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Abstract

Vessels served by a container port can usually be classified into two types: deep-sea

vessels and feeders. While the arrival times and service times of deep-sea vessels are

known to the port operator when berth plans are being devised, the service times of

feeders are usually uncertain due to lack of data interchange between the port operator

and the feeder operators. The uncertainty of feeder service times can incur long waiting

lines and severe port congestion if the service plans for deep-sea vessels and feeders are

poorly devised. This paper studies the problem of how to allocate berths to deep-sea

vessels and schedule arrivals of feeders for congestion mitigation at a container port

where the number of feeders to be served is significantly larger than the number of

deep-sea vessels, and where the service times of feeders are uncertain. We develop a

stochastic optimization model that determines the berth plans of deep-sea vessels and

arrival schedules of feeders, so as to minimize the departure delays of deep-sea vessels

and schedule displacements of feeders. The model controls port congestion through

restricting the expected queue length of feeders. We develop a three-phase simulation

optimization method to solve this problem. Our method comprises a global phase, a

local phase, and a clean-up phase, where the simulation budget is wisely allocated to the

solutions explored in different phases so that a locally optimal solution can be identified

with a reasonable amount of computation effort. We evaluate the performance of the

simulation optimization method using test instances generated based on the operational

data of a container port in Shanghai.

Keywords: berth allocation; port operations; service time uncertainty; congestion miti-

gation; simulation optimization



1 Introduction

Vessels served by a container port can usually be classified into two types: deep-sea vessels and

feeders (Cordeau et al. 2005; Emde and Boysen 2016; Ursavas and Zhu 2016). Deep-sea vessels are

large in size, and they transport containers between ports along long-haul ocean routes. Feeders

are small-sized vessels, and they provide transportation services between ports that are relatively

close to each other. For container ports located on the estuaries of busy waterways, such as the

Port of Shanghai, which is located on the Yangtze River estuary, feeders play an important role in

container transshipment. In these container ports, the number of feeders served can be significantly

larger than the number of deep-sea vessels.

One important issue faced by a port operator is the need for effective berth planning for both

deep-sea vessels and feeders. Deep-sea vessels visit container ports regularly by following their

voyage schedules. Thus, the scheduled port arrival and departure times of each deep-sea vessel are

known to the port operator. Using electronic data interchange, the port operator can acquire the

throughput information of deep-sea vessels. The scheduled arrival and departure times and the

throughput information are essential for making detailed service plans for the vessels. However,

feeders are usually operated by small companies that do not have advanced information systems,

and there is a lack of data interchange between the port operator and the feeder operators. As

a result, accurate throughput information of feeders may not be available to the port operator in

advance. This poses a great challenge for berth planning, as service plans are made several days

before vessels arrive. Because of the uncertainties in service times, port operators do not usually

reserve berth space for feeders when making berth plans, but allocate berths to feeders dynamically

according to certain predetermined service rules (e.g., arbitrarily assigning an available berth to

a feeder when it arrives at the port). However, this practice may lead to severe congestion and

also lower the port’s operational efficiency. On the other hand, developing berth plans for deep-

sea vessels and simultaneously taking into account the uncertainties of feeder service times may

alleviate congestion and thus improve the efficiency of the port.

For a container port such as the Port of Shanghai, which serves a large number of feeders,

another important issue faced by the port operator is the need to mitigate port congestion by

controlling the waiting lines of feeders. Unlike deep-sea vessels that wait at the anchorage ground

upon arrival, feeders usually wait at the terminal basin, which is close to the berths. Long waiting

lines of feeders obstruct the traffic in the port, impeding the service of vessels and increasing the risk

of vessel collisions. One method that has been implemented in practice for congestion mitigation
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is to serve feeders by appointment. That is, the port operator makes adjustments to the voyage

schedules of feeders by assigning updated arrival times to the feeders, and the feeders are required

to arrive at the port at or close to their assigned arrival times. Assigning arrival times to feeders

allows the port operator to reduce the number of arrivals during peak hours. However, the queue

length of feeders depends not only on the feeder arrival times, but also on their service times. Hence,

to effectively control congestion in the port, the assignment of arrival times to feeders should also

take into account the service time uncertainties of feeders.

In this paper, we study a problem that allocates berths to deep-sea vessels and assigns arrival

times to feeders for a container port where the service times of feeders are stochastic with known

probability distribution. We develop a stochastic optimization model for the problem. The model

aims to minimize the departure delays of deep-sea vessels and schedule displacements of feeders,

subject to berth availability and a queue length limit. We develop a three-phase simulation opti-

mization method for solving this model. Our model and solution method can be used for berth

planning at a container port where information on feeders is limited and mitigating congestion is

of great importance.

Berth allocation problems have attracted tremendous research efforts over the past two decades.

Various models have been developed by researchers for decision-making at tactical and operational

levels; see Steenken et al. (2004), Bierwirth and Meisel (2010, 2015), Kim and Lee (2015), and

Gharehgozli et al. (2016) for comprehensive reviews of the literature. Existing berth allocation

problems typically allocate berths to vessels with given arrival schedules of vessels. The problem

studied in this paper extends the traditional berth allocation problems by allocating berths to

deep-sea vessels and scheduling the arrivals of feeders. There exist some works that study the

scheduling of vessel arrivals from the perspective of a port operator or a shipping line. Golias et

al. (2009) assign arrival times to vessels in a berth allocation model to minimize weighted total

waiting time and departure delay of vessels. Alvarez et al. (2010) and Lang and Veenstra (2010) use

simulation to evaluate different arrival scheduling strategies for minimizing the fuel consumption

cost of vessels. Lee and Jin (2013) consider a feeder vessel management problem in which one of

the decisions is to assign feeders to different working shifts. Li and Pang (2011), Pang et al. (2011),

and Pang and Liu (2014) analyze different integrated berth allocation and vessel routing problems

that require the determination of vessels’ arrival times at different ports. Du et al. (2015) assign

arrival times to vessels in a tidal port to reduce vessel waiting times caused by tidal effect in the

navigation channels. Li and Lam (2017) schedule the arrivals of vessels at a container port to
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resolve vessel conflicts in the fairways nearby the port. Venturini et al. (2017) and De et al. (2020)

schedule the berth utilization and the vessel arrivals to minimize the cost incurred by vessel fuel

consumption and terminal operations. In our model, the arrival times of deep-sea vessels are input

parameters, whereas the arrival times of feeders are decision variables. This model configuration is

motivated by the following facts: (i) Deep-sea vessels visit multiple ports by following their voyage

schedules; changing the arrival time of a deep-sea vessel at a port may have a significant impact

on its schedule for visiting other ports, which is undesirable in practice. (ii) The voyage schedules

of feeders are generally quite flexible, as feeders typically transport containers between only two

ports. Thus, scheduling the arrivals of feeders helps alleviate port congestion without incurring

unacceptable compromises in service quality.

Another important feature of our model is the stochasticity of the service times of feeders.

Many researchers have studied berth allocation problems with uncertain vessel information. Some

berth allocation models consider uncertain vessel arrival times (see, e.g., Moorthy and Teo 2006),

while some models consider uncertain vessel service times (see, e.g., Golias 2011 and Shang et

al. 2016). Some berth allocation models take into account uncertainties in both vessel arrivals and

vessel services; see, for example, Zhen et al. (2011), Xu et al. (2012), Umang et al. (2017), Xiang

et al. (2017, 2018), and Iris and Lam (2019). Liu et al. (2020) provide a summary of the existing

works on stochastic berth allocation problems. In most of the existing works, berths are explicitly

allocated to vessels in the hope that vessels can start being served as planned at their designated

berths even if the vessel information is uncertain. Our model differs from these models in that the

berths for serving deep-sea vessels are determined explicitly with deterministic arrival and service

times, whereas the berths for serving feeders are modeled implicitly due to the uncertainties of

feeder service times. For evaluating the performance of the service plan generated by our model,

we adopt an operational service rule that dynamically allocates berths to feeders when the service

times of feeders are observed.

In addition to the limited berth availability, which is the major constraint considered in the berth

allocation literature, our model considers the queueing behavior of feeders and imposes a restriction

on the expected queue length of feeders. This additional constraint is motivated by the need to

control vessel congestion in the terminal basin of a busy container port. The queueing behavior of

vessels has been studied using queueing and simulation models. These include a study that models

tug services in harbor terminals as queueing systems (Easa 1987), studies that model the arrival

and service processes of vessels as queueing systems and evaluate the port performances under
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different service patterns of vessels (see, e.g., Radmilovich 1992; Zrnić et al. 1999), and studies that

apply simulation models to evaluate the performance of quay crane and berth allocation policies

(see, e.g., Legato and Mazza 2001; Dragović et al. 2005, 2006). Existing models on vessel queueing

behavior typically focus on the evaluation of predetermined vessel service policies. Our model,

however, incorporates vessel queueing behavior into berth allocation and feeder arrival scheduling

decisions, so as to optimize berth utilization while at the same time keeping vessel congestion under

control.

We develop a simulation optimization method for solving the problem studied in this paper.

Simulation optimization methods are widely used for solving optimization problems where perfor-

mance of each solution is evaluated by doing simulation experiments. Xu et al. (2015) and Amaran

et al. (2016) review various simulation optimization methods and their applications. As noted

by Lee et al. (2006), performing a large number of simulation replications to obtain an accurate

estimation of solution performance would consume an unaffordable amount of computation effort,

especially when the solution space is large, and thus one should seek to balance the effort spent

in running simulations and in sampling solutions. In the literature of berth allocation, there exist

a few works that apply simulation optimization for solving problems with uncertainties. However,

existing works either allocate a large simulation budget to each solution and incur a heavy com-

putation burden (see, e.g., Han et al. 2010), or attempt to explore the solution space efficiently

by ignoring uncertainties and then use simulation to evaluate only a limited number of the visited

solutions (see, e.g., Arango et al. 2011, 2013; Legato et al. 2014). Unlike these simulation opti-

mization methods, we develop a three-phase simulation optimization method, which consists of a

global phase, a local phase, and a clean-up phase, where different amounts of simulation budget are

allocated to different phases so that a locally optimal solution can be identified with a reasonable

amount of computation effort. Our method is an adaptation of the method proposed by Xu et

al. (2010) for solving discrete simulation optimization problems. Since Xu et al.’s method samples

solutions directly from a given set of candidate solutions, their method can only handle problems

with relatively small solution spaces and without any complicated constraint. Our method extends

Xu et al.’s method by introducing constraint relaxation techniques and new solution sampling

strategies to tackle the berth allocation and arrival scheduling problem, which has a large solution

space and contains complicated berth capacity constraints and queue length constraints. To the

best of our knowledge, this is the first work demonstrating the effectiveness of such a method on a

large-scale constrained discrete simulation optimization problem.
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Our main contributions are twofold. First, we study a new berth allocation problem that arises

in real-life port operations. Our problem differs from the berth allocation problems studied in the

literature in the following aspects: (i) In our problem, deep-sea vessels’ information is known to

the port operator before the vessels arrive, while the feeders’ service times are available only when

the feeders have arrived the port. Thus, berth space is allocated to deep-sea vessels and feeders

in a two-stage fashion, with only the probability distributions of the feeder service times being

available at the planning stage. This characteristic is unique and has not been considered by other

berth allocation research. (ii) Because feeders’ service times are uncertain at the planning stage,

the berth plan for deep-sea vessels needs to be developed by taking into consideration the potential

congestion that the random arrivals of feeders may cause during execution. We model this by

imposing an upper limit on the expected queue length of feeders, so as to mitigate port congestion.

This is a new feature that has not been considered in existing berth allocation models. Second,

we apply a three-phase simulation optimization method for solving the stochastic optimization

model. We develop new solution methods for the global and local phases, so that our method can

solve the stochastic optimization problem with a large number of decision variables. In addition,

our method strikes a balance between exploration and exploitation, and allocates the simulation

budget to solutions wisely, so that solutions with satisfactory performance can be identified using

a reasonable amount of computation effort. We demonstrate the performance of the simulation

optimization method via a computational study, with problem instances developed based on the

operational data of a container port in Shanghai.

The remainder of the paper is organized as follows. Section 2 describes the problem and presents

the stochastic optimization model. Section 3 elaborates on our simulation optimization method.

Section 4 describes the settings of our computational experiments and reports on the computational

results. Section 5 concludes the paper. The mathematical proof of a property, pseudo-code of a

subroutine, and descriptions of a benchmark heuristic are presented in the Appendix.

2 Problem Description and Formulation

We consider a set of vessels that need to be served at a container port during a planning horizon.

The vessels are classified into deep-sea vessels and feeders. Each deep-sea vessel has a scheduled

port arrival time and a target departure time. Deep-sea vessels strictly follow their voyage schedules

and arrive at the port on time. If the port fails to complete service at or before the target departure
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time of a deep-sea vessel, then departure delay is incurred, resulting in a tardiness penalty cost.

Each feeder has an initially scheduled port arrival time. However, in order to mitigate congestion,

the port operator may need to control the arrivals of the feeders by altering their arrival plans.

The deviation between the assigned port arrival time and the initially scheduled port arrival time

of each feeder is referred to as the schedule displacement of the feeder. Schedule displacement of

a feeder indicates the amount of adjustments that need to be made on the voyage schedule of the

feeder, and it incurs a penalty cost. Furthermore, large schedule displacements are undesirable for

feeder operators, and a pre-specified upper limit is thus imposed on the schedule displacement of

each feeder. Consequently, each feeder has a time window during which it is allowed to arrive at

the port.

Following the real-life practice, berth segments are allocated to deep-sea vessels and feeders in

a two-stage fashion, which comprises a planning stage and an execution stage. At the planning

stage, the service times of deep-sea vessels are known to the port operator. However, accurate

throughput information of feeders is unavailable. Only the probability distributions of the feeder

service times, derived from historical data, are available. At this stage, berth segments are allocated

to deep-sea vessels based on deterministic port arrival times and service times, while each feeder

is only assigned a port arrival time. Once a berth segment has been allocated to a deep-sea vessel,

the berth segment will be reserved for the deep-sea vessel. In other words, at the execution stage,

the berth segment will not be assigned to any feeder during the deep-sea vessel’s reserved time

interval.

At the execution stage, each deep-sea vessel is served by the berth segments during the time

interval reserved for it. Feeders arrive at the port according to the assigned arrival times. Once a

feeder arrives at the port, its throughput information becomes available, and its service time can

be accurately estimated. Berth segments are dynamically allocated to the arrived feeders according

to a certain service rule. In our model, we consider a first-come first-served rule, which is being

used at the Port of Shanghai, for allocating berth segments to feeders. Specifically, when a feeder

i arrives at the port, it will join the waiting line (ties broken randomly if multiple feeders arrive at

the same time). Suppose feeder i has a service time τi and is the first feeder in the waiting line.

Then, feeder i will start being served, say at time t, if a berth segment becomes available and is

not reserved for any deep-sea vessel throughout the time interval [t, t + τi] (ties broken randomly

if multiple berth segments are available at the same time). If such berth segment is not available

when feeder i arrives, then feeder i will need to wait in the queue.
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Note that since berth segments are reserved for deep-sea vessels, the departure time of each deep-

sea vessel is deterministic and is determined solely at the planning stage. Because berth segments

are allocated to feeders at the execution stage based on the berth plans of deep-sea vessels, it is

important that at the planning stage, berth plans of deep-sea vessels and arrival schedules of feeders

are made by taking into account both the uncertainties of feeder service times and the operational

service rules of feeders so that the queue length of feeders is well controlled. Note also that although

our model considers a first-come first-served rule, our solution method can be easily extended to

handle the situation where feeders are served according to other service rules; see Section 5.

For the purpose of modeling, we discretize the planning horizon and assume that all time-related

parameters are integer-valued. For simplicity, we assume that the port is empty at the beginning

of the planning horizon, and the planning horizon is set to be long enough so that all the vessels

considered can finish service within the planning horizon (see Section 5 for a discussion of how to

handle the situation when these two assumptions are violated). We assume that all feeders have

the same length σ, and that the lengths of deep-sea vessels are multiples of σ. This assumption is

justified by the fact that the lengths of deep-sea vessels are much larger than the lengths of feeders,

and the lengths of feeders are within a relatively small range compared to the lengths of deep-

sea vessels. We assume that the safety clearance between two adjacent vessels along the quay is

included in the vessel lengths. We discretize the quay into a set of berth segments, with each berth

segment having a length equal to the length of a feeder. As a result, each feeder occupies exactly

one berth segment while each deep-sea vessel occupies multiple berth segments when being served.

We also assume that there are no space restrictions; that is, each berth segment is compatible with

all vessels, regardless of the vessels’ draft and width. In Section 5, we discuss how our solution

method can be modified to handle problems with non-identical feeder lengths and problems with

space restrictions on berth assignment.

In practice, containers may need to be transshipped between feeders and deep-sea vessels (see,

e.g., Jin et al. 2015 and Iris et al. 2018). However, transshipment operations usually cannot be

conducted within a short period of time. For example, if containers are to be transshipped from

a feeder to a deep-sea vessel, then the containers often need to be discharged from the feeder and

stored in the yard for several days before the deep-sea vessel arrives, so that the port operator

can arrange the loading and discharging plans for the deep-sea vessel with detailed container in-

formation. Note that our model considers deep-sea vessels and feeders that need to be served in a

short time period (e.g., one to two days), and the solution obtained is for short-term operational
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planning. We therefore assume that in our model no transshipment is required between feeders and

deep-sea vessels. This assumption helps avoid the necessity of accounting for the inter-relationship

between feeders and deep-sea vessels, and thus improves the tractability of our model.

When we determine the berth plan, we impose an upper limit on the expected queue length of

feeders, so as to control the traffic in the port and the feeder waiting time (see Jacquillat and Odoni

2015 for an application of such an expected queue length constraint in an airport traffic control

model). Note that an alternative way to restrict the queue length of feeders is to setup a chance

constraint on the probability of exceeding a queue length limit. A discussion of how our solution

method can be applied to problems with a chance constraint is provided in Section 5.

Our problem involves decisions made at the planning stage. They include decisions for assigning

each deep-sea vessel a berthing time and a berthing position, and for assigning each feeder a port

arrival time. The objective of our problem is to minimize the weighted total departure tardiness of

deep-sea vessels and the weighted total schedule displacement of feeders. We denote this problem

as P. The mathematical formulation of problem P is presented as follows:

Input data:

T : Length of the planning horizon.

N1: Number of deep-sea vessels to be served.

N2: Number of feeders to be served.

B: Number of berth segments available.

Hi: Service time of deep-sea vessel i.

Ri: Number of berth segments that deep-sea vessel i needs to occupy.

Ai: Port arrival time of deep-sea vessel i.

Di: Target port departure time of deep-sea vessel i.

Si: Initially scheduled port arrival time of feeder i.

[Ei, Ēi]: Time interval during which feeder i is allowed to arrive at the port.

Q̄: Upper limit on the expected queue length of feeders.

C1i: Unit cost of departure tardiness of deep-sea vessel i.

C2i: Unit cost of schedule displacement of feeder i.

The input data also include the probability distribution of the service time of each feeder, and

we let Gi denote the mean service time of feeder i.
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Decision variables:

xibt: = 1 if deep-sea vessel i is served by berth segments b, b+ 1, . . . , b + Ri− 1 during the time

interval [t, t + Hi]; 0 otherwise.

yit: = 1 if feeder i is assigned an arrival time t; 0 otherwise.

l1i: Departure tardiness of deep-sea vessel i.

l2i: Schedule displacement of feeder i.

Random variables:

Qt(x, y): Number of feeders that are waiting for service during the time period [t, t + 1] if the

feeders are served according to a given service plan (x, y) and the feeders are allocated to the

available berths on a first-come first-served basis at the execution stage, where x = (xibt | i =

1, . . . , N1; b = 1, . . . , B; t = 0, 1, . . . , T−Hi) and y = (yit | i = 1, . . . , N2; t = 0, 1, . . . , T−1).

Mathematical programming formulation:

P : minimize

N1∑

i=1

C1il1i +

N2∑

i=1

C2il2i (1)

subject to

B−Ri+1∑

b=1

T−Hi∑

t=Ai

xibt = 1 (i = 1, . . . , N1) (2)

Ēi∑

t=Ei

yit = 1 (i = 1, . . . , N2) (3)

N1∑

i=1

min{b,B−Ri+1}
∑

b′=max{1,b−Ri+1}

min{t,T−Hi}∑

t′=max{0,t−Hi+1}

xib′t′ ≤ 1 (b = 1, . . . , B; t = 0, 1, . . . , T−1) (4)

l1i = max

{

0,

B−Ri+1∑

b=1

T−Hi∑

t=Ai

(t + Hi)xibt −Di

}

(i = 1, . . . , N1) (5)

l2i =

∣
∣
∣
∣
∣

Ēi∑

t=Ei

tyit − Si

∣
∣
∣
∣
∣

(i = 1, . . . , N2) (6)

E[Qt(x, y)]≤ Q̄ (t = 0, 1, . . . , T − 1) (7)

xibt ∈ {0, 1} (i = 1, . . . , N1; b = 1, . . . , B − Ri + 1; t = 0, 1, . . . , T −Hi) (8)

yit ∈ {0, 1} (i = 1, . . . , N2; t = 0, 1, . . . , T − 1) (9)

In objective function (1), the unit cost C1i represents the weight of the departure tardiness of

deep-sea vessel i, and the unit cost C2i represents the weight of the schedule displacement of feeder

i. Thus, objective function (1) minimizes the weighted total tardiness and schedule displacement
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of vessels. Constraint (2) ensures that each deep-sea vessel is served during the planning horizon.

Constraint (3) ensures that each feeder i arrives at the port during its feasible arrival time interval

[Ei, Ēi]. Note that if a feeder i cannot arrive earlier than its initially scheduled port arrival time

Si, then we can set Ei equal to Si. Constraint (4) ensures that each berth segment b is occupied by

at most one deep-sea vessel during each time period [t, t + 1]. This is because if b−Ri + 1 ≤ b′ ≤ b

and t−Hi + 1 ≤ t′ ≤ t, then vessel i will occupy berth segment b during the time period [t, t + 1]

when xib′t′ = 1 (i.e., when this vessel is assigned to berth segments b′, b′+1, . . . , b′+Ri−1 and time

interval [t′, t′ + Hi]). Constraint (5) determines the departure tardiness of each deep-sea vessel.

Constraints (6) determines the schedule displacement of each feeder. Constraint (7) imposes an

upper limit on the expected queue length of feeders throughout the planning horizon. Constraints

(8) and (9) specify the binary requirements of xibt and yit.

3 Solution Method

Solving problem P is highly challenging, because (i) the mathematical formulation contains a large

number of constraints and binary decision variables; and (ii) the expected queue length E[Qt(x, y)]

in constraint (7) is dependent on both the service plan (x, y) and the service time distribution of the

feeders. In fact, when N2 = 0 (i.e., there are no feeders), the problem becomes a berth allocation

problem with a minimum weighted total tardiness objective. This special case is a generalization of

the single machine scheduling problem with a minimum weighted total tardiness objective, which is

known to be strongly NP-hard (Garey and Johnson 1979, p. 237). To tackle this difficult problem P,

we develop a simulation optimization method that runs in three phases: global phase, local phase,

and clean-up phase. In the global phase, we attempt to quickly identify a set of solutions with

good estimated performance. Since the purpose of the global phase is to explore the solution space

efficiently, a relatively small simulation budget is allocated to the evaluation of visited solutions.

In the local phase, we construct a set of solution clusters using the solutions generated in the

global phase, and for each cluster we identify the most promising area, in which we use local search

to obtain a locally optimal solution. In this phase, we allow the solutions to be evaluated more

intensively, as the quality of the solutions obtained in this phase will have a higher impact on the

overall performance of the simulation optimization method. The clean-up phase selects the best

solution among the solutions generated by the local phase, and the performance of the best solution

is evaluated with high precision via simulation. Figure 1 provides a flow chart of our simulation
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Figure 1: Flow chart of the proposed three-phase simulation optimization method.

optimization method. Our method adapts the method proposed by Xu et al. (2010) for solving

discrete simulation optimization problems. Xu et al.’s method samples solutions from a given set

of candidate solutions, and thus is typically used for solving problems with relatively small solution

spaces and without complicated constraints. We extend Xu et al.’s method for solving problem

P by incorporating relaxation techniques into the method and introducing new solution sampling

strategies in the global and local phases. With these extensions, our method is able to efficiently

generate good solutions for practical problems that are usually characterized by large numbers of

decision variables.

The global phase, local phase, and clean-up phase of our method are described in Sections 3.1,

3.2, and 3.3, respectively. The simulator that we use to evaluate the performance of a solution is

presented in Section 3.4. The parameters of the algorithms used in different phases are presented

in Table 1.

3.1 Global Phase

The global phase of our simulation optimization method aims to explore the solution space and

quickly identify a set of solutions with relatively good estimated performance. This is done via

a genetic algorithm. The advantage of using a genetic algorithm is that the algorithm employs a

population-based search which considers many good solutions in parallel. Compared to iterative
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Table 1: Parameters used in each phase of the simulation optimization method.

Phase Parameter Description

Global phase s1 Population size used by the genetic algorithm

s2 No. of individual pairs selected for crossover in each iteration

µ Mutation rate
¯̀ Maximum number of iterations

n1 No. of simulation replications allocated to each new individual

n2 No. of simulation replications allocated to each individual that has been visited before

λ0 Initial value of the parameter λ of the relaxed problem P
′(λ)

ζ Step size for updating parameter λ

Local phase s3 Maximum number of solutions in each solution cluster

s4 Maximum number of solutions evaluated in each iteration

h Parameter of the adaptive hyperbox algorithm’s stopping condition

n3 No. of simulation replications allocated to each visited solution

λ̄ Value of the parameter λ used in the local phase

Clean-up phase δ Indifference zone

ε Parameter used to define the confidence level

n4 No. of simulation replications allocated to the best solution

search methods that search the solution space by considering only one solution at a time, a genetic

algorithm tends to be more robust to stochastic noise (Xu et al. 2010) and is widely used as a

component of simulation optimization (Fu el al. 2005; Xu et al. 2015; Amaran et al. 2016).

Our genetic algorithm solves a relaxed version of problem P iteratively. This relaxed problem,

which has a nonnegative parameter λ, is defined as follows:

P′(λ) : minimize

N1∑

i=1

C1il1i +

N2∑

i=1

C2il2i + λ∆ (10)

subject to ∆ = max
{

0, max
0,1,...,T−1

{
E[Qt(x, y)]

}
− Q̄

}

(11)

constraints (2)–(6) and (8)–(9)

Variable ∆ measures the extent to which constraint (7) is violated, and λ is the unit penalty on

the constraint violation. Clearly, problem P′(λ) is always feasible. We have the following property.

Property 1 If problem P is feasible, then there exists λ̂ > 0 such that any optimal solution of

problem P′(λ̂) is also optimal to problem P.

Proof: See Appendix.

Property 1 implies that problem P can be solved optimally by solving P′(λ) with a sufficiently

large λ, provided that P is feasible. Instead of solving problem P directly, our genetic algorithm

solves problem P′(λ) iteratively, where the value of λ is updated periodically. Solving P′(λ) for a

variety of λ values enables the genetic algorithm to explore a broader set of possible service plans.
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When λ is small, the service plans generated tend to have smaller tardiness and displacement costs

but be more likely to violate constraint (7). When λ is large, the service plans generated tend to be

more likely to satisfy constraint (7) but have larger tardiness and displacement costs. Both types

of service plans, however, may possess certain characteristics of a good solution that can pass onto

their offspring in the crossover process.

Let Θ denote the finite set of (x, y) values that satisfy constraints (2)–(4) and (8)–(9). For each

λ ≥ 0 and each (x, y) ∈ Θ, define

gλ(x, y) =

N1∑

i=1

C1il1i +

N2∑

i=1

C2il2i + λ∆,

where l1i, l2i, and ∆ are defined by equations (5), (6), and (11), respectively. We refer to gλ(x, y)

as the performance of the solution (x, y) for problem P′(λ). The exact value of gλ(x, y) cannot

be obtained easily because Qt(x, y) has no closed form over (x, y). However, since Qt(x, y) can

be observed through simulation experiments, we can estimate gλ(x, y) using the sample mean

of Qt(x, y) observed in multiple independent simulation replications. We let ḡλ(x, y) denote the

estimated performance of (x, y) obtained via simulation.

In a genetic algorithm, information of a solution is usually encoded into a string of numbers,

called an individual. In our implementation, each individual is a string p = (p1, . . . , pN1+N2
), which

is a permutation of the (N1 + N2)-tuple (1, . . . , N1 + N2). For each i = 1, . . . , N1 + N2, the number

pi represents deep-sea vessel pi if pi ≤ N1, and represents feeder pi −N1 if pi > N1. Furthermore,

vessel pi has a higher service priority than vessel pj if i < j. An individual p is translated into

a solution (x, y) ∈ Θ via a decoding scheme. This decoding scheme assigns berth segments and

service start times to deep-sea vessels. It also assigns arrival times to feeders by reserving some

berth space for each feeder. Let ηbt = 1 if berth segment b has been allocated to a vessel during

time period [t, t + 1], and ηbt = 0 otherwise. The decoding scheme is presented as follows:

Decoding Scheme:

Step 1: Set ηbt ← 0 for b = 1, . . . , B and t = 0, 1, . . . , T − 1. Set i← 1.

Step 2: If pi ≤ N1, then (allocate service capacity to deep-sea vessel):

Select the smallest t among {Ai, . . . , T − Hpi
} such that a b ∈ {1, . . . , B − Rpi

+ 1}

exists with
∑b+Rpi

−1

b′=b

∑t+Hpi
−1

t′=t ηb′t′ = 0. Then, select the smallest b such that
∑b+Rpi

−1

b′=b

∑t+Hpi
−1

t′=t ηb′t′ = 0. Set xpibt ← 1. Set ηb′t′ ← 1 for b′ = b, b+1, . . . , b+Rpi
−1

and t′ = t, t + 1, . . . , t + Hpi
− 1.
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Otherwise (assign arrival time to and reserve service capacity for feeder):

Select the smallest t among {Epi−N1
, . . . , T −Gpi−N1

} such that a b ∈ {1, . . . , B} exists

with
∑t+Gpi−N1

t′=t ηbt′ = 0. Then, select the smallest b such that
∑t+Gpi−N1

t′=t ηbt′ = 0. Set

t̄←







t, if t ≤ Ēpi−N1
;

Ēpi−N1
, otherwise.

Set ypi−N1,t̄ ← 1. Set ηbt′ ← 1 for t′ = t, t + 1, . . . , t + Gpi−N1
− 1.

Step 3: If i = N1 + N2, then stop. Otherwise, set i← i + 1 and go to Step 2.

This decoding scheme allocates service capacity to vessels according to the string of N1 + N2

numbers in the individual. Specifically, the decoding scheme considers each i = 1, . . . , N1 + N2. If

pi ≤ N1, then pi represents deep-sea vessel pi. In this case, the decoding scheme allocates a feasible

service start time and Rpi
consecutive berth segments to the vessel so that the departure tardiness

of the vessel is minimized. If pi > N1, then pi represents feeder pi −N1. In this case, the decoding

scheme allocates a target service start time t and a target berth segment b to feeder i based on the

feeder’s mean service time Gpi−N1
, so that feeder i can complete service as early as possible when

being served at berth segment b starting at time t. A feasible arrival time t̄ is then assigned to

the feeder, so that the waiting time of the feeder is minimized when the feeder’s service starts at

time t. Note that the decoding scheme makes use of the mean service times of feeders rather than

sampled service times; therefore, all parameters in the decoding scheme are deterministic.

Let Ω denote the set of all individuals. It is not difficult to see that by means of the decod-

ing scheme, each individual p ∈ Ω corresponds to one solution (x, y) ∈ Θ. For each p ∈ Ω, let

(x(p), y(p)) denote the solution obtained by applying the decoding scheme on individual p. The

fitness of each individual p ∈ Ω is defined as 1/gλ(x(p), y(p)) and is estimated by 1/ḡλ(x(p), y(p)).

Note that ḡλ(x(p), y(p)) can be obtained by running simulation experiments on the solution

(x(p), y(p)). The genetic algorithm, which aims to identify a subset of individuals that result

in solutions of P with small tardiness and displacement costs of vessels, is described as follows:

Genetic Algorithm:

Step 1 (Initialization): Set `← 1 and λ← λ0. Generate an initial population with s1 individuals.

Each individual p is generated randomly as follows: For each i = 1, . . . , N1 + N2, select an

available position from p with all available positions being selected with equal probability,

and insert i into the selected position.
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Step 2 (Crossover): Randomly select s2 pairs of distinct individuals from the current popula-

tion with equal probability. For each pair of individuals p = (p1, . . . , pN1+N2
) and p̄ =

(p̄1, . . . , p̄N1+N2
), generate two numbers j and j ′ randomly from {1, . . . , N1 +N2} with equal

probability, where j < j ′. Set

q← (0, . . . , 0
︸ ︷︷ ︸

j−1 times

, pj, pj+1, . . . , pj′ , 0, . . . , 0
︸ ︷︷ ︸

N1+N2−j′ times

) and q̄← (0, . . . , 0
︸ ︷︷ ︸

j−1 times

, p̄j, p̄j+1, . . . , p̄j′ , 0, . . . , 0
︸ ︷︷ ︸

N1+N2−j′ times

).

For i = 1, . . . , N1 + N2, if p̄i is not in q then replace the first 0 in q with p̄i, and if pi is not

in q̄ then replace the first 0 in q̄ with pi. Add q and q̄ to the population.

Step 3 (Mutation): For each individual p = (p1, . . . , pN1+N2
) in the current population, generate

a real number µ̂ from a uniform distribution on [0, 1]. If µ̂ ≤ µ, then randomly select two

distinct numbers j and j ′ from {1, . . . , N1 + N2} with equal probability. Swap the positions

of pj and pj′ in p.

Step 4 (Evaluation): For each individual p in the current population, if the individual has been eval-

uated previously, then perform n2 additional simulation replications on solution (x(p), y(p));

otherwise perform n1 simulation replications on solution (x(p), y(p)). Set the fitness of in-

dividual p to be the cumulative sample mean of the solution performance obtained in all

replications.

Step 5 (Selection): Sort the individuals of the current population in descending order of fitness.

Keep the first s1 individuals, and discard the other individuals.

Step 6 (Update λ): If ` = ¯̀, then stop. Otherwise, set ` ← ` + 1. Consider the first individual p

in the sorted individual list. If the estimated value of max0,1,...,T−1

{
E[Qt(x(p), y(p))]

}
is

greater than Q̄, then set λ← (1 + ζ)λ. Go to Step 2.

This genetic algorithm starts with a small λ value. When λ is relatively small, the genetic

algorithm focuses on searching for solutions that have small vessel tardiness and displacement

costs. If the best individual found so far corresponds to a solution of problem P′(λ) that violates

constraint (7), then the value of λ will be increased in the next iteration so that heavier emphasis

will be given to the satisfaction of constraint (7). This process is executed repeatedly until the

number of iterations reaches the upper limit ¯̀.

3.2 Local Phase

When the global phase terminates, we obtain a list of (x, y) values. These (x, y) values will be used

to initialize the local phase. Unlike the global phase, which diversifies the population of individuals
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by solving the relaxed problem P′(λ) with various λ values, the local phase aims to intensify the

search for near-optimal solutions of problem P′(λ̄), where λ̄ is a large input parameter. Note that

if λ̄ is sufficiently large, then an optimal solution of problem P′(λ̄) is also optimal to problem P

(see Property 1).

Let S denote the list of (x, y) values passed onto the local phase, sorted in ascending order

of their estimated performance ḡλ̄(x, y). Let (xj, yj) denote the jth element in the sorted list

S. For each (x, y) ∈ Θ, define a vector of integer values (e1(x); e2(x); e3(y)), in which e1(x) =

(e11(x), . . . , e1N1
(x)), e2(x) = (e21(x), . . . , e2N1

(x)), and e3(y) = (e31(y), . . . , e3N2
(y)), where

e1i(x) =

B−Ri+1∑

b=1

T−Hi∑

t=0

bxibt and e2i(x) =

B−Ri+1∑

b=1

T−Hi∑

t=0

txibt

for i = 1, . . . , N1, and

e3i(y) =

Ēi∑

t=Ei

tyit

for i = 1, . . . , N2. Note that e1i(x) is the first berth segment allocated to deep-sea vessel i, e2i(x)

is the service start time of deep-sea vessel i, and e3i(y) is the arrival time of feeder i.

We define the distance between any two solutions (xj, yj), (xj′, yj′) ∈ Θ as

djj′ =

√
√
√
√

N1∑

i=1

[
e1i(xj)− e1i(xj′)

B

]2

+

N1∑

i=1

[
e2i(xj)− e2i(xj′)

T

]2

+

N2∑

i=1

[
e3i(yj)− e3i(yj′)

T

]2

,

which is the Euclidean distance between the normalized vectors
(
e1(xj )

B
;
e2(xj )

T
;
e3(yj)

T

)
and

(e1(xj′ )

B
;

e2(xj′ )

T ;
e3(yj′ )

T

)
. The local phase is initialized with a set of solution clusters obtained by partitioning

solution list S. The solution clusters are generated in such a way that the number of solutions in

each cluster is no greater than s3, and that for each cluster, the distance between the best solution

in the cluster and any other solution in the same cluster is relatively small. This solution clustering

method is similar to the one used by Xu et al. (2010) in their Industrial Strength COMPASS which

has been shown to have competitive performance. The procedure for generating solution clusters

is given as follows, in which Au denotes the uth cluster generated:

Cluster Generation Procedure:

Step 1: Set u← 1.

Step 2: Set j ← min{l | (xl, yl) ∈ S}. Create a new cluster Au ← {(xj, yj)}. Set S ← S\{(xj, yj)}.

Step 3: If |Au| < s3 and S 6= ∅, then let k be the element of S that has the smallest djk value (ties

broken arbitrarily), set Au ← Au ∪ {(xk, yk)}, set S ← S \ {(xk, yk)}, and repeat Step 3.
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Step 4: If S = ∅, then stop. Otherwise, set u← u + 1 and go to Step 2.

For each solution cluster Au generated by this procedure, we apply local search to identify a

locally optimal solution. We use the adaptive hyperbox algorithm developed by Xu et al. (2013) as

the local search method. The adaptive hyperbox algorithm is a locally convergent random search

algorithm that has a special neighborhood structure called the most promising area, which was

initially proposed by Hong and Nelson (2006). The algorithm randomly samples solutions from

the most promising area and then updates the most promising area using the visited solutions.

This process is executed repeatedly until the solutions converge or some predetermined stopping

conditions are satisfied.

Consider any solution cluster Au. Let (x∗, y∗) be the best sampled solution in Au; that is,

(x∗, y∗) = arg min(x,y)∈Au
{ḡλ̄(x, y)}. For notational convenience, we denote

(e1; e2; e3) = ((e11, . . . , e1N1
); (e21, . . . , e2N1

); (e31, . . . , e3N2
)) = (e1(x); e2(x); e3(y))

and

(e∗1; e
∗
2; e

∗
3) = ((e∗11, . . . , e

∗
1N1

); (e∗21, . . . , e
∗
2N1

); (e∗31, . . . , e
∗
3N2

)) = (e1(x
∗); e2(x

∗); e3(y
∗)).

For any set V of integer vectors (e1; e2; e3), let

L1i =







max(e1;e2;e3)∈V{e1i | e1i < e∗1i}, if exists;

1, otherwise;
(12)

U1i =







min(e1;e2;e3)∈V{e1i | e1i > e∗1i}, if exists;

B −Ri + 1, otherwise;
(13)

L2i =







max(e1;e2;e3)∈V{e2i | e2i < e∗2i}, if exists;

Ai, otherwise;
(14)

and

U2i =







min(e1;e2;e3)∈V{e2i | e2i > e∗2i}, if exists;

T −Hi + 1, otherwise;
(15)

for i = 1, . . . , N1. For any V , let

L3i =







max(e1;e2;e3)∈V{e3i | e3i < e∗3i}, if exists;

Ei, otherwise;
(16)
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and

U3i =







min(e1;e2;e3)∈V{e3i | e3i > e∗3i}, if exists;

Ēi, otherwise;
(17)

for i = 1, . . . , N2. The quantity L1i is the e1i value, among the e1i values of those elements of V ,

that is the closest to e∗1i but is smaller than e∗1i (if such an e1i value exists). Similarly, U1i is the e1i

value, among the e1i values of those elements of V , that is the closest to e∗1i but is larger than e∗1i

(if such an e1i value exists). The quantities L2i, U2i, L3i, and U3i can be interpreted in a similar

fashion. The hyperbox containing (e∗1; e
∗
2; e

∗
3) is

H=
{
(e1; e2; e3)

∣
∣L1i ≤ e1i ≤ U1i; L2i ≤ e2i ≤ U2i; L3j ≤ e3j ≤ U3j; 1 ≤ i ≤ N1; 1 ≤ j ≤ N2

}
. (18)

In other words, H is a (2N1 + N2)-dimensional hyperrectangle. The two boundaries of the first

N1 dimensions are L1i and U1i (i = 1, . . . , N1); the two boundaries of the next N1 dimensions are

L2i and U2i (i = 1, . . . , N1); and the two boundaries of the other N2 dimensions are L3j and U3j

(j = 1, . . . , N2). Hyperbox H contains vectors (e1; e2; e3), which represent the solutions by the

deep-sea vessels’ first berth segments, the deep-sea vessels’ service start times, and the feeders’

arrival times.

Let Z
2N1+N2 denote the (2N1+N2)-dimensional integer space. The set H∩Z

2N1+N2 is the most

promising area in which the adaptive hyperbox algorithm focuses on sampling solutions. Note that

in a straightforward implementation of the adaptive hyperbox algorithm, the hyperbox is defined

over the binary vectors (x, y) instead of the integer vectors (e1; e2; e3). Our implementation of

the adaptive hyperbox algorithm using the integer vectors (e1; e2; e3) is advantageous over the

straightforward implementation in the following aspects: (i) the dimension of the hyperbox is

reduced from N1BT + N2T to 2N1 + N2, leading to a much smaller space in which the adaptive

hyperbox algorithm samples solutions; and (ii) the difference between the values of two solutions

that are close to each other is relatively small when the integer vectors are used, leading to low

variability of solution values and smoother convergence of the adaptive hyperbox algorithm.

The adaptive hyperbox algorithm iteratively updates V and H, and selects integer vectors

randomly from H ∩ Z
2N1+N2 in each iteration. Initially, we set V to

V0 =
{
(e1; e2; e3)

∣
∣ (x, y) ∈ Au

}
.

Given any integer vector (e1; e2; e3) ∈ H ∩ Z
2N1+N2 , the corresponding solution (x, y) can be

obtained as follows: For each i = 1, . . . , N1, each b = 1, . . . , B, and each t = 0, 1, . . . , T − 1, let
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xibt = 1 if b = e1i and t = e2i, and let xibt = 0 otherwise. For each i = 1, . . . , N2 and each

t = 0, 1, . . . , T , let yit = 1 if t = e3i, and let yit = 0 otherwise. Note that the solution (x, y)

generated from (e1; e2; e3) may violate constraint (4), and a solution refinement subroutine (to be

described later) is needed to obtain a feasible solution.

Our implementation of the adaptive hyperbox algorithm is described below:

Adaptive Hyperbox Algorithm:

Step 1: Determine (x∗, y∗), (e∗1; e
∗
2; e

∗
3), and V0. Set V ← V0.

Step 2: Determine H using equations (12)–(18). Randomly generate s4 integer vectors from

H∩Z
2N1+N2 . Each integer vector (e1; e2; e3) is generated as follows: For each i = 1, . . . , N1,

generate e1i and e2i uniformly from {L1i, L1i+1, . . . , U1i} and {L2i, L2i+1, . . . , U2i}, respec-

tively. For each i = 1, . . . , N2, generate e3i uniformly from {L3i, L3i + 1, . . . , U3i}. Remove

duplicates from the generated integer vectors. Let T be the set of the remaining integer

vectors. Set V ← V ∪ T .

Step 3: For each (e1; e2; e3) ∈ V , obtain the corresponding solution (x, y). If (x, y) satisfies

constraint (4), then set Au ← Au ∪ {(x, y)}. Perform n3 simulation replications on solution

(x, y), and set ḡλ̄(x, y) to be the cumulative sample mean of gλ̄(x, y) among all simulation

replications (including the replications performed in previous iterations).

Step 4: Determine (x∗, y∗) = arg min(x,y)∈Au
{ḡλ̄(x, y)}. Determine (e∗1; e

∗
2; e

∗
3). If the stopping

condition is satisfied, then stop; otherwise, go to Step 2.

Xu et al. (2013) have shown that when solutions are uniformly and independently sampled from

the most promising area in each iteration, the adaptive hyperbox algorithm is locally convergent;

that is, the sequence of solutions generated by the algorithm converges with probability 1 to a

locally optimal solution that is not worse than any of its neighbor solutions in the most promising

area. In Step 2 of our implementation, the solutions are generated from the integer vectors that

are sampled uniformly and independently from H ∩ Z
2N1+N2. Hence, our implementation of the

adaptive hyperbox algorithm is also locally convergent (i.e., the sequence of solutions generated

converges with probability 1 to a locally optimal solution of problem P′(λ̄)) as the number of

iterations approaches infinity. However, in practice, stopping conditions are needed to terminate

the algorithm at some point. In our implementation, the algorithm is terminated when the current

best solution (x∗, y∗) is unchanged for h consecutive iterations. The solution (x∗, y∗) is then treated

as the optimal solution for cluster Au.
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We observe from preliminary computational results that Step 3 of the adaptive hyperbox al-

gorithm frequently generates solutions that violate constraint (4). To improve the quality of the

solutions generated in Step 3, we develop a solution refinement subroutine. When a solution gener-

ated in Step 3 violates constraint (4), there are multiple deep-sea vessels occupying a berth segment

simultaneously. In such a situation, we select one of these deep-sea vessels and reassign a service

start time to the selected vessel, so that no conflicts will be incurred between the selected vessel

and any other vessels. This process is executed repeatedly until all conflicts are resolved. Details

of the solution refinement subroutine are provided in the Appendix.

We execute the adaptive hyperbox algorithm with the solution refinement subroutine for each

of the solution clusters Au generated by the cluster generation procedure. Therefore, at the end of

the local phase, we obtain m locally optimal solutions, where m is the number of solution clusters

generated by the cluster generation procedure. We then execute a clean-up phase to determine the

best solution among the m locally optimal solutions.

3.3 Clean-up Phase

At the beginning of the clean-up phase, there are m candidate solutions. If m = 1, then we deter-

mine accurately whether the solution satisfies constraint (7) (and is therefore feasible to problem P)

with more simulation runs. Otherwise, we need to determine accurately whether the m solutions

are feasible to problem P and choose the best solution among the feasible solutions. This requires

intensive evaluation of the expected queue lengths of the feeders in the solutions.

When the number of candidate solutions is large, evaluating each solution with high precision

would require an unaffordable amount of simulation budget. One commonly used method for de-

termining the best solution in a clean-up phase is the ranking-and-selection method proposed by

Boesel et al. (2003) which aims to minimize the number of simulation replications while ensuring

that the selected solution is better than the other alternatives by at least δ with probability at

least 1− ε, where δ is called the indifference zone and 1− ε is the desired confidence level. Given

the indifference zone, the confidence level, the number of simulation replications previously per-

formed on each solution, and the variation of solution performance obtained in previous simulation

replications, the ranking-and-selection method determines the number of additional replications

that need to be allocated to each solution, and chooses the solution that has the best cumula-

tive average performance after all additional replications are performed. In our implementation of

the clean-up phase, if m > 1, then we select the best solution among the m candidate solutions
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using the ranking-and-selection method. When applying the ranking-and-selection method, the

performance of each candidate solution (x, y) is measured by gλ̄(x, y), which is estimated using

ḡλ̄(x, y). When there is only one solution left, we evaluate the solution by running n4 additional

simulation replications, where n4 is a large input parameter, so that the solution is evaluated with

high precision. Let Q̂max(x
∗, y∗) be the sample mean of maxt=0,1,...,T−1{Qt(x

∗, y∗)} generated for

the best solution (x∗, y∗) using n4 simulation replications. The best solution (x∗, y∗) is deemed as

feasible to problem P if Q̂max(x
∗, y∗) ≤ Q̄, in which case the solution value obtained for problem

P is g0(x
∗, y∗), and is deemed as infeasible to problem P otherwise.

3.4 The Simulator

For any solution (x, y) ∈ Θ, we may use discrete-event simulation to determine the objective

function value of (x, y) and to determine whether (x, y) satisfies constraint (7). In our discrete-

event simulation, the events are feeder-arrival and vessel-departure. The feeder-arrival event is

triggered whenever a feeder arrives at the port, and the vessel-departure event is triggered whenever

a deep-sea vessel or feeder finishes service at the port. Note that the arrival times of feeders are

given by the values of the yit variables, and the time intervals during which each berth segment is

reserved for deep-sea vessels can be derived using the values of the xibt variables. When a feeder i

arrives, say at time t, the feeder joins the queue, and the service time of the feeder τi is observed

(by sampling). If the feeder is in the first place of the queue and there exist some berth segments

that are not reserved for any deep-sea vessels during the time interval [t, t + τi], then the feeder

will be served immediately; otherwise, the feeder will wait in the queue. When vessel-departure

occurs, some berth segments are released. If there exist some feeders in the queue at the moment,

then the feeders will be assigned to the released berth segments according to the first-come first-

served discipline described in Section 2. The discrete-event process is terminated when all the

vessels are served and the port becomes empty. Each run of the discrete-event simulation results

in an observation of Qt(x, y) for t = 0, 1, . . . , T − 1. The values of E[Qt(x, y)] and gλ(x, y) can be

estimated by running the simulation multiple times and taking the sample mean of multiple runs.

4 Computational Experiments

The computational experiments are designed for the following purposes. First, we would like to

evaluate the computational performance of the simulation optimization method for solving problem

instances of realistic sizes. For this purpose, we generate problem instances based on the operational
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data of the Yangshan Deep-water Port in Shanghai, and compare the computational performance of

our simulation optimization method with the performances of some benchmark methods. We also

evaluate the effectiveness of the solution refinement subroutine in the local phase of our method.

Since users of our simulation optimization method may want to set different queue length limits for

feeders under different situations (e.g., different weather conditions), our second goal is to examine

how the computational results are affected as the value of Q̄ varies. Our third goal is to evaluate the

benefits of controlling the queue length of feeders when making berth plans. For this purpose, we

analyze the solutions obtained by the current practice of the port operators that ignore the queue

length restriction, and compare the solutions with those obtained by our simulation optimization

method.

All algorithms were implemented in C#.Net and run on a computer with a 64-bit Intel i7-6700

3.40GHz CPU and 32GB of RAM.

4.1 Problem Instances and Algorithm Parameters

We generate test instances based on the operational data of the Yangshan Deep-water Port in

Shanghai. Table 2 presents the statistics of the operational data of year 2016 at the port. For each

month of the year, the following statistics are presented:

• Vess Num: Number of deep-sea vessels served.

• Feed Num: Number of feeders served.

• Vess Len Min, Vess Len Max, Vess Len Avg: Minimum, maximum, and average lengths (in

meters) of deep-sea vessels.

• Feed Len Min, Feed Len Max, Feed Len Avg: Minimum, maximum, and average lengths (in

meters) of feeders.

• Vess Time Min, Vess Time Max, Vess Time Avg: Minimum, maximum, and average service

times (in hours) of deep-sea vessels.

• Feed Time Min, Feed Time Max, Feed Time Avg: Minimum, maximum, and average service

times (in hours) of feeders.

It can be observed from Table 2 that the number of feeders served in the port is significantly

larger than the number of deep-sea vessels. The average numbers of deep-sea vessels and feeders

served monthly are 377.3 and 1146.9, respectively, indicating that the daily average numbers of

deep-sea vessels and feeders served are 12.6 and 38.2, respectively. In each of our test instances, the

number of deep-sea vessels and the number of feeders are set to N1 = 25 and N2 = 80, respectively,
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Table 2: Monthly statistics of the operational data for 2016 at the Yangshan Deep-water Port∗

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

Vess Num 381 356 403 382 376 396 411 398 360 363 344 357 377.3
Feed Num 1158 1061 1058 1122 1241 1162 1211 1250 1161 1104 1104 1131 1146.9
Vess Len Min 224.0 228.0 228.0 228.0 228.0 228.0 209.0 228.0 228.0 222.0 222.0 207.0 223.3
Vess Len Max 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0
Vess Len Avg 308.1 307.4 312.5 312.8 312.8 316.6 314.5 319.6 318.3 321.0 321.2 320.9 315.5
Feed Len Min 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
Feed Len Max 140.0 140.0 157.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 141.4
Feed Len Avg 96.0 96.1 97.3 95.4 95.2 96.6 96.2 96.1 95.1 95.7 96.1 97.0 96.1
Vess Time Min 6.2 5.3 5.2 5.5 5.6 6.0 5.5 6.0 5.1 5.2 5.5 5.6 5.6
Vess Time Max 37.5 35.8 35.5 33.4 35.7 30.1 28.3 35.7 32.0 35.5 35.5 32.7 34.0
Vess Time Avg 14.8 13.2 14.8 14.1 14.3 13.3 14.7 14.9 15.3 16.8 16.8 16.9 15.0
Feed Time Min 0.4 0.4 0.7 0.6 0.2 0.7 0.2 0.3 0.3 0.5 0.2 0.5 0.4
Feed Time Max 10.0 8.2 9.7 8.1 9.7 9.2 9.1 8.6 9.0 9.1 9.7 8.5 9.1
Feed Time Avg 2.8 3.4 4.2 3.2 3.8 4.0 3.2 3.5 4.2 4.5 3.8 4.0 3.7

∗These statistics are obtained by ignoring data entries that are either improperly recorded or recorded under
abnormal situations (e.g., long vessel service times caused by equipment breakdowns).

which reflect the number of service requests over two days. The reason for using such a parameter

setting is that accurate throughput information of deep-sea vessels usually becomes available two

days before the vessels arrive at the port. The length of each time period of the planning horizon

is set to 1 hour. The length of the planning horizon is set to T = 72 (i.e., 3 days), which is long

enough to ensure service completion of all vessels.

Since the port has a quaywall of 5600 meters, we set the number of berth segments to B = 40,

so that each berth segment is 140 meters long, which can accommodate most feeders. The length

of each deep-sea vessel ranges between 207 meters and 400 meters. Since the lengths of deep-

sea vessels are modeled as multiples of the length of each feeders, we generate the length of each

deep-sea vessel i by Ri = d αi

140e, where αi is a real number generated uniformly from [207, 400].

The mean service time of deep-sea vessels over the year is 15.0 hours, and the variance of deep-

sea vessel service times is 40.8. Hence, we generate the service time Hi of each deep-sea vessel i using

a normal distribution with mean 15.0 and variance 40.8. When generating the value of Hi, we round

the sampled value up to the nearest positive integer. In order to evaluate the impact of the feeder

service time variance on the solution of problem P, we generate test instances with three different

probability distributions of the feeder service times, where the three probability distributions differ

from each other only in the variance. The mean service time of feeders over the year is 3.7 hours,

and the variance of the feeder service times is 5.2. Hence, our first probability distribution is a

normal distribution with mean 3.7 and variance 2.6, our second probability distribution is a normal

distribution with mean 3.7 and variance 5.2, and our third probability distribution is a normal

distribution with mean 3.7 and variance 7.8. When sampling feeder service times, we truncate the

23



Table 3: Parameter values used in the computational study.
Low service time variance Medium service time variance High service time variance

Problem Service time Problem Service time Problem Service time
set Q̄ variance set Q̄ variance set Q̄ variance

L1 5 2.6 M1 5 5.2 H1 5 7.8
L2 10 2.6 M2 10 5.2 H2 10 7.8
L3 15 2.6 M3 15 5.2 H3 15 7.8
L4 20 2.6 M4 20 5.2 H4 20 7.8
L5 25 2.6 M5 25 5.2 H5 25 7.8

normal distributions so that the sampled service times are nonnegative.

We generate the port arrival time Ai of each deep-sea vessel i uniformly from {0, 1, . . . , 48}, and

set the target departure time to Di = Ai +Hi. We generate the initially scheduled port arrival time

Si of each feeder i uniformly from {0, 1, . . . , 48}. A maximum displacement of 12 hours on each

feeder arrival time is normally acceptable for port operators. We therefore set the earliest allowed

arrival time of each feeder i to Ei = max{0, Si−12}, and set the latest allowed arrival time of each

feeder i to Ēi = Si + 12. Since deep-sea vessels have a higher service priority than feeders, we set

the value of C1i to 5 for each i = 1, . . . , N1, and set the value of C2i to 1 for each i = 1, . . . , N2.

We consider five different feeder queue length limits by setting Q̄ to 5, 10, 15, 20, and 25. As

mentioned above, we consider three different feeder service time variances. Thus, there are 15 prob-

lem sets. For each problem set, we generate 10 random instances. Hence, there are 150 instances

in total. Table 3 summarizes the configurations of the problem sets used in our computational

experiments. We have conducted a preliminary computational study to test the convergence of our

simulation optimization method on various instances of problem sets L3, M3, and H3 using differ-

ent combinations of parameter values. For example, we have tested the simulation optimization

method by setting s1 and s2 between 60 and 140; and setting s3 between 10 and 35. The param-

eter values that enable the simulation optimization method to achieve a relatively good balance

between effectiveness and efficiency are chosen for the computational experiments. The values of

the parameters used in our simulation optimization method are shown in Table 4.

4.2 Benchmark Methods

To evaluate the computational performance of our simulation optimization method, we introduce

three benchmark methods and compare the performance of our method with those of the benchmark

methods. The first benchmark method, denoted BM1, executes only the global phase of our

simulation method. Thus, BM1 is a pure genetic algorithm. Using BM1 as benchmark method

enables us to evaluate how much the local phase of our simulation optimization method can improve
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Table 4: Parameter values used in the simulation optimization method.
Phase Parameter Value

Global phase s1 100
s2 100
µ 0.1
¯̀ 60

n1 20
n2 5
λ0 100
ζ 0.5

Local Phase s3 20
s4 85
h 10
n3 50
λ̄ 105

Clean-up phase δ 1
ε 0.05

n4 3000

the solutions obtained by the global phase. The second benchmark method, denoted BM2, ignores

uncertainties by making use of the mean service times of feeders. Specifically, BM2 executes only

the global phase of our simulation method, but it evaluates the performance of each solution using

the mean service times of feeders rather than the sampled service times. The purpose of using BM2

as benchmark method is to investigate whether it is important to consider uncertainties of feeders’

service times when evaluating the performance of each solution. The third benchmark method,

denoted BM3, also executes only the global phase of our simulation method, but it evaluates

solutions accurately by consuming a large amount of simulation budget. We use the same simulation

budget as in Han et al. (2010), and allocate 750 simulation replications to each solution that needs

to be evaluated by BM3. The purpose of using BM3 as benchmark method is to investigate whether

the simulation budget allocation strategy (i.e., allocating different amounts of simulation budget to

different search phases) of our simulation optimization method is more effective than the traditional

one. For each benchmark method, we execute a clean-up phase to choose the best solution among

the solutions generated at the last iteration.

4.3 Comparison with Benchmark Methods

In this subsection, we evaluate the computational performance of the simulation optimization

method for instances with a medium queue length limit. We solve test instances of problem sets

L3, M3, and H3 using the simulation optimization method and the three benchmark methods (i.e.,

BM1, BM2, and BM3). We run each of the solution methods five times for each test instance,

and record the computational results obtained in each run. Table 5 summarizes the computational
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Table 5: Computational results for instances of problem sets L3, M3, and H3
Simulation optimization BM1 BM2 BM3

Instance Min Max Avg Time Min Max Avg Time Min Max Avg Time Min Max Avg Time

L3.1 227 257 245.4 1093.7 281 317 285.2 381.6 277 344 287.0 171.6 231 282 240.2 29859.8
L3.2 217 244 232.8 1710.1 255 304 270.4 458.0 273 342 295.4 106.1 227 270 243.8 28342.0
L3.3 173 199 186.2 1639.2 187 234 212.2 455.0 212 282 225.4 162.8 175 184 179.2 26385.8
L3.4 201 222 211.0 1271.5 222 281 240.4 489.1 269 363 296.8 145.5 198 231 222.0 26180.9
L3.5 294 315 306.4 1555.8 296 381 348.6 364.4 327 479 360.8 97.0 302 352 326.2 27289.3
L3.6 151 186 160.2 1605.8 175 213 185.2 495.4 177 289 218.6 165.3 166 187 181.6 28657.1
L3.7 201 231 217.0 1334.7 215 263 232.6 441.1 216 312 280.4 197.6 195 223 203.4 25809.8
L3.8 145 184 160.4 1376.1 169 257 214.8 525.2 197 272 219.0 199.5 171 238 200.8 26349.4
L3.9 226 252 235.6 1565.6 211 288 257.0 459.3 260 378 340.2 100.7 217 267 240.2 31285.9
L3.10 160 194 179.4 1480.4 180 228 204.6 435.6 171 322 213.6 103.3 168 207 189.4 25525.7
Avg 199.5 228.4 213.4 1463.3 219.1 276.6 245.1 450.5 237.9 338.3 273.7 144.9 205.0 244.1 222.7 27568.6

M3.1 327 376 354.2 1275.9 354 434 412.0 427.9 440 493 456.2 197.0 337 388 377.4 30084.5
M3.2 255 303 277.4 1558.2 280 345 309.4 446.2 300 450 368.0 135.0 257 343 292.2 27420.4
M3.3 286 305 299.0 1683.2 292 351 318.6 442.1 343 423 360.6 154.7 284 329 287.6 24654.0
M3.4 299 319 312.8 1390.3 320 383 335.8 391.5 373 491 417.8 128.0 288 374 312.6 25551.4
M3.5 357 396 368.2 1592.6 386 467 418.0 359.3 388 532 424.6 103.5 351 424 371.2 27359.9
M3.6 252 288 272.6 1691.0 298 340 306.4 524.0 249 341 287.8 165.3 264 313 281.0 27730.6
M3.7 225 265 242.8 1531.2 247 343 271.8 473.9 245 397 330.4 184.0 224 303 251.8 25891.4
M3.8 280 310 297.6 1565.9 309 386 346.0 465.0 343 417 352.2 200.2 313 358 338.4 26420.9
M3.9 238 271 263.2 1377.2 264 336 305.2 451.1 295 384 346.4 125.7 253 303 285.6 31152.8
M3.10 257 286 272.4 1411.3 269 320 294.2 405.7 277 403 317.8 140.2 257 282 274.6 27863.7
Avg 277.6 311.9 296.0 1507.7 301.9 370.5 331.7 438.7 325.3 433.1 366.2 153.4 282.8 341.7 307.2 27413.0

H3.1 488 552 538.2 1593.6 525 628 589.4 472.1 634 671 651.6 149.9 518 557 546.2 29756.8
H3.2 351 423 367.4 1613.5 372 465 404.8 569.0 395 576 455.0 105.4 348 448 390.8 28422.8
H3.3 427 447 436.4 1745.6 440 495 466.2 457.3 462 577 513.2 199.4 415 464 429.4 26520.5
H3.4 497 522 515.8 1922.7 497 604 512.6 480.2 572 725 626.0 132.3 473 562 501.4 26106.6
H3.5 484 556 506.6 1632.2 496 591 523.4 550.3 532 668 552.2 118.8 493 584 507.8 28578.7
H3.6 357 398 385.4 1736.4 377 452 420.2 459.8 355 419 398.8 152.6 366 426 394.4 29151.4
H3.7 342 401 375.8 1880.7 372 521 400.6 463.4 371 536 462.2 180.7 322 454 387.2 24283.9
H3.8 400 434 431.2 1858.0 355 508 478.8 416.1 459 546 477.4 213.5 416 458 429.4 27789.3
H3.9 376 432 415.2 1695.9 419 476 461.4 496.8 463 555 486.4 136.5 397 470 442.6 30654.1
H3.10 423 471 439.4 1670.5 438 501 457.4 542.6 432 549 473.2 119.4 421 462 456.4 26106.7
Avg 414.5 463.6 441.1 1734.9 429.1 524.1 471.5 490.8 467.5 582.2 509.6 150.9 416.9 488.5 448.6 27737.1

results. For each solution method and each test instance, the “Min,” “Max,” and “Avg” columns

in Table 5 report the minimum solution value, the maximum solution value, and the average solu-

tion value, respectively, among the five independent runs. The “Time” column reports the average

computation time (in seconds) of the five runs.

From Table 5, we observe that the average solution values of the simulation optimization method

are smaller than those of BM1. This indicates that the local phase of the simulation optimization

method improves the solutions generated by the global phase. We also observe from the “Time”

columns that the computation time of the simulation optimization method is much longer than

that of BM1. This is due to the fact that in the simulation optimization method, the local phase

uses a larger simulation budget than the global phase in order to evaluate the performance of

solutions more accurately. The running time of BM2 is much shorter than that of the simulation

optimization method. However, the average solution values of BM2 are consistently larger than
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those of the simulation optimization method, indicating that the solutions generated by BM2 are

inferior to those generated by the simulation optimization method. This is expected, since the

short computation time of BM2 is achieved at the cost of ignoring the uncertainties of feeder

service times, which makes the evaluation of solution performance efficient, but which can result

in significant errors in the estimation of solution values. On the other hand, BM3 generates better

solutions than BM1 and BM2 (see the “Avg” values in Table 5). Since BM3 generates solutions

using the same genetic algorithm as that used by BM1 and BM2 but consumes substantially larger

computation budget than BM1 and BM2, BM3 estimates solution values more accurately than

BM1 and BM2 in each iteration, and is therefore able to generate better solutions. However,

because BM3 consumes a large amount of simulation budget, its computation usually requires

several hours. Compared to BM3, the simulation optimization method generates better solutions

with a considerably smaller amount of computation effort. The reason for the superiority of the

proposed simulation optimization method over BM3 is that BM3 is a pure genetic algorithm that

searches solutions within a truncated solution space defined by the encoding scheme, whereas

the simulation optimization method enhances the genetic algorithm by applying a local search

phase that extends the search space using a hyperbox. Hence, the simulation optimization method

outperforms the benchmark methods in minimizing the tardiness and displacement cost of vessels.

Another observation from Table 5 is that the solution values obtained by the simulation opti-

mization method in multiple runs do not show high variations, whereas the solution values obtained

by the benchmark methods in multiple runs vary considerably. For example, the gap between the

“Min” and “Max” values of the simulation optimization method for instance L3.10 is 34, whereas

the gaps resulting from BM1, BM2, and BM3 for the same instance are 48, 151, and 39, respectively.

This indicates that the simulation optimization method is more robust than the benchmark meth-

ods in terms of solution quality. Recall that problem sets L3, M3, and H3 differ from each other only

in the variance of feeder service times. Comparing the results obtained for different problem sets,

we observe that the solution values tend to increase as the feeder service time variance increases.

This is because when the feeders have a higher uncertainty in service time, the solutions tend to

reserve longer berthing times for feeders, incurring larger departure tardiness for deep-sea vessels,

which increases the overall solution values. The difference in solution values between instances with

different feeder service time variances reflects the value of information generated by more accurate

feeder service time estimates. Hence, one possible way for the port operator to improve the vessel

service is to increase the accuracy of the feeder service time. For example, the port operator can
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invest in advanced information technologies, so that more demand information about the feeders

can be obtained before the berth planning takes place.

4.4 Effectiveness of the Solution Refinement Subroutine

In the local phase of the simulation optimization method, we enhance the adaptive hyperbox al-

gorithm using a solution refinement subroutine, which aims to restore feasibility of any infeasible

solution generated by the adaptive hyperbox algorithm. In this subsection, we compare the perfor-

mance of the enhanced adaptive hyperbox algorithm (EAHA) with that of the unenhanced adaptive

hyperbox algorithm (UAHA). Figure 2 shows the convergence behavior of three EAHA runs and

three UAHA runs when solving problem instance M3.1 and the proportion of solutions refined by

EAHA in each iteration. In Figure 2, each run of EAHA and UAHA is initialized with a solution

cluster generated by the global phase of the simulation optimization method. When using UAHA,

Figure 2: EAHA versus UAHA.

each infeasible solution generated by the adaptive hyperbox algorithm is assigned an infinite cost.

From Figure 2(a), we observe that EAHA takes more iterations to stop than UAHA, but the so-

lution values generated by EAHA are better than those generated by UAHA. The reason for the

relatively poor performance of UAHA is that UAHA frequently generates infeasible solutions in

each iteration. These infeasible solutions provide little information useful for constructing a hy-

perbox that contains good solutions in the next iteration. As can be observed from Figure 2(b), a

large proportion of infeasible solutions are generated from the hyperbox at the first iteration, and

thus the solution refinement subroutine needs to be executed frequently to improve the solutions.

In the later iterations of EAHA, the proportion of infeasible solutions generated from the hyperbox

decreases gradually. Hence, the solution refinement subroutine is effective in improving the perfor-
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mance of the adaptive hyperbox algorithm when solving the berth allocation and arrival scheduling

problem.

4.5 Quay Utilization Rate

In this subsection, we analyze the quay utilization rates of the solutions generated by the simulation

optimization method. The quay utilization rate, which is the ratio of the amount of occupied quay

space to the amount of available quay space, is an important performance metric for evaluating the

productivity of a container port. We compute the average quay utilization rate for each time period

of the planning horizon using the solutions generated by simulation optimization for problem set

M3. Note that our model adopts a discretized quay space setting and assumes that the length of

each vessel is a multiple of the length of each berth segment. This quay space discritization may

lead to overestimating the utilization of the quay, since the actual length of each vessel may be

shorter than the total length of the berth segments that the vessel needs to occupy. Recall that

the length of each berth segment is σ and the number of available berth segments is B. Thus, at

any point in time, the amount of available quay space is Bσ. Consider any solution generated by

the simulation optimization method. Let R(t) denote the number of berth segments occupied by

vessels during the time period [t, t+1]. We refer to the ratio R(t)/B as the nominal quay utilization

rate in period [t, t+1]. Let ρ(t) denote the amount of actual quay space occupied by vessels during

time period [t, t + 1] in this solution, where ρ(t) is obtained by using the vessels’ original lengths

(i.e., letting the length of each deep-sea vessel i be αi instead of d αi

140e·140, and letting the length of

each feeder be uniformly distributed in [75, 140]). We refer to the ratio ρ(t)/Bσ as the actual quay

utilization rate in period [t, t + 1]. For each instance of M3, we compute the nominal and actual

quay utilization rates for the solution. The average nominal (respectively actual) quay utilization

rate in each time period [t, t+1] is then obtained by taking the average of the nominal (respectively

actual) quay utilization rates in [t, t + 1] among all those instances of M3. Figure 3 depicts the

computational results.

From Figure 3, we observe that after an initial warm-up period and before the operation ap-

proaches the end of the planning horizon, there is a “productive period,” during which the average

nominal quay utilization rate varies between 0.85 and 1, while the average actual quay utiliza-

tion rate is about 20% lower than the average nominal quay utilization rate. This indicates that

the solutions obtained by discretizing the quay space may lead to overestimating quay utilization.

However, the actual quay utilization rate is quite high during the productive period. This implies
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Figure 3: Variation of average quay utilization rate over time.

that substantial queueing of feeders exists in the container port, and thus our model that optimizes

the berthing and arrivals of the vessels is beneficial to the port.

4.6 Varying the Queue Length Limit

Next, we investigate how the computational results of the simulation optimization method and the

benchmark methods are affected as the upper limit on expected queue length of feeders varies. We

consider the test instances with different Q̄ values, and we run each of the solution methods five

times for each instance. Table 6 summarizes the computational results, where each row reports the

average computational results of ten instances in a problem set.

From Table 6, we observe that the average solution values obtained by the simulation optimiza-

Table 6: Results for problem sets with different Q̄ values.

Problem
Simulation optimization BM1 BM2 BM3

set Q̄ Avg Time Avg Time Avg Time Avg Time

L1 5 305.3 1445.4 357.8 440.4 384.3 126.3 324.0 27172.4
L2 10 248.0 1477.2 297.4 455.2 409.3 105.4 290.3 25470.7
L3 15 213.4 1463.3 245.1 450.5 273.7 144.9 222.7 27568.6
L4 20 159.2 1486.0 164.3 451.5 232.3 158.2 159.7 28825.9
L5 25 116.8 1504.5 126.3 442.1 201.8 173.2 109.1 28678.3

M1 5 529.8 1503.1 590.2 422.2 655.2 141.6 560.3 28353.8
M2 10 400.0 1521.0 436.0 430.7 650.2 141.1 398.7 25825.2
M3 15 296.0 1507.7 331.7 438.7 366.2 153.4 307.2 27413.0
M4 20 228.6 1495.5 255.5 426.3 285.8 151.1 213.5 28230.0
M5 25 151.4 1462.6 157.2 399.0 228.3 173.2 147.6 24964.7

H1 5 749.7 1819.5 787.8 479.7 859.6 142.1 771.9 30808.7
H2 10 545.5 1775.1 575.3 487.2 779.4 148.7 526.1 29837.5
H3 15 441.1 1734.9 471.5 490.8 509.6 150.9 448.7 27737.1
H4 20 366.3 1706.7 396.7 478.0 434.5 142.3 373.9 28573.2
H5 25 291.1 1486.4 321.5 372.9 359.2 169.9 298.6 29792.8
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tion method are smaller than those obtained by BM1 for different Q̄ values. This shows that the

local phase of the simulation optimization method improves the solutions obtained by the global

phase for various queue length limits. However, as the value of Q̄ increases, the improvement in

the solution value generated by the local phase tends to diminish. For example, the improvement

in the average solution value obtained by the local phase is 52.5 for problem set L1, where Q̄ is

set equal to 5. However, the improvement is only 9.5 for problem set L5, where Q̄ is set equal to

25. One possible reason for this tendency is that as the queue length limit increases, constraint (7)

of problem P becomes less restrictive, increasing the chance of identifying good solutions in the

global phase of the simulation optimization method. The average solution values obtained by BM2

are consistently worse than those obtained by the simulation optimization method, showing that

the solutions obtained by ignoring uncertainties are inferior under different queue length limits.

On the other hand, the average solution values obtained by BM3 are worse than those obtained

by the simulation optimization method when Q̄ is small, but are comparable to those obtained

by the simulation optimization method when Q̄ becomes larger. However, the computation time

of BM3 is much longer than that of the simulation optimization method. Overall, the simulation

optimization method outperforms the benchmark methods for different queue length limits.

Figure 4 depicts the average objective values obtained by the simulation optimization method

for problem sets with different queue length limits and different feeders’ service time variances.

From Figure 4, we observe that the average objective value decreases nearly linearly as the queue

length limit increases, and that the rate of decrease is more significant when the feeders’ service

time variance is higher. Thus, the port operator can improve the vessel service by increasing the

queue length limit through enlarging the capacities of the feeder waiting areas. This improvement

can be significant when the feeders’ service times have a high variation.

4.7 Benefits of Controlling the Queue Length of Feeders

As mentioned in Section 1, port operators usually serve deep-sea vessels by ignoring the uncer-

tainties of feeder service times (i.e., they develop detailed berth plans for deep-sea vessels based

on deterministic arrival and service times of deep-sea vessels) and allocate berths to feeders dy-

namically when feeders arrive at the port. This service strategy can achieve good service levels for

deep-sea vessels, as berth space is reserved exclusively for deep-sea vessels. However, this strategy

cannot control the waiting times of feeders and is unable to mitigate port congestion incurred by

feeder traffic. Unlike the service strategy adopted by port operators, our simulation optimization
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Figure 4: Average objective values obtained by simulation optimization.

method generates berth plans for deep-sea vessels by taking into account feeder service times, and

controls both port congestion and feeder waiting times by restricting the expected queue length of

feeders. In this subsection, we compare the performance of the simulation optimization method

with the current practice of port operators, and reveal the benefits of controlling the queue length

of feeders.

We mimic the current practice of port operators using a sequential decision heuristic. In the

current practice, the planners ignore the queue length limit of feeders, which is equivalent to setting

the value of Q̄ in constraint (7) to infinity. Note that after setting Q̄ equal to infinity, problem

P decomposes into two subproblems. One subproblem involves only the deep-sea vessels, while

the other subproblem involves only the feeders. The sequential decision heuristic first solves a

deterministic berth allocation model of the deep-sea vessels, which involves only the xibt and l1i

variables, and then allocates berths to feeders according to the first-come first-served discipline

described in Section 2. Note that in the first-come first-served discipline, a berth segment can be

allocated to a feeder only if the berth segment is not reserved for deep-sea vessels. Hence, there are

no stochastic delays on the deep-sea vessels; that is, the departure tardiness cost of deep-sea vessels

is determined solely by the xibt values. A detailed description of the sequential decision heuristic is

provided in the Appendix. We solve problem sets M1, M2, M3, M4, and M5 using the sequential

decision heuristic, and compare the solutions obtained by the sequential decision heuristic with

those obtained by the simulation optimization method using the following performance measures:

(i) average departure tardiness of deep-sea vessels (AT ); (ii) average schedule displacement of

feeders (AD); (iii) peak expected queue length of feeders (PQL); (iv) average waiting time of
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feeders (AWT ); and (v) objective value (OV ). Note that since the port is set to be empty at the

beginning of the planning horizon, there may exist a warm-up period in the statistics of the feeder

waiting times. We apply Fishman’s graphical method (Fishman 2001) to identify the warm-up

period; that is, we choose a suitable warm-up period by visual inspection on the variation of feeder

waiting times. The warm-up period identified is [0, 15]. When computing the AWT value, we

exclude the statistics in this warm-up period. Table 7 compares the computational results obtained

by the simulation optimization method with those obtained by the sequential decision heuristic for

the instances in problem set M3. All time-related values reported in Table 7 are in hours.

Table 7: Comparison of simulation optimization and sequential heuristic.
Simulation optimization Sequential heuristic

Instance AT AD PQL AWT OV AT AD PQL AWT OV

M3.1 1.8 1.6 11.2 2.8 354.2 0.4 0.0 35.4 10.2 50.0
M3.2 1.4 1.3 14.5 4.2 277.4 0.6 0.0 42.1 12.7 75.0
M3.3 1.2 1.8 13.3 2.9 299.0 0.4 0.0 39.9 10.9 50.0
M3.4 1.8 1.1 12.1 2.5 312.8 0.2 0.0 42.5 15.7 25.0
M3.5 2.0 1.4 14.8 4.3 368.2 0.0 0.0 36.2 10.3 0.0
M3.6 1.4 1.2 14.8 5.2 272.6 0.6 0.0 45.7 15.5 75.0
M3.7 1.2 1.2 13.8 3.1 242.8 0.2 0.0 32.8 13.5 25.0
M3.8 1.4 1.5 12.4 2.2 297.6 0.8 0.0 57.6 16.3 100.0
M3.9 1.0 1.7 14.1 3.6 263.2 0.0 0.0 50.9 15.1 0.0
M3.10 1.4 1.2 14.2 3.4 272.4 0.2 0.0 48.3 16.0 25.0
Average 1.5 1.4 13.5 3.4 296.0 0.3 0.0 43.1 13.6 42.5

From Table 7, we observe that the average AT and AD values of the sequential decision heuristic

are 0.3 and 0.0, respectively, indicating that the sequential decision heuristic performs well in

minimizing the departure tardiness of deep-sea vessels and the schedule displacements of feeders.

The zero AD values are due to the fact that the sequential decision heuristic reserves berth space

to deep-sea vessels without considering the berth utilization of feeders, and thus the heuristic does

not need to alter the initial arrival plans of feeders (i.e., it simply assigns each feeder i the arrival

time Si). Without reserving berth space to feeders, the heuristic can obtain solutions with small

objective values; see the OV values of the sequential heuristic in Table 7. However, since the

sequential decision heuristic ignores feeders’ queuing behavior, the service plan generated by the

heuristic can lead to large feeder queue length and long waiting times of feeders, as indicated by the

PQL and AWT values of the heuristic. The PQL values of the sequential decision heuristic exceed

the value of Q̄, indicating that the sequential decisions generate solutions that consistently violate

the maximum expected queue length constraint. Compared to the sequential decision heuristic,

the simulation optimization method has larger AT and AD values, and thus larger OV values.

However, the PQL and AWT values of the simulation optimization method are much smaller than
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those of the sequential decision heuristic. This shows that the simulation optimization method

generates solutions that strike a balance between congestion mitigation and deep-sea vessel service

quality, and performs much better than the sequential decision method in reducing feeder waiting

times.

Figure 5: Performance measures of solutions obtained for different Q̄ values.

Figure 5 depicts the average performance measures obtained by the simulation optimization

method for different Q̄ values, as well as performance measures obtained by the sequential decision

heuristic. From Figure 5, we observe that the average departure tardiness of deep-sea vessels and the

average schedule displacement of feeders generated by the simulation optimization method tend to

decrease as Q̄ increases, whereas the peak expected queue length of feeders and the average waiting

time of feeders tend to increase as Q̄ increases. On the other hand, since the sequential decision

heuristic ignores the queue length restriction of feeders, its computational results are independent

of the Q̄ values. The comparisons show that the simulation optimization method is more flexible

than the sequential decision heuristic in controlling the expected queue length of feeders, enabling
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terminal operators to quantify the trade-off between alleviating port congestion and enhancing

vessel service quality. For container ports that serve a large number of feeders (e.g., the Port of

Shanghai), long waiting lines of feeders can result in severe congestion in the port basin, impeding

the service of vessels and creating a high risk of vessel collisions. Hence, the simulation optimization

method would be more preferable than the current practice of port operators for berth allocation

and congestion mitigation.

5 Conclusions

This paper studies the problem of how to optimize the berth allocation of deep-sea vessels and

schedule arrivals of feeders for a container port where the service times of feeders are uncertain and

port congestion needs to be kept under control. We develop a stochastic optimization model for the

problem. Our model allocates berth space to deep-sea vessels and schedules the arrivals of feeders,

subject to a constraint on the expected feeder queue length. We solve the stochastic optimization

model using a simulation optimization method that searches the solution space via a global phase, a

local phase, and a clean-up phase, and allocates different amounts of simulation budget to different

search phases in order to balance the effort spent on solution evaluation and solution sampling.

Unlike the existing simulation optimization methods for solving berth allocation problems, which

either allocate a large simulation budget to each solution and incur a heavy computation burden or

attempt to explore the solution space efficiently by ignoring uncertainties and then use simulation

to evaluate only a limited number of the visited solutions, our simulation optimization method is

designed to strike a balance between exploration and exploitation, and is able to generate a locally

optimal solution with a reasonable amount of computation effort.

We generate problem instances based on the operational data of the Yangshan Deep-water Port

in Shanghai, and compare the computational performance of the simulation optimization method

with those of three benchmark methods that only make use of genetic algorithm for searching

solutions but apply different simulation budget allocation strategies. The computational results

indicate that for the solution sampling strategy employed by the benchmark methods, allocating

a larger simulation budget to solution evaluation improves the capability of generating good solu-

tions but leads to considerably stronger demand for computation effort, and vice versa. On the

other hand, our simulation optimization method finds good solutions with a reasonable amount

of computation effort and thus outperforms the benchmark methods. We also compare the solu-

tions obtained by the simulation optimization method with those obtained by a sequential decision
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heuristic that mimics the current practice of port operators. The comparisons show that the sim-

ulation optimization method provides the flexibility of allocating berth space to deep-sea vessels

and scheduling the arrivals of feeders under different queue length limits, whereas the sequential

decision heuristic is incapable of controlling the queue length of feeders. Hence, the simulation op-

timization method would be a promising decision support tool for berth allocation and congestion

mitigation in a port that serves a large number of feeders.

Our solution method can be modified easily to handle different extensions of the problem. First,

consider the situation where some vessels are being served and some feeders are waiting for service

at the beginning of the planning horizon. Having some vessels being served at time 0 implies that

some berth segments are unavailable for some initial time periods. We can modify our simulation

optimization method to handle this situation. This is done by modifying the decoding scheme

in such a way that allocating berth segments to vessels during the berth segments’ unavailable

period is disallowed. Having some feeders waiting for service at time 0 implies that those arrived

feeders have known service times, and thus the simulator must be modified accordingly. Second,

our model assumes that the planning horizon is long enough so that all vessels can complete

service during the planning horizon. In practice, however, the planning horizon considered by berth

planners may not be sufficiently long, and thus, some vessels may need to be rejected for service

during the planning horizon. A straightforward extension of our solution method to account for

service rejections is to generate berth plans of all vessels using the extended planning horizon, and

then reject those vessels whose expected service completion times exceed the “actual” planning

horizon. Third, our model assumes that each feeder occupies one berth segment and that each

deep-sea vessel’s length is a multiple of the length of a berth segment. Consider the situation

where the feeder lengths are non-identical and a feeder can occupy multiple berth segments. In

this situation, the first-come first-served service rule described in Section 2 needs to be modified

to ensure that a feeder can only be served when there are sufficient consecutive berth segments

available to accommodate the feeder. Our simulation optimization method can be applied to this

situation if we modify the decoding scheme by allocating berth segments to a feeder only when

there are sufficient consecutive berth segments available, and modify the simulator so that the

feeders are assigned to berth segments according to the adapted first-come first-served service rule.

Fourth, our model assumes that there are no space restrictions; that is, each berth segment is

compatible with all vessels, regardless of the vessels’ draft and width. For solving a problem with

space restrictions, our simulation optimization method should be modified so that each vessel is
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assigned to compatible berth segments only. Specifically, in Step 2 of the decoding scheme, a deep-

sea vessel pi can be assigned to berth segments b, b+1, . . . , b+Rpi
−1 only if these berth segments

are all compatible with vessel pi. In the adaptive hyperbox algorithm, if a solution generated from

the hyperbox violates the compatibility constraint, then the solution is infeasible and assigned an

infinite cost. In the simulator, each feeder can be assigned to an available berth segment only if

the berth segment is compatible with the feeder. Fifth, in our model an upper limit is imposed on

the expected queue length of feeders. Another way to control the port traffic is to set an upper

limit on the probability that the queue length exceeds a risk limit; that is, replace constraint (7) by

the chance constraint “Prob(Qt(x, y)≥ Q̄) ≤ %,” where % is the risk limit. For solving the chance

constrained problem, we can introduce an indicator function Φt(x, y) for each t = 0, 1, . . . , T − 1,

where Φt(x, y) = 1 if Qt(x, y) ≥ Q̄, and Φt(x, y) = 0 otherwise. Then, the chance constraint can

be transformed into the constraint E[Φt(x, y)] ≤ %, which is of the same form as constraint (7).

Through this transformation, the chance constrained problem can also be solved by our simulation

optimization method. Finally, we remark that by modifying the implementation of the simulator,

our simulation optimization method is also applicable to the situation where feeders are served

according to particular service rules other than the first-come first-served rule.

Future research could focus on developing adaptations of the simulation optimization method

for solving a variety of port operation management problems with uncertainties. For example,

in a yard crane scheduling problem, the yard cranes need to serve container trucks that pick up

containers from or deliver containers to the yard. Since the arrival times of the container trucks are

uncertain to the port operator, it would be important to take into account the stochastic arrivals

of container trucks when scheduling the yard cranes. To solve different port operation management

problems with uncertainties, the solution sampling strategy used in the global phase and the local

phase can be tailored to the particular problem in order to explore the solution space efficiently.

The simulation budget allocation strategy (i.e., allocating different amounts of simulation budget

to solutions in different search phases) will therefore still be useful for enhancing the computational

efficiency.
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Appendix

Proof of Property 1:

Consider the situation where problem P is feasible. Note that in each problem instance of P, there

are finitely many possible (x, y) values. Let

∆min = min
(x,y) s.t. κ(x,y)>Q̄

{
κ(x, y)− Q̄

}
,

where

κ(x, y) = max
t=1,...,T−1

{
E[Qt(x, y)]

}
.

Then, ∆min > 0. Let Z∗ denote the optimal solution value of problem P, and let

λ̂ =
Z∗

∆min
+ 1.

Because any feasible solution of P is a feasible solution of P′(λ) with ∆ = 0, the optimal solution

value of P′(λ) is at most Z∗, for any λ ≥ 0.

Consider a feasible solution of P′(λ) with λ ≥ λ̂ and ∆ > 0. In this feasible solution, ∆ ≥ ∆min.

The objective function value of this feasible solution is at least λ∆ ≥ λ̂∆min > Z∗. Thus, this

feasible solution is not optimal. Hence, any optimal solution of P′(λ) with λ ≥ λ̂ must satisfy the

condition that ∆ = 0. Therefore, an optimal solution of P′(λ) with λ ≥ λ̂ is also optimal to P.

Solution Refinement Subroutine:

In the following, we provide details of the solution refinement subroutine used in our implementation

of the adaptive hyperbox algorithm. The subroutine requires a solution (x, y) as input. For ease

of presentation, we make use of the following notations:

P : Set of (b, t) pairs for which constraint (4) is violated.

Nbt: Set of deep-sea vessels that occupy berth segment b during time period [t, t + 1].

ωbt: Number of deep-sea vessels that occupy berth segment b during time period [t, t + 1].

b̄i: The first berth segment allocated to deep-sea vessel i.

t̄i: Service start time allocated to deep-sea vessel i.

The solution refinement subroutine is presented as follows:

Step 1 (Initialization): For each i = 1, . . . , N1, set b̄i ← min
{
b

∣
∣

∑T−Hi

t=0 xibt = 1; b = 1, . . . , B −

Ri + 1
}

and t̄i ← min
{
t
∣
∣ xib̄it

= 1; t = 0, 1, . . . , T − 1
}
. Set P ← ∅. For each b = 1, . . . , B

and t = 0, 1, . . . , T −1, set Nbt ← ∅; in addition, if constraint (4) is violated for b and t, then

set P ← P ∪ {(b, t)}.
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Step 2 (Resolving infeasibility): If P = ∅, then stop. Otherwise, randomly select an element from

P , with all elements having equal probability of being selected. Let (b, t) be the selected

element.

Step 2.1: For each i = 1, . . . , N1 such that b̄i ≤ b ≤ b̄i + Ri − 1 and t̄i ≤ t ≤ t̄i + Hi − 1, set

Nbt ← Nbt ∪ {i}.

Step 2.2: Randomly select an element from Nbt, with all elements of Nbt having equal prob-

ability of being selected. Let i be the selected element. For each b = 1, . . . , B and t =

0, 1, . . . , T −1, set ωbt ←
∑

i′∈{1,...,N1}\{i}

∑b
b′=max{b−Ri′+1,1}

∑t
t′=max{t−Hi′+1,0} xi′b′t′ .

Step 2.3: Set t̄i ← min
{
t

∣
∣

∑b̄i+Ri−1
b′=b̄i

∑t+Hi−1
t′=t ωb′t′ = 0; t = Ai, Ai + 1, . . . , T − Hi + 1

}
.

For each t = 0, 1, . . . , T − 1, if t = t̄i, then set xib̄it
← 1; otherwise, set xib̄it

← 0. Set

Nbt ← Nbt \{i}. If |Nbt| ≤ 1, then set P ← P \
{
(b, t)

}
and repeat Step 2. Otherwise,

go to Step 2.2.

Step 1 initializes the set P , and Step 2 handles the (b, t) pairs in P one at a time. Step 2.1

determines the set Nbt in the current solution. Steps 2.2 and 2.3 iteratively re-determine the start

times of the deep-sea vessels in Nbt one at a time until the set Nbt contains no more than one

element.

Sequential Decision Heuristic:

In the following, we describe the sequential decision heuristic used in Section 4.7. The sequential

decision heuristic first solves a deterministic berth allocation model of the deep-sea vessels, which

involves only the xibt and l1i variables, and then allocates berths to feeders according to the first-

come first-served discipline described in Section 2. The deterministic berth allocation model of the

deep-sea vessels is presented as follows:

minimize

N1∑

i=1

C1il1i

subject to (2), (4), (5), (8)

We solve the deterministic berth allocation model using CPLEX to obtain the total tardiness

cost of deep-sea vessels and the values of the xibt variables. To generate a service plan (x, y), we

need the values of the yit variables. For each i = 1, . . . , N2 and t = 0, 1, . . . , T − 1, we set yit = 1

if t = Si, and set yit = 0 otherwise. With the value of (x, y), we run n4 simulation replications to

evaluate the expected queue lengths of feeders and the average waiting times of feeders.
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