2 3 0 0 1

2 0 3 1 2 1 1 1

 . (31)

Using B[18]
s and the above optimized Bs, we form CSVL

protomatrices under ψ0 = {∅}, ψ1 = {1}, ψ2 = {1, 2} and
ψ3 = {1, 2, 3} and evaluate the corresponding pth. The results
are listed in Table IV. Note that the pth values corresponding
to B[18]

s (and ψ1, ψ2 and ψ3) are simply the optimal values
listed in Table II. We can observe in Table IV that each
Bs is optimized at one particular non-zero-column set. For
example, the Bopt−2s achieves the highest pth under ψ2, and
has a smaller pth than (i) Bopt−1s under ψ1; and (ii) Bopt−3s

under ψ3. We can also see than B[18]
s is only optimized at ψ0.

In Figs. 10 to 12, we plot the BER curves of the DP-LDPC
codes formed by some of the above CSVL protomatrices
together with (25). Fig. 10, Fig. 11 and Fig. 12 correspond to
the results when BL2

consists of one, two and three non-zero
columns, respectively. Compared with using the optimized
Bs in [18] (B[18]

s) in the DP-LDPC codes, using the Bs
optimized by Algorithm 2 (Bopt−1s to Bopt−3s) results in
lower error floors under the same source statistic p. The error
floor improvements are expected to be larger when the source
statistic p decreases. Moreover, if the search space is made

Algorithm 2 Differential evolution searching algorithm for the
source protograph Bopts

GIVEN:
• an initial source protograph Bs with some fixed columns

(6th, 7th, and 8th columns in our study) and all other
entries set to 1;

• BL2
under ψ1 = {1}, ψ2 = {1, 2} or ψ3 = {1, 2, 3};

• the number of candidate matrices Kc;
• the number of generations Kg;
• the crossover probability pc;
• Bkc(kg)s denote the kc-th candidate source protograph

matrix in the kg-th generation.
REQUIRED CONDITIONS:
• The minimum column weight of the source protograph

is 3 (except the fixed columns).
• The minimum row weight of the source protograph is 2.
• Except the fixed entries, the other entries in Bs has a

maximum value of bmaxs .
Step 1 INITIALIZATION: Set kg = 0 and B1(kg)

s = Bs. For
kc = 2, 3, . . . ,Kc, generate Bkc(kg)s by replacing the elements
in B1(0)

s (except those in the fixed columns) with random
integers between 0 and bmaxs . Repeat the process until all
Bkc(kg)s satisfy the required conditions.
Step 2 MUTATION: For kc = 1, 2, . . . ,Kc, generate a muta-
tion matrix Mkc(kg)

s using

Mkc(kg)
s = Θ

(
Br1(kg)s + 0.5(Br2(kg)s − Br3(kg)s)

)
where r1, r2 and r3 are randomly integers in the range [1,Kc],
and Θ(B) is an operation that replaces each element in B with
an integer closest to its absolute value.
Step 3 CROSSOVER: For kc = 1, 2, . . . ,Kc, the (i, j)-th entry
of a candidate matrix Nkc(kg)s is set as the (i, j)-th element of
Mkc(kg)
s with a crossover probability pc, or as the (i, j)-th

element of Bkc(kg)s with probability (1− pc).
Step 4 SELECTION: For kc = 1, 2, . . . ,Kc, protographs of
the (kg + 1)-th generation are set according to

Bkc(kg+1)
s =

Nkc(kg)s

if Φ(Nkc(kg)s ,BL2
)× Ω(Nkc(kg)s ,BL2

)

> Φ(Bkc(kg)s ,BL2
)

Bkc(kg)s otherwise,

where Φ(Bs,BL2
) returns the source threshold pth;

Ω(Bs,BL2
) = 1 when all the required conditions are

satisfied, and Ω(Bs,BL2) = 0 otherwise.
Step 5 TERMINATION: Steps 2 to 4 are executed for Kg gen-
erations and the protograph with the highest source decoding
threshold pth is chosen as the optimal protograph Bopts .

larger, say by increasing bmaxs from 3 to 4, the improvement
in the source threshold and hence error floor will be more
significant.

Next, we compare the decoding complexity of the DP-
LDPC codes based on B[18]

s , Bopt−1s , Bopt−2s and Bopt−3s . It
is shown that the decoding complexity of DP-LDPC codes
depends mainly on the average degree of CNs [36]. Our results
have indicated that the average row weights of B[18]

s , Bopt−1s ,

12

-3 -2 -1 0 1 2 3

E
s
/N

0
 (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

B
s
=B

s

[18]
 at p=0.1

B
s
=B

s

opt-1
 at p=0.1

B
s
=B

s

[18]
 at p=0.11

B
s
=B

s

opt-1
 at p=0.11

B
s
=B

s

[18]
 at p=0.12

B
s
=B

s

opt-1
 at p=0.12

Error-floor

region

Fig. 10. BER performance of the DP-LDPC codes formed by B[18]
s /Bopt−1

s ,
BL2

, and (25). BL2
contains one non-zero column, i.e., ψ1 = {1}. Source

statistic p = 0.10, 0.11 and 0.12.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

E
s
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

B
s
=B

s

[18]
 at p=0.12

B
s
=B

s

opt-2
 at p=0.12

B
s
=B

s

[18]
 at p=0.13

B
s
=B

s

opt-2
 at p=0.13

B
s
=B

s

[18]
 at p=0.14

B
s
=B

s

opt-2
 at p=0.14

Error-floor

region

Fig. 11. BER performance of the DP-LDPC codes formed by B[18]
s /Bopt−2

s ,
BL2

, and (25). BL2
contains two non-zero columns, i.e., ψ2 = {1, 2}. Source

statistic p = 0.12, 0.13 and 0.14.

Bopt−2s and Bopt−3s are, respectively, 8.5, 9.0, 8.75, and 9.375.
Thus, we expect a modest increase in decoding complexity
when the optimized codes are used. As for the encoding
complexity, the increase will be very minimal because only
logical operations on “0”s and “1”s are involved in the process.

VI. BER PERFORMANCE OVER A RAYLEIGH FADING
CHANNEL

In this section, we evaluate the BER performance of the
DP-LDPC codes over a flat Rayleigh fading channel model.
Under this model, the received signal r is given by r = hx+n
where x is the BPSK-modulated signal, n is the AWGN noise,
and h is a normalized Rayleigh fading factor with E[h2] = 1
(E[·] is the expectation operation). Moreover, the probability

0 1 2 3 4 5 6

E
s
/N

0
 (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

B
s
=B

s

[18]
 at p=0.18

B
s
=B

s

opt-3
 at p=0.18

B
s
=B

s

[18]
 at p=0.19

B
s
=B

s

opt-3
 at p=0.19

B
s
=B

s

[18]
 at p=0.2

B
s
=B

s

opt-3
 at p=0.2

Error-floor

region

Fig. 12. BER performance of the DP-LDPC codes formed by B[18]
s /Bopt−3

s ,
BL2

, and (25). BL2
contains three non-zero columns, i.e., ψ3 = {1, 2, 3}.

Source statistic p = 0.18, 0.19 and 0.2.

density function of h is given by f(h) = 2h exp(−h2). If the
side information (SI) h is perfectly known by the receiver, the
LLR of the received signal can be calculated by zc = 2rh/σ2;
otherwise the LLR is approximated by zc ≈ 2rE[h]/σ2, where
E[h] = 0.8862 [37].

In Fig. 13, we plot the BER curves of DP-LDPC codes
formed by B[18]

s , BL2
under case-1 or case-5 shown in Ta-

ble III, and (25). We can observe that a Rayleigh fading
channel degrades the BER performance compared with an
AWGN channel. The performance loss is more severe when
no SI is available. For example, we consider case-1 under a
source statistic p = 0.10 and a BER 10−3. Under an AWGN
channel Es/N0 = −0.8 dB is required. Under a Rayleigh
fading channel, Es/N0 degrades by about 2.5 dB if SI is
available; and by 3.8 dB if SI is not available. We also observe
that the error floor remains at the same level, regardless of
AWGN or fading channels. It is because the error floor is
caused by source compression rather than the channel fading
when Es/N0 is large. Similar observations are found for case-
5.

In Fig. 14, we plot the BER curves of DP-LDPC codes
formed by (i) Bopt−1s and BL2

with ψ1 = {1}, or (ii)
Bopt−2s and BL2 with ψ2 = {1, 2}; and (25) under AWGN
and Rayleigh fading channels. Similar observations as above
are found, i.e., a Rayleigh fading channel degrades the BER
performance compared with an AWGN channel; and the
performance loss is more severe when no SI is available.

VII. CONCLUSION

In this paper, we investigated the error-floor issue of DP-
LDPC codes. We proposed a generalized source protograph
EXIT (GSP-EXIT) algorithm for evaluating the source de-
coding threshold of DP-LDPC codes. With the GSP-EXIT
algorithm, we optimized DP-LDPC code structures (with
both regular or irregular source protomatrices) and achieved
lower error floors. Our analytical findings were also validated

13

-2 -1 0 1 2 3 4 5 6

E
s
/N

0
 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

case-1 AWGN

case-5 AWGN

case-1 fading with SI

case-5 fading with SI

case-1 fading with no SI

case-5 fading with no SI

Fig. 13. BER curves of DP-LDPC codes formed by B[18]
s , BL2

under case-1
and case-5 in Table III, and (25) under AWGN and Rayleigh fading channels.
Solid curves: case-1 at source statistic p = 0.10; dashed curves: case-5 at
source statistic p = 0.12.

-2 -1 0 1 2 3 4 5 6 7

E
s
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

B
s
=B

s

opt-1
 AWGN

B
s
=B

s

opt-1
 fading with SI

B
s
=B

s

opt-1
 fading with no SI

B
s
=B

s

opt-2
 AWGN

B
s
=B

s

opt-2
 fading with SI

B
s
=B

s

opt-2
 fading with no SI

Fig. 14. BER curves of DP-LDPC codes formed by (a) Bopt−1
s and BL2

with ψ1 = {1}, or (b) Bopt−2
s and BL2

with ψ2 = {1, 2}; and (25) under
AWGN and Rayleigh fading channels. Solid curves: Bopt−1

s and BL2
with

ψ1 = {1} at source statistic p = 0.10; dashed curves: Bopt−2
s and BL2

with
ψ2 = {1, 2} at source statistic p = 0.12.

by simulations results. Our study again shown dependency
between error-floor levels and waterfall region performances
of DP-LDPC codes. In the future, we will try to establish
a relationship between these two performance indicators and
propose a joint optimization techniques under some given
conditions.

REFERENCES

[1] A. Zribi, R. Pyndiah, S. Zaibi, F. Guilloud, and A. Bouallegue,“Low-
complexity soft decoding of Huffman codes and iterative joint source
channel decoding,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1669–
1679, June 2012.

[2] C. Bi and J. Liang, “Joint source-channel coding of JPEG 2000 image
transmission over two-way multi-relay networks,” IEEE Trans. Image
Process., vol. 26, no. 7, pp. 3594–3608, July 2017.

[3] I. Bocharova, A.G. Fabregas, B.D. Kudryashov, A. Martinez, A.T.
Campo and G. Vazquez-Vilar,, “Source-channel coding with multiple
classes,” in Proc. IEEE International Symposium on Information Theory,
Honolulu, USA, Aug. 2014.

[4] M. Fresia, F. Perez-cruz, H. V. Poor and S. Verdu, “Joint source and
channel coding,” IEEE Signal Processing Mag., vol. 27, no. 6, pp. 104–
113, Nov. 2010.

[5] Y. Jang, J. Jeong, and D. Yoon,“Bit error floor of MPSK in the presence
of phase error”, IEEE Trans. Vehi. Tech., vol. 65, no. 5, pp. 3782–3786,
May 2016.

[6] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-
approaching protograph codes,” IEEE J. Sel. Areas. Commun., vol. 27,
no. 6, pp. 876–888, Aug. 2009.

[7] Y. Fang, P. Chen, G. Cai, F. C. M. Lau, S. C. Liew, and G. Han, “Outage
limit-approaching channel coding for future wireless communications:
Root-protograph low-density parity-check codes,” IEEE Veh. Technol.
Mag., vol. 13, no. 2, pp. 85–93, 2019.

[8] Y. Fang, S. Liew, and T. Wang, “Design of distributed protograph LDPC
codes for multi-relay coded-cooperative networks,” IEEE Trans. Wireless
Commun. vol. 16, no. 11, pp. 7235–7251, Nov. 2017.

[9] Q. Chen, L. Wang, S. Hong, and Z. Xiong, “Performance improvement
of JSCC scheme through redesigning channel codes,” IEEE Commun.
Letters, vol. 20, No. 6, pp. 1088–1091, June 2016.

[10] S. Liu, C. Chen, L. Wang, and S. Hong, “Edge connection optimization
for JSCC system based on DP-LDPC codes,” IEEE Wireless Commun.
Letters, vol. 8, no. 4, pp. 996–999, Aug. 2019.

[11] S. Hong, Q. Chen, and L. Wang, “Performance analysis and optimization
for edge connection of JSCC system based on double protograph LDPC
codes,” IET Commun., vol. 12, Iss. 2, pp. 214–219, Jan. 2017.

[12] C. Chen, L. Wang, and F. C. M. Lau, “Joint optimization of protograph
LDPC code pair for joint source and channel coding,” IEEE Trans. on
Commun., vol. 66, no. 8, pp. 3255–3267, Aug. 2018.

[13] J. He, Y. Li, G. Wu, S. Qian, Q. Xue, and T. Matsumoto, “Performance
improvement of joint source-channel coding with unequal power alloca-
tion,” IEEE Wireless Commun. Letters, vol. 6, no. 5, pp. 582–585, June
2017.

[14] H. Neto and W. Henkel,“Information shortening for joint source-channel
coding schemes based on low-density parity-check codes,” 8th Interna-
tional Symp. on Turbo Codes and Iterative Info. Proc. (ISTC), 2014,
Bremen, Germany.

[15] A. Golmohammadi and D. Mitchell, “Concatenated spatially coupled
LDPC codes for joint source-channel coding,” Proc. IEEE International
Symposium Information Theory (ISIT), 2018, Vail, USA.

[16] H. Neto and W. Henkel, “Multi-edge optimization of low-density parity-
check codes of joint source-channel coding,” in 9th International ITG
Conference on Systems, Communication and Coding, 2013, Munich,
Germany.

[17] Q. Chen, S. Hong, and Y. Chen, “Design of linking matrix in JSCC
scheme based on double protograph LDPC codes,” IEEE Access, vol.
7, pp. 92176–92183, July 2019.

[18] C. Chen, L. Wang, and S. Liu, “The design of protograph LDPC codes
as source codes in a JSCC system,” IEEE Commun. Letters, vol. 22, no.
4, pp. 672–675, April 2018.

[19] D. J. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” in Proc. 5th IMA Conf. Cryptography Coding, Number 1025
Lecture Notes Comput. Sci., pp. 100–111, Oct. 1995.

[20] T. J. Richardson and R. L. Urbanke, “Capacity of low-density parity-
check codes under message passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[21] Y. Fang, G. A. Bi, Y. L. Guan, and F. C. M. Lau, “A survey on
protograph LDPC codes and their applications,” IEEE Commun. Surv.
Tut., vol. 17, no. 4, pp. 1989–2016, 2015.

[22] Z. Yang, Y. Fang, G. Zhang, F. C. M. Lau, S. Mumtaz and D. B. da
Costa, “Analysis and optimization of tail-biting spatially coupled pro-
tograph LDPC codes for BICM-ID systems,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 1, pp. 390–404, Jan. 2020.

[23] G. Yue, L. Ping, and X. Wang, “Generalized low-density parity-check
codes based on Hadamard constraints,” IEEE Transactions on Informa-
tion Theory, vol. 53, no. 3, pp. 1058–1079, March 2007.

[24] P. W. Zhang, F. C. M. Lau, and C.-W. Sham “Protograph-based LDPC-
Hadamard Codes,” in IEEE Wireless Communications and Networking
Conference (WCNC), Seoul, Korea, 2020, pp. 1–6.

14

[25] A. D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of binary
sources with side information at the decoder using LDPC codes,” IEEE
Commun. Letters, vol. 6, no. 10, pp. 440–443, Oct. 2002.

[26] F. Ye, E. Dupraz, Z. Mheich, and K. Amis, “Optimized rate-adaptive
protograph-based LDPC codes for source coding with side information,”
IEEE Trans. on Commun., vol. 67, no. 6, pp.3879–3889, June 2019.

[27] M. Luby, “LT codes,” in Proc. 43rd Symp. Found. Comput. Sci. (FOCS),
Washington DC, USA, 2002, pp. 271–280.

[28] M. Fresia, L. Vandendorpe and H. V. Poor, “Distributed source coding
using Raptor codes for hidden Markov sources,” IEEE Trans. on Signal
Process., vol. 57, no. 7, pp. 2868–2875, July 2009.

[29] J. Wu, C. Yuen, M. Wang, J. Chen and C. W. Chen, “TCP-oriented
Raptor coding for high-frame-rate video transmission over wireless
networks,” IEEE J. Sel. Areas in Commun., vol. 34, no. 8, pp. 2231–
2246, Aug. 2016.

[30] J. Wu, B. Cheng and M. Wang, “Improving multipath video transmission
with Raptor codes in heterogeneous wireless networks,” IEEE Trans. on
Multimedia, vol. 20, no. 2, pp. 457–472, Feb. 2018.

[31] Q. Xu, V. Stankovic, and Z. Xiong, “Distributed joint source-channel
coding of video using Raptor codes,” IEEE J. Sel. Areas in Commun.,
vol. 25, no. 4, pp. 851–861, May 2007.

[32] Nasriuminallsh and L. Hanzo, “Near-capacity H.264 multimedia com-
munications using iterative joint source-channel decoding,” IEEE Com-
mun. Surveys Tuts., vol. 14, no. 2, pp. 538–564, 2nd Quart., 2012.

[33] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inform. Theory,
vol. 51, pp. 386–398, Jan. 2005.

[34] S. Das and P. N. Suganthan, “Differential evolution: a survey of the
state-of-the-art,” IEEE Trans. Evol. Comput. vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[35] A. K. Pradhan, A. Thangaraj, and A. Subramanian, “Construction
of near-capacity protograph LDPC code sequences with block-error
thresholds,” IEEE Trans. Commun., vol. 64, no. 1, pp. 27–37, Jan. 2016.

[36] Q. Chen and L. Wang, “Design and analysis of joint source channel
coding schemes over non-standard coding channels,” IEEE Trans. on
Vehi. Tech., vol. 69, no. 5, pp. 5369–5380, May 2020.

[37] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and
code optimization of low density parity-check codes on Rayleigh fading
channels,” IEEE. J. Sel. Areas on Commun., vol. 19, no. 5, pp. 924–934,
May 2001.

