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Abstract

We study the control of a Brownian motion with a negative drift, so as to minimize a long-
run average cost objective. We show the optimality of the reflection control, which prevents the
Brownian motion from dropping below a certain level by cancelling out from time to time part
of the negative drift; and this optimality is established for a holding cost function that appears
more general than what’s allowed in prior studies. We also show the optimal reflection level
can be derived as the fixed point that equates the long-run average cost to the holding cost.
Furthermore, we show the asymptotic optimality of this reflection control when it is applied to
a discrete production-inventory system driven by (delayed) renewal processes; and we do so via
identifying the limiting regime of the system under diffusion scaling. In the case of controlling
a birth-death model, we establish the optimality of the reflection control directly via a linear
programming based approach.

Keywords: reflection control, Brownian motion, diffusion limit, production-inventory system,
birth-death queue.

1 Introduction

Consider the control of a Brownian motion with a negative drift, so as to minimize a long-run

average cost objective. We show the optimality of a class of so-called reflection controls, which
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prevents the Brownian motion from dropping below some level r, by cancelling out from time to

time part of the negative drift; and this optimality is established for a holding cost function h(x)

that is increasing in x ≥ 0 and decreasing in x ≤ 0, where x is the state variable. (Throughout the

paper, “increasing” and “decreasing” are in the non-strict sense, meaning non-decreasing and non-

increasing, respectively.) This is a natural and desirable form of a cost function, since in applications

the absolute value of the state variable, |x|, can be interpreted as finished-goods inventory or

backordered demand (depending on the sign of x), both incurring costs. Furthermore, let C(r) be

the long-run average cost with r as the reflection level. We show the optimal reflection level can be

derived as the fixed point r∗ that equates the long-run average to the holding cost, C(r∗) = h(r∗).

To prove the optimality of the reflection control, we first focus on a subclass (reflection control)

and obtain the optimal reflection control for this class; we then show that the optimal reflection

control leads to a cost objective that is the lowest among the broader class of all admissible controls,

and is hence optimal. This is reminiscent of the lower-bound approach of Harrison and Taksar [5]

(also see Harrison [6] and Taksar [9]).

We establish the optimality of reflection control for a class of holding cost function that is

exponentially bounded, h(x) ≤ aebx for x ≥ 0 and for some a, b > 0; and we specify explicitly how

large b can be. This class appears to be more general than what’s allowed in prior studies, which

mostly assume polynomially bounded holding costs.

When applied to a discrete production-inventory system, reflection control cannot be optimal

in general. This perhaps explains why most studies in the literature that apply reflection control

(including its two-sided version such as the (s, S) policy) to production-inventory systems model

the latter as Brownian motion. Refer to [1, 3, 4, 7, 8, 10, 11], among many others.

Here we show, for a discrete production-inventory system driven by renewal counting processes,

reflection control is asymptotically optimal in a limiting regime. Specifically, we show the diffusion

limit of the system under a reflection control, with the reflection level optimized, will yield a long-

run average cost that is no greater than the same cost corresponding to the diffusion limit of the

system under any other admissible control.

It turns out that when the interarrival times (of demand) and service times (to produce the

goods) follow exponential distributions, the results can be significantly enhanced. First, we can

allow state-dependent arrival and service rates, as in a birth-death queue model. Second, the

optimality of reflection control can be directly established, without the need to go through diffu-

sion scaling and its limiting regime; hence, the optimality so established is without the qualifier

“asymptotic”. Our approach is linear programming, revealing the problem structure and hence,

the optimality of reflection control, through examining duality and complementarity. The analy-

sis leads to a simple algorithm that identifies the optimal reflection level and demonstrates many

features of the model that are analogous to those in the Brownian setting.

The rest of the paper consists of three sections studying the reflection control, respectively, in

the Brownian setting, in a discrete production-inventory system, and in a birth-death queue model

as outlined above. The three sections/topics involve three different approaches: martingales and

Itô’s calculus for the first one, diffusion limits and heavy-traffic theory for the second, and linear

programming for the third.
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Thus, our contribution to the literature is a thorough understanding of the reflection control: its

optimality in both the Brownian setting and the birth-death queue, and the connections and simi-

larities between the two, their continuous and discrete natures notwithstanding; and its asymptotic

optimality in a discrete, non-Markovian system driven by renewal processes, through a Brownian

motion limiting regime. And in all cases, we allow an exponentially bounded cost function, which

appears to be more general than what’s allowed in prior studies.

2 The Brownian Control Problem

Given a Brownian motion with a negative drift, X(t) := θt + σB(t), where θ < 0 and σ > 0 are

given constants and B(t) denotes the standard Brownian motion, we want to find a control, denoted

{Y (t), t ∈ [0,+∞)}, such that the state process Z(t) follows the dynamics,

Z(t) = z0 +X(t) + Y (t), t ∈ [0,+∞), (1)

with z0 being the initial state, and the following long-run average cost is minimized:

AC(x, Y ) = lim sup
t→+∞

Ex
1

t

∫ t

0
h(Z(u))du, where x := z0. (2)

Note, we have AC(x, Y ) = Eh[Z(+∞)], provided the control Y induces a steady-state distribu-

tion embodied by Z(+∞). On the other hand, AC(x, Y ) is well defined even if the steady-state

distribution does not exist.

To motivate, consider a production-inventory system that supplies demand. Suppose demand

rate is λ and production rate is µ. Let the state at time t be the net demand in the system, i.e.,

waiting orders minus produced quantities (both are cumulative up to t). Then, without any control,

this net demand is (λ−µ)t+σB(t), where σB(t) models the volatility (Gaussian noise) associated

with demand (or, with both demand and production). Assume λ < µ; hence, θ := λ− µ < 0, and

denote this net demand as X(t). Here, the control is to insert idle time into production; so denote

the cumulative idle time up to t as U(t). Then, production up to t becomes µ[t− U(t)]; and, with

Y (t) = µU(t), the state process can be expressed as follows:

Z(t) = z0 + (λ− µ)t+ µU(t) + σB(t) = z0 +X(t) + Y (t). (3)

Note that Z(t), when positive, represents the volume of waiting orders; when negative, its

absolute value represents the volume of products waiting to supply demand (i.e., inventory). This

motivates the following assumption on the cost function.

• The holding cost h(x) is increasing in x ≥ 0 and decreasing in x ≤ 0. This implies h(x) ≥ h(0)

for all x, and h(0) ≥ 0 is assumed to be finite. Further assume that h(x) is strictly increasing

at 0+ and strictly decreasing at 0−. (This rules out trivial case like h(x) = h(0) for all x —

no charge for any volume of waiting orders or any amount of inventory.)
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• As it will become evident later, for the long-run average cost objective in (2) to be finite

requires h to be exponentially bounded; i.e., there exist some parameters a, b > 0, such that

h(x) ≤ aebx, ∀x ≥ 0. (4)

Note, the results below will require specific ranges for b, but no restriction whatsoever on a. Indeed,

the above requirement is equivalent to lim supx→+∞ h(x)/ebx < +∞ for some b > 0.

There’s no cost to carry out the control Y (t). Yet, we do have restrictions on the control: it can

only cancel out, from time to time, the negative drift of X(t) (so as to prevent the state process

from dropping too much). More formally, we have

• Set of admissible controls A. To be admissible, a control Y (t) must be non-anticipative, and

increasing in t ∈ [0,+∞), with Y (0) ≥ 0.

2.1 Reflection Control

Recall, a Brownian motion with a negative drift will have a stationary limit if it is reflected at some

pre-specified value. Hence, we first focus on a sub-class of admissible controls, called “reflection

controls,” A∗ ⊂ A; and denote a control in this class as Yr ∈ A∗ and the corresponding state

process as Zr. The control Yr is defined by a reflection level r, meaning that it ensures Zr(t) ≥ r

for all t.

Then, Zr(t) − r is a standard reflected Brownian motion (RBM); refer to [2] Section 6.2. It

is known that Yr and Zr can be explicitly expressed as functions of X, the primitive (Brownian

motion with drift), as follows:

Yr(t) = sup
0≤u≤t

(r − z0 −X(u))+, (5)

Zr(t) = z0 +X(t) + sup
0≤u≤t

(r − z0 −X(u))+. (6)

In addition, complementarity holds: [Zr(t) − r]dYr(t) = 0 for all t ≥ 0, i.e., when Zr(t) > r, Yr(t)

cannot increase. Furthermore, Zr(+∞) − r follows an exponential distribution with rate −2θ/σ2

(recall, θ < 0). Thus, under the reflection control Yr, we have

AC(x, Yr) = Exh(Zr(+∞)) = γ

∫ +∞

0
h(r + x)e−γxdx := C(r), where γ := −2θ/σ2. (7)

From the above, we can write C(r) = Eh(r + ξ), where ξ follows an exponential distribution with

parameter (rate) γ. (Thus, r+ ξ follows a shifted exponential distribution, with a density function

γe−γ(x−r) for x ≥ r.)

For r < 0, we can derive

C(r) =

(∫ ∞

0
+

∫ 0

r

)
h(x)γe−γ(x−r)dx = eγrC(0) + eγr

∫ 0

r
h(x)γe−γxdx. (8)
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Since h(0) < h(x) ≤ h(r) for x ∈ [r, 0), the second term on the right side above is (strictly) bounded

between h(0)(1− eγr) and h(r)(1− eγr). Thus, we have

eγrC(0) + h(0)(1− eγr) < C(r) < eγrC(0) + h(r)(1− eγr), ∀r < 0. (9)

To minimize C(r), taking derivative and applying integration by parts, we have

C ′(r) = γ[C(r)− h(r)]. (10)

Since C(0) = Eh(ξ) > h(0), we know the minimizer r∗ must be negative, and can be obtained as

follows:

C(r) = h(r) ⇒ r∗. (11)

In the case of multiple solutions to the above equation, they must all yield the same C(·) value (and
locate next to each other to form a contiguous interval); hence, any one of them can be designated

as r∗; see the remarks in (ii) below.

There are two cases:

(1) There exists some r0 < 0 such that h(r0) ≥ Eh(ξ) = C(0). From the upper bound in (9), we

have

C(r0) < h(r0)− eγr[h(r0)− C(0)] ≤ h(r0).

This, along with C(0) > h(0), implies there must exist a solution to the equation in (11), and

r∗ ∈ (r0, 0).

(2) On the other hand, if the equation has no solution, then it means C(r) > h(r) for all r < 0,

i.e., C ′(r) ≥ 0, or C(r) increasing for all r < 0. In this case, setting r∗ = −∞ is optimal.

Several remarks are in order.

(i) From Case (1) we know, C(0) ≤ h(−∞) implies r∗ is finite (since h(−∞) ≥ h(r0) for any

negative r0). The contrapositive of this is: r∗ = −∞ implies C(0) > h(−∞). Yet, when

C(0) > h(−∞), we may still have a finite r∗; refer to Example 3 below.

(ii) From the above analysis, C(r) is clearly increasing in r ≥ r∗, including when r∗ = −∞.

When r∗ (< 0) is finite, we can verify that C(r) is decreasing in r ≤ r∗. (Note this will not

necessarily follow from r∗ being a minimizer of C(r), as it may be a local minimizer.) To do

so, similar to (8), but breaking at r∗ instead of 0, we have

C(r) = e−γ(r∗−r)C(r∗) + eγr
∫ r∗

r
h(x)γe−γxdx, r ≤ r∗ < 0.

Since C(r∗) = h(r∗) ≤ h(r), and h(x) ≤ h(r) for x ∈ [r, r∗], we have

C(r) ≤ e−γ(r∗−r)h(r) + h(r)
[
1− e−γ(r∗−r)

]
= h(r), r ≤ r∗ < 0.

From (10), we then have C ′(r) ≤ 0, or C(r) decreasing, for all r ≤ r∗.
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(iii) When r∗ is finite, for C(r∗) < ∞, it suffices to assume that when x → +∞, h(x) grows no

faster than ebx for some b < γ. This explains why we need the exponential boundedness

condition in (4).

(iv) On the other hand, r∗ = −∞ means exercise no control, in which case the Brownian motion

with a negative drift will go to −∞. Hence, the corresponding long-run average cost in (7)

should be, by definition, C(−∞) = h(−∞), in which case we must have h(−∞) < C(0) as

argued above in (i). (And C(0) < ∞, same as C(r∗) < ∞, follows from (4) for b < γ.) This

also explains why there’s no need for the exponential boundedness condition to stipulate any

restriction on the negative side.

To summarize, we have

Proposition 1 Suppose the condition in (4) holds for some b < γ := −2θ/σ2.

(i) The reflection control Yr∗ is optimal among all controls in the sub-class A∗, with the optimal

reflection level r∗ being the solution to (11) if it exists (in which case it must be negative, and in

the case of multiple solutions, pick the least negative as r∗); or if the solution does not exist, then

the optimal reflection level is r∗ = −∞.

(ii) A sufficient condition for r∗ to be finite: if for some r0 < 0, h(r0) ≥ Eh(ξ) = C(0), then

r∗ ∈ (r0, 0). On the other hand, if r∗ = −∞, then C(0) > h(−∞).

(iii) C(r) is increasing in r ≥ r∗ (including when r∗ = −∞), and decreasing in r ≤ r∗ when r∗ is

finite.

What remains is to argue that the reflection control Yr∗ is not only optimal within the sub-class

A∗ of all reflection controls but also optimal over all admissible controls in A. We defer this to the

next subsection, illustrating several examples first. In the first two examples below, h(−∞) = +∞;

thus C(0) < h(−∞) holds, and a finite r∗ exists as in Proposition 1(ii) above. The third example

is more interesting. Not only because h(x) is concave for x ≥ 0, which is rarely studied in the

literature, it also gives an example that even when C(0) > h(−∞), a finite r∗ may still exist.

Example 1. Let h(x) = |x|. By (7) and (11), we have for r ≤ 0,

C(r) =
2eγr

γ
− r − 1

γ
, and r∗ = − log 2

γ
.

Example 2. Let h(x) = eb|x| (0 < b < γ), and we have for r ≤ 0,

C(r) =
γ

γ + b
e−br +

( γ

γ − b
− γ

γ + b

)
eγr and r∗ = log

(1
2
− b

2γ

)
/(γ + b).

Example 3. Let

h(x) =

{
κ(1− ex), x < 0
1− e−x, x ≥ 0

(12)
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where κ > 0 is a given parameter.

Making use of (8), we can derive

C(r) =
eγr

γ + 1
+ κ
[
(1− eγr) +

γ

γ − 1
(eγr − er)

]
, r ≤ 0.

Equating the above to h(r) = κ(1− er) yields

r∗ =
1

1− γ
log
[
1 +

γ − 1

κ(γ + 1)

]
, γ ≥ 1 or κ >

1− γ

1 + γ
. (13)

Note, the above yields a finite r∗ < 0 for both γ < 1 (with the necessary restriction on κ) and

γ > 1, and also r∗ = − 1
2κ for γ = 1 via l’Hôspital. In particular, when κ ≥ 1, we have h(−∞) =

κ > C(0) = 1/(γ + 1), confirming the existence of a finite r∗ as according to Proposition 1 (ii).

Furthermore, (13) also includes the case 1/(1 + γ) > κ, i.e., C(0) > κ = h(−∞). Thus, while

C(0) < h(−∞) is a sufficient condition for the existence of a finite r∗, it is not necessary.

2.2 Optimality

We now extend the optimality of Yr∗(t) as stated in Proposition 1 to the class of all admissible

controls, A. To facilitate exposition, below we shall focus on the case of a finite optimal reflection

level r∗. After completing the proof (of Theorem 2 below), the degenerate case, r∗ = −∞ will be

briefly discussed.

To start with, for any admissible control Y (t), with the corresponding state being Z(t) =

X(t) + Y (t), consider another control, Ỹr(t) := Yr(t) ∧ Y (t), where Yr is a reflection control, with

r ≥ 0. Clearly, Ỹr(t) is non-anticipative, nondecreasing and right continuous with left limit, and

thus is an admissible control. Write the state process under this control as

Z̃r(t) := X(t) + Ỹr(t), and Z̃r(t) = Zr(t) ∧ Z(t). (14)

Write the cost under this control as

h(Z̃r(t)) = h(Z̃r(t))1{Z(t) < r}+ h(Z̃r(t))1{Z(t) ≥ r}.

When Z(t) < r (≤ Zr(t)), we have Z̃r(t) = Z(t), and hence,

h(Z̃r(t))1{Z(t) < r} = h(Z(t))1{Z(t) < r}.

On the other hand, when Z(t) ≥ r, we have Z(t) ≥ Z̃r(t) ≥ r(≥ 0). Since h(x) is increasing in

x ≥ 0, we have

h(Z̃r(t))1{Z(t) ≥ r} ≤ h(Z(t))1{Z(t) ≥ r}.

Thus, we know h(Z̃r(t)) ≤ h(Z(t)), which implies AC(x, Ỹr) ≤ AC(x, Y ). So, it suffices to show,

for any initial state x,

AC(x, Ỹr) ≥ ν∗ := AC(x, Y ∗) [= h(r∗) = C(r∗)]. (15)

7



To do so, consider a smooth, auxiliary function V (z), to be specified later. Applying Itô’s

formula to V (Z̃r(t)), we have

V (Z̃r(t)) = V (x) +

∫ t

0

[σ2

2
V ′′(Z̃r(u)) + θV ′(Z̃r(u))

]
du

+σ

∫ t

0
V ′(Z̃r(u))dB(u) +

∫ t

0
V ′(Z̃r(u))dỸr(u). (16)

For reasons that will become evident shortly, we want to have

σ2

2
V ′′(z) + θV ′(z) = ν∗ − h(z). (17)

Taking into account C ′(z) = γ[C(z)− h(z)] following (10), and along with the γ expression in (7),

the above is implied by

V ′(z) = −1

θ
[C(z)− ν∗], (18)

which, in turn, is implied by

V (z) = −1

θ

(∫ z

0
C(u)du− ν∗z

)
, (19)

When z < 0, the above integral is interpreted as
∫ z
0 C(u)du = −

∫ 0
z C(u)du. Clearly, V ′(z) ≥ 0,

since θ < 0 and C(z) ≥ ν∗ := C(r∗); hence, the last integral on the right side of (16) is non-negative,

taking into account dỸr ≥ 0. Hence,

V (Z̃r(t)) ≥ V (x) +

∫ t

0
(ν∗ − h(Z̃r(u)))du+ σ

∫ t

0
V ′(Z̃r(u))dB(u). (20)

The last term on the right side, being Itô’s integral, is a local martingale; and with the square-

integrability condition, to be established shortly below,

E

[∫ t

0

(
V ′(Z̃r(u))

)2
du

]
=

∫ t

0
E
(
V ′(Z̃r(u))

)2
du <∞, for every t ≥ 0, (21)

it is a martingale, implying

E

∫ t

0
V ′(Z̃r(u))dB(u) = 0.

Hence, taking expectations on both sides of (20) yields

EV (Z̃r(t)) ≥ V (x) + E

∫ t

0

[
ν∗ − h(Z̃r(u))

]
du. (22)

Dividing both sides by t and letting t→∞, we have

lim sup
t→∞

1

t
EV (Z̃r(t)) ≥ ν∗ −AC(x, Ỹr). (23)
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If we can further show

lim sup
t→∞

1

t
EV (Z̃r(t)) = 0, (24)

then we will have established the desire inequality ν∗ ≤ AC(x, Ỹr). The precise statement is as

follows.

Theorem 2 Suppose the cost function h(·) satisfies the exponential boundedness condition in (4)

with b < γ/2. Then, the optimal reflection control Yr∗(t) as specified in Proposition 1 is optimal

over all admissible controls, i.e., AC(x, Yr∗) ≤ AC(x, Y ) for any admissible control Y ∈ A and from

any initial state x.

Proof. As discussed above, what remains is to show (21) and (24). First note (to become evident

shortly), we will never need h(x) for x < r∗ (< 0). So, we can consider a modified cost function,

for any given r∗ < r∗, define

h̃(z) :=

{
h(r∗) z < r∗,
h(z) z ≥ r∗,

(25)

Clearly, h̃(z) ≤ h(z) for all z. Hence, replacing h by h̃ will reduce AC(x, Ỹr), whereas ν
∗ will remain

unchanged. So, it suffices to establish the desired inequality ν∗ ≤ AC(x, Ỹr) under this modified

cost function. Thus, to simplify notation, we shall continue to denote the cost function as h, which

takes up the definition of h̃ in (25) throughout below.

Second, recall Zr(t) is a RBM, reflected at r. Consider another RBM, Zr′(t), reflected at

r′ := Zr(0) ∨ r and started at Zr′(0) = r′. Then, Zr(t) ≤ Zr′(t); and Zr′(t) − r′ is known to be

equal in distribution to sups≤tX(s), the “running max”. The latter is increasing (in t) to a limiting

distribution that is the same as the exponential distribution of ξ. Hence,

Ee2bZr(t) ≤ Ee2bZr′ (t) ≤ e2br
′
Ee2bξ =

γe2br
′

γ − 2b
<∞. (26)

We are now ready to prove (21). Write C(Z̃r(t)) = E[h(Z̃r(t)+ξ)|Z̃r(t)], where recall Z̃r follows

(14), and ξ follows the exponential distribution with parameter γ and is independent of Z̃r (and

Zr). From the V ′(·) expression in (18), it suffices to argue that EC2(Z̃r(t)) is bounded by a constant

(i.e., independent of t). Write

EC2(Z̃r(t)) = E
[
E[h(Z̃r(t) + ξ)|Z̃r(t)]

]2 ≤ E
[
E[h2(Z̃r(t) + ξ)|Z̃r(t)]

]
= Eh2(Z̃r(t) + ξ)

= E
[
h2(Z̃r(t) + ξ)1{Z̃r(t) + ξ > 0}

]
+ E

[
h2(Z̃r(t) + ξ)1{Z̃r(t) + ξ ≤ 0}

]
. (27)

Note the second expectation on the right side is dominated by h2(r∗), following the (modified) cost

function definition in (25); and the first expectation is dominated by Eh2(Zr(t) + ξ), taking into

account Z̃r(t) ≤ Zr(t) and h(z) increasing in z > 0; furthermore,

Eh2(Zr(t) + ξ) ≤ a2Ee2b(Zr(t)+ξ) <∞, (28)
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where the first inequality makes use of h(x) ≤ aebx for x ≥ 0 — tha assumption in (4), along with

the fact that Zr(t) ≥ r ≥ 0; the second inequality follows from (26). Thus, both terms on the right

side of (27) can be bounded by constants; and hence, (21) is proven.

To show (24), it suffices to show supt≥0 EV (Zr(t)) < ∞ taking into account Z̃r(t) ≤ Zr(t) and

V (z) increasing. From (19), there are two terms involved:

EV (Zr(t)) = −
1

θ

(
E

∫ Zr(t)

0
C(u)du− ν∗EZr(t)

)
.

For the second term, we have Zr(t) ≥ 0 (as r ≥ 0) and therefore ν∗

θ EZr(t) ≤ 0. So, we only need

to show the first term is finite, i.e.,

sup
t≥0

E

∫ Zr(t)

0
C(u)du <∞. (29)

To this end, we have

E

∫ Zr(t)

0
C(u)du = E

∫ Zr(t)

0
Eh(u+ ξ)du ≤ aE

∫ Zr(t)

0
Eeb(u+ξ)du =

a

b
EebξE(ebZr(t) − 1),

where the first equality takes into account C(u) = Eh(u + ξ) and the inequality makes use of (4).

Then, the bound in (29) follows from the property in (26), which is clearly valid with 2b being

replaced by b. 2

Remarks.

• The case of r∗ = −∞ is readily accommodated in the above proof. First, in this case (refer

to (15)), ν∗ = C(−∞) = h(−∞) < C(0) < ∞, as argued in the remark (iv) preceding

Proposition 1. Second, in this case no need to modify the holding cost function h, i.e.,

h̃(z) = h(z) in (25). All other arguments in the proof remain intact.

• Note the range for b in Theorem 2 is different from the one in Proposition 1; specifically, for

the reflection control Yr∗ to be optimal among all reflection controls, b < γ is sufficient; for

Yr∗ to be optimal among all admissible controls, the range is shrunk by half, to b < γ/2.

3 Reflection Control of a Discrete Production-Inventory System

Next, we consider a discrete version of the production-inventory model outlined in §2, i.e., with
both demand and production following (delayed) renewal counting processes. We want to show that

applying reflection control to this discrete system is asymptotically optimal. Specifically, considering

a sequence of such systems indexed by n under the usual diffusion scaling, we show the limiting

regime of the systems under the reflection control will yield a long-run average cost that is minimal

among all admissible controls.
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Let’s start by describing the dynamics of the discrete system. Denote by u1 the residual arrival

time initially. Let {ui, i = 2, 3, · · · } denote the interarrival times of the orders (demand), an

i.i.d. sequence with E(u2) = 1/λ and the squared coefficient of variation c2a. Denote by v1 the

residual processing time initially. Let {vi, i = 2, 3, · · · } denote the required processing times of

the orders, another i.i.d. sequence with E(v2) = 1/µ and the squared coefficient of variation c2s.

Note, the assumed finite second moments of the primitives implies these processes are uniformly

integrable, which is sufficient for the weak convergence below.

Assume the two sequences, {ui} and {vi}, are independent; and let A(t) and S(t) denote the

corresponding (delayed) counting processes:

A(t) = max{i :
i∑

j=1

uj ≤ t}, S(t) = max{i :
i∑

j=1

vj ≤ t}.

Let T (t) denote the cumulative amount of time production is active (with processing orders) up

to time t. Let Q(t) denote the state of the system at time t, the difference between the number of

orders that have arrived and the number of completed products by time t. That is, Q(t) is the net

demand at time t, the discrete counter-part of Z(t) in the Brownian model. Then, the dynamics

of the system can be written as follows:

Q(t) = Q(0) +A(t)− S(T (t)), t ≥ 0. (30)

For the above system, reflection control means, whenever the level of inventory reaches a certain

level, Q(t) = r, for some integer r, production will be stopped; i.e., T (t) =
∫ t
0 1{Q(s) > r}ds.

Specifically, the reflection control is Y (t) := µ(t−T (t)). Note, under the reflection control, Q(t)−r

coincides with the state process of a single-server queue.

Next, consider a sequence of systems as described above, indexed by a superscript “(n)”. Let

ρ(n) < 1 be a sequence of scaling parameters (to be further specified below). Let u
(n)
i = ui/ρ

(n) be

the i-th (i = 2, 3, . . . ) interarrival time to the n-th system, and accordingly, let λ(n) = ρ(n)λ. Note

this scaling will not affect the squared coefficient of variation c2a. No change in all other primitives:

the service times v
(n)
i = vi (i = 2, 3, · · · ) stay fixed (i.e., remain the same among all systems in the

sequence), and hence, so do µ and c2s.

To carry out the analysis below, we need to assume the so-called “heavy traffic” condition.

First, assume λ = µ. (Note, since ρ(n) < 1, we have λ(n) < µ, i.e., every system in the sequence is

still stable.) Second, assume the scaling satisfies the following limit:

θ(n) :=
√
n(λ(n) − µ)→ θ < 0. (31)

Clearly, the above implies λ(n) → µ, and hence ρ(n) → 1, both from below. (Again, this ensures

the stability of every system in the sequence.) Thus, when n is large, the n-th system is heavily

utilized, with the production capacity near saturation.

The so-called diffusion scaling is to scale time by n and space by 1/
√
n in all processes involved

11



(along with proper centering):(
Q̂(n)(t), Ŷ (n)(t)

)
:=

1√
n

(
Q(n)(nt), µ(nt− T (n)(nt))

)
,

(
Â(n)(t), Ŝ(n)(t)

)
:=

1√
n

(
A(n)(nt)− λ(n)nt, S(n)(nt)− µnt

)
,

Then, the dynamics of the n-th system can be written as,

Q̂(n)(t) = Q̂(n)(0) + X̂(n)(t) + Ŷ (n)(t), (32)

with

X̂(n)(t) = Â(n)(t)− Ŝ(n)(T̄ (n)(t)) + θ(n)t and T̄ (n)(t) =
1

n
T (n)(nt).

To apply reflection control to the n-th (discrete) system, let r(n) := ⌊
√
nr⌋ be the reflection level,

i.e., the server will stop producing when Q(n)(t) reaches r(n); and use a subscript r to emphasize

the reflection control. Then,

Q(n)
r (t)− r(n) ≥ 0 and

(
Q(n)

r (t)− r(n)
)
dY (n)

r (t) = 0. (33)

From the diffusion limit of a single-server queue (e.g., [2], Chapter 6), we have, under the heavy-

traffic condition in (31) and along with (Q̂(n)(0), u
(n)
1 /
√
n, v

(n)
1 /
√
n)⇒ (z0, 0, 0) (with ⇒ denoting

weak convergence):

X̂(n)(t)⇒ X(t) := θt+ σB(t), Ŷ (n)
r (t)⇒ Yr(t) := sup

0≤s≤t
(r − z0 −X(s))+; (34)

where θ is the constant in (31), σ2 = λc2a + µc2s, B(t) is a standard Brownian motion as usual, and

Yr is the reflection control in (5). Hence,

Q̂(n)
r (t)⇒ Zr(t) := z0 +X(t) + Yr(t). (35)

Next, apply any admissible control to the n-th system under the above time-space scaling, and

drop the subscript r. The control Ŷ (n)(t), being non-anticipative and increasing in t ∈ [0,+∞)

with Ŷ (n)(0) ≥ 0, must have a weak limit, possibly along some subsequence of {n}. Consequently,
for any subsequence of {n} there is a further subsequence, also denoted as {n}, such that

(Q̂(n)(t), X̂(n)(t), Ŷ (n)(t))⇒ (Z(t), X(t), Y (t)),

where the limit satisfies Z(t) = z0 + X(t) + Y (t), with X(t) being the same Brownian motion

as in (34), and Y (t) another admissible control. Whereas Z(t) may or may not have a stationary

distribution, the long-run average cost as defined in (2) will exist (or go to +∞). Following Theorem

2, this long-run average cost must be higher than the one associated with the reflection control Yr
specified above (provided the level of reflection is optimized):

AC(z0, Y ) ≥ AC(z0, Yr∗) = C(r∗). (36)

To summarize, we have
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Theorem 3 Suppose the exponential boundedness condition in (4) is satisfied with b < γ/2. Then,

applying reflection control to the n-th system, with
√
nr∗ being the reflection level and r∗ specified

in Proposition 1, is asymptotically optimal in the sense of (36); i.e., its diffusion limit yields a

long-run average cost that is no greater than the long-run average cost of the diffusion limit of the

same system under any other admissible control.

4 Reflection Control of the Birth-Death Queue

The last theorem can be significantly enhanced, when the interarrival times and processing times

follow exponential distributions. First, we can allow state-dependent arrival and service rates,

as in a birth-death queue model. Second, the optimality of the reflection control can be directly

established, without the need to go through diffusion scaling and the Brownian limit. The optimality

so established is hence without the qualifier “asymptotic”.

Let λn and µn denote the state-dependent birth/arrival and death/service rates in a birth-death

queue, and allow the state (n) to take on all integer values including negative ones. Suppose λn > 0

for all n, and let the death rates µn ≥ 0 be decision variables.

Suppose there is a given µ > 0, which is the maximal possible service rate (capacity):

µn ≤ µ, ∀n; (37)

and

sup
n

λn := λ < µ, or ρ :=
λ

µ
< 1. (38)

This guarantees the existence of a steady-state distribution (for the state process), which is denoted

π := (πn).

In each state n, there is a per time-unit holding cost hn ≥ 0, and (as in the Brownian model)

assume hn is increasing in n ≥ 0 and decreasing in n < 0, with h0 < h1 and h0 < h−1 (so as to rule

out trivial cases).

We want to minimize the long-run average cost:

min
(µn)

∑
n

hnπn, s.t. λnπn = µn+1πn+1, 0 ≤ µn ≤ µ; ∀n. (39)

Note the above problem formulation, in particular in making (µn) as decision variables, allows

an admissible control class that is as broad as non-anticipative. Here, any history-dependent control

(of the service) amounts to dependence on current state only, because of the Markovian nature of

the system, in particular the exponential sojourn times in each state.

Following the approach in [12], we can rewrite the above optimization problem as follows, with

π := (πn) as decision variables:

min
π

∑
n

hnπn, s.t. µπn+1 − λnπn ≥ 0, πn ≥ 0, ∀n;
∑
n

πn ≥ 1. (40)
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(Note that the last constraint ≥ 1 is effectively = 1, since if π = (πn) is a solution that satisfies∑
n πn > 1, then πn/

∑
n πn is certainly a better solution — yielding a smaller objective value,

since hn ≥ 0 for all n.)

The above is a linear programming (LP) problem; and its first constraint clearly implies the

following: If πm > 0 for some m, then πn > 0 for all n ≥ m (since λn > 0 as assumed); if πm = 0

for some m, then πn = 0 for all n ≤ m. This, in turn, implies that the optimal µ = (µn) is such

that there exists some r, such that µn = 0 (and πn = 0) for all n ≤ r− 1, and µn > 0 (and πn > 0)

for all n ≥ r. Furthermore, the optimal r cannot be positive. For if r > 0 and πr > 0 whereas

πr−1 = 0, then we can reduce πr by an amount δ > 0, sufficiently small so as not to violate the

constraints, and increase πr−1 to δ. This will decrease the objective value in (40) since hr ≥ hr−1

for r > 0.

The next question is, whether for all n ≥ r, the server should serve at full capacity, i.e., whether

it’s optimal to have µn = µ for all n ≥ r. To address this question, we examine the dual of the

above LP, with the range of n restricted to n ≥ r. Let yn be the dual variable associated with

the first set of constraints in (40), and let z be the dual variable associated with the constraint∑
n πn ≥ 1. Then, the dual LP is:

max z s.t. z − λryr ≤ hr; z + µyn−1 − λnyn ≤ hn, n ≥ r + 1; z ≥ 0, yn ≥ 0, ∀n. (41)

Complementarity indicates that all the above inequalities, except the non-negativity on z and yn,

should hold as equalities, since πn > 0 for all n ≥ r in the primal LP. This, in turn, will imply

that yn > 0 for all n ≥ 0. (Note r ≤ 0 as argued above.) To see this, consider two consecutive

constraints,

z + µyn−1 − λnyn = hn, z + µyn − λn+1yn+1 = hn+1.

If yn = 0, then the above will lead to

−λn+1yn+1 − µyn−1 = hn+1 − hn ≥ 0, n ≥ 0.

Since λn+1 and µ are both positive, and yn−1 and yn+1 both non-negative, the above means we

must have yn−1 = yn+1 = 0; and hence, hn+1 = hn. This, in turn, will lead to hn = h0 for all

n ≥ 0, a trivial case that has been ruled out.

The fact that yn > 0 for all n ≥ 0 means the constraint in the primal LP is binding, λn−1πn−1 =

µπn for all n ≥ 0, i.e., it is optimal to have µn = λn−1πn−1/πn = µ for all n ≥ 0.

Yet, the above argument does not apply to the negative n’s, where hn is decreasing. So, what

remains is to pin down the optimal rates in the negative states j = −1, . . . , r. To this end, write

the long-run average cost as follows:

π0

r∑
j=−1

hj
Rj

+ π0
∑
n≥0

hnR̄n,

where

Rj :=
λ−1 · · ·λj

µ0 · · ·µj+1
, j = −1, . . . r; R̄0 := 1, R̄n :=

λ0 · · ·λn−1

µn
; n = 1, 2, . . . ;
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and

π0 :=
(
S0 +

r∑
j=−1

1

Rj

)−1
,

with

S0 :=
∑
n≥0

R̄n ≤
1

1− ρ
<∞,

where the inequalities follow from R̄n ≤ ρn for n ≥ 0, with ρ := λ/µ < 1; refer to (38).

To determine the optimal rates, write xj := 1/Rj , x := (xj)
r
j=−1; and denoteH0 :=

∑
n≥0 hnR̄n.

Then, we have

min
x

H0 +
∑r

j=−1 hjxj

S0 +
∑r

j=−1 xj
s.t. 0 ≤ xj ≤

1

R̄j
, j = −1, . . . , r. (42)

Writing the objective function above as C(x) := f(x)/g(x), and taking derivatives, we have

∂C

∂xj
=

1

g

[
hj − C(x)

]
.

Thus, if hj < C, then increasing xj will reduce C. This, along with hj decreasing in j, leads to a

simple algorithm, which also reveals more structure of the optimal solution.

Start with j = −1 and compare hj with C = H0/S0. If hj ≥ C, then any positive xj will

increase C, so we must have xj = 0. On the other hand, if hj < C, then we can increase xj , and

thereby reducing C, since

hj <
H0 + hjxj
S0 + xj

<
H0

S0
.

So, we can increase xj to its upper bound, 1/R̄j , and update C to

C =
H0 + (hj/R̄j)

S0 + (1/R̄j)
,

and compare it against hj−1, and repeat the above.

So here is the algorithm to solve the minimization problem in (42):

• Step 0. Set j = −1, xj = 0; set S = S0 and H = H0; set C = H/S.

• Step 1. Stop, if hj ≥ C; otherwise, continue.

• Step 2. Set xj = 1/R̄j , and update:

H ← H + (hj/R̄j), S ← S + (1/R̄j), C = H/S, j ← j − 1;

goto Step 1.
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Thus, for all j = −1, . . . , r, we have hj < C; and we stop at r such that hr−1 ≥ C (this is

analogous to C(r) = h(r) in the Brownian motion setting), and this is the optimal r (which could

be −∞, as in the Brownian case). Furthermore, for all j = −1, . . . , r, we have xj = 1/R̄j ; that is,

it is optimal to set µj = µ, just like what’s optimal for µn with n ≥ 0.

In retrospect, it’s quite clear that we must have yr > 0 (which then implies πr > 0; and hence,

πn > 0 for all n ≥ r). For if yr = 0, we would have z ≤ hr — refer to the first constraint in (41),

and this would contradict C > hr (refer to the above algorithm), since z = C at optimality.

Finally, observe that for C to be finite, we need H0 < ∞; refer to the objective function in

(42). To guarantee this, we need the holding cost {hn} to satisfy H0 :=
∑

n≥0 hnρ
n <∞, which is

analogous to the exponential boundedness condition on h(x) in (4). Specifically, the condition can

be expressed as:

∃b < − ln(ρ), ∃n0 > 0, s.t. hn ≤ ebn, ∀n ≥ n0; (43)

so that ρeb < 1, and hence,
∑

n≥0 hnρ
n ≤

∑
n≥0(ρe

b)n < ∞. Similarly, the remarks preceding

Proposition 1 regarding the optimal reflection level and the corresponding holding cost in the

Brownian setting all have analogous counterparts here. In particular, if it is optimal to have

r = −∞, then we must have h−∞ (:= C−∞) < H0/S0 (:= C0), as evident from the analysis above.

In summary, we have

Theorem 4 Suppose the holding cost {hn} satisfies the exponential boundedness condition in

(43). Then, the reflection control is optimal for the birth-death queue model; specifically, set the

service rate µ = 0 for n < r < 0, and µn = µ for n ≥ r; with the optimal r identified by the above

algorithm.
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