
1 

A Two-Phase Optimization Model for the Demand-Responsive 1 

Customized Bus Network Design 2 

3 

Di Huang a, Yu Gu b, Shuaian Wang b, Zhiyuan Liu a,* 4 
a Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation 5 

Center of Modern Urban Traffic Technologies, School of Transportation, Southeast 6 

University, China 7 
b Department of Logistics & Maritime Studies, The Hong Kong Polytechnic University, 8 

Kowloon, Hong Kong 9 

*Corresponding author. Email: zhiyuanl@seu.edu.cn10 

11 

Abstract 12 

This paper proposes a new optimization model for the network design problem of the 13 

demand-responsive customized bus (CB). The proposed model consists of two phases: 14 

insert the passenger requests dynamically in an interactive manner (dynamic phase) and 15 

optimize the service network statically based on the overall demand (static phase). To 16 

model the network design problem in the dynamic phase, we propose a bi-level 17 

programming problem to describe the interactive manner between the operator and the 18 

passengers. The upper-level is formulated as a mixed-integer program with the objective 19 

of maximizing the operator’s revenue, and the lower-level is the passenger’s choice 20 

problem for a given trip plan provided by the operator. The CB passenger’s travel behavior 21 

is assumed to follow the stochastic user equilibrium with elastic demand. A dynamic 22 

insertion method is developed to address the proposed bi-level model. For the network 23 

design problem in the static phase, the service network is re-optimized based on the 24 

confirmed passengers with the strict time deviation constraints, which is embedded in the 25 

static multi-vehicle pickup and delivery problem. An exact solution method is developed 26 

based on the branch-and-bound (B&B) algorithm. Numerical examples are conducted to 27 

verify the proposed models and solution algorithms. 28 

Keywords: customized bus, demand-responsive transit, bi-level programming, dynamic 29 

insertion, branch-and-bound algorithm 30 

31 

1. Introduction32 

The demand-responsive transit (DRT) service is an emerging and flexible instrument33 

https://doi.org/10.1016/j.trc.2019.12.004 This is the Pre-Published Version.

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:zhiyuanl@seu.edu.cn


 

2 

to enhance the serviceability of urban public transport systems. As shown in Fig. 1(a), the 1 

term DRT covers customized (or subscription) bus (CB), shuttle bus, feeder bus, and other 2 

on-demand shared mobility services. It is defined as an intermediate form of transit service 3 

between the mass transit system, and the highly flexible and personalized services provided 4 

by taxis (Mageean & Nelson, 2003; Lyu et al., 2019) (see Fig. 1(b)). The CB system, as an 5 

emerging public transportation, aims to provide personalized, flexible and passengers-6 

oriented services to those with similar travel demands in both space and time, and those 7 

with specific requirements (e.g., regular commuters, mobility impairment passengers, and 8 

passengers living in low-demand areas which are not accessible by conventional transit 9 

services) (Qiu et al., 2017; Zhang et al., 2017; Tong et al., 2017; Lyu et al., 2019). It has 10 

been identified as an efficient and green alternative to private vehicles and conventional 11 

transit services (Ren et al., 2016).  12 

 13 

Figure 1. The service characteristic of CB (Source: KFH Group, 2008) 14 

The CB service requires an online communication platform between each passenger 15 

and the operator, to determine the vehicle assignment, routing, and scheduling plans (Liu 16 

& Ceder, 2015). Such communication is called the subscription stage, and it includes the 17 

following processes: (a) Each passenger dynamically submits her/his request online with 18 

pickup/delivery locations and times; (b) The operator inputs each request into the CB 19 

planning system to modify the existing routes and proposes a trip plan with the estimated 20 

pickup/delivery times and ticket price; (c) Once received this proposed trip plan from the 21 

operator, the passenger then confirms online to accept this plan or not, based on her/his 22 

perceived travel costs. This interactive communication (subscription stage) is dynamically 23 
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conducted between the operator and each passenger, which is defined as a dynamic phase 1 

for the sake of presentation. Then, prior to the departure of each CB vehicle, the operator 2 

will optimize the CB service network/plan with overall confirmed demand, which is 3 

defined as the static phase for the analysis in this paper.  4 

Note that in the dynamic phase, the request of each passenger is occasional and 5 

unpredictable. Thus, the process (b) described in the paragraph above remains challenging, 6 

which needs to quick respond to the passenger’s request within several seconds. Since a 7 

fair amount of historical requests are known in advance from the day-to-day operation, 8 

they could be used to create initial routes at the beginning of the day. The CB service 9 

addressed in this paper is passenger-oriented; namely, once a passenger request pops up, 10 

the operator needs to input the request into the existing routes and propose a specific trip 11 

plan in the process (b). Therefore, the operator needs to rapidly determine whether such a 12 

new request could be inserted to the existing CB routes while fulfilling existing passengers’ 13 

time windows; or to launch a new route to take this passenger with the risk of deficit in the 14 

low demand area. The analytical problems in the dynamic/static phases are of essential 15 

importance to the modelling of the CB network design; especially the three interactive 16 

communication and decision-making processes in the dynamic phase. 17 

Existing studies on the CB network design usually separate the analysis and objectives 18 

of the operator and passenger and do not fully cover the decision-making processes in the 19 

dynamic phase. Thus, this paper aims to fill such gap and provide a comprehensive 20 

modelling framework for the CB network design problem, where a two-phase optimization 21 

approach is proposed to analyze the network design problems in the dynamic phase and 22 

static phase, respectively. 23 

For the dynamic phase, a bi-level programming model is proposed, where the CB 24 

operator acts as the leader, and each passenger is the follower. In the upper-level, the 25 

operator optimizes the CB service routes with the objective of maximizing its profit by 26 

inserting the passenger request into the existing routes. In the lower-level, each passenger 27 

decides whether to accept the CB service according to perceived travel costs, including in-28 

vehicle travel time, schedule deviations, and transit fare. Herein, a distance-based fare is 29 

adopted, which could encourage passengers to make wise routing decisions (Huang et al., 30 

2016). The objective of each passenger is to maximize her/his trip utility, which is per se 31 
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a discrete choice model. The stochastic user equilibrium (SUE) principle is adopted for the 1 

passengers’ travel behavior. Eventually, with the confirmed demand from the dynamic 2 

phase, the static phase is formulated as a static multi-vehicle routing problem with fixed 3 

pickup and delivery time window, where the operating efficiency of the CB system could 4 

be further improved. 5 

The remainder of this paper is organized as follows. Section 2 reviews the existing 6 

studies on modelling of CB network design. The problem statement and network 7 

formulation are presented in Section 3. A bi-level programming model for the dynamic 8 

phase is proposed in Section 4. Section 5 proposes a static multi-vehicle routing problem 9 

with pickup and delivery based on the results obtained from the dynamic phase, which is 10 

followed by the illustration of the solution algorithm. Section 6 presents some numerical 11 

results to verify the proposed model and algorithm. Finally, Section 7 concludes this paper 12 

and outlooks future research. 13 

 14 

2. Literature Review 15 

2.1 CB network design 16 

Despite the fact that the CB is a new and innovative transit mode, the practice of the 17 

similar on-demand transit service emerged in 1970s, e.g. subscription bus (Chang & 18 

Schonfeld, 1991), ADA (Aldaihani et al., 2004), Dail-a-Ride (Ho et al., 2019), PRT (Chebbi 19 

& Chaouachi, 2016), etc. The idea of CB is originated from the concept of car-sharing, 20 

aiming to serve groups of passengers with similar travel requests (Lyu et al., 2019). Another 21 

feature of the CB service is the subscription/pre-pay mechanism for passengers to book 22 

seats. It is tailored to meet passengers’ preferences of a higher level of service quality 23 

compared with conventional bus services (Liu & Ceder, 2015). Potts et al. (2010) conduct 24 

a comprehensive review of the existing types of on-demand transit systems and develop a 25 

practical guide to service providers. A decision-making framework is proposed which 26 

requires more communication and scheduling technologies than the conventional fixed-27 

route bus system. Liu & Ceder (2015) then divide the service design process of the CB 28 

system into four steps: travel survey, call for passengers, seats reservation and seats 29 

purchase. Chang & Schonfeld (1991) point out that the subscription service is preferable 30 

in the on-demand services in that it could efficiently reduce the rejection rate and guarantee 31 
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a profitable service system.  1 

Generally, the demand pattern during the subscription process can be categorized into 2 

two types, which are static and dynamic (see Section 2.2). In the static case, all demands 3 

are assumed as known and fixed in advance, which can be obtained from reservations in 4 

previous days or subscriptions of regular passengers. In practice, the routing and 5 

scheduling design problems need to be solved prior to operations at the beginning of a day, 6 

the results of which are not allowed to change afterward. Tong et al. (2017) develop a joint 7 

optimization model that addresses two challenging problems in CB practice, which are 8 

increasing the passenger ridership and optimizing bus routing and timetabling plans. In this 9 

system, passengers can book the recommended lines directly. If there are no feasible lines, 10 

passengers’ demands are stored in the request pool for future line designs. Guo et al. (2019) 11 

develop a mixed integer programming model that determines the bus stop location and 12 

route design simultaneously. Lyu et al. (2019) propose a new CB line planning framework 13 

called “CB-Planner”. By using multi-source data, this framework is capable of determining 14 

stop location, bus routes, timetables, and passenger ridership.  15 

2.2 Demand-responsive (passenger-oriented) transit network design 16 

With the help of the advanced real-time data collection and computing technologies, 17 

the study of the ad hoc on-demand transit system has become one of the most attractive 18 

and challenging topics, which needs to deal with the routing and scheduling modification 19 

in service with real-time service requests. Considering the inherent complexity caused by 20 

the dynamic decision-making process, the ad hoc on-demand transit system design problem 21 

can be addressed by simulation approaches and analytical models. Interested readers could 22 

refer to Ronald et al. (2015) for a detailed review of simulation-based approaches to the 23 

on-demand transit system. In the dynamic case, the passenger’s request is not known in 24 

advance (both pickup/delivery times and locations). Two basic solution strategies are 25 

widely applied to deal with the dynamics and randomness of passenger demands (Berbeglia 26 

et al., 2010): i) solving a static problem each time based on the real-time information 27 

(including both new request and cancellation); and ii) solving the static problem only once 28 

initially and updating the current solution with heuristic methods, such as insertion 29 

heuristics. Horn (2002) develops an incremental insertion method that consists of a set of 30 

periodical steepest-descent improvement procedures to minimize additional travel time. 31 
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Coslovich et al. (2006) propose a two-phase insertion algorithm based on the concept of 1 

route perturbations. In the off-line phase, a feasible neighborhood of the current route is 2 

generated, while in the on-line phase, the new request is inserted to minimize the schedule 3 

deviations of previous passengers. Pavone et al. (2011) assume that the expected passenger 4 

arrival rate follows a certain probability distribution based on historical patterns. van 5 

Engelen et al. (2018) then develop an online dynamic insertion method with forecasted 6 

demand.  7 

Compared with conventional transit and on-demand transit system design problem, 8 

the passengers are involved in the planning process of the service network through the 9 

subscription mechanism (Liu et al., 2016). Suhl et al. (2001) first introduce the passenger-10 

oriented dispatching strategy in the railway system. However, due to the limitation of data 11 

collection, only simulation data can be used to verify the proposed methodology. With the 12 

advent of telecommunication technologies, the information platform through the Internet 13 

and smartphones has been constructed that expedites the interactivity between passengers 14 

and operators (Kamga, 2013; Liu & Ceder, 2015; Chen et al., 2017; Chen & Nie, 2017). 15 

Foth et al. (2013) identify the opportunities of the application of connecting data (e.g., 16 

social media, mobile, geospatial information, etc.) in the planning of public transport 17 

system. Stelzer et al. (2016) also indicate that an information exchange platform could help 18 

to improve the service quality of the transit system. The passenger feedback would play a 19 

crucial role in transit operations and managements. 20 

2.3 Vehicle routing problem with pickup and delivery 21 

From the view of operations research, the CB network design problem can be 22 

formulated as a vehicle routing problem with pickup and delivery (VRPPD). In literature, 23 

minimizing operation cost (Cordeau, 2006), maximizing satisfied demand (Tong et al., 24 

2017), and maximizing the quality of service (Calvo & Colorni, 2007) are three crucial 25 

objectives to be optimized separately or simultaneously (Diana & Dessouky, 2004). 26 

Generally, the service quality can be measured by the route duration, passenger riding and 27 

waiting times, schedule deviation, capacity, etc., some of which can also be formulated as 28 

constraints associated with routing and scheduling problems such as coupling, precedence, 29 

and time window constraints (Cordeau & Laporte, 2007). Given the objectives and 30 

constraints, the VRPPD can be formulated as the mixed-integer programming model with  31 
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 1 

Table 1-1 Comparison of existing works (CB) 2 

System 

type 

Publication Subscr-

iption 

Demand 

pattern 

Objective Decision variable Constraints Solution algorithm 

CB 

 

Chebbi & Chaouachi 

(2016) 

No Static Min. of empty 

movement and 

fleet size 

Route PA Heuristic algorithm 

Cao & Wang (2017) No Static Min. of system 

cost 

# of passengers 

choosing CB 

FL; FC; RL  Exact algorithm 

Ma et al. (2017) No Static Min. of system 

cost 

# of passengers 

choosing CB 

RL; FC Exact algorithm 

Tong et al. (2017) Yes Static Max. of served 

pax. 

Stop location; 

Route; Schedule 

LF; PD; 

VC; TW 

Lagrangian 

decomposition 

Guo et al. (2019) Yes Static Min. of total 

system cost 

Route; Passenger 

assignment 

LF; VC; 

RL; FL; PA 

Heuristic and exact 

algorithms 

Lyu et al. (2019) No Static Max. of profit Route; Passenger 

assignment 

FC; PA; 

VC 

Heuristic algorithm 

This paper Yes Both Max. of profit; 

Min. of pax. 

cost 

Route; Schedule; 

Passenger 

assignment 

VC; TW; 

PA; PD 

Heuristic insertion 

& Exact algorithm 

3 
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Table 1-2 Comparison of existing works (other types of DRT) 1 

System 

type 

Publication Subscr-

iption 

Demand 

pattern 

Objective Decision 

variable 

Constraints Solution algorithm 

Other 

types 

of 

DRT 

Horn (2002) Yes Dynamic Min. of total travel 

time & ridership 

Route TW Heuristic insertion 

Diana & Dessouky 

(2004) 

No Static Min. of total 

distance, excess ride 

time & idle time 

Route TW Heuristic insertion 

Cordeau (2006) No Static Min. of routing cost Route VC; RL; TW; 

PD; PA 

Exact algorithm 

Coslovich et al. 

(2006) 

No Dynamic Min. of 

dissatisfaction 

Route TW Heuristic insertion 

Calvo & Colorni 

(2007) 

No Static Max. of service 

quality  

Route PA; LF; VC; 

TW 

Heuristic algorithm 

Dondo & Cerdá 

(2007) 

No Static Min. of system cost Route; 

Passenger 

assignment 

PA; RL; TW; 

VC 

Heuristic algorithm 

Ilani et al. (2014) No Static Min. # of routes and 

wasted time 

Route; 

Schedule 

VC; TW Heuristic algorithm 

Note: LF: Load factor; VC: Vehicle capacity; TW: Time window; RL: Route length; FL: Fleet size; PA: Passenger assignment: PD: 2 

Pickup and delivery; FC: Flow conservation 3 
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routing and scheduling variables. Cordeau (2006) proposes a model defined on a set of 1 

binary three-index variables, which considers both the routing and vehicle assignment. To 2 

compact the model, Ropke et al. (2007) define the binary routing variables in two indexes, 3 

where the vehicle index and corresponding pairing and precedence constraints are 4 

simplified, and it is capable of solving larger instances. 5 

The VRPPD is NP-hard since it is the generalization of VRP (Berbeglia et al., 2007). 6 

Only instances with a small number of requests can be solved efficiently by exact 7 

algorithms, e.g., branch-and-bound (B&B) (Qiu et al., 2017), branch-and-cut (Cordeau, 8 

2006; Ropke et al., 2007), and branch-and-price (Gutiérrez-Jarpa et al., 2010) algorithms. 9 

Most of the exact algorithms are developed based on the B&B framework by adding cutting 10 

planes or applying column generation techniques. Other techniques concerning the 11 

reduction of the problem scale are also widely applied, such as the Bender’s decomposition 12 

(Codato & Fischetti, 2006) and the reduction approach (Ilani et al., 2014). Due to the 13 

intrinsic complexity of the VRPPD, most of the existing models are solved by heuristics or 14 

metaheuristics approaches for dealing with large-scale problems in real-life practices 15 

(Dondo & Cerdá, 2007). The two-phase phase heuristics are widely adopted to deal with 16 

the instance with a large number of passenger requests, including clustering phase (dividing 17 

passengers that have similar trip requests into subsets, each of which is corresponding to a 18 

route/vehicle) and routing phase (determining the visiting sequence of each route). 19 

Accordingly, two different strategies can be conducted, that is, the cluster-first-route-20 

second approach (Berbeglia et al., 2007; Dondo & Cerdá, 2007; Laporte, 2009), and the 21 

route-first-cluster-second approach, which has been verified with poor performance 22 

(Cordeau et al., 2007).  23 

2.4 Objectives and contributions 24 

According to the literature, the distinction between static and dynamic CB problems 25 

is blurred in practice, especially for the demand uncertainty and the passenger’s preference 26 

(Cordeau & Laporte, 2007). For instance, in the static case, both request introduction and 27 

cancellation happen during the operation. Meanwhile, the dynamic CB problem may 28 

contain a number of known requests before the operation. Hence, in an on-demand transit 29 

system, the demand pattern is not limited to be static or dynamic. For instance, it is 30 

unnecessary to satisfy all requests from the operator’s point of view, while the passengers 31 



 

10 

can decide whether to accept or refuse the provided service. There has been some work in 1 

formulating the selective dial-a-ride problem based on the principle that the vehicle would 2 

visit the request only if it is profitable to serve (Qiu et al., 2017). Though an increased 3 

interest in passenger-oriented CB network design problem can be observed recently, the 4 

existing scientific literature related to optimization problems in such systems is still 5 

relatively scarce. Meanwhile, the emphasis of CB service has turned to passenger 6 

satisfaction and the reduction of passenger inconvenience. There are few studies on the 7 

modelling of the impacts of passenger’s decisions on the routing and scheduling problems. 8 

Thus, the design and modelling of transit services should take into consideration the 9 

requirements and benefits of both passengers and operators. 10 

In this sense, this problem could be modeled by the bi-level programming problem on 11 

the basis of the Stackelberg (leader-follower) game. Nair & Miller-Hooks (2014) 12 

developed a bi-level programming model of flexible public transit configuration 13 

optimization based on network balance. At the upper level, the operator determines the 14 

optimal system configuration, while at the lower level, the passengers optimize their own 15 

travel plans. Yu et al. (2015) optimized the route networks of shuttle bus by a bi-level 16 

nonlinear mixed integer programming model. The upper level problem optimizes the 17 

routing and stopping decisions by minimizing the total system cost, including both 18 

operators and passengers. Passengers minimize their walk trips at the lower level. 19 

Given the increasing importance placed on the interaction between passengers and 20 

operators, it becomes salient to develop a new framework that considers the passengers’ 21 

and operators’ decisions integratedly. In the passenger-oriented transit service design 22 

problem, the decision-making process of the passenger and the operator is hierarchical, the 23 

objectives of which are conflictual. In the proposed CB problem, passengers and operators 24 

can dynamically exchange information of preservation and vehicle routing and scheduling 25 

information on the subscription platform. Nonetheless, existing studies mainly 26 

concentrated on the design and optimization of the service network with known demands, 27 

which cannot adequately and fully take the advantages of the advanced on-demand service 28 

platform. Consequently, the dynamic interaction process between passengers and operators 29 

could not be embodied and give rise to various problems such as information lag and too 30 

much delay in practice. Despite its practical significance, the modelling of the passenger-31 
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oriented transit service, as well as the construction of the information platform is still an 1 

open question, since few of the existing studies of the DRT problem have considered the 2 

interactive mechanism between the passenger and the operator.  3 

Hence, the contributions of this study are threefold. First, an integrated decision-4 

making framework for the demand-responsive CB network design problem is proposed. 5 

Both the objectives of the operator and passenger are considered comprehensively in the 6 

CB route design process. Second, a two-phase optimization model is proposed to separate 7 

the trip request processing (dynamic phase) and vehicle routing (static phase) problems. 8 

Third, the interactive mechanism between the passenger and the operator in the dynamic 9 

phase (subscription stage) is modeled by a bi-level programming model. At the upper level, 10 

the CB operator optimize the service network; at the lower level, the passengers make mode 11 

choices.  12 

 13 

3. Problem Statement 14 

As mentioned in the Introduction, in the dynamic phase (subscription stage), each 15 

passenger occasionally proposes her/his trip request online with the pickup/destination 16 

locations and desired times, based on which the operator can make network design 17 

decisions. Potts et al. (2010) indicate that the following two issues should be addressed in 18 

the dynamic phase: i) how long in advance the passenger should make the request (i.e., the 19 

buffer time); ii) how does the operator negotiate with the passenger for desired 20 

pickup/delivery times and locations? For these two issues, a subscription and routing 21 

mechanism is proposed as follows for the operator and passengers in the timeline, 22 

respectively. 23 

As shown in Fig. 2, the timeline of the CB subscription process considers both the 24 

operator and the passengers. For any passenger r  , let P

rt   denote her/his desired pickup 25 

time. For the operator, some buffer time (e.g., 1 hour) is needed to gather the demand and 26 

also optimize the routing/scheduling, and we use BT  to denote this buffer time. Let R

rt  27 

denote the time that passenger r  submits a request. Hence, R R

r rt t , where =R R

r rt t BT  28 

is the end-time for request. After submitting the trip request, the passenger would shortly 29 

receive the feedback including the offered pickup/delivery times and trip fare, and then 30 
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decide whether to accept this trip plan. Note that the processing of the passenger request 1 

follows the first-come-first-serve principle. The time gap between a passenger receiving 2 

the feedback and making the decision is neglected. 3 

Timeline for 

passenger r
BT

Timeline for 

vehicle k
Dynamic phase

Passenger
1

Passenger 
2

Passenger 
m

Static phase

P

rt
R

rt
R

rt

A

kt
D

kt
 4 

Figure 2. Timelines of the CB network design process 5 

As to the operator, the current routing plan needs to be modified dynamically when 6 

new requests occur. As shown in Fig. 2, assume that passenger r  is assigned to vehicle k , 7 

let D

kt  and A

kt  denote the vehicle’s scheduled departure time from the depot and the end-8 

time of receiving requests. The previous passengers that have confirmed their subscription 9 

are considered as fixed and the routing plan is not allowed to change at time D

kt . To sum 10 

up, the CB network design problem addressed in this paper can be described as a two-phase 11 

procedure: i) in the dynamic phase (i.e., A

kt t  ), the passengers occasionally subscribe 12 

services; and the operator needs to estimate the trip costs, offer a service plan and price, 13 

and then communicate with each passenger to confirm the trip. To provide a profitable 14 

service network, a model is needed for the operator to dynamically insert each trip request 15 

into the current service network; ii) in the static phase (i.e., A D

k kt t t  ), the subscription 16 

process is terminated, and the bus service network is holistically optimized based on the 17 

confirmed passenger demand. 18 

 19 

4. The two-phase optimization model of CB system  20 

4.1 Network formulation 21 

Consider a graph ( , )G V A  , where 0 1{ , ,..., }nV v v v   is the set of vertices and 22 

{( , ) : , , }i j i jA v v v v V i j    is the set of links. The vertex set V  comprises three subsets: 23 

pickup vertex set pV , delivery vertex set dV , and depot 0v . Additionally, let R  denote the 24 
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set of new arising requests, and rV  the vertex set containing the spatial information of 1 

request r R , i.e., , ,{ , }r p r d

r i jV v v , and ,r p

i pv V , ,r d

j dv V . Each request is also associated 2 

with a desired pickup time p

rt  and delivery time d

rt . The cumulative number of requests 3 

between an origin-destination (OD) pair ( , )i jv v   is denoted by ijq  . The fleet of 4 

homogeneous vehicles is denoted as K ; all vehicles have the same capacity cap . Let kJ  5 

denote the route served by vehicle k K , which can be represented by a set of vertices, 6 

kV , and { ( , ) , }k i i j k jV v v v J v V   . Table 2 lists the sets, indices, and parameters used 7 

in the following sections. 8 

Table 2. List of notations 9 

Notation Description 

Sets  

A  set of links 

K  set of vehicles 

R  set of requests 

V  set of vertices 

pV  set of pickup vertices 

dV  set of delivery vertices 

kV  set of vertices on route kJ , k K  

Parameters  

cap  capacity of the vehicle 
0

ijc  free flow travel time between OD pair ( , )i jv v  

ijd  distance between OD pair ( , )i jv v  

minq  minimum load factor 

T  total revenue 

T  expected total revenue 

maxt  time deviation threshold 

p

rt , d

rt  desired pickup/delivery times of request r   at the pickup vertex iv  

and delivery vertex jv  

ijt  travel time between vertex iv  and jv  

,r p

iv , ,r d

jv  desired pickup/delivery vertices of request r  which are located at 

vertices iv  and jv  
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  operating cost per unit travel distance 

  dispatching fee of a vehicle 

  variance parameter 

  passenger’s value of time 

  monetary penalty on the time deviation 
r

ij  transit fare of request r  between vertices iv  and jv  

ij   regular distance-based fare between vertices iv  and jv  

   distance-based fare rate 

0  fare of dispatching an additional vehicle  

Variables  
k

ijN  number of passengers assigned to vehicle k   between OD pair 

( , )i jv v  

p

rt
 , d

rt
  actual pickup/delivery times of request r  at the pickup vertex iv  and 

delivery vertex jv  

,k A

it , ,k D

it  offered arrival and departure times of vehicle k  at vertex iv  

k

rx  request-to-vehicle variable (equals to 1, if request r  is assigned to 

vehicle k , and 0, otherwise) 
k

ijy  routing variable (equals to 1, if route segment ( , )i jv v  is traveled by 

vehicle k , and 0, otherwise) 

k  vehicle dispatching variable (equals to 1, if vehicle k  is dispatched, 

and 0, otherwise) 

 1 

4.2 The Dynamic Phase 2 

In the dynamic phase, new requests arrive occasionally. As mentioned in the 3 

Introduction, the dynamic phase includes two decision-making problems: the operator 4 

plans the service system to maximize its profit; while passengers, based on their perceived 5 

travel costs, decide whether to accept or reject the offered trip plans to maximize their trip 6 

utilities. In the following sections, a bi-level programming model is proposed to cope with 7 

these two decision-making problems systematically: in the upper-level, the operator acts 8 

as the leader who designs the service network; the lower-level formulates the follower’s 9 

decision-making problem based on the offered services. The passengers’ travel behavior is 10 

analyzed through the discrete choice model giving the SUE principle. Mathematical 11 

formulations of the bi-level model are provided as follows. 12 
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4.2.1 The upper-level problem 1 

The upper-level problem is to design the CB service network concerning the real-time 2 

requests by inserting them into the existing CB network or launching a new route for these 3 

new passengers. Each request r  includes four values: the desired pickup/delivery vertices 4 

,r p

iv   and ,r d

jv  , and associated times p

rt   and d

rt  . A penalty incurs when the desired 5 

pickup/delivery time is violated. To minimize the time deviation and increase the system 6 

serviceability, we use a time deviation threshold maxt  for each request. For the request r , 7 

the offered arrival time ,k A

it  of the assigned vehicle k  at vertex iv  should follow the time 8 

interval 
max max[ , ]p p

r rt t t t  . The boarding/alighting time of a passenger is assumed as zero. 9 

The overlap of multiple arrival intervals occurs when several passenger requests appear at 10 

the same pickup vertex in a short time.  11 

Assume that n  passengers are assigned to vehicle k  at the vertex iv . Let 
1

Pt  and P

nt  12 

denote the desired pickup times of the first and last passengers by sorting them with their 13 

desired pickup times, respectively. As shown in Fig. 3, to satisfy the feasible arrival time 14 

intervals for all passengers, the vehicle should arrive no later than the latest pickup time of 15 

the first passenger ( 1 max

pt t ). And the departure time should be no earlier than the earliest 16 

pickup time of the last passenger ( max

p

nt t ). Thus, the arrival and departure times of vehicle 17 

k  at vertex iv  should satisfy 18 

 
,

maxmin{ } ,  k A p

i r i p r
r R

t t t v V V


    ,  (1) 19 

 ,

maxmax{ } ,  k D p

i r i p r
r R

t t t v V V


    .  (2) 20 

At a delivery vertex, a lateness penalty is considered. For a delivery vertex jv , the arrival 21 

time of vehicle k  should not be later than the latest delivery time of the earliest passenger. 22 

Hence, 23 

 
,

maxmin{ } ,  k A d

j r j d r
r R

t t t v V V


    .  (3) 24 



 

16 

timeline

The earliest passenger at vi The latest passenger at vi

,k A

it
,k D

it

max

P

nt t

 1 

Figure 3. Illustration of the constraints on arrival and departure times 2 

After determining the vehicle departure and arrival times at each vertex, the actual 3 

pickup and delivery times of request r , 
p

rt
  and 

d

rt
 , can be obtained as follows:  4 

 for a pickup vertex i pv V : 5 

 

, ,

, ,

, ,

, [ , ]

,

,

p p k A k D

r r i i

p k A p k A

r i r i

k D p k D

i r i

t t t t

t t t t

t t t

 
  
 

,  (4) 6 

 for a delivery vertex, j dv V : 7 

 
, ,,

,

k A d k A

d j r j

r d

r

t t t
t

t otherwise

 
  


. (5) 8 

As aforementioned, serving the passengers in low-demand areas has a risk of the 9 

deficit. To ensure a profitable CB system, an additional fare 0  , is charged when the 10 

number of confirmed passengers does not meet the requirement of minimum load factor 11 

minq . Moreover, the distance-based fare scheme is adopted to encourage the wise routing 12 

decisions of the passenger. Thus, the CB fare of passenger request r   between OD pair 13 

( , )i jv v , denoted by r

ij , can be defined as follows: 14 

 0 min

min

,
, , ,

,

k

ij ijr

ij i p j dk

ij ij

N q
r R v V v V

N q

 




  
    

 

,  (6) 15 

where ij    is a regular distance-based fare between vertices iv   and jv  , and ij ijd     , 16 

where   is the fare rate and ijd  is the distance between iv  and jv . k

ijN  is the number of 17 

passengers assigned to vehicle k  between OD pair ( , )i jv v . As a result, the total revenue 18 

(T ) collected from the CB system is 
i p j d

r

ijv V v V r R
T 

  
   . 19 

The upper level concerns the operator’s decision-making problem on the network 20 

design. According to the general scheme of the CB network design problem, the variables 21 



 

17 

are partitioned into two subsets. The first set of variables are related to the design of CB 1 

routes to serve passengers. The binary variables k

rx   takes the value of 1 if request r   is 2 

assigned to vehicle k , and 0 otherwise. The binary variables k

ijy  assume a value of 1 if 3 

route segment ( , )i jv v  is traveled by vehicle k , and 0 otherwise. The binary variables k  4 

indicate whether vehicle k  is dispatched or not.  5 

The second set of variables is related to vehicle scheduling including the 6 

arrival/departure times at each vertex, which has been defined in Eqs. (4) and (5). For 7 

simplicity, we adopt N   as the vector of decision variables in the upper-level, and 8 

, , ,{ , , , , , }k k k A k D k A

r ij k i i jx y t t tN . Considering the stochasticity in the passenger’s choice of 9 

accepting the offered CB service, the revenue is rationally assumed to be a random variable. 10 

Let P  denote the vector of the probabilities that passengers accept the offered CB trip plan. 11 

Evidently, the expected revenue (T ) with respect to P  giving specific CB network design 12 

decisions N   is  ,T E   N P N  , where  E    is the expectation operator. In sum, the 13 

objective function of the upper-level can be formulated as maximization of the operator’s 14 

profit equal to the expected total revenue minus the operating cost. 15 

The upper-level is formulated as a mixed nonlinear integer program: 16 

  1max ( ) , k

ij ij k

k K

z E y d  


        N N P N   (7) 17 

subject to (1)-(3), 18 

 ,  k

r

r R

x cap k K


   ,  (8) 19 

 1,  k

r

k K

x r R


   ,  (9) 20 

 0 ,2 1 1,  
j i

k k

j i n

v V v V

y y k K

 

     ,  (10) 21 

 {0,1},  ,  k

rx r R k K    ,  (11) 22 

 {0,1},  ( , ) ,  k

ij i jy v v A k K    ,  (12) 23 

 {0,1},  k k K    ,  (13) 24 

where    and    are the operating cost per unit travel distance and the fixed cost of 25 

dispatching an additional vehicle. 26 



 

18 

Eqs. (1)-(3) define the arrival and departure times at pickup/delivery vertices 1 

satisfying maximum time deviation constraints. Eq. (8) refers to the capacity constraint; 2 

i.e., the number of passengers in a vehicle should not exceed its capacity. Eq. (9) ensures 3 

that each request is served by exactly one vehicle. Eq. (10) guarantees that each route starts 4 

and ends at the depots. Eqs. (11)-(13) define the binary variables.  5 

4.2.2 The lower-level problem 6 

The lower level intends to describe the passenger’s travel behavior, which gives the 7 

variables needed in objective function at the upper level. Given the offered trip plan with 8 

pickup/delivery times and trip fare, each passenger needs to choose whether to accept it or 9 

reject it and shift to other travel modes. Hence, the passenger’s choice behavior should be 10 

characterized by the discrete choice model, which follows the SUE principle with elastic 11 

demand (Sheffi, 1985; Meng & Liu, 2011). Given a specific trip plan based on the current 12 

CB network N  from the operator, passengers have a perception error on the travel cost 13 

when making decisions. The passenger’s perceived travel cost of accepting the offered CB 14 

service, denoted by  ijC N  is therefore a random variable following a certain distribution. 15 

The travel utility between an OD pair ( , )i jv v , denoted by  ijU N , equals 16 

    ij ij ijU U C N N ,  (14) 17 

where 
ijU  is a constant representing the maximum benefit that passengers can gain from 18 

the CB trip. Hence, for a certain passenger, if her/his perceived travel utility of accepting 19 

the offered CB service is negative, s/he will reject the trip plan and shift to other travel 20 

modes.  21 

With the assumption of the SUE principle for passenger’s choice behavior, given the 22 

offered trip plan and CB network N , the passenger’s perceived travel cost between an OD 23 

pair ( , )i jv v  is modeled as the summation of a systematic term  ijc N  and an error term 24 

ij , 25 

 
   

 0

,

0, ,

ij ij ij

ij ij

C c

N c



 

 N N
  (15) 26 
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where error term 
ij   is a normally distributed random variable with zero mean and 1 

distance-independent variance equal to 0

ijc . Hence, 0

ijc  is the free flow travel time between 2 

OD pair ( , )i jv v  and constant   is termed as variance parameter. 3 

The systematic travel cost is composed of three components: in-vehicle travel cost, 4 

penalties on time deviations at origin and destination, and trip fare. Given the offered 5 

pickup and delivery times from the upper-level, p

it  and d

jt  at origin iv  to destination jv  6 

respectively, the systematic travel cost can be obtained as follows, 7 

   ( )p d

ij ij i j ijc t TV TV       N ,  (16) 8 

where   is the value of travel time, ijt  is the travel time between an OD pair ( , )i jv v , which 9 

is associated with the proposed trip plan and network design decisions from the operator. 10 

p

iTV  and d

jTV  are time deviations, which are calculated by the difference between actual 11 

and desired pickup and delivery times.   denotes the monetary penalty on time deviations. 12 

As aforementioned, the passenger will accept the proposed trip plan when the 13 

perceived travel cost is lower than the maximum benefit, which gives rise to the elasticity 14 

of passenger demand. The probability that passengers choose the trip plan CBP   is the 15 

probability that the travel utility is larger than zero, namely, 16 

  Pr , ,CB

ij ij i jP C U v v V     N ,  (17) 17 

where the passengers’ travel utility  ijU N   is defined on her/his perceived travel costs 18 

based on the deterministic travel cost  ijc N  , which is assumed as a random variable 19 

covering the population variation.  20 

4.2.3 Solution algorithm for the bi-level programming model 21 

In the proposed model of the dynamic phase, the operator should rapidly respond to 22 

the request by inserting new requests into the existing network. In view of the occasional 23 

arrivals of new requests, two approaches are widely applied to address the dynamic vehicle 24 

routing problem: (1) solving the static problem each time when the new request is proposed, 25 

and (2) solving the static vehicle routing problem only once in the initial stage and then 26 

updating the current solution when new request is proposed by heuristic methods (e.g., 27 
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insertion, deletion and interchange heuristics) (Berbeglia et al., 2010). Considering the 1 

interactive decision-making manner between the operator and passengers, this paper 2 

develops a dynamic insertion approach to address the proposed bi-level model. Specifically, 3 

assume that there is a set of routes generated based on historical demands. When a new 4 

request is proposed, the operator scans the historical route set to find feasible insertion 5 

options. If no feasible insertion can be conducted based on historical routes, a new route 6 

should be generated specifically for this new request. Note that the new insertion should 7 

not incur any violation on the passengers that have confirmed their services. 8 

In sum, an insertion checking algorithm is developed to find feasible insertion 9 

schemes on the current CB network. 10 

Algorithm 1. The insertion checking algorithm 11 

Input: A new request  , , , ,, , , ,r p r d p d r p r d

i j r r i p j dr v v t t v V v V    12 

Step 1: If ,r p

iv  and ,r d

jv  already exist in an existing route kJ , and the current arrival and 13 

departure time at ,r p

iv   and ,r d

jv   of route kJ  , ,k A

it  , ,k D

it  , and ,k A

jt   are within the 14 

acceptable time intervals, then request r  can be directly insert into route kJ . If so, 15 

record it as a feasible insertion scheme. 16 

Step 2: If the delivery vertex of request r , ,r d

jv , already exists in route kJ , but the pickup 17 

vertex ,r p

iv  is not in route kJ , then apply the checking process in Step 2.1 for ,r d

jv  18 

and scan all existing vertices m kv V  in route kJ  for inserting ,r p

iv :  19 

Step 2.1: If there is no passenger at mv  currently, then mv  can be replaced by ,r p

iv : 20 

Remove mv   from kJ   and add ,r p

iv   to kJ  , hence the time interval for 21 

serving vertex ,r p

iv  can be expressed as: , ,

1 1, 1 , 1[ , ]k D k A

m m i m i mt t t t     , where . 22 

Check whether this time interval intersects the acceptable time interval 23 

max max[ , ]p p

r rt t t t  . If so, record it as a feasible insertion scheme. 24 

Step 2.2: If there are passengers at mv   currently, then mv   cannot be removed. 25 

Check if ,r p

iv  can be inserted into the place after mv . The time interval for 26 

the serving vertex ,r p

iv  can be expressed as: , ,

, 1 , 1[ , ]k D k A

m m i m i mt t t t   . Check 27 
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whether this time interval intersects the acceptable time interval 1 

max max[ , ]p p

r rt t t t  . If so, record it as a feasible insertion scheme. 2 

Step 3: If the pickup vertex of the request r  , ,r p

iv  , already exists in route kV  , but the 3 

delivery vertex ,r d

jv  is not in route kJ , then apply the checking process in Step 3.1 4 

for ,r p

iv  and scan all existing vertices m kv V  in route kJ  for inserting ,r d

jv :  5 

Step 3.1: If there is no demand at mv  currently, than mv  can be replaced by ,r d

jv : 6 

Remove mv  from kJ  and add ,r d

jv  to kJ , hence the time interval for the 7 

serving vertex ,r d

jv   can be expressed as: , ,

1 1, 1 , 1[ , ]k D k A

m m i m i mt t t t      . Check 8 

whether this time interval intersects the acceptable time interval 9 

max[ , )d

rt t  . If so, record it as a feasible insertion scheme. 10 

Step 3.2: If there are passengers at mv   currently, then mv   cannot be removed. 11 

Check if ,r d

jv  can be inserted into the place after mv . The time interval for 12 

the serving vertex ,r d

jv  can be expressed as: , ,

, 1 , 1[ , ]k D k A

m m i m i mt t t t   . Check 13 

whether this time interval intersects the acceptable time interval 14 

max[ , )d

rt t  . If so, record it as a feasible insertion scheme. 15 

Given the above insertion checking subroutine of a new request r , a dynamic insertion 16 

algorithm is proposed as follows: 17 

Algorithm 2. The dynamic insertion algorithm  18 

Step 1: Initialization.  19 

Input the set of existing routes kJ  with the list of visiting vertices kV  for each k  20 

and the related arrival and departure times, ,k A

it  and ,k D

it , at each vertex i kv V . 21 

Input the newly received request r  with its pickup/delivery vertices ,r p

iv  and ,r d

jv , 22 

and desired pickup/delivery times p

rt  and d

rt . 23 

Step 2: Searching for feasible insertion schemes 24 

Step 2.1: For each historical route kJ , apply the Algorithm 1, record every feasible 25 

insertion scheme;  26 

Step 2.2: If no feasible insertion scheme can be found in the insertion checking 27 
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process, generate a new route for request r  from depot 0v  to ,r p

iv  and ,r d

jv . 1 

Step 3: Evaluation of feasible insertion schemes 2 

Step 3.1: For each feasible insertion scheme obtained in Step 2, calculate the profit 3 

of operators and the general travel cost of the passenger, calculate the 4 

probability of the passenger to choose this scheme, then obtain the 5 

expected profit of the scheme; 6 

Step 3.2: Store the insertion scheme with the highest expected profit, update 7 

historical routes kJ  , the set of visiting vertices kV   for each k  , and the 8 

arrival and departure times, ,k A

it  and ,k D

it , at each vertex i kv V . 9 

Step 4: If there is a new request submitted to operators, go to Step 1; otherwise, end. 10 

By applying this algorithm to the new requests, a set of new CB routes can be designed 11 

at the end of the dynamic phase. Meanwhile, the passengers receive service information 12 

and decide whether to confirm the provided CB services. The confirmed passengers are 13 

then considered in the re-optimization of the static phase.  14 

4.3 The Static Phase 15 

In view of the demand elasticity in the dynamic phase, the operator cannot obtain the 16 

actual demands when designing the CB network. Evidently, the solution of the network 17 

design problem that has obtained so far is suboptimal. Whereas in the static phase, no new 18 

requests are allowed to input into the current CB network (see Fig. 2), and the passenger 19 

demand is considered known and fixed. In this regard, it is necessary for the operator to re-20 

optimize the CB network. Such network design, taking into consideration the 21 

pickup/delivery times that have been confirmed jointly by the operator and passenger, is 22 

formulated as a static VRPPD with hard time constraints. Besides, the transit fare that has 23 

also been confirmed by the passenger would not change, while the revenue of the operator 24 

is taken as a constant. The objective function can be simplified to the minimization of the 25 

operation cost. To obtain the exact solution of the model in a reasonable time, this section 26 

develops a B&B algorithm based on the graph search strategy. 27 
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4.3.1 Static CB network design problem 1 

As aforementioned, the total revenue in Eq. (7) is known and constant. The objective 2 

function of this problem can be rewritten as follows: 3 

 2

,

min
i j k

k

ij ij k

k K v v V k K

z y d  
  

       .  (18) 4 

Besides, the time deviations in the static phase are determined which do not allow any 5 

lateness. Therefore, in the model of the static phase, the time deviation constraints (3)-(4) 6 

should be rewritten as: 7 

 
, min{ },k k D p

r i r p r
r R

x t t i V V


    ,  (19) 8 

 
, min{ },k k A d

r j r d r
r R

x t t j V V


    ,  (20) 9 

where 
p

rt
  and 

d

rt
  are the pickup and delivery times provided by operators in the dynamic 10 

phase. The other constraints are the same as Eqs. (8)-(13) described in Section 3.2.1. 11 

The problem we introduced here has clear relationships with other families of routing 12 

problems, such as the traveling salesman problem and the dial-a-ride problem. The original 13 

dial-a-ride problem has been shown to be NP-hard (Baugh et al., 1998). Therefore, it is 14 

important to address the computational complexity of the proposed problem which can be 15 

seen as a modified scenario of the original dial-a-ride problem. The following proposition 16 

is provided, the proof of which is in the Appendix A. 17 

Proposition 1. The static CB network design problem is NP-hard. 18 

4.3.2 Solution algorithm in the static phase 19 

The B&B algorithm is one of the most successful exact approaches to solve the 20 

combinatorial optimization problem. It intends to find the optimal solution by reducing the 21 

search space dynamically based on the tree searching strategy. In general, the B&B 22 

algorithm is composed of three main aspects: i) the branching strategy: splitting the search 23 

space into smaller spaces recursively; ii) the lower bound: evaluating each node of the tree; 24 

iii) the exploration strategy: after each node evaluation, specifying the node to be processed 25 

for the next branching. 26 

In view of the NP-hardness of the proposed optimization model, the efficiency in 27 
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handling the network design problem is highly desirable, especially in the practical 1 

implementations. Here we follow the “cluster-first-route-second” scheme to reduce the 2 

searching space for solving large-scale problems by classifying passengers with similar 3 

temporal and spatial requirements (Tong et al., 2017). Note that in the dynamic phase, 4 

requests with compatible pickup/delivery times at each pickup vertex have been assigned 5 

to the same vehicle. Hence, the results of the request assignment can be treated as passenger 6 

groups inputting to the B&B algorithm.  7 

In this algorithm, a route is represented by an integer sequence of pickup and delivery 8 

vertices. we define P , D  and C  as the sets of unvisited pickups, undelivered passengers, 9 

and vertex list of the current route. At each vertex iv , three possible operations are modeled 10 

as different operations, which are: 11 

(1) Pick up a new request: add iv  into D  and C , remove iv  from P ; 12 

(2) Deliver a request: add iv  into C , remove iv  from D ; 13 

(3) Dispatch a new vehicle: if D  is empty, add 0v  to C . 14 

In the proposed B&B algorithm, the above three possible operations can be translated 15 

into branches of the search tree (Qiu et al., 2017). A depth-first search strategy is applied 16 

to generate routes, which is bounded by the time deviation constraints (19) and (20), and 17 

the capacity constraint (8). To reduce computational burden, the current solution is 18 

compared to the optimal solution and is abandoned if its theoretical lowest cost is higher 19 

than the cost of the optimal solution. Given a predetermined lowest cost of serving a request, 20 

the theoretical lowest cost is obtained by summing up the cost of the current solution and 21 

the lowest cost of serving remaining requests. In the multi-vehicle case, a vehicle counter 22 

k  is applied to record the number of vehicles that have been processed, while an additional 23 

branch is added when a vehicle finishes a trip. Accordingly, the graph search algorithm can 24 

be designed recursively if a new vehicle is needed. The detailed solution algorithm for the 25 

CB service network optimization in the static phase is as follows: 26 

Algorithm 3. The graph search algorithm 27 

Step 1: Initialization.  28 

Set 1{ ,..., }nP v v , D  , and generate the current route 
0{ }C v . Set the current 29 
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lowest cost minc infinity  and the current optimal solution 
optR  . 1 

Step 2: Graph searching:  2 

Step 2.1: Check the feasibility of the generated route: 3 

 If the time deviation constraints (19) and (20) or the capacity constraint (8) is 4 

violated, return.  5 

 If the current theoretical lowest cost is higher than the cost of the optimal 6 

solution, return. 7 

Step 2.2: Check whether there exist remaining requests: 8 

 If D  and P  are empty, calculate the total cost using Eq. (18). If the current 9 

cost is lower than the current lowest cost, update the current lowest cost 10 

min currentc c  and the current optimal solution opt currentR R . Return. 11 

Step 2.3: Generate all possible combinations of routes. For each vertex iv P D : 12 

 If iv P , pick up this new request, call the Algorithm 3, remove iv  from D  13 

and C , add iv  to P ; 14 

 If 
iv D , call the Algorithm 3, remove iv  from C  and add iv  to D ; 15 

 If D  is empty, update the current solution currentR  and cost currentc , add 0v  to 16 

C , call the Algorithm 3, remove 0v  from C . 17 

 18 

5. Numerical Examples 19 

Two numerical examples are conducted to illustrate the properties of the proposed 20 

network design method and the effectiveness of the algorithm applied. The algorithms were 21 

coded in the Visual C++ language and executed on a personal computer (Intel Core i7 CPU 22 

@ 2.2GHz). 23 

5.1 Numerical test 24 

The well-known Sioux Falls network is first utilized to verify the effectiveness of the 25 

proposed model and algorithms. As shown in Fig. 4, the network has 24 vertices and 38 26 

bidirectional links. The number on links denote the link travel time. The planning horizon 27 

starts from 6 to 9 a.m., which is equally discretized into six-minute time intervals. Two 28 
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historical routes are depicted using blue arrows. The visiting sequence and corresponding 1 

arrival and departure times of the two historical routes are shown in Table 3. The area 2 

highlighted by the green ellipse is the CBD district, the vertices in which are passengers’ 3 

possible delivery locations, namely vertices 10, 11, 14, 15. All other vertices are possible 4 

pickup locations. The vehicle capacity cap  is 10. The minimum load factor minq  is 5. The 5 

other parameters used are: $10  , $20  , $2  , $4  . 6 
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Figure 4. The example of Sioux Falls network 8 

 9 

Table 3. Historical CB route information 10 

Route No. Visiting vertex ID Arrival time Departure time 

1 

1 - 2 

4 10 12 

5 14 16 

10 24 24 

11 29 - 

    

2 

20 - 0 

21 6 7 

23 12 16 

15 23 23 

14 28 - 
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 1 

5.1.1 Experimental setup 2 

We test our proposed model and solution algorithm with random instances of requests, 3 

where the passengers’ requests are sampled as follows. The passenger’s pickup/delivery 4 

locations and times are generated following the uniform distribution. We generate 36 5 

instances for each number of requests and consider different combinations of the 6 

passenger’s heterogeneities: (a) regular and (b) irregular CB passengers, (c) higher value 7 

of time and (d) higher penalty on time deviation. Herein, we assume that the passenger’s 8 

perceived travel cost follows the normal distribution, where the regular CB passengers have 9 

smaller variance. The relationship between the passenger’s value of time and the penalty 10 

on time deviation reflects the passenger’s willingness to accept greater time deviations to 11 

reduce in-vehicle travel time. To shorten the algebra, we define the parameter     as 12 

the heterogeneity in the ratio of the value of time over the penalty on time violation. Hence, 13 

the passenger’s perceived travel cost is generated based on Eq. (15) in the form 14 

( )p d

ij ij i j ij ijC t TV TV         , with ij   following the normal distribution with zero 15 

mean and variance 2 .  16 

5.1.2 Optimal results 17 

Table 4 reports the computational results with the number of requests goes from 5 to 18 

30. The number of CB routes needed in the dynamic and static phases are reported in 19 

column 3 and 4. It reveals that the number of routes that needed to serve all the confirmed 20 

request can be largely reduced in the static phase. As the number of requests increases, the 21 

number of CB routes increases, reaching a maximum value of 5 when most of the vertices 22 

in the Sioux Falls network is covered. From the economic point of view, the operating cost 23 

can be reduced by 22.8% on average during the re-optimization of the service network. 24 

Evidently, the average transit fare decreases as the number of requests rises. In brief, this 25 

reveals that the CB service preserves the characteristic of the shared mobility services while 26 

the ridesharing fare decreases with more participants.  27 

 28 

Table 3. Historical CB route information 29 
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Route No. Visiting vertex ID Arrival time Departure time 

1 

1 - 2 

4 10 12 

5 14 16 

10 24 24 

11 29 - 

    

2 

20 - 0 

21 6 7 

23 12 16 

15 23 23 

14 28 - 

 1 

Table 4. Optimal results of the numerical example 2 

# of 

requests 

# of 

confirmed 

requests 

# of CB routes 
Revenue 

($) 

Ave. 

fare 

($) 

Operating cost 

($) CPU 

time (s) Phase 

Da 

Phase 

Sa 

Phase 

D 

Phase 

S 

5 5 3 1 103 20.6 106 67 0.15 

10 9 4 1 209 20.9 120 81 3.44 

15 13 7 2 300 20 182 146 21.57 

20 17 9 5 389 19.5 219 178 95.11 

25 19 12 5 445 17.8 216 192 199.6 

30 21 15 5 503 16.8 214 175 320.7 

Note: aPhases D and S refer to the dynamic and static phases, respectively.  3 

To better reflect the passengers’ choices, the detailed passengers’ trips information of 4 

an instance with 30 requests is presented in Table 5. It is shown that passengers are more 5 

likely to reject the offered trip plan with pickup lateness. Otherwise, if the offered pickup 6 

time is earlier than the desired pickup time, passengers intend to accept the trip plan to 7 

board on the bus earlier than they desired. It also reveals a plausible result that the 8 

optimization process of static phase can efficiently improve the CB system’s level of 9 

service by guaranteeing the on-schedule pickups and earlier deliveries than they desired, 10 

which is essential for morning commutes. 11 

 12 

 13 

Table 5. Results of the passenger’s travel information in the instance of 30 requests 14 
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Passenger 

ID 

Passenger 

choices 

Travel time Time violation 

Phase D Phase S 
Phase D Phase S 

Pickup Delivery Pickup Delivery 

1 Accept 25 19 0 0 0 6 

2 Accept 25 19 0 -1 0 6 

3 Accept 25 19 0 -2 0 6 

4 Accept 22 19 0 0 0 6 

5 Accept 11 8 0 1 1 4 

6 Accept 8 8 0 5 1 4 

7 Accept 8 8 0 3 1 4 

8 Accept 25 12 0 3 1 13 

9 Accept 25 12 0 4 1 13 

10 Reject 15 - 0 0 - - 

11 Accept 23 19 0 0 0 4 

12 Reject 11 - 0 0 - - 

13 Accept 14 10 0 2 1 6 

14 Reject 17 - 0 0 - - 

15 Reject 27 - 0 0 - - 

16 Accept 26 12 0 0 2 14 

17 Reject 14 - 0 0 - - 

18 Accept 19 19 0 3 0 3 

19 Accept 19 19 0 1 0 3 

20 Accept 17 17 0 5 0 5 

21 Accept 19 12 -3a 4 2 14 

22 Reject 16 - 0 0 - - 

23 Reject 15 - 0 0 - - 

24 Accept 13 8 0 0 0 5 

25 Reject 13 - -3 0 - - 

26 Accept 25 10 5 -4 1 6 

27 Accept 25 10 5 -4 0 6 

28 Accept 25 19 0 -2 0 4 

29 Reject 13 - -8 2 - - 

30 Accept 13 12 -2 2 0 4 

Note: aThe positive and negative values denote the amount of earliness and lateness, 1 

respectively. 2 

 3 

Table 6 compares the different combinations of weights on passengers’ in-vehicle 4 

travel time and deviations in pick/delivery times concerning passengers’ choice behavior. 5 

The regular passengers who have an accurate estimation of the travel cost are unaffected 6 
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by the change of travel time or schedule deviations in their total travel costs. Meanwhile, 1 

the irregular commuters, who are new to the CB system or do not take the CB service in 2 

daily commutes, are more sensitive to the time deviations on their desired pickup/delivery 3 

times.  4 

 5 

Table 6. Comparisons between the regular and irregular passengers. 6 

 (a) Regular passengers 2 0.2   

 0.5   1.0   1.5   

# of 

Requests 

# of 

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

# of 

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

# of  

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

5 5 20.6 64.6 5 20.6 64 5 20.6 64.3 

10 9 18.8 55.2 10 20.9 55.2 9 20.9 55.35 

15 14 18.8 51.2 13 20.9 55.2 10 18.8 55.35 

20 18 23.8 50.3 18 23.8 59.7 18 23.8 69.0 

25 24 26.8 52.8 23 26.3 62.2 22 25.7 71.68 

30 28 26.7 50.2 28 26.7 59.5 27 25.1 68.7 

 (b) Irregular passengers 2 0.5   

 0.5   1.0   1.5   

# of 

Requests 

# of 

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

# of 

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

# of  

confir-

med 

requests 

Ave. 

fare ($) 

Ave. 

travel 

cost ($) 

5 5 20.6 53.2 5 20.6 53.2 5 20.6 53.5 

10 9 16.9 45.75 10 20.9 55.2 9 16.9 55.35 

15 13 23.07 51.2 14 24.3 60.5 11 20 60.6 

20 16 21.8 50.3 16 21.8 50.2 19 24.7 69.0 

25 21 25 52.8 19 23.4 62.2 23 26.3 71.7 

30 25 26.2 50.2 28 25.2 59.3 27 25.1 68.5 

 7 

5.1.3 Sensitivity analysis 8 

Finally, we perform a sensitivity analysis aiming to identify the relationship between 9 

the time deviation threshold and other operating decisions, e.g. the total number of CB 10 

routes. As discussed in Section 4.1, the time deviation threshold maxt   is adopted to 11 

guarantee the system serviceability by limiting the time deviation from the passenger’s 12 
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desired pickup/delivery time. Fig. 5 illustrates the impact of maxt   on the number of CB 1 

routes and the average choice probability of 20 passenger requests. It is shown that the 2 

number of CB routes decreases with the increase of time deviation threshold when max 7t  , 3 

which reflects that a higher permitted time violation makes more requests able to be served 4 

by historical routes. When max 7t   , the requests submitted early can all be served by 5 

historical routes, making historical routes unreasonable and incapable to serve requests 6 

submitted relatively late. The average passenger’s choice probability of CB is also 7 

decreased sharply with the increase of maxt  , implying that allowance of larger time 8 

deviation would result in an unreliable service network that passengers are unlikely to 9 

accept the offered services.  10 

 11 

 12 

Figure 5. Impacts of time deviation on the number of CB routes and passengers’ 13 

choice probabilities 14 

5.2 Case study 15 

5.2.1 Overview 16 

In this section, a case study for real-world CB is presented. Empirically observed data 17 

from a CB company in Nanjing are applied. It provides both commuter and on-demand 18 

services. The commuter service is provided from suburban areas (i.e., large communities) 19 
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to the central business district or industrial park during morning/evening peak hours, which 1 

is similar to the one-to-one transportation service for regular commuters with a weekly or 2 

monthly subscription. The on-demand services are designed according to the real-time 3 

demand. Fig. 6 shows the interface of the mobile application of the CB service. The 4 

connection and interactive decisions between passengers and the CB operator are 5 

completed through this on-demand service platform.  6 

 7 

 8 

Figure 6. The interface of the mobile application of the CB service 9 

 10 

Figure 7. The distribution of historical stops and real-time requests.  11 

 12 
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To conduct the experiments in such a real-world circumstance, eight existing 1 

commuter lines are selected as the historical routes (see Fig. 7). The destinations are located 2 

at the industrial park (the shaded area in Fig. 7) in the suburban area. In addition to regular 3 

commuters, ad hoc passengers are also allowed to make subscription through the on-line 4 

platform. We consider a fleet of minibuses with a 15-seat capacity. The total fleet size is 5 

30. 100 home-to-work requests are generated based on the real-world data set from 6:30 6 

AM to 9:00 AM. 7 

 8 

5.2.2 Computational results 9 

The computational results for this case study are reported in Table 7. In order to verify 10 

the robustness of the proposed methodology as well as the CB system, two scenarios more 11 

are presented, where additional 150 and 200 requests are randomly generated. It is shown 12 

that the acceptance rates of the Scenarios 1 and 2 are almost the same, and the acceptance 13 

of more passengers can efficiently reduce the average fare, which is in line with the 14 

“shared-mobility” of the CB system. In Scenario 1, each route is served by one vehicle, 15 

where the load factor is 11.1. Scenario 2 requires a smaller number of CB routes but more 16 

vehicles than that of Scenario 1. It can be found that some routes which only have one 17 

pickup stop are merged into other routes in Scenario 2 but served by larger fleet size (see 18 

Fig. 8, where the black dot represents the last stop of each route.). It indicates that when 19 

the demand level of an area is lower, it is more efficient to set a direct line between the 20 

origin and destination (i.e., one-to-one) rather than many-to-one or many-to-many. That is 21 

because the CB operator intends to dispatch more vehicles instead of sacrificing the 22 

passengers’ waiting time. This conclusion is also confirmed in Scenario 3 when the demand 23 

level is getting large. There is no one-to-one type of line in this scenario and the passengers 24 

are served with only 12 CB routes but with a higher load factor.  25 

 26 

 27 

 28 

 29 

Table 7 Results for the case study in Nanjing 30 
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Scenario # of requests Accept rate Profit 

($) 

Ave. fare 

($) 

# of 

routes 

# of 

vehicles 

Load factor 

1 200 0.91 10,789 40.35 18 18 11.1 

2 250 0.92 11,812 38.87 15 20 12.5 

3 300 0.87 13,780 34.48 12 23 13 

 1 

 2 

 3 

Figure 8. Optimal CB service network under different demand patterns. 4 
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6 Conclusions 1 

In this paper, an integrated decision-making framework for the demand-responsive 2 

CB system has been proposed. As an essential supplement to the multimodal transit system, 3 

the on-demand transit service provides a flexible travel pattern that considers the 4 

passenger’s requests sufficiently. 5 

To model this decision-making that involves both the CB operator and passengers, a 6 

two-phase optimization model was proposed. In the dynamic phase, the network design 7 

decisions of the CB network are determined by the operator and passenger sequentially, 8 

while the passenger occurs dynamically by specifying their desired pickup/delivery times 9 

and locations and then decides whether to take the CB service based on the operator’s 10 

network design decisions. In the static phase, the CB services are re-optimized based on 11 

the confirmed demands to further optimize the service network to maximize its profit. 12 

Through the proposed framework, the passenger’s mode choice activity is considered 13 

implicitly in the service network optimization process, which is usually conducted by the 14 

operator alone. During this process, the passenger’s model choice behavior is described by 15 

a binary choice model, where the passenger’s perceived travel cost is decided based on the 16 

operator’s network design decisions.  17 

Several potential enhancements could be considered in future works: (1) integrate the 18 

process of predicting future requests into the dynamic phase to generate more reasonable 19 

service designs; (2) introduce a nonlinear price scheme for requests with different ODs and 20 

Acknowledgments pickup/delivery time deviations; (3) take into account the role of 21 

government in CB service design and investigate the game between government, CB 22 

operator, and passengers.  23 
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Appendix A. NP-hardness of the CB network design problem 1 

Proposition 1. The static CB network design problem is NP-hard. 2 

Proof. To prove that the CB network design problem is NP-hard, we first introduced 3 

other NP-hard problems, such as the traveling salesman problem with time windows 4 

(TSPTW) and the dial-a-ride problem (DARP). Baugh et al. (1998) have proved that the 5 

TSPTW can be reduced to the DARP by extending a vertex in the graph of TSPTW to a 6 

pair of pickup/delivery vertices. Compared with the DARP, a vertex in a CB system can be 7 

visited more than once by different vehicles to serve various groups of passengers with 8 

close time windows and destinations. The decision version of the CB network design 9 

problem is presented firstly. Then we further prove that an instance of the DARP for graph 10 

( , )G V A  can be reduced to an instance of the CB network design problem. The decision 11 

version of the CB network design problem can be stated as follows.  12 

Given a weighted graph ( , )G V A    consisting of pickup/delivery vertices, and a 13 

depot. The passengers at each vertex of G   are divided into groups with similar 14 

pickup/delivery time windows and destinations. The decision version of the CB network 15 

design problem is whether it is possible to visit each group exactly once within its time 16 

window in k   cycles at a cost not exceeding C  . A feasible cycle should satisfy the 17 

following constraints defined in Section 5.1: the arrival time at a vertex is earlier than the 18 

departure time, the pickup/delivery pairs are in the same cycle, the pickup vertex is visited 19 

before the corresponding delivery vertex, and each cycle starts and ends at the depot. The 20 

decision version of the CB network design problem is shown to be NP-complete by the 21 

following statements: 22 

i) The CB network design problem is NP. 23 

It can be checked that each cycle is feasible, and the summation of cycle costs does 24 

not exceed C . This checking process can be done in polynomial time.  25 

ii) The DARP can be reduced to the CB network design problem  26 

Let graph ( , )G V A   be the input of the DARP, 
0{ } { , 1 }p d

i iV v v v i n    , where 27 

p

iv  and d

iv  denote the vertex at which passenger i  is picked up and delivered, respectively, 28 

and 0v  denotes the depot. In the DARP, a cycle can be found with minimal weights through 29 

2 1n  vertices satisfying that every passenger is picked up before s/he is delivered. It is 30 
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shown that the graph G  can be transformed into a graph G  that can be considered as the 1 

input to the CB network design problem using the following graph constructing rules: 2 

 Given a dial-a-ride cycle on 2n   vertices, { , 1 }p d

i iV v v i n    , for every pickup 3 

vertex, add a corresponding vertex in G   and create n   dummy pickup vertices, 4 

{ 1 , }i

P jV p i j n   , with the same time window; for every delivery vertex, add a 5 

corresponding vertex in G   and create n   dummy delivery vertices, 6 

{ 1 , }i

D jV d i j n   , with the same window (see Fig. A1). 7 

 Construct a CB network with vertices, 0{ } P DV v V V V  , by pairing off i

jp  8 

and i

jd  , and let i

jp   be a pickup vertex and i

jd   be a delivery vertex for dummy 9 

passenger j   between OD pair ( , )p d

i iv v  . For all vertices iv   in V    and all j  , let 10 

0( , ) 0id v v   , ( , ) 0p i

i jd v p   , ( , ) 0d i

i jd v d   , ( , ) 0i i

j jd p d   , ( , ) ( , )i p

j i i id p v d v v   and 11 

( , ) ( , )i d

j i i id d v d v v , where  is the weight between vertices x  and y . 12 

G  could be constructed from G  in polynomial time. Given an optimal solution of 13 

the CB network design problem consisting of n  cycles, it is easy to see that removing the 14 

dummy pickup/delivery vertices yields a valid dial-a-ride cycle with n  set to 1. Thus, if G  15 

has a solution of the CB network design problem, then G  has a DARP solution, and vice 16 

versa. The decision version of CB network design problem is NP-complete.   17 

Set of pickup 

vertices

Set of delivery 

vertices

n

Graph G Graph G  

n n

n

n

n

 18 

Figure A1. The construction of G  from G  19 
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