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With significant economic and environmental benefits, renewable energy is increasingly used to generate

electricity. To hedge against the uncertainty due to the increasing penetration of renewable energy, an

ancillary service market was introduced to maintain reliability and efficiency, in addition to day-ahead and

real-time energy markets. To co-optimize these two markets, a unit commitment problem with regulation

reserve (the most common ancillary service product) is solved for daily power system operations, leading to a

large-scale and computationally challenging mixed-integer program. In this paper, we analyze the polyhedral

structure of the co-optimization model to speed up the solution process by deriving problem-specific strong

valid inequalities. Convex hull results for certain special cases (i.e., two- and three-period cases) with rigorous

proofs are provided, and strong valid inequalities covering multiple periods under the most general setting

are derived. We also develop efficient polynomial-time separation algorithms for the inequalities that are

in the exponential size. We further tighten the formulation by deriving an extended formulation for each

generator in a higher-dimensional space. Finally, we conduct computational experiments to apply our derived

inequalities as cutting planes in a branch-and-cut algorithm. Significant improvement from our inequalities

over commercial solvers demonstrates the effectiveness of our approach, leading to practical usefulness to

enhance the co-optimization of energy and ancillary service markets.
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1. Introduction

1.1. Motivation

Renewable energy is increasingly penetrating into the power system due to its economic and envi-

ronmental benefits (Dincer 2000). Many countries, such as the U.S. (U.S. EIA 2016, Gibbens 2017)

and China (China Energy Portal 2017), have been investing to substantially increase electricity

generation from renewable energy in the last decade. Nevertheless, due to the intermittent nature

(e.g., wind output fluctuates and solar energy relies on sunny weather) of renewable energy, it

creates huge uncertainties for power system operations.
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To ensure reliable and cost-effective operations of the power system, system operators schedule

electric generators that use traditional fuels like coal and natural gas to generate electricity at an

amount equal to the electricity load, as electricity cannot be stored at a large scale. To that end,

a large-scale security-constrained unit commitment (UC) problem needs to be efficiently solved

to obtain the corresponding power generation schedule. This problem is difficult to solve though

because a large number of generators that are geographically distributed over the power network

are involved and each generator has complex physical characteristics. The significant uncertainty

due to intermittent renewable energy further worsens this situation. To manage such uncertainty,

an ancillary service market is crucial to different independent system operators (ISOs) to ensure

power system resilience. The most common commodity in the ancillary service market is named

regulation reserve, which is represented as certain power generation capacity reserved to handle

future fluctuations like moment-to-moment changes on both electricity generation (i.e., supply)

and load (i.e., demand) sides and a sudden loss of a generator or a transmission line. The capacity

reserved to increase (resp. decrease) power generation when needed is called regulation-up (resp.

regulation-down) reserve. Through the ancillary service market, real-time electricity generation

outputs can be easily adjusted to satisfy load balance requirement in each time period. Despite

the benefits from the ancillary service market, a challenging question arises to call for effective

coordination between the existing energy markets and the ancillary service market. In this paper,

we aim to help coordinate both markets effectively and efficiently.

1.2. Literature Review

The ISOs are responsible for clearing both the energy and ancillary service markets to (i) main-

tain the load balance at the minimum operational cost through the former, and (ii) protect the

power system against disturbances from both electricity supply and demand sides through the lat-

ter. Through the energy markets, the ISOs coordinate the electric power generators to determine

their generation schedules at the minimum cost by respecting physical and security restrictions.

Through the ancillary service market, specific levels of regulation reserves are determined to hedge

against the system uncertainties. There exist different practices among ISOs to clear both mar-

kets. Traditionally, to lower the computational burden, these two markets are cleared sequentially

(Kirsch and Singh 1995, Hirst and Kirby 1997, Singh and Papalexopoulos 1999). However, sequen-

tial clearing cannot guarantee global optimality for the power generation scheduling considering

ancillary services (Cheung 2008). To deal with this challenge, the ISOs are increasingly exploring

the co-optimization of energy and ancillary service markets (Street et al. 2017), by which the global

optimality is ensured. For instance, Midcontinent ISO (MISO) has used a co-optimization model

to simultaneously clear energy and ancillary service markets since 2009 (Carlson et al. 2012). As
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the regulation reserve is the most commonly used ancillary service, in this paper, we focus on

the co-optimization model that formulates a security-constrained UC problem co-optimizing power

generation and regulation reserve. Traditional UC models that consist of different types of reserve

requirements have been proposed by Li and Shahidehpour (2005), Ostrowski et al. (2012), and

Morales-España et al. (2013), among others.

Due to the large scale involved and physical constraints complexity, the UC problem is difficult

to solve by itself. Several optimization techniques have been proposed during the past decades

to solve the UC problem, including dynamic programming algorithms (Lowery 1966, Frangioni

and Gentile 2006), Lagrangian relaxation (LR) / decomposition (Muckstadt and Koenig 1977,

Dubost et al. 2005, Sagastizábal 2012), and heuristic approaches (Mantawy et al. 1998, Dang and

Li 2007). Note that LR was widely used in industry, but it is unable to guarantee optimality or even

feasibility. To tackle this drawback, all the wholesale electricity markets in the U.S. (Carlson et al.

2012) have transitioned to adopt mixed-integer linear programming (MILP) approaches, which

have advantages in obtaining an optimal solution (Streiffert et al. 2005, Nemhauser 2013). As a

result, hundreds of million dollars are saved (Bixby 2010).

As cutting planes are efficient approaches to strengthen the MILP formulation and speed up

the corresponding branch-and-cut algorithm, significant research progress has been made to derive

cutting planes and thereby provide strong formulations via polyhedral studies for the traditional

UC problem, as any small improvement in the computational performance can result in huge

cost savings for the UC problem. For instance, Lee et al. (2004) develop alternating up/down

inequalities to strengthen the minimum-up/-down time polytope; Rajan and Takriti (2005) and

Malkin (2003) develop convex hull representation of the minimum-up/-down time polytope with

start-up costs; Queyranne and Wolsey (2017) develop tight formulations for bounded up/down

times and interval-dependent start-up costs; Morales-España et al. (2013) and Gentile et al. (2017)

tighten the generation capacity constraints; Damcı-Kurt et al. (2016) and Ostrowski et al. (2012)

develop strong valid inequalities to strengthen the ramping polytope; Pan et al. (2016) provide

strong valid inequalities for the UC problem with gas-fired generators; and Pan and Guan (2016)

derive convex hulls and strong valid inequalities for the integrated minimum-up/-down time and

ramping polytope; among others. In addition, Frangioni and Gentile (2015), Knueven et al. (2018),

and Guan et al. (2018) present extended formulations of the single-UC problem, without considering

regulation reserve, in higher-dimensional space. However, there are very limited studies considering

co-optimizing the energy and ancillary service markets, which is more computationally challenging

than solving the energy market problem alone (Carlson et al. 2012). In this paper, we provide one

of the first studies to analyze the polyhedral structure of the UC model that co-optimizes power

generation and regulation reserve, leading to significant computational performance enhancement.
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Table 1 Literature on Strong UC MILP Formulations

Literature
Polyhedral

Study
Result

Polyhedral Study Focus
Min-Up
/-Down
Time

Gener-
-ation
Limit

Stable
Ramping

Startup
Shutdown
Ramping

Extended
Formul-
-ation

Ancillary
Service

Lee et al. (2004) convex hull
√

- - - - -
Malkin (2003) convex hull

√
- - - - -

Rajan and Takriti (2005) convex hull
√

- - - - -
Queyranne and Wolsey (2017) convex hull

√
- - - - -

Morales-España et al. (2013) cutting plane -
√

-
√

-
√

Gentile et al. (2017)
convex hull,

cutting plane

√ √
-

√
- -

Ostrowski et al. (2012) cutting plane
√ √ √ √

- -
Damcı-Kurt et al. (2016) cutting plane -

√ √ √
- -

Pan et al. (2016) cutting plane
√ √ √ √

- -

Pan and Guan (2016)
convex hull,

cutting plane

√ √ √ √
- -

Frangioni and Gentile (2015) convex hull - - - -
√

-
Knueven et al. (2018) convex hull - - - -

√
-

Guan et al. (2018) convex hull - - - -
√

-

This paper
convex hull,

cutting plane

√ √ √ √ √ √

We summarize the literature above on strong UC MILP formulations as well as our paper in

Table 1 in terms of two perspectives: polyhedral study focus and result. For the first perspective,

we consider whether a paper focuses on a specific physical constraint (i.e., minimum-up/-down,

generation, and ramping limits) of a generator, whether it studies the extended formulation, and

whether it considers ancillary service. Here we use “stable ramping” to represent the generation

difference limits between any two consecutive online periods. For the second perspective, we con-

sider whether a paper derives the convex hull of the studied polytope or several families of cutting

planes (i.e., strong valid inequalities).

1.3. Contributions

We analyze the polyhedral structure of the UC problem with regulation reserve in two major steps:

(i) in the original space and (ii) in a higher-dimensional space. First, we study a polytope obtained

from co-optimizing power generation and regulation reserve in the original space, which is more

complicated than the traditional UC polytope studied in the literature, and accordingly derive new

families of strong valid inequalities to strengthen the original formulation. Second, we derive an

extended formulation for each generator in a higher-dimensional space.

For the original polytope, we investigate its structure by first considering certain special cases

and then exploring the most general case. Through considering special problem features (e.g.,

regulation-reserve-concerned ramping restrictions) and their interrelationships, we derive strong
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valid inequalities that are strong enough to describe the convex hulls of the two-period and three-

period cases under various parameter settings. We then extend the study to the most general case

that covers multiple periods by generalizing our insights based on the problem features. Thus we

derive several families of strong valid inequalities that are facet-defining for the original multi-period

polytope under mild conditions. For the inequalities that are in the exponential size of the total

periods, we develop efficient polynomial-time separation algorithms to speed up the branch-and-cut

process.

To derive the extended formulation in a higher-dimensional space, we start with developing an

efficient dynamic programming algorithm to optimally schedule a single generator while respecting

the same set of physical constraints in the original polytope. We can equivalently transform the

dynamic program into a linear program that enables an integral optimal solution, leading to an

alternative extended formulation. Thus, the constraints in the extended formulation can equiva-

lently replace the original physical constraints for each generator.

Finally, we perform extensive computational experiments to show the benefits of our approach.

Specifically, we demonstrate the efficiency of our proposed strong valid inequalities used as cutting

planes on co-optimizing the power generation and regulation reserve under different data sets.

The remainder of this paper is organized as follows. We first provide an MILP formulation to

co-optimize power generation and regulation reserve in Section 2. Then, we provide the convex hull

results under different settings in Section 3, and we derive multi-period strong valid inequalities

in Section 4. In Section 5, we develop an extended formulation in a higher-dimensional space for

each single generator. In Section 6, we report computational results under different data sets to

demonstrate the effectiveness of our proposed approaches. This paper concludes in Section 7.

2. The Co-Optimization Model

In this section, we describe the security-constrained UC model that co-optimizes power generation

and regulation reserve. The objective of this model is to determine an optimal schedule of both the

power generation and regulation reserve for operating the power system, which can be represented

as shown in Figure 1 for a six-bus example.

First, we use K, B, and A to denote the sets of generators, buses, and transmission lines, respec-

tively. For each generator k ∈K, we use SUk (resp. SDk) to denote its start-up (resp. shut-down)

cost, RUk (resp. RDk) to denote the cost of regulation-up (resp. regulation-down) reserve, C
k

(resp. Ck) to denote its maximum (resp. minimum) power output when it is online, Lk (resp. `k)

to denote its minimum-up (resp. minimum-down) time limit, V
k

to denote the ramping rate limit

when it starts up or shuts down, V k to denote the ramping-up/-down rate limit when it is in the
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B4 B5 B6

B1 B2 B3

K1 K2

K3

Figure 1 IEEE Six-Bus System

stable operation, and fk(·) to denote its generation cost function, where C
k
>max{Ck, V

k}. We

let T represent the total number of time periods. For each bus b∈B, we use Db
t to denote the load

at this bus in period t and Kb to denote the set of generators at this bus. For each transmission

line (m,n) ∈ A, we use Amn to denote its transmission capacity and ρbmn to denote the line flow

distribution factor for the power flow on this line due to the net injection at each bus b ∈ B. In

each period t, the minimum regulation-up (resp. regulation-down) reserve requirement is denoted

by R+
t (resp. R−t ). For instance, Figure 1 presents a power grid with six buses (i.e., Bi, i= 1, . . . ,6),

where generators (i.e., Ki, i= 1,2,3) or loads (indicated by outgoing arrows) are located at each

bus and transmission lines connect different buses. For simplicity, we use [a, b]Z to denote the set

of integer numbers between integers a and b, i.e., {a,a+ 1, . . . , b− 1, b} with [a, b]Z = ∅ if a> b.

Next, for the decision variables, corresponding to each generator k ∈K in period t, we use binary

variable ykt to denote whether it is online (i.e., ykt = 1) or offline (i.e., ykt = 0), binary variable ukt

to denote whether it starts up in period t (i.e., ukt = 1) or not (i.e., ukt = 0), continuous variable

pkt to denote its power generation amount above the minimum power output Ck, and continuous

variable rk+t (resp. rk−t ) to represent the regulation-up (resp. regulation-down) reserve amount.

Based on the notation above, the security-constrained UC model that co-optimizes power gen-

eration and regulation reserve, denoted as UCR, can be described as follows:

min
∑
k∈K

(
T∑
t=2

(
SUkukt + SDk

(
ykt−1− ykt +ukt

))
+

T∑
t=1

(
fk
(
pkt +Cykt

)
+ RUkrk+t + RDkrk−t

))
(1a)

s.t.
t∑

i=t−Lk+1

uki ≤ ykt , ∀t∈ [Lk + 1, T ]Z,∀k ∈K, (1b)

(UCR)
t∑

i=t−`k+1

uki ≤ 1− ykt−`k , ∀t∈ [`k + 1, T ]Z,∀k ∈K, (1c)
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−ykt−1 + ykt −ukt ≤ 0, ∀t∈ [2, T ]Z,∀k ∈K, (1d)

pkt − rk−t ≥ 0, ∀t∈ [1, T ]Z,∀k ∈K, (1e)

pkt + rk+t ≤ (C
k−Ck)ykt , ∀t∈ [1, T ]Z,∀k ∈K, (1f)(

pkt +Ckykt + rk+t
)
−
(
pkt−1 +Ckykt−1

)
≤ V kykt−1 +V

k (
1− ykt−1

)
, ∀t∈ [2, T ]Z,∀k ∈K, (1g)(

pkt−1 +Ckykt−1
)
−
(
pkt +Ckykt − rk−t

)
≤ V kykt +V

k (
1− ykt

)
, ∀t∈ [2, T ]Z,∀k ∈K, (1h)∑

k∈K

rk+t ≥R+
t , ∀t∈ [1, T ]Z, (1i)∑

k∈K

rk−t ≥R−t , ∀t∈ [1, T ]Z, (1j)∑
k∈K

(
pkt +Ckykt

)
=
∑
b∈B

Db
t , ∀t∈ [1, T ]Z, (1k)

−Amn ≤
∑
b∈B

ρbmn

∑
k∈Kb

(pkt +Ckykt )−Db
t

≤Amn, ∀t∈ [1, T ]Z,∀(m,n)∈A, (1l)

rk±t ≥ 0, ykt ∈ {0,1}, ∀t∈ [1, T ]Z; ukt ∈ {0,1}, ∀t∈ [2, T ]Z,∀k ∈K. (1m)

The objective function (1a) is to minimize the total cost including start-up, shut-down, generation,

and regulation-up/-down reserve costs. Constraints (1b) and (1c) describe the minimum-up and

minimum-down time limits, respectively. That is, if generator k starts up (resp. shuts down) in

period t, then it has to stay online (resp. offline) until time t+ Lk − 1 (resp. t+ `k − 1) and is

allowed to shut down (resp. start up) in period t+ Lk (resp. t+ `k). Constraints (1d) describe

the relationship between the online/offline status y and start-up decision u and help set the shut-

down cost term (i.e., SDk(ykt−1 − ykt + ukt )) in (1a). Note that (1d) enforces ukt = 1 when ykt = 1

and ykt−1 = 0. Meanwhile, constraints (1b) - (1d), together with the minimization objective, ensure

that the shut-down cost SDk is incurred for generator k in period t (i.e., ykt−1− ykt +ukt = 1) if and

only if ykt−1 = 1 and ykt = ukt = 0. Thus, if generator k starts up in period t (i.e., ukt = 1), then it

implies that ykt = 1 and ykt−1 = 0; and if generator k shuts down in period t, then it implies that

ykt−1 = 1 and ykt = 0. Constraints (1e) and (1f) describe the minimum and maximum power genera-

tion amounts that allow the generator to additionally provide regulation-down and regulation-up

reserves, respectively. Constraints (1g) and (1h) describe the ramping-up and ramping-down rate

restrictions, i.e., the maximum generation increment and decrement between two consecutive peri-

ods, respectively. They ensure the power generation does not increase/decrease too significantly,

while guaranteeing the regulation reserve requirements to be satisfied. Constraints (1i) and (1j)

describe the system-wide regulation-up and regulation-down reserve requirements in each period t,

respectively. Constraints (1k) represent the load balance restriction. Finally, constraints (1l) repre-

sent the transmission line capacity limit. The generation cost function fk(·) is a quadratic function
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in general (defined as fk(pkt + Ckykt ) = ak(pkt + Ckykt )2 + bk(pkt + Ckykt ) + ckykt ) and is commonly

approximated by a piecewise linear function (Carrión and Arroyo 2006). Accordingly, UCR is an

MILP formulation.

The consideration of regulation reserve makes model UCR significantly different from the tra-

ditional UC model without regulation reserve. Technically, as compared to the traditional model,

two more continuous variables, i.e., rk+t and rk−t , are integrated with power generation variables

(i.e., pkt ) in constraints (1e) - (1h) due to the co-optimization purpose. Specifically, constraints (1e)

ensure that each generator k should schedule enough power generation (i.e., pkt +Ck) so that the

power generation will be above the minimum power output Ck (i.e., pkt − rk−t ≥ 0) when it is called

to provide regulation-down reserve (i.e., rk−t ) in the real-time operations. Constraints (1f) ensure

that each generator k cannot plan too much power generation so that the power generation will

be below the maximum power output C
k

(i.e., pkt +Ck + rk+t ≤ C
k
) when it is called to provide

regulation-up reserve (i.e., rk+t ) in the real-time operations. Similarly, constraints (1g) and (1h)

ensure that the ramping-up and ramping-down rate restrictions can be satisfied when each gener-

ator k is called to provide regulation-up and regulation-down reserves, respectively. The inclusion

of regulation reserve leads to significantly increased complexity in scheduling the power generation

and regulation reserves to decide the optimal online/offline status, power generation amount, and

regulation reserve amount. More importantly, it leads to high difficulty in solving the resulting

MILP model UCR by particularly complicating the choices of optimal integral solutions. In the

following, we provide an example to show that the inclusion of regulation reserve leads to different

optimal integral solutions between the UC model with and without regulation reserve.

Example 1. We consider two generators (i.e., K= {1,2}) at the same bus without transmission

line (i.e., B = {1}). We let T = 3 and the total loads in each period d1 = 10, d2 = 15, and d3 = 25,

with the minimum reserve requirements R+
t = R−t = 0.1dt,∀t = 1,2,3. We provide the detailed

physical parameters of these two generators in Table 2. We solve the UC model in two cases: (i)

Table 2 Example 1 Data

Generator C
k
Ck V k V

k
Lk `k SUk SDk RUk RDk ak bk ck

k= 1 45 6 7 10 1 1 180 0 56 56 0.07 30 30
k= 2 60 9 10 14 1 1 350 0 46 46 0.01 20 60

with reserve, i.e., our model (1); and (ii) without reserve, i.e., a traditional UC model. The solution

results are reported in Table 3, from which we can observe (i) when the reserve requirements are

not considered, only generator 2 will be online to satisfy the loads with the minimum total cost; and

(ii) when the reserve requirements are included, the system has to coordinate both generators to
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Table 3 Example 1 Result

Case
Generator 1 Generator 2
y11 y12 y13 y21 y22 y23

Without Reserve 0 0 0 1 1 1
With Reserve 1 1 1 0 0 1

be online. Such difference is due to the complex physical characteristics. More specifically, the load

difference between periods 3 and 2 is d3− d2 = 10, which requires the online generator(s) to ramp

up (i.e., increase the total generation amount) by 10 from periods 2 to 3. Both generators 1 and 2

have their stable ramping rates no larger than 10. When no reserve is considered, using generator

2 with V 2 = 10 can satisfy this ramping requirement. However, when the reserve requirements are

included, the online generator(s) need to prepare excessive capacity as regulation-up/-down reserve

besides satisfying the loads. It follows that using either single generator only is not enough anymore,

and thus both generators are online in period 3. Therefore, we can observe that considering reserve

requirements leads to a different generator online/offline schedule compared to the traditional case

without reserve requirements.

In this paper, we improve the branch-and-cut algorithm for model UCR by performing a poly-

hedral study of the corresponding MILP formulation and providing strong valid inequalities as

cutting planes under different settings. More specifically, we focus on constraints (1b) - (1h), which

include all the physical restrictions of every single generator. Thus, without loss of generality, we

remove superscript k and collect all the physical constraints into the following set with B := {0,1}:

P :=
{

(p, r+, r−, y, u)∈RT+×RT+×RT+×BT ×BT−1 :

t∑
i=t−L+1

ui ≤ yt, ∀t∈ [L+ 1, T ]Z, (2a)

t∑
i=t−`+1

ui ≤ 1− yt−`, ∀t∈ [`+ 1, T ]Z, (2b)

yt− yt−1−ut ≤ 0, ∀t∈ [2, T ]Z, (2c)

pt− r−t ≥ 0, ∀t∈ [1, T ]Z, (2d)

pt + r+t ≤ (C −C)yt, ∀t∈ [1, T ]Z, (2e)

pt + r+t − pt−1 ≤ V + (C +V −V )yt−1−Cyt, ∀t∈ [2, T ]Z, (2f)

pt−1− pt + r−t ≤ V + (C +V −V )yt−Cyt−1, ∀t∈ [2, T ]Z

}
. (2g)

In the following sections, we strengthen the original formulation by deriving convex hull represen-

tations for conv(P ) for certain cases in Section 3 and general strong valid inequalities for conv(P )

in Section 4, where conv(P ) is defined as the convex hull description of set P . We also derive the

extended formulation for every single generator in a higher-dimensional space in Section 5.
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Remark 1. Since we focus on the physical characteristics of every single generator, any improve-

ment for set P can benefit every problem with P embedded because strong valid inequalities for

conv(P ) are also valid for any problem with P embedded. Therefore, our derived strong valid

inequalities can help solve other power system problems with P embedded more efficiently, regard-

less of which market settings.

3. Convex Hulls

We provide the convex hull results for two cases: two-period case in Section 3.1 and certain three-

period cases in Section 3.2.

3.1. Two-Period Convex Hull

In this section, we focus on a two-period case of set P and tighten constraints for the original

multi-period formulation. To that end, we derive the corresponding strong valid inequalities, which

can be applied to any two consecutive periods of polytope conv(P ). Without loss of generality, we

assume the minimum-up/-down time limit to be one. We also assume C <V <C +V throughout

this paper to reflect the general physical characteristics of a thermal generator. Since the setting we

consider is general and accordingly, our derived inequalities can be applied to describe the convex

hulls for other parameter settings. The corresponding original constraint set with two periods,

denoted by P2, can be described as follows:

P2 :=
{

(p, r+, r−, y, u)∈R2
+×R2

+×R2
+×B2×B :

u2 ≤ y2, (3a)

u2 ≤ 1− y1, (3b)

y1 ≥ y2−u2, (3c)

pt ≥ r−t , ∀t= 1,2, (3d)

p1 + r+1 ≤ (C −C)y1, (3e)

p2 + r+2 ≤ (C −C)y2, (3f)

p2 + r+2 − p1 ≤ V + (C +V −V )y1−Cy2, (3g)

p1− p2 + r−2 ≤ V + (C +V −V )y2−Cy1
}
. (3h)

Note that our assumptions on the physical characteristics of a thermal generator are very mild

and fit well with the industrial practices. When a generator starts up in a period, its start-up

ramping rate limit V should be (in general slightly) larger than the minimum generation output

C in order for the generator to be online in this period. Meanwhile, the generator can start up to

generate over C in the current period and project to ramp up in the next period by V to generate
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over C+V . Thus, V is smaller than C+V in general because the generator starts up in the current

period and does not bypass a two-period ramping up process.

In the following, we provide the linear description of conv(P2). We first prove our derived inequal-

ities are valid for conv(P2) in Proposition 1 and show that they are also facet-defining for conv(P2)

in Proposition 2. Then, we prove that the derived inequalities with additional nonnegative restric-

tions of decision variables can describe the convex hull in Theorem 1.

Proposition 1. The inequalities

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (4)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (5)

p2 + r+2 − p1 ≤ V y2− (C +V −V )u2, (6)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (7)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (8)

are valid for conv(P2) when C −C − 2V > 0.

Proof. See Online Supplement EC.1.2 for the detailed proof. �

Our proposed inequalities are derived through investigating the specific problem features (i.e.,

minimum-up/-down time, regulation-reserve-concerned ramping, and capacity lower/upper limits)

that are involved in the original constraint set. We illustrate two approaches that we use to derive

them and thereby provide the corresponding intuition behind the inequalities. We choose two

inequalities (i.e., (4) and (6)) in Proposition 1 for illustration.

First, we derive an inequality (e.g., (4)) by combing possible disjunctive cases for operating a

generator in a period. For instance, we focus on the generation amount above the minimum power

output in period 1, i.e., p1, which is potentially affected by the generator’s online/offline status in

periods 1 and 2 because we consider only two periods in P2. Thus, we design an inequality in the

form of

p1 ≤M1y1 +M2y2 +M3u2 (9)

to designate a variable upper bound. We aim to carefully choose the right coefficients M1, M2, and

M3 so that this inequality can be as strong as possible (e.g., facet-defining). We consider all the

possible choices for (y1, y2, u2) in the original constraints and the corresponding upper bound for p1

under each choice. That is, there are three possible cases: (i) If y1 = 0, i.e., the generator is offline,

then p1 = 0 due to (3e), where we also have y2 − u2 = 0 due to (3a) and (3c); (ii) If y1 = 1 and

y2 = 0, i.e., the generator shuts down in period 2, then p1 ≤ V −C due to the shut-down ramping
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constraint (3h), where we also have u2 = 0 due to constraint (3a); (iii) If y1 = y2 = 1 and u2 = 0,

i.e., the generator stays online throughout both periods 1 and 2, then the generation amount is

simply bounded above by the maximum power output due to constraint (3e), i.e., p1 ≤ C − C.

Then, we plug the values of (y1, y2, u2) under each case above into the right-hand-side (RHS) of

(9), and enforce this RHS to be tight at the corresponding upper bound that we obtain in the

above three cases. That is, we let M2 +M3 = 0 due to case (i), M1 = V −C due to case (ii), and

M1 +M2 =C −C due to case (iii). It follows that

M1 = V −C, M2 =C −V , and M3 =−C +V ,

which derive (9) as inequality (4) in Proposition 1.

Second, we derive an inequality (i.e., (6)) by tightening an existing constraint while maintaining

its validity. For instance, we choose the original constraint (3g) and tighten (i.e., reduce) its RHS

by replacing the first term in its RHS V with V y2, as y2 ≤ 1, leading to the following inequality:

p2 + r+2 − p1 ≤ V y2 + (C +V −V )y1−Cy2. (10)

Inequality (10) is valid when y2 = 1 because (10) is the same as (3g) in this case. When y2 = 0,

p2 + r+2 = 0 following constraint (3f), and (10) simply becomes p1 ≥−(C +V −V )y1, which is also

valid because V <C+V . We further tighten inequality (10) by replacing y1 in its RHS with y2−u2,

as y1 ≥ y2−u2 due to (3c). It leads to the following inequality:

p2 + r+2 − p1 ≤ V y2 + (C +V −V )(y2−u2)−Cy2, (11)

which is clearly valid when y1 = y2 − u2 because (11) is the same as (10) in this case. When

y1 > y2 − u2, it implies that y1 = 1 and y2 = u2 = 0 following constraints (3a) and (3b). Due to

constraint (3f), we have p2 + r+2 = 0. The derived inequality (10) becomes p1 ≥ 0, which is also

valid. Therefore, by rearranging the RHS in (11), we obtain inequality (6) in Proposition 1.

Adding nonnegative restrictions of the variables ut, r
+
t , and r−t , we have a polytope Q2, which

is then proved to be the convex hull representation of P2 in Theorem 1.

Q2 :=
{

(p, r+, r−, y, u)∈R9 : (3a)− (3e), (4)− (8),

u2 ≥ 0, (12a)

r+t ≥ 0, ∀t= 1,2, (12b)

r−t ≥ 0, ∀t= 1,2
}
. (12c)

To show that Q2 = conv(P2), we further prove that (i) all the inequalities in Q2 are facet-defining

for conv(P2); (ii) the polytope Q2 is full-dimensional; (iii) all the inequalities that describe P2 are

dominated by those in Q2; and (iv) every extreme point in Q2 is integral in y and u.
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Proposition 2. Inequalities (4) - (8) are facet-defining for conv(P2) when C −C − 2V > 0.

Proof. See Online Supplement EC.1.2 for the detailed proof. �

Proposition 3. The polytope Q2 is full-dimensional.

Proof. See Online Supplement EC.1.3 for the detailed proof. �

Proposition 4. All inequalities of P2 are dominated by inequalities of Q2.

Proof. See Online Supplement EC.1.4 for the detailed proof. �

Proposition 5. Every extreme point in Q2 is integral in y and u.

Proof. See Online Supplement EC.1.5 for the detailed proof. �

According to Propositions 1 - 5, we can complete the proof of Theorem 1 as follows:

Theorem 1. When C −C − 2V > 0, we have Q2 = conv(P2).

Proof. Due to the formulation representations of Q2 and P2, we know that Q2 and P2 are

bounded. From Propositions 1 and 2, we have all the inequalities in Q2 are valid and facet-defining

and thus Q2 ⊇ conv(P2). According to Proposition 5, all extreme points in Q2 are integral in y and

u. Therefore, we conclude that Q2 = conv(P2). �

Example 2. We consider a generator with C = 10, C = 2, V = 4, and V = 3. The original con-

straint set

P2 :=
{

(p, r+, r−, y, u)∈R2
+×R2

+×R2
+×B2×B :

u2 ≤ y2, u2 ≤ 1− y1, y1 ≥ y2−u2, p1 ≥ r−1 , p2 ≥ r−2 , (13)

p1 + r+1 ≤ 8y1, p2 + r+2 ≤ 8y2,

p2 + r+2 − p1 ≤ 4 + y1− 2y2, p1− p2 + r−2 ≤ 4 + y2− 2y1

}
.

Following Theorem 1, the convex hull of P2 can be described as follows:

conv(P2) :=
{

(p, r+, r−, y, u)∈R9 : (13)

p1 ≤ 2y1 + 6(y2−u2), p2 + r+2 ≤ 8y2− 6u2,

p2 + r+2 − p1 ≤ 3y2−u2, p1− p2 + r−2 ≤ 2y1 + y2−u2,

r+2 + r−2 ≤ 6y2− 4u2

}
.

Although the strong valid inequalities proposed in Proposition 1 are only valid for conv(P2)

when C −C − 2V > 0, they are sufficient to describe conv(P2) when this condition does not hold,

as shown in the following theorem. It also supports our motivation to study the general physical

setting in the main analyses here.
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Theorem 2. When C + V < C ≤ C + 2V , we have conv(P2) = {(p, r+, r−, y, u) ∈ R9 : (3a) −

(3e), (4)− (7), (12a)− (12c)}. When V < C ≤ C + V , we have conv(P2) = {(p, r+, r−, y, u) ∈ R9 :

(3a)− (3e), (4)− (5), (12a)− (12c)}.

Proof. The proof is similar to that for Theorem 1 and thus it is omitted. �

Theorem 1 indicates that when optimizing a linear cost function over P2, we only need to solve

a linear program with all the constraints in Q2 to obtain the integral optimal solutions, which will

reduce the computational burden significantly. In addition, our derived inequalities (4) - (8) can be

applied for any two consecutive periods to strengthen the problem with P embedded. Furthermore,

Theorem 2 shows that when the generator has a small generation capacity, a subset of inequalities

in Q2 are sufficient to provide the corresponding convex hull.

3.2. Three-Period Convex Hulls

In this section, we investigate the three-period formulation, i.e., T = 3 in set P , and provide convex

hull descriptions for various cases with different minimum-up/-down time limits and parameter

settings. We consider the following two parameter settings: (i) C−V −2V ≥ 0 and (ii) C−V −2V <

0 and C −C − 2V ≥ 0. For each parameter setting, we discuss the following four possible cases in

terms of minimum-up/-down time limit: (i) L= `= 1; (ii) L= 1, `= 2; (iii) L= 2, `= 1; and (iv)

L= `= 2. As the derived inequalities are different for different cases, here we consider the most

representative case in which C−V −2V ≥ 0 and L= `= 2, with the results for other cases provided

in Online Supplement EC.3. The corresponding original constraint set can be described as follows:

P 2
3 :=

{
(p, r+, r−, y, u)∈R3×R3×R3×B3×B2 :

u2 +u3 ≤ y3, (14a)

y1 +u2 +u3 ≤ 1, (14b)

u2 ≥ y2− y1, u3 ≥ y3− y2, (14c)

r+t ≥ 0, r−t ≥ 0, ∀t= 1,2,3, (14d)

pt ≥ r−t , ∀t= 1,2,3, (14e)

pt + r+t ≤ (C −C)yt, ∀t= 1,2,3, (14f)

pt + r+t − pt−1 ≤ V + (C +V −V )yt−1−Cyt, ∀t= 2,3, (14g)

pt−1− pt + r−t ≤ V + (C +V −V )yt−Cyt−1, ∀t= 2,3
}
. (14h)

We follow a similar way to derive strong valid inequalities for conv(P 2
3 ) as we do for conv(P2)

in Section 3.1. For brevity, we present the complete convex hull description, denoted by Q2
3 :=

conv(P 2
3 ), together with rigorous proofs in Online Supplement EC.2. Here we choose two inequalities
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from Q2
3, i.e., (15) and (16), in the following part to illustrate the insights behind the derived

inequalities.

First, the ramping-down constraints (14h) with t= 3 can be strengthened as follows:

p2 + r+2 − p3 + r−3 ≤ (V −C)y2 + 2V (y2−u2) + (C +V −V )(y3−u3−u2). (15)

Inequality (15) can better represent the generator physical ramping restriction by incorporating

both the power generation and regulation reserve variables. To show the insights and accordingly

the validity of (15), we consider the case where the generator is online in all of the three periods,

i.e., y1 = y2 = y3 = 1 and u2 = u3 = 0. In this case, inequality (15) enforces p2 + r+2 − p3 + r−3 ≤ 3V ,

whereas the original (14h) with t = 3 tells us p2 − p3 + r−3 ≤ V . In fact, when the generator is

running in all of the three periods, the physical restrictions of the generator provide an upper

bound for the variable r+2 , as shown in Figure 2. For instance, in period t= 2, the generator can

increase or decrease its power generation output based on the generation output in period 1 (i.e.,

|p2−p1|) by ramping rate limit V . If the generator is scheduled to increase its generation output by

its maximum ramping rate limit V (i.e., p2 = p1 + V ), then there is no capacity for regulation-up

reserve. In contrast, if the generator is scheduled to decrease the power generation output by V

(i.e., p2 = p1 − V ), then there exists at most 2V of capacity for regulation-up reserve. It follows

that r+2 ≤ 2V . Thus, as compared to (14h) with t= 3, our derived inequality (15) can additionally

incorporate the upper bound of regulation-up reserve r+2 , thereby tightening (14h).

Period t0 1 2 3

Output

C

C

p1 +C

p2 +C

p3 +C

V

V

V

r+2 ≤ 2V

p2− p3 + r−3 ≤ V

r+2 + p2− p3 + r−3 ≤ 3V

Figure 2 Generator Online in Three Periods for Inequality (15)

Next, we provide a strong valid inequality to bound the regulation-up/-down reserves as follows:

r+2 + r+3 + r−3 ≤ 2V y2 + 2V y3− (C + 3V −V )u2− (C + 2V −V )u3. (16)
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Period t0 1 2 3

Output

C

V

C +V

p1 = 0

p2 + r+2 ≤ V −C
p3 + r+3 − p2 ≤ V

Figure 3 Generator Starting Up in Period t = 2 for Inequality (16)

Similar to the above analysis, we show how inequality (16) can capture the physical characteristics

that are not explicitly represented by a single original constraint in P 2
3 . To avoid a replication of

the previous analysis for inequality (15), we consider a different case where the generator starts up

in period t= 2, i.e., y1 = 0, y2 = y3 = 1, u2 = 1, and u3 = 0. In this case, inequality (16) becomes

r+2 + r+3 + r−3 ≤ V −C + V , which is a combined representation of generator physical restrictions,

as shown in Figure 3. In fact, if the generator is scheduled to start up in period t= 2, then by the

original ramping-up constraints (14g), the power generation output in period 2 is bounded above

by the start-up ramping rate limit V (i.e., p2 + r+2 ≤ V −C). Furthermore, the ramping constraint

between t= 2 and t= 3 implies that p3 + r+3 − p2 ≤ V . Therefore, by original constraints, we have

r+2 + r+3 + p3 ≤ V −C + V . Note that r−3 ≤ p3, then we conclude that the derived inequality (16)

r+2 + r+3 + r−3 ≤ V −C +V holds. We can observe that inequality (16) combines these complicated

relationships in one single inequality explicitly, which enables us to tighten the linear programming

(LP) relaxation of the original formulation. In addition, the case considered here happens in realistic

applications. That is, if a fast-ramping generator is planned to provide regulation reserve, then it

can be scheduled to start up in some time period, maintain the minimum power generation output,

and use the ramping capability V as regulation-up reserve.

Note that inequalities (15) and (16), as well as the other nontrivial inequalities in Q2
3, are valid

and facet-defining for conv(P 2
3 ) and thus they are tighter than the original physical constraints in

P 2
3 (i.e., (14f) - (14h)). Our explanations on the intuition behind (15) and (16) also imply that

they are tighter than the original constraints because each of (15) and (16) incorporates more

complicated characteristics in a single inequality than each original constraint.

Remark 2. The derived inequalities in each convex hull description for the three-period cases can

be applied as cutting planes in a branch-and-cut algorithm for any three consecutive periods of the

general multi-period case. As the amount of derived inequalities in each convex hull description is

a constant number, we conclude that the number of cutting planes added to the branch-and-cut

algorithm is polynomial in the total number of periods T .
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4. Multi-Period Strong Valid Inequalities

In this section, we further derive strong valid inequalities by considering multiple periods and the

most general parameter setting. We continue to focus on the specific problem features and derive

the inequalities as strong as possible. Our derived inequalities strengthen the variable upper bound

in Section 4.1 and the ramping rate in Section 4.2, respectively. For notational brevity, we define∑b

s=a ys =
∑b

s=a us = 0 if a> b.

4.1. Variable-Upper-Bound Inequalities

We derive strong valid inequalities to tighten the upper bounds of continuous variables by con-

sidering the effects of minimum-up/-down time and ramping constraints in P , in addition to the

original capacity lower/upper bound constraints (2d) - (2e). For example, if a generator is online

in period t− k and shuts down in period t, then the generation amount pt−k +Cyt−k is bounded

above by V + kV , instead of C, due to ramping-down constraints (2g) if V + kV <C. In addition,

by considering the minimum-up/-down time and ramping rate limits, we can derive a family of

inequalities in the following proposition, which provide better upper bounds for pt−k.

Proposition 6. For each k ∈ {[2, T −2]Z :C−V − (k−1)V > 0} and each t∈ [k+ min{2,L}, T ]Z,

the inequality

pt−k ≤
(
V −C

)
yt−k +V

k−1∑
s=1

(
yt−s−

min{k,s+L−1}∑
i=s

ut−i

)
+
(
C −V − (k− 1)V

)(
yt−

min{k,L−1}∑
i=0

ut−i

)
(17)

is valid for conv(P ). Furthermore, it is facet-defining for conv(P ) when one of the following con-

ditions is satisfied: (1) L ≤ 3 and k = bC−V
V
c + 1 for all t ∈ [k + min{2,L}, T ]Z; (2) L ≤ 3 and

t= T .

Proof. See Online Supplement EC.4.1 for the detailed proof. �

Note that in Proposition 6, the number of inequalities is polynomial in the order of T 2, i.e.,

O(T 2). Thus, we can add all of them into the model to solve the problem efficiently without

performing a selective scheme to choose only some of them. In the following, we propose a family

of inequalities whose sizes are exponential in T , where we do need to selectively choose some of

them that are more effective than others.

Proposition 7. For each k ∈ {[1, T −2]Z :C−V −(k+1)V > 0}, t∈ [2, T −k]Z, and S ⊆ [1, k−1]Z,

the inequalities

r−t ≤
(
V −C

)
yt +

(
C + (k+ 1)V −V

)yt+k− t+k∑
s=max{2,s′}

us

+
t∑

s=max{2,s′}

(t− s)V us (if k= 1),

(18)
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r−t ≤
(
V −C

)
yt +

∑
i∈S∪{1}

(di− i)V

yt+i− t+i∑
s=max{2,t+i−L+1}

us

+
(
C +V −V

)yt+k− t+k∑
s=max{2,s′}

us


+

t∑
s=max{2,t+q−L+1}

(t− s)V us (if k≥ 2 and S 6= ∅), (19)

are valid for conv(P ), where s′ = t+k−L+ 1, di = min{a∈ S ∪{k} : a> i}, and q= max{a∈ S} if

L= 1 and q= 0 if L≥ 2. Furthermore, inequality (18) is facet-defining for conv(P ) when t+k= T .

Proof. See Online Supplement EC.4.2 for the detailed proof. �

Since there are an exponential number of choices for set S, the size of inequalities (19) is expo-

nential in T . It follows that adding all of these inequalities to the model will significantly increase

the model size and accordingly decrease the computational performance. Thus, we perform a sep-

aration procedure to find the most effective inequalities during the process of solving the original

problem. That is, during the branch-and-bound process of solving a mixed-integer program and

given a solution of the linear programming (LP) relaxation of the original problem corresponding

to one branch-and-bound node, we check which inequality in the family (19) is violated with the

largest violation, namely separating the given solution. If one such inequality is found, then we add

it to the original model to continue the solution process. In the following, we provide a detailed

separation procedure for inequalities (19). Meanwhile, we show that the most violated inequality

can be efficiently found in polynomial time.

Separation: To find the most violated inequality (19), we construct a shortest path problem on

an acyclic digraph G= (V,A) for any given solution (p̂, r̂+, r̂−, ŷ, û)∈R5n−1
+ , as shown in Figure 4.

By letting k′ = max{k ∈ [1, T − 2]Z :C −V − (k+ 1)V > 0}, we describe the graph as follows:

1. Node set V = {o, d} ∪V′ with o representing the origin, d representing the destination, and

V′ = {t, t+ 1, . . . , t+ k′} representing the set of time periods from t to t+ k′ in inequalities

(19).

2. Arc set A = {aot, a(t+k′)d} ∪ A′ with A′ = ∪t≤t1<t2≤t+k′at1t2 . The weight of each arc (i, j),

denoted by ωij, is defined as follows.

(a) ωot =
(
V −C

)
ŷt− r̂−t ;

(b) ω(t+k′)d =
(
C +V −V

)(
ŷt+k′ −

∑t+k′

s=max{2,t+k′−L+1} ûs

)
+
∑t−1

s=max{2,t+q−L+1}(t− s)V ûs;

(c) ωt1t2 = (t2− t1)V
(
ŷt1 −

∑t1
s=max{2,t1−L+1} ûs

)
for any t1, t2 ∈ [t, t+ k′]Z and t1 < t2.

Based on the construction of graph G, the optimal value of the shortest path from o to d

represents the largest violation of inequalities (19) corresponding to a given t when the value is

negative. The corresponding optimal solution determines a set S, which includes all the nodes on

the shortest path. It follows that the corresponding inequality (19) with this set S will be added

into the original model to cut off the solution (p̂, r̂+, r̂−, ŷ, û) and strengthen the model. Since G
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o t t1 t2 t+ k′ d
ωot ω(t+k′)d

ωtt1

ωtt2

ωt(t+k′)

ωt1t2

ωt1(t+k′)

ωt2(t+k′)

Figure 4 Acyclic Digraph of Separation Scheme for Inequalities (19)

is acyclic with O(T 2) arcs and O(T ) nodes, finding the shortest path takes O(T 2) time for each

given t by using the topological sorting algorithm. Therefore, we have an O(T 3) algorithm to solve

the shortest path problem for all t.

Proposition 8. Given a point (p̂, r̂+, r̂−, ŷ, û)∈R5n−1
+ , there exists an O(T 3) algorithm to find the

most violated inequality (19), if any.

Besides providing tighter upper bounds for single variables, e.g., pt−k in Proposition 6 and r−t in

Proposition 7, we also develop a family of inequalities to strengthen the summation of regulation-up

and regulation-down reserves, as shown in the following proposition.

Proposition 9. For each t∈ [3, T ]Z, the inequality

r+t + r−t ≤ 2V yt−
(
C + 2V −V

)
ut−

(
C +V −V

)
ut−1 (20)

is valid when C −C − 2V > 0. Furthermore, it is facet-defining for conv(P ) when L∈ [2, T − 1]Z.

Proof. See Online Supplement EC.4.3 for the detailed proof. �

In each period t, the original constraint set P does not specify the relationship between the

regulation-up reserve (i.e., r+t ) and regulation-down reserve (i.e., r−t ) in one single constraint. It

is interesting to observe that their direct relationship can be represented by one family of strong

valid inequalities (i.e., (20)) through combining the effects from ramping rate limits and capacity

lower/upper bounds. Furthermore, those inequalities are facets of the convex hull, which means

that they are called for in the branch-and-cut algorithm. By explicitly providing them in our

customized branch-and-cut scheme, the computational performance can be significantly improved

through reducing both the search space and the branch-and-bound tree size.

Remark 3. When L= 1 or t= 2, we have another family of strong valid inequalities, i.e., r+t +r−t ≤
2V yt− (C+2V −V )ut, which is very similar to (20). It is also valid and facet-defining for conv(P ).

The corresponding proofs are similar and thus are omitted here.
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4.2. Ramping Inequalities

We strengthen the ramping-up/-down constraints by additionally considering other physical char-

acteristics, as shown in the following proposition.

Proposition 10. For each k ∈ {[1, T − 1]Z : C − V − (k + 1)V > 0} and each t ∈ [k + 2, T ]Z, the

inequality

pt + r+t − pt−k + r−t−k ≤ (k+ 2)V yt−
min{k,L−1}∑

s=0

(
C + (k+ 2− s)V −V

)
ut−s (21)

is valid and facet-defining for conv(P ).

Proof. See Online Supplement EC.4.4 for the detailed proof. �

Period0 t− k− 1 t− k · · · t

Output

C

C

pt−k−1

+C

pt−k +C

pt + r+t +C

V

V

kV

r−t−k ≤ 2V

pt + r+t − pt−k ≤ kV

Figure 5 Generator Online in k Periods for Inequality (21)

The insight of inequality (21) is similar to that of (15), which represents the physical restrictions

of the generator by incorporating both power generation and regulation reserve variables. For

example, as shown in Figure 5, if the generator is online from periods t−k−1 to t, then the ramping

restriction between periods t and t−k is bounded from above by k times of ramping rate limit V ,

i.e., pt + r+t − pt−k ≤ kV . In addition, the regulation-down reserve variable r−t−k is also physically

bounded by 2V . Thus, we have inequality (21) indicates that pt + r+t − pt−k + r−t−k ≤ (k+ 2)V .

5. An Extended Formulation

In this section, we further tighten the set P by deriving an extended formulation in a higher-

dimensional space for a single generator with regulation reserve. To that end, we remove the
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superscript k and the coupling constraints (1i) - (1l) in (1) and consider the following single-

generator problem:

min
T∑
t=2

(
SUut + SD(yt−1− yt +ut)

)
+

T∑
t=1

(
gt (pt +Cyt) + RUr+t + RDr−t

)
(22a)

s.t. (2a)− (2g), (22b)

where gt(pt+Cyt) = f(pt+Cyt)−ρt(pt+Cyt) with ρt representing the electricity price in period t.

The objective function (22a) is to minimize the total cost minus the revenue, i.e., net cost, where the

total cost includes the start-up, shut-down, power generation, regulation-up reserve, and regulation-

down reserve costs. Meanwhile, we lower approximate gt(·) using a piecewise linear function with

N pieces, from which νtj and ϕj are the slope and intercept of the jth piece in period t, respectively.

We also define T K= {(t, k)∈Z2 : t∈ [2, T ]Z, k ∈ [min{t+L−1, T −1}, T −1]Z∪{T}}∪{(t, k)∈Z2 :

t= 1, k ∈ [1, T ]Z} to represent the set of all possible combinations of each t and k to construct a

time interval [t, k]Z in which the generator is online. Note that problem (22) respects the same set

of constraints in P and thus its extended formulation can help strengthen the set P .

First, we introduce decision variables. For each period t ∈ [1, T ]Z, we use binary variable αt to

denote if the generator starts up for the first time in period t (i.e., αt = 1) or not (i.e., αt = 0), and

binary variable θt to denote if the generator shuts down in period t+ 1 and stays offline to the end

(i.e., θt = 1) or not (i.e., θt = 0). For each (t, k) ∈ T K, we use binary variable βtk to denote if the

generator starts up in period t and shuts down in period k+ 1 (i.e., βtk = 1) or not (i.e., βtk = 0),

binary variable γtk to denote if the generator shuts down in period t+ 1 and starts up in period k

(i.e., γtk = 1) or not (i.e., γtk = 0). For each 3-tuple (t, k, s)∈ {(t, k, s)∈Z3 : (t, k)∈ T K, s∈ [t, k]Z},

corresponding to each period s in the interval [t, k]Z, we use continuous variable qstk to denote the

power generation amount above the minimum power output, continuous variable ms
tk (resp. nstk)

to denote the regulation-up (resp. regulation-down) reserve amount, and continuous variable wstk

to denote a part of the net cost.

Next, we describe the following formulation:

min
T∑
t=2

SUαt +
T−1∑
k=1

SDβ1k +
T∑
t=2

T−1∑
k=t+L−1

SDβtk +
T−`−1∑
t=1

T∑
k=t+`+1

SUγtk +
∑

(t,k)∈T K

k∑
s=t

wstk (23a)

s.t. ps =
∑

(t,k)∈T K,t≤s≤k

qstk, r
+
s =

∑
(t,k)∈T K,t≤s≤k

ms
tk, r

−
s =

∑
(t,k)∈T K,t≤s≤k

nstk,

ys =
∑

(t,k)∈T K,t≤s≤k

βtk, us = αs +
∑

(t,k)∈T K,k=s

γtk, ∀s∈ [1, T ]Z (23b)

T∑
t=1

αt ≤ 1, (23c)
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−αt +
T∑
k=1

βtk = 0, t= 1, (23d)

−αt +
T∑

k=min{t+L−1,T}

βtk = 0, ∀t∈ [2, `+ 1]Z, (23e)

−αt +
T∑

k=min{t+L−1,T}

βtk−
t−`−1∑
k=1

γkt = 0, ∀t∈ [`+ 2, T ]Z, (23f)

−
t−L+1∑
k=1

βkt +
T∑

k=t+`+1

γtk ≤ 0, ∀t∈ [1, T − `− 1]Z, (23g)

θt−
t−L+1∑
k=1

βkt = 0, ∀t∈ [T − `,T ]Z, (23h)

qstk +ms
tk ≤ (C −C)βtk, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (23i)

−qstk +nstk ≤ 0, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (23j)

qttk +mt
tk ≤ (V −C)βtk, ∀(t, k)∈ T K with t≥ 2, (23k)

qktk ≤ (V −C)βtk, ∀(t, k)∈ T K with k≤ T − 1, (23l)

qs−1tk − qstk +nstk ≤ V βtk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (23m)

qstk +ms
tk− qs−1tk ≤ V βtk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (23n)

wstk− νsj qstk−RUms
tk−RDnstk ≥ (νsjC +ϕj)βtk, ∀(t, k)∈ T K,∀s∈ [t, k]Z,∀j ∈ [1,N ]Z,

(23o)

α,β, γ,m,n≥ 0. (23p)

The objective (23a) is to minimize the net cost, where the first and fourth terms represent the start-

up cost, the second and third terms represent the shut-down cost, and the final term represents

the generation and reserve costs minus the revenue. Constraints (23b) map the decision variables

(α,β, γ, θ, q,m,n) defined for the extended formulation to the decision variables (p, r+, r−, y, u)

defined for the original formulation. Constraints (23c) - (23h) describe the synchronous relationships

among the binary variables (α,β, γ, θ). Specifically, constraint (23c) describes that there is at most

one first-time start-up. Constraints (23d) - (23e) describe that given a period t∈ [1, `+1]Z, if there

is an online interval [t, k]Z for the first time, then αt = 1. Note that when α1 = 1, it implies that

the generator has been online prior to period 1 because there is no start-up cost in period 1 by

model (22) as well as model (23). Thus here we allow the generator to shut down immediately as

indicated in (23d). Constraints (23f) describe that given a period t ∈ [`+ 2, T ]Z, if the generator

shuts down in period k+ 1, followed by a coming start-up in period t such that k ∈ [1, t− `− 1]Z,

then it leads to an online interval [t, k′]Z with k′ ∈ [min{t+L− 1, T}, T ]Z. Note that here we also

have αt = 0 because the first start-up should be before period k+1. Constraints (23g) describe that
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given a period t∈ [1, T − `− 1]Z, if there is no online interval since k until t with k ∈ [1, t−L+ 1]Z,

then there would be no shut-down in period t+ 1 and accordingly no offline interval since t+ 1

until k with k ∈ [t+ `+ 1, T ]Z. Constraints (23h) describe that given a period t ∈ [T − `,T ]Z, if

there is an online interval since k until t, i.e., the generator shuts down in period t + 1, then

there will be no more start-up allowed due to the minimum-down time requirement, i.e., θt = 1.

Constraints (23i) and (23j), similar to (1f) and (1e), describe the maximum and minimum power

generation amounts, while considering that the generator may additionally provide regulation-up

and regulation-down reserves, respectively. Constraints (23k) (resp. (23l)) describe the start-up

(resp. shut-down) ramping rate limits. Constraints (23m) (resp. (23n)) describe the ramping-down

(resp. ramping-up) rate limits. Note that constraints (23k) - (23n) also incorporate the regulation

reserve. Constraints (23o) are used to approximate the generation cost function as a piecewise

linear function.

Theorem 3. Formulation (23) is an extended formulation for the single-generator unit commit-

ment problem with regulation reserve, in which an integral optimal solution can be obtained by

solving (23) as a linear program. Meanwhile, if (p∗, r+∗, r−∗, y∗, u∗, α∗, β∗, γ∗, θ∗, q∗,m∗, n∗) is an

optimal solution to (23), then (p∗, r+∗, r−∗, y∗, u∗) is an optimal solution to the problem in the

original space.

Proof. See Online Supplement EC.5 for the detailed proof. �

The extended formulation of problem (22) provides the convex hull representation for set P in

a higher dimensional space by including more decision variables and constraints. Therefore, for

any given generator k ∈ K, its original physical constraints (i.e., (1b) - (1h) or (2a) - (2g)) can

be replaced by the constraints (with physical meanings) in the extended formulation, i.e., (23b)

- (23n) and (23p), when solving problem (1). This can help us obtain a further tighter LP lower

bound for model UCR (i.e., problem (1)).

6. Computational Experiments

In this section, we conduct computational experiments to verify the effectiveness of our proposed

strong valid inequalities in solving the security-constrained UC problem that co-optimizes power

generation and regulation reserve as described in Section 2. Two different data sets, i.e., the power

system data in Carrión and Arroyo (2006) and Ostrowski et al. (2012) and a modified IEEE 118-

bus system data available at http://motor.ece.iit.edu/data/SCUC_118/, are used. We use a

computer node with two AMD Opteron 2378 Quad Core Processors at 2.4 GHz and 4 GB memory

to perform the experiments. The time limit is set as one hour per run except when specified. We

compare our strong valid inequalities added as user cuts with default CPLEX 12.3 settings.

http://motor.ece.iit.edu/data/SCUC_118/
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6.1. Power System Data in Carrión and Arroyo (2006) and Ostrowski et al. (2012)

In this experiment, we test twenty cases (see Table V in Ostrowski et al. (2012)) that are cre-

ated using eight different types of generators (as shown in Table 4). We set the total number of

periods T = 24 (e.g., leading to one-day schedule with each period being one hour) and the mini-

mum required regulation-up/-down reserve amount in each period as 3% of the total demand, i.e.,

R+
t =R−t = 3%

∑
b∈BD

b
t , ∀t ∈ [1, T ]Z. Hourly demand

∑
b∈BD

b
t is given in Table VI in Ostrowski

et al. (2012) for each t ∈ [1, T ]Z. Due to lack of transmission data in Carrión and Arroyo (2006)

and Ostrowski et al. (2012), transmission constraints (1l) are not included here. Meanwhile, the

optimality gap tolerance is set as 0.05%. The problem sizes of the original co-optimization model

(1) for each of the twenty cases are described in Table 5, where the number of generators (labeled

as “ # Gen.”), the number of binary variables in problem (1) (labeled as “ # Bin.”), and the

number of continuous variables in problem (1) (labeled as “ # Cont.”) are reported.

Table 4 Generator Data (Carrión and Arroyo 2006, Ostrowski et al. 2012)

Generators
C

(MW)
C

(MW)
L/`
(h)

V
(MW/h)

V
(MW/h)

SU
($/h)

a
($/MW2h)

b
($/MWh)

c
($/h)

1 150 455 8 91 180 2000 0.00048 16.19 1000
2 150 455 8 91 180 2000 0.00031 17.26 970
3 20 130 5 26 35 500 0.002 16.6 700
4 20 130 5 26 35 500 0.00211 16.5 680
5 25 162 6 32.4 40 700 0.00398 19.7 450
6 20 80 3 16 28 150 0.00712 22.26 370
7 25 85 3 17 33 200 0.00079 27.74 480
8 10 55 1 11 15 60 0.00413 25.92 660

Table 5 Problem Sizes with Data in Carrión and Arroyo (2006) and Ostrowski et al. (2012)

Case # Gen. # Bin. # Cont. Case # Gen. # Bin. # Cont.
1 28 1344 2016 11 132 6336 9504
2 35 1680 2520 12 156 7488 11232
3 44 2112 3168 13 156 7488 11232
4 45 2160 3240 14 165 7920 11880
5 49 2352 3528 15 167 8016 12024
6 50 2400 3600 16 172 8256 12384
7 51 2448 3672 17 182 8736 13104
8 51 2448 3672 18 182 8736 13104
9 52 2496 3744 19 183 8784 13176
10 54 2592 3888 20 187 8976 13464

In each case, we compare three formulations: “MILP”, “Strong” and “Extend”, where “MILP”

represents the original MILP formulation (1), “Strong” represents the original MILP formulation

(1) with our derived strong valid inequalities in Sections 3 and 4 added as user cuts, and “Extend”

represents the original MILP formulation (1) with constraints (1b) - (1h) replaced by (23b) - (23n)



Huang, Pan, and Guan: Cutting Planes for UC with Regulation Reserve 25

and (23p) from the extended formulation for each given k ∈K. In “Strong”, all of the inequalities

derived in Section 3 and all of the inequalities (17), (18), (20), and (21) in Section 4 are added

as a whole because the total number of these inequalities is a polynomial function of T . For

(19), as the total number of inequalities is an exponential function of T , we limit the number of

inequalities added because it is well known that adding too many inequalities will increase the

problem size significantly and thus potentially reduce the computational performance. Thus, we

select the inequities (19) with |S| ∈ [2,5]Z, and k ∈ [3, b(C − V )/V c]Z, by which we heuristically

enforce a more restrictive validity condition and obtain a good computational performance. The

time limit set for “Extend” is five hours per run.

We report the computational results in Table 6. The column “Integer Obj. ($)” represents the

objective value (i.e., ZInt) corresponding to the best integer solution obtained from the three for-

mulations. The column “IGap(%)” represents the integrality gap of each formulation. We define

IGap(%)(·) = (ZInt−ZLP(·))/ZInt× 100%, where ZLP(·) denotes the optimal value of the LP relax-

ation of each formulation. For example, IGap(%)(Extend) = (ZInt−ZLP(Extend))/ZInt×100%. For the

“Strong” formulation, ZLP(Strong) is obtained by solving the LP relaxation problem with our strong

valid inequalities added to the model as constraints. The column “Red. IGap(%)” represents how

the “Strong” and “Extend” formulations reduce the integrality gap compared to the “MILP” for-

mulation, and we define it as (IGap(MILP)− IGap(·))/IGap(MILP)×100%. More specifically, it shows

that how much the “Strong” and “Extend” formulations tighten the LP relaxation of the original

problem (1). The column “Time (s) (TGap(%))” provides the computational time for solving each

case. If a formulation cannot be solved to the optimality gap tolerance (i.e., 0.05%) within the time

limit (i.e., one hour for “MILP” and “Strong” and five hours for “Extend”), we label it by “***”

and report the terminating gap, i.e., the relative gap between the objective value and the best

lower bound, in parentheses. We use “-” to indicate the cases where no feasible integer solution can

be found within the time limit. The column “# Nodes” represents the number of nodes explored

in the branch-and-bound process, where we use “-” to indicate that only the root node has been

explored after reaching the time limit. The column “# User Cuts” shows the number of our derived

strong valid inequalities added as cutting planes when solving the “Strong” formulation for each

case. Overall, the “Extend” formulation tightens the LP relaxation but performs poorly due to

the large-size of the formulation. Thus, we omit the comparisons with it in the next case study. In

addition, by adding our proposed valid inequalities as cutting planes, the “Strong” approach solves

most cases into optimality, while the “MILP” approach fails for most cases. For the instances that

cannot be solved into optimality by both approaches, “Strong” provides smaller terminating gaps

than “MILP” does. More specifically, although the “MILP” formulation may provide fairly good

solutions with relatively small integrality gaps, the “Strong” formulation can obtain even better
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lower bounds faster because our derived inequalities help reduce the LP relaxation of the original

problem significantly. That is, our “Strong” approach results in a better solution closer to the

optimal one.

Table 6 Computational Results for Data in Carrión and Arroyo (2006) and Ostrowski et al. (2012)

Case
Integer IGap(%) Red. IGap(%) Time (s) (TGap(%)) # Nodes # User

Obj. ($) MILPStrongExtendMILP Extend MILP Strong Extend MILP StrongExtend Cuts

1 3806802 0.66 0.18 0.16 72.82 76.27 ***(0.12)***(0.07)***(0.18)256829227823 549 216

2 4785647 0.63 0.28 0.14 55.56 77.34 ***(0.16)***(0.07)***(0.09)194662180616 539 349

3 5101670 0.71 0.29 0.14 58.73 80.71 ***(0.10) 1060.1 ***(0.21)139593 37627 224 385

4 4776350 0.70 0.24 0.13 65.10 81.07 411.3 78.3 - 16403 5742 177 287

5 5381203 0.88 0.42 0.16 52.27 81.51 ***(0.11) 231.0 ***(0.06)102329 11858 426 554

6 4407806 1.08 0.50 0.09 54.18 91.83 334.8 17.2 14500 13271 545 513 672

7 5809788 0.67 0.27 0.13 59.56 80.56 ***(0.08)***(0.06) - 134500332664 114 497

8 5164631 0.91 0.42 0.16 53.99 85.53 ***(0.07) 261.8 - 146975 13226 114 385

9 5612092 0.88 0.43 0.17 51.53 80.57 ***(0.12) 1672.3 ***(0.09) 79193 51118 355 570

10 5072376 1.04 0.49 0.15 53.17 85.53 ***(0.05) 40.6 14690 258801 554 659 655

11 15741354 0.60 0.21 0.09 65.55 84.74 ***(0.15) 1519.2 - 20634 12288 - 787

12 17152330 0.68 0.27 0.11 60.87 83.11 ***(0.18) 971.0 - 28273 2907 - 1600

13 16833130 0.73 0.29 0.13 59.76 82.91 ***(0.17) 775.3 - 18973 3526 - 1509

14 20058101 0.67 0.27 0.11 60.66 83.86 ***(0.16) 542.1 - 12227 499 - 2097

15 17329467 0.90 0.40 0.15 55.15 83.76 ***(0.16) 1128.1 - 14035 2399 - 1472

16 19425755 0.64 0.25 0.10 60.98 84.52 ***(0.13) 1403.6 - 28694 3720 - 1789

17 19628597 0.81 0.35 0.13 57.29 83.46 ***(0.15) 392.9 - 12971 561 - 1757

18 19547980 0.82 0.35 0.13 56.99 83.72 ***(0.14) 543.7 - 16109 589 - 1718

19 20050001 0.73 0.28 0.12 61.06 83.63 ***(0.15) 608.4 - 17751 552 - 1653

20 19665461 0.81 0.33 0.13 59.82 84.41 ***(0.13) 361.1 - 26446 548 - 1754

6.2. Modified IEEE 118-Bus System

The IEEE 118-bus system is a widely-used test system for power system operations. There are 54

generators, 118 buses, 186 transmission lines, and 91 load buses in this system, where the param-

eters are slightly modified here. We set the total number of periods T = 24 and the minimum

required regulation-up/-down reserve amount as 3% of the total demand in each period. With

available transmission data, we include transmission constraints (1l) in the experiments. We fol-

lowing the setting in Section 6.1 to compare the formulations “MILP” and “Strong”, and we set

the optimality gap tolerance as 0.01%. Based on this data setting, there are 2,592 binary variables

and 3,888 continuous variables in the original co-optimization model (1).

First, we report the computational results for the system with different load profiles in five

intervals: d
n

t ∈ [0.5dnt ,0.7d
n
t ], [0.7dnt ,0.9d

n
t ], [0.9dnt ,1.1d

n
t ], [1.1dnt ,1.3d

n
t ], and [1.3dnt ,1.5d

n
t ] for each

nominal load dnt at bus n in period t, respectively. We randomly generate ten cases for each interval

and provide their average performance in Table 7. The header of Table 7 is the same as that of
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Table 6 except the first three columns. The column “Interval” represents the aforementioned five

load profile intervals. The column “Integer Obj. ($)” provides the average optimal value over the

ten cases for each load profile interval. The standard deviations of the optimal values of these ten

cases are reported in the next column “Std. Dev.” for each interval. Table 7 shows that adding

our derived inequalities as cutting planes can generally solve LP relaxation problems faster and

tighten the integrality gap. Our approach also reduces the computational time, terminating gap,

and branch-and-bound nodes significantly.

Table 7 Computational Results for Modified IEEE 118-Bus System with Different Load Intervals

Interval
Integer Std. IGap(%) Red. Time (s) (TGap(%)) # Nodes # User

Obj. ($) Dev. MILPStrongIGap(%) MILP Strong MILPStrong Cuts

0.5-0.7 977917 2266 1.44 0.63 56.13 1957 (0.013) 979.5 28109 25626 308

0.7-0.9 1301176 2339 1.15 0.33 71.15 2576 (0.036)1767 (0.020)90747 85574 373

0.9-1.1 1629153 2392 1.03 0.25 76.31 3516 (0.742)1795 (0.014)59578 58719 423

1.1-1.3 1960402 3261 1.05 0.24 77.46 3600 (0.131)2287 (0.014)70008 42203 488

1.3-1.5 2298222 3004 1.13 0.16 85.50 3600 (0.095) 1224 77625 54585 643

Table 8 Computational Results for Modified IEEE 118-Bus System with Load d
n
t ∈ [0.7dnt ,1.3d

n
t ]

Case
Integer IGap(%) Red. Time (s) (TGap(%)) # Nodes # User

Obj. ($)MILPStrongIGap(%) MILP Strong MILPStrong Cuts

1 1628494 1.05 0.32 69.19 ***(0.12) 1450.3 43757 44374 409

2 1629569 1.01 0.25 75.24 ***(0.12) 2589.8 49267119970 427

3 1627370 1.04 0.26 75.29 ***(0.03) 747.0 29801 13355 469

4 1622951 1.04 0.25 75.91 2948.7 402.1 48656 5822 392

5 1627893 1.04 0.25 75.96 ***(0.05) 2506.3 77735148725 457

6 1624446 1.06 0.25 76.62 ***(0.02) 1338.7 60034 26710 415

7 1631721 1.12 0.26 76.69 ***(0.10) 3201.2 79413113967 463

8 1623505 1.13 0.26 76.83 ***(0.06) 1576.2 76414 49305 462

9 1646628 1.06 0.24 77.53 1265.9 240.8 22998 7761 402

10 1628788 1.05 0.24 77.59 2048.8 1239.4 45329 23566 388

11 1620066 1.10 0.24 78.21 ***(0.05) 2232.9 71448114850 428

12 1621846 1.21 0.26 78.22 ***(0.11) 1795.4 46201 53522 435

13 1620859 1.11 0.23 79.18 ***(0.07) 399.4 58649 12827 419

14 1633056 1.20 0.23 81.19 ***(0.05) 2450.4 71103 95808 394

15 1628582 1.24 0.20 84.07 1590.9 194.7 31032 4681 388

Next, we provide fifteen cases under the same load profile to further demonstrate the effectiveness

of our derived inequalities. That is, we generate random load d
n

t ∈ [0.7dnt ,1.3d
n
t ] fifteen times for

each nominal load dnt at bus n in period t in the system. The computational results for all the

cases are reported in Table 8. Although the problem for the modified IEEE 118-bus system is

generally hard to solve, by adding our derived inequalities, it is significantly faster to solve the LP
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Figure 6 Co-Optimization and Sequential Model Comparison

relaxation problem and achieve a better lower bound, which leads to more chances for our “Strong”

formulation to solve the problem within the time limit quickly.

Finally, we provide computational results to show the value of co-optimization. We compare our

co-optimization model (1) with a sequential model to show the total cost difference. In the sequen-

tial model, the power generation for the energy market and the regulation reserve are scheduled

separately: (i) a traditional UC model without the regulation reserve is firstly solved to determine

the online/offline status and power generation amount of each generator in each period; and (ii) a

reserve scheduling model is then solved to determine the regulation reserve amount of each online

generator in each period, and an offline generator may be required to turn on to provide regulation

reserve. Here we continue to use the data setting for Table 8 to correspondingly obtain the optimal

value of the sequential model for each case, while the column “Integer Obj. ($)” in Table 8 rep-

resents the optimal value of our co-optimization model (1). We show the cost difference between

these two models in Figure 6. We can observe that the sequential model leads to a larger cost for

any case than the co-optimization model does, with the gap between them being around 1%−2%,

which can be significantly large due to the large daily operational cost involved in the power system

in practice. This demonstrates the value of co-optimization, and also echoes the industry practice

from MISO who implemented such a co-optimization model since 2009 and thereby obtained at

least $60 million annual savings (MISO 2019).



Huang, Pan, and Guan: Cutting Planes for UC with Regulation Reserve 29

7. Conclusions

In this paper, we investigated the co-optimization model of energy and ancillary service mar-

kets, which leads to the security-constrained UC problem with regulation reserve. The problem is

computationally challenging because the UC problem is difficult by itself and the inclusion of regu-

lation reserve complicates it further. To improve the co-optimization performance for clearing both

energy and ancillary service markets, we improved the branch-and-cut algorithm by performing

polyhedral studies on the integrated polytope of minimum-up/-down time, ramping, power gener-

ation upper/lower bound, and regulation-up/-down reserve restrictions. We provided two-period

and three-period convex hull descriptions with rigorous proofs, and then developed strong valid

inequalities for the general multi-period case. In addition, we showed that under mild conditions,

our derived inequalities are facet-defining for the polytope and efficient separation schemes were

proposed for those exponential-sized inequalities. We also developed an extended formulation for

every single generator that can provide integral solutions for single-generator problems and further

tighten the lower bound. Finally, we conducted computational experiments by using two different

data sets and the results demonstrate the significant efficiency of applying our derived inequalities

to a branch-and-cut algorithm as cutting planes.
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Online Supplement for “Cutting Planes for
Security-Constrained Unit Commitment with Regulation
Reserve”

The detailed proofs for the theoretical results in Sections 3 - 5 are provided in this online

supplement as follows.

EC.1. Proofs of Two-Period Convex Hull

EC.1.1. Proof of Proposition 1

Proof. We prove the validity of each inequality as follows.

For inequality (4), we discuss the following three cases: 1) if y1 = 0, then p1 = 0 due to (2e).

Inequality (4) becomes 0 ≤ (C − V )(y2 − u2), which is valid due to (2a); 2) if y1 = 1 and y2 = 0,

then inequality (4) converts to p1 ≤ V −C, which is valid due to constraints (2g); 3) if y1 = y2 = 1

and u2 = 0, then (4) converts to p1 ≤C −C, which is valid due to constraints (2e).

For inequality (5), we discuss the following three cases: 1) if y2 = 0, then p2 = r+2 = 0 and thus

inequality (5) is valid; 2) if y2 = 1 and u2 = 0, then inequality (5) converts to p2 +r+2 ≤C−C, which

is valid due to constraints (2e); 3) if y2 = u2 = 1, then inequality (5) converts to p2 + r+2 ≤ V −C,

which is valid due to ramping-up constraints (2f).

For inequality (6), we discuss the following three cases: 1) if y2 = 0, then p2 = r+2 = 0 and thus

inequality (6) converts to p1 ≥ 0, which is valid; 2) if y2 = 1 and u2 = 0, then inequality (6) converts

to p2 + r+2 − p1 ≤ V , which is valid due to ramping-up constraints (2f); 3) if y2 = u2 = 1, then

inequality (6) converts to p2 + r+2 − p1 ≤ V −C, which is valid due to ramping-up constraints (2f).

For inequality (7), we discuss the following three cases: 1) if y1 = 0, then p1 = 0 due to (2e).

Inequality (7) converts to −p2 + r−2 ≤ (C +V −V )(y2−u2), which is valid because p2 ≥ r−2 due to

constraints (2d), and y2 − u2 ≥ 0 due to constraints (2a); 2) if y1 = 1 and y2 = 0, then inequality

(7) converts to p1 − p2 + r−2 ≤ V −C, which is valid due to ramping-down constraints (2g); 3) if

y1 = y2 = 1 and u2 = 0, then inequality (7) converts to p1 − p2 + r−2 ≤ V , which is valid due to

ramping-down constraints (2g).

For inequality (8), we discuss the following three cases: 1) if y2 = 0, then u2 = r+2 = r−2 = 0 and

thus inequality (8) converts to 0≤ 0, which is clearly valid; 2) if y2 = 1 and u2 = 0, then inequality

(8) converts to r+2 + r−2 ≤ 2V , which is valid because in this case (2f) becomes p2 + r+2 − p1 ≤ V ,

(2g) becomes p1 − p2 + r−2 ≤ V , and their summation leads to r+2 + r−2 ≤ 2V ; 3) if y2 = u2 = 1,

then inequality (8) converts to r+2 + r−2 ≤ V −C, which is valid because p2 + r+2 ≤ V −C due to

constraints (2f), and r−2 ≤ p2 due to constraints (2d). �
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EC.1.2. Proof of Proposition 2

Proof. For inequalities (4) - (8), we provide nine affinely independent points in conv(P2) that

satisfy each inequality at equality. Since ~0 ∈ conv(P2), we only need to provide eight linearly

independent points for each inequality, as shown in Table EC.1 - Table EC.5.

Table EC.1 Linearly Independent Points for Inequality (4)

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

V −C 0 0 0 0 0 1 0 0
V −C 0 0 V −C 0 0 1 0 0
V −C 0 C −V 0 0 0 1 0 0
C −C C −C −V 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1
0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1

Table EC.2 Linearly Independent Points for Inequality (5)

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

0 0 0 0 0 0 1 0 0
0 0 C −C 0 0 0 1 0 0

V −C 0 0 0 0 0 1 0 0
V −C 0 0 V −C 0 0 1 0 0

0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1

C −C −V C −C − 2V 0 0 2V 0 1 1 0

Table EC.3 Linearly Independent Points for Inequality (6)

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

0 0 0 0 0 0 1 0 0
0 0 C −C 0 0 0 1 0 0
0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1
0 0 0 0 V 0 1 1 0
V 0 0 0 2V 0 1 1 0
V 0 0 V 2V 0 1 1 0

By performing Gaussian elimination on each of Tables EC.1 - EC.5, we can easily obtain lower

triangular matrices in each table. Thus, we conclude that the points in each of Table EC.1 - EC.5

are linearly independent. �



e-companion to Huang, Pan, and Guan: Cutting Planes for UC with Regulation Reserve ec3

Table EC.4 Linearly Independent Points for Inequality (7)

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

V −C 0 0 0 0 0 1 0 0
V −C 0 0 V −C 0 0 1 0 0
V −C 0 C −V 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1
0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1
V 0 0 0 0 0 1 1 0

C −C −V C −C − 2V 0 0 2V 0 1 1 0

Table EC.5 Linearly Independent Points for Inequality (8)

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

0 0 0 0 0 0 1 0 0
0 0 C −C 0 0 0 1 0 0

V −C 0 0 0 0 0 1 0 0
V −C 0 0 V −C 0 0 1 0 0

0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1
V 0 0 0 2V 0 1 1 0

C −C −V C −C − 2V 0 0 2V 0 1 1 0

EC.1.3. Proof of Proposition 3

Proof. We prove that dim(Q2) = 9 because there are nine variables in Q2. We create ten affinely

independent points in Q2. Since ~0 ∈ Q2, we only need to create nine more linearly independent

points in Q2 as shown in Table EC.6. �

Table EC.6 Linearly Independent Points in Q2

p1 p2 r+1 r−1 r+2 r−2 y1 y2 u2

C −C 0 0 0 0 0 1 0 0
C −C 0 0 C −C 0 0 1 0 0

0 0 C −C 0 0 0 1 0 0
0 0 0 0 0 V 1 1 0
0 V 0 0 0 0 1 1 0
0 V −C 0 0 0 0 0 1 1
0 0 0 0 V −C 0 0 1 1
0 V −C 0 0 0 V −C 0 1 1

EC.1.4. Proof of Proposition 4

Proof. Since (3a) - (3e) also belong to Q2, we only need to consider inequalities (3f) - (3h).

For inequality (3f), it is clear that (3f) is dominated by (5) since the right-hand-side (RHS) of

(5) is less than that of (3f).
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For inequality (3g), we start with the RHS of inequality (6) and show that it is less than the

RHS of inequality (3g) as follows: V y2 − (C + V − V )u2 = V y2 + (C + V − V )(y2 − u2)− Cy2 ≤

V y2 + (C + V − V )y1 −Cy2 ≤ V + (C + V − V )y1 −Cy2, where the first inequality holds due to

constraint (3c) and the last inequality holds because y2 ≤ 1. Thus, inequality (3g) is dominated by

inequality (6).

For inequality (3h), we start with the RHS of inequality (7) and show that it is less than the

RHS of inequality (3h) as follows: (V − C)y1 + (C + V − V )(y2 − u2) = V y1 + (C + V − V )y2 −

(C + V − V )u2 − Cy1 ≤ V + (C + V − V )y2 − Cy1, where the inequality holds because y1 ≤ 1,

C +V −V > 0, and u2 ≥ 0. Thus, inequality (3h) is dominated by inequality (3h). �

EC.1.5. Proof of Proposition 5

Proof. It is sufficient to show that every point z = (p1, p2, r
+
1 , r

+
2 , r

−
2 , y1, y2, u2) ∈ Q2 can be

written as z =
∑

s∈S λsz
s for some λs ≥ 0 and

∑
s∈S λs = 1, where zs ∈ P2, s ∈ S with y(zs) and

u(zs) binary.

For a given z = (p1, p2, r
+
1 , r

+
2 , r

−
2 , y1, y2, u2) ∈ Q2, we can pick z1, . . . , z4 ∈ P2 such that

z1 = (p̂11,0, r̂
+
11,0,0,1,0,0), z2 = (0, p̂21,0, r̂

+
21, r̂

−
21,0,1,1), z3 = (p̂12, p̂22, r̂

+
12, r̂

+
22, r̂

−
22,1,1,0), z4 =

(0,0,0,0,0,0,0,0). In addition, we have λ1 = y1−y2 +u2, λ2 = u2, λ3 = y2−u2, and λ4 = 1−y1−u2.

Note that
∑4

s=1 λs = 1. Due to (2a) - (2b), we have λs ≥ 0 for each s= 1, . . . ,4.

It is clear that yi = yi(z) =
∑4

s=1 λsyi(z
s) for i = 1,2 and u2 = u2(z) =

∑4

s=1 λsu2(z
s). So we

only need to determine the values of p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22 and show that p1 =

λ1p̂11 +λ3p̂12, p2 = λ2p̂21 +λ3p̂22, r
+
1 = λ1r̂

+
11 +λ3r̂

+
12, r

+
2 = λ2r̂

+
21 +λ3r̂

+
22, and r−2 = λ2r̂

−
21 +λ3r̂

−
22. The

corresponding feasible region for (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) is described as follows:

A=
{

(p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22)∈R10

+ :

p̂11 ≤ V −C, (EC.1)

p̂11 + r̂+11 ≤C −C, (EC.2)

p̂+12 ≤C −C, (EC.3)

p̂12 + r̂+12 ≤C −C, (EC.4)

p̂21 + r̂+21 ≤ V −C, (EC.5)

p̂21 ≥ r̂−21, (EC.6)

p̂22 + r̂+22 ≤C −C, (EC.7)

r̂+21 + r̂−21 ≤ V −C, (EC.8)

r̂+22 + r̂−22 ≤ 2V, (EC.9)
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p̂22 + r̂+22− p̂12 ≤ V, (EC.10)

p̂12− p̂22 + r̂−22 ≤ V
}
. (EC.11)

To show that pi =
∑4

s=1 λspi(z
s) (∀i = 1,2), r+i =

∑4

s=1 λsr
+
i (zs) (∀i = 1,2), and r−2 =∑4

s=1 λsr
−
2 (zs), it is equivalent to prove that fixing (y1, y2, u2) ∈ B = {(y1, y2, u2) ∈ [0,1]3 : (2a)−

(2b)}, for each (p1, p2, r
+
1 , r

+
2 , r

−
2 ) in the set

C =
{

(p1, p2, r
+
1 , r

+
2 , r

−
2 )∈R5

+ : p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.12a)

p1 + r+1 ≤ (C −C)y1, (EC.12b)

p2 ≥ r−2 , (EC.12c)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (EC.12d)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (EC.12e)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.12f)

p2 + r+2 − p1 ≤ V y2− (C +V −V )u2

}
, (EC.12g)

there exists (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈A such that p1 = λ1p̂11 + λ3p̂12, p2 = λ2p̂21 +

λ3p̂22, r
+
1 = λ1r̂

+
11 + λ3r̂

+
12, r

+
2 = λ2r̂

+
21 + λ3r̂

+
22, and r−2 = λ2r̂

−
21 + λ3r̂

−
22. That is, the linear transfor-

mation F :A→C is surjective, where

F =


y1− y2 +u2 y2−u2 0 0 0 0 0 0 0 0

0 0 u2 y2−u2 0 0 0 0 0 0
0 0 0 0 y1− y2 +u2 y2−u2 0 0 0 0
0 0 0 0 0 0 u2 y2−u2 0 0
0 0 0 0 0 0 0 0 u2 y2−u2

 .

Note that any point in C can be represented as a convex combination of the extreme points in C

since C is compact. Thus, it suffices to prove that for any extreme point w ∈C, there exists a point

p ∈ A such that Fp = w. Nevertheless, it is not convenient to enumerate all the extreme points

in C. Accordingly, instead of considering the extreme points in C, we equivalently show that this

conclusion holds for any point on the faces of C instead, i.e., satisfying one of (EC.12a) - (EC.12g)

at equality.

Satisfying (EC.12a) at equality. In this case, we have the corresponding set C(EC.12a) as follows,

where C(EC.12a) ⊆C, by substituting (EC.12a) at equality into (EC.12b) - (EC.12g).

C(EC.12a) =
{

p1 = (V −C)(y1− y2 +u2) + (C −C)(y2−u2), (EC.13a)

r+1 ≤ (C −V )(y1− y2 +u2), (EC.13b)

p2 ≥ r−2 , (EC.13c)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (EC.13d)
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p2 + r+2 ≤ (C −C)y2− (C −V )u2 + (V −C)(y1− y2 +u2) +V (y2−u2),

(EC.13e)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (EC.13f)

−p2 + r−2 ≤ (C +V −C)(y2−u2).
}

(EC.13g)

Note that since (V −C)(y1− y2 +u2)≥ 0 and V (y2−u2)≥ 0, inequality (EC.13e) is dominated

by (EC.13d). Since p1 = (V −C)(y1− y2 +u2) + (C−C)(y2−u2) = (y1− y2 +u2)p̂11 + (y2−u2)p̂12,

it is clear that we can pick p̂11 = V −C and p̂12 =C−C, then the corresponding feasible region for

(p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) is

Â=
{

(p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22)∈R10

+ : p̂11 = V −C, (EC.14a)

r̂+11 ≤C −V , (EC.14b)

p̂12 =C −C, (EC.14c)

r̂+12 = 0, (EC.14d)

p̂21 + r̂+21 ≤ V −C, (EC.14e)

p̂21 ≥ r̂−21, (EC.14f)

p̂22 + r̂+22 ≤C −C, (EC.14g)

r̂+21 + r̂−21 ≤ V −C, (EC.14h)

r̂+22 + r̂−22 ≤ 2V, (EC.14i)

p̂22 + r̂+22 ≤C −C +V, (EC.14j)

r̂−22− p̂22 ≤C +V −C
}
. (EC.14k)

Therefore, we can pick r̂+12 = 0, r̂+11 =
r+1

y1−y2+u2
if y1 − y2 + u2 > 0 and r̂+11 free otherwise.

We let p̂21 = V − C, p̂22 = p2−(V−C)u2
y2−u2

if y2 − u2 > 0 and p̂22 free otherwise; r̂+21 = 0, r̂+22 =
r+2

y2−u2
if y2 − u2 > 0 and r̂+22 free otherwise; r̂−21 = V − C, r̂−22 =

r−2 −(V−C)u2
y2−u2

if y2 − u2 > 0

and r̂−22 free otherwise. It is easy to check that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈ A and

F (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) = (p1, p2, r

+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12b) at equality. In this case, we have the corresponding set C(EC.12b) as follows,

where C(EC.12b) ⊆C, by substituting (EC.12b) at equality into other inequalities in C.

C(EC.12b) =
{

p1 + r+1 = (C −C)(y1− y2 +u2) + (C −C)(y2−u2), (EC.15a)

p1 ≤ (V −C)(y1− y2 +u2) + (C −C)(y2−u2), (EC.15b)

p2 ≥ r−2 , (EC.15c)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (EC.15d)
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p2 + r+2 − p1 ≤ V y2− (C +V −V )u2, (EC.15e)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.15f)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2

}
. (EC.15g)

We pick p̂12 =C−C, p̂11 = p1−(C−C)(y2−u2)
y1−y2+u2

if y1−y2 +u2 > 0 and p̂11 free otherwise; r̂+12 = 0, r̂+11 =
r+1

y1−y2+u2
if y1−y2 +u2 > 0 and r̂+11 free otherwise. We let p̂21 = V −C, p̂22 = p2−(V−C)u2

y2−u2
if y2−u2 > 0

and p̂22 free otherwise; r̂+21 = 0, r̂+22 =
r+2

y2−u2
if y2 − u2 > 0 and r̂+22 free otherwise; r̂−21 = V − C,

r̂−22 =
r−2 −(V−C)u2

y2−u2
if y2 − u2 > 0 and r̂−22 free otherwise. By substituting the above equalities in A

and utilizing inequalities in C(EC.12b), we can check that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22)∈A

and F (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) = (p1, p2, r

+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12c) at equality. In this case, we have the corresponding set C(EC.12c) as follows,

where C(EC.12c) ⊆C, by substituting (EC.12c) at equality into other inequalities in C.

C(EC.12c) =
{

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.16a)

p1 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.16b)

p1 + r+1 ≤ (C −C)y1, (EC.16c)

p2 = r−2 , (EC.16d)

p2 + r+2 ≤ (C −C)(y2−u2) + (V −C)u2, (EC.16e)

r+2 + p2 ≤ 2V (y2−u2) + (V −C)u2, (EC.16f)

p2 + r+2 − p1 ≤ V y2− (C +V −V )u2

}
. (EC.16g)

According to our assumption C > C + V , inequality (EC.16a) is dominated by (EC.16b).

We let p̂11 = V − C, p̂12 = p1−(V−C)(y1−y2+u2)
y2−u2

if y2 − u2 > 0 and p̂12 free otherwise; r̂+11 = C −

V , r̂+12 =
r+1 −(C−V )(y1−y2+u2)

y2−u2
if y2 − u2 > 0 and r̂+12 free otherwise. We pick p̂21 = r̂−21 = V − C,

p̂22 = r̂−22 = p2−(V−C)u2
y2−u2

if y2 − u2 > 0, and p̂22 = r̂−22 but free otherwise; r̂+21 = 0, r̂+22 =
r+2

y2−u2
if

y2 − u2 > 0, and r̂+22 free otherwise. By substituting the above equalities in A and utilizing

inequalities in C(EC.12c), we can easily verify that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈A and

F (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) = (p1, p2, r

+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12d) at equality. In this case, we have the corresponding set C(EC.12d) as follows,

where C(EC.12d) ⊆C, by substituting (EC.12d) at equality into other inequalities in C.

C(EC.12d) =
{

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.17a)

p1 + r+1 ≤ (C −C)y1, (EC.17b)

p2 ≥ r−2 , (EC.17c)

p2 + r+2 = (C −C)(y2−u2) + (V −C)u2, (EC.17d)
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r−2 − p2 ≤ (2V +C −C)(y2−u2), (EC.17e)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.17f)

p1 ≥ (C −C −V )(y2−u2)
}
. (EC.17g)

We let p̂12 = C − C − V , p̂11 = p1−(C−C−V )(y2−u2)
y1−y2+u2

if y1 − y2 + u2 > 0 and p̂11 free other-

wise; r̂+12 = V , r̂+11 =
r+1 −V (y2−u2)
y1−y2+u2

if y1 − y2 + u2 > 0 and r̂+11 free otherwise. We pick p̂22 = C −

C, p̂21 = p2−(C−C)(y2−u2)
u2

if y2 − u2 > 0, and p̂21 free otherwise; r̂+22 = 0, r̂+21 =
r+2
u2

if u2 > 0,

and r̂+21 free otherwise; r̂−22 = 2V , r̂−21 =
r−2 −2V (y2−u2)

u2
if u2 > 0, and r̂−21 free otherwise. By sub-

stituting the above equalities in A and utilizing inequalities in C(EC.12d), we can easily verify

that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈ A and F (p̂11, p̂12, p̂21, p̂22, r̂

+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) =

(p1, p2, r
+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12e) at equality. In this case, we have the corresponding set C(EC.12e) as follows,

where C(EC.12e) ⊆C, by substituting (EC.12e) at equality into other inequalities in C.

C(EC.12e) =
{

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.18a)

p1 + r+1 ≤ (C −C)y1, (EC.18b)

p2 ≥ r−2 , (EC.18c)

p2− r−2 ≤ (C −C − 2V )(y2−u2), (EC.18d)

r+2 + r−2 = 2V y2− (C + 2V −V )u2, (EC.18e)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.18f)

p1− p2 + r−2 ≥ V (y2−u2)
}
. (EC.18g)

Note that inequality (EC.18a) is dominated by (EC.18d) and (EC.18f) since they imply that

p1 ≤ (V −C)y1 + (C −C −V )(y2−u2)≤ (V −C)y1 + (C −V )(y2−u2).

We let p̂12 = C − C − V , p̂11 = p1−(C−C−V )(y2−u2)
y1−y2+u2

if y1 − y2 + u2 > 0 and p̂11 free otherwise;

r̂+12 = V , r̂+11 =
r+1 −V (y2−u2)
y1−y2+u2

if y1 − y2 + u2 > 0 and r̂+11 free otherwise. We pick p̂22 = C − C −

V , p̂21 = p2−(C−C−V )(y2−u2)
u2

if y2 − u2 > 0, and p̂21 free otherwise; r̂+22 = V , r̂+21 =
r+2 −V (y2−u2)

u2
if

u2 > 0, and r̂+21 free otherwise; r̂−22 = V , r̂−21 =
r−2 −V (y2−u2)

u2
if u2 > 0, and r̂−21 free otherwise. By

substituting the above equalities in A and utilizing inequalities in C(EC.12e), we can easily verify

that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈ A and F (p̂11, p̂12, p̂21, p̂22, r̂

+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) =

(p1, p2, r
+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12f) at equality. In this case, we have the corresponding set C(EC.12f) as follows,

where C(EC.12f) ⊆C, by substituting (EC.12f) at equality into other inequalities in C.

C(EC.12f) =
{

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.19a)



e-companion to Huang, Pan, and Guan: Cutting Planes for UC with Regulation Reserve ec9

p1 + r+1 ≤ (C −C)y1, (EC.19b)

p1 ≥ (V −C)(y1− y2 +u2) +V (y2−u2), (EC.19c)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (EC.19d)

r+2 + p2− p1 ≤ V (y2−u2) + (V −C)u2− (V −C)(y1− y2 +u2), (EC.19e)

p1− p2 + r−2 = (V −C)y1 + (C +V −V )(y2−u2)
}
. (EC.19f)

We let p̂11 = V − C, p̂12 = p1−(V−C)(y1−y2+u2)
y2−u2

if y2 − u2 > 0 and p̂12 free otherwise; r̂+11 =

C − V , r̂+12 =
r+1 −(C−V )(y1−y2+u2)

y2−u2
if y2 − u2 > 0 and r̂+12 free otherwise. We pick p̂21 = r̂−21 =

V − C, p̂22 = r̂−22 = p2−(V−C)u2
y2−u2

if y2 − u2 > 0, and p̂22, r̂
−
22 free otherwise; r̂+21 = 0, r̂+22 =

r+2
y2−u2

if y2 − u2 > 0, and r̂+22 free otherwise. By substituting the above equalities in A and utilizing

inequalities in C(EC.12f), we can easily verify that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈A and

F (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) = (p1, p2, r

+
1 , r

+
2 , r

−
2 ).

Satisfy (EC.12g) at equality. In this case, we have the corresponding set C(EC.12g) as follows,

where C(EC.12g) ⊆C, by substituting (EC.12g) at equality into other inequalities in C.

C(EC.12g) =
{

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.20a)

p1 + r+1 ≤ (C −C)y1, (EC.20b)

p2 ≥ r−2 , (EC.20c)

p1 ≤ (C −C −V )(y2−u2), (EC.20d)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (EC.20e)

p2 + r+2 − p1 = V y2− (C +V −V )u2

}
. (EC.20f)

We let p̂11 = 0, p̂12 = p1
y2−u2

if y2 − u2 > 0 and p̂12 free otherwise; r̂+11 = C − C, r̂+12 =
r+1 −(C−C)(y1−y2+u2)

y2−u2
if y2 − u2 > 0 and r̂+12 free otherwise. We pick p̂21 = r̂−21 = V − C, p̂22 =

r̂−22 = p2−(V−C)u2
y2−u2

if y2 − u2 > 0, and p̂22, r̂
−
22 free otherwise; r̂+21 = 0, r̂+22 =

r+2
y2−u2

if y2 − u2 >

0, and r̂+22 free otherwise. By substituting the above equalities in A and utilizing inequal-

ities in C(EC.12g), we can easily verify that (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) ∈ A and

F (p̂11, p̂12, p̂21, p̂22, r̂
+
11, r̂

+
12, r̂

+
21, r̂

+
22, r̂

−
21, r̂

−
22) = (p1, p2, r

+
1 , r

+
2 , r

−
2 ).

In summary, we have proved that for any point w in the faces of C, there exists a point p ∈A

such that Fp=w. Thus, Proposition 5 holds. �

EC.2. Three-Period Convex Hulls

In this section, we present the complete three-period convex hull description under condition C −

V −2V ≥ 0. Three-period convex hulls under other conditions are presented in Online Supplement

EC.3.
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Proposition EC.1. If C −V − 2V ≥ 0, then the inequalities

(15)− (16),

p1 ≤ (V −C)y1 +V (y2−u2) + (C −V −V )(y3−u3−u2), (EC.21)

p2 ≤ (V −C)y2 + (C −V )(y3−u3−u2), (EC.22)

r−2 ≤ (V −C)y2 + (C + 2V −V )(y3−u3−u2), (EC.23)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (EC.24)

r+3 + r−3 ≤ 2V y3− (C +V −V )u2− (C + 2V −V )u3, (EC.25)

p1 + r+1 ≤ (C −C)y1, (EC.26)

p2 + r+2 ≤ (V + 2V −C)y2− 2V u2 + (C −V − 2V )(y3−u3−u2), (EC.27)

p3 + r+3 ≤ (C −C)y3− (C −V )u3− (C −V −V )u2, (EC.28)

p2− p1 ≤ (V −C)y2 + (C +V −V )(y3−u3−u2), (EC.29)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.30)

p2− p3 + r−3 ≤ (V −C)y2 + (C +V −V )(y3−u3−u2), (EC.31)

p1− p3 + r−3 ≤ (V −C)y1 +V (y2−u2) + (C +V −V )(y3−u3−u2), (EC.32)

p3 + r+3 − p1 ≤ 2V y3− (C +V −V )u2− (C + 2V −V )u3, (EC.33)

p2 + r+2 − p1 ≤ V y2− (C +V −V )u2, (EC.34)

p3 + r+3 − p2 ≤ V y3− (C +V −V )u3, (EC.35)

p3 + r+3 + r+2 ≤ 2V y2 + (C −C −V )y3− (C −V )u2− (C −V −V )u3, (EC.36)

p3 + r+3 − p2 + r−2 ≤ 3V y3− (C + 2V −V )u2− (C + 3V −V )u3, (EC.37)

p1− p2 + p3 + r+3 ≤ (V −C)y1 + (C +V −V )y2 + (C −C)y3− (C −V )(u2 +u3), (EC.38)

p1− p2 + r+3 + r−3 ≤ (V −C)y1 + (C +V −V )y2 + 2V y3− (C + 2V −V )(u2 +u3), (EC.39)

are valid for conv(P 2
3 ).

Proof. See Online Supplement EC.2.1 for the detailed proof. �

Based on inequalities (15), (16), and (EC.21) - (EC.39), we introduce the linear programming

description of conv(P 2
3 ) by adding minimum-up/-down time and nonnegative restrictions as follows:

Q2
3 :=

{
(p, r+, r−, y, u)∈R14 : (14a)− (14e), (15), (16), (EC.21)− (EC.39),

u2 ≥ 0, u3 ≥ 0
}
. (EC.40)

In the following, we show Q2
3 = conv(P 2

3 ). Note that conv(P 2
3 ) ⊆ Q2

3 because inequalities (15),

(16), and (EC.21) - (EC.39) are valid for conv(P 2
3 ) by Proposition EC.1. So we only need to prove
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Q2
3 ⊆ conv(P 2

3 ) by showing that all inequalities of Q2
3 are facet-defining for conv(P 2

3 ), all inequalities

of P 2
3 are dominated by Q2

3, and every extreme point of Q2
3 is integral in variables y and u.

Proposition EC.2. The polytope Q2
3 is full-dimensional.

Proof. See Online Supplement EC.2.2 for the detailed proof. �

Proposition EC.3. Inequalities (15), (16), and (EC.21) - (EC.39) are facet-defining for conv(P 2
3 )

when C −V − 2V ≥ 0.

Proof. The proof is similar to that of Proposition 2 and thus is omitted here. �

Proposition EC.4. All inequalities of P 2
3 are dominated by inequalities of Q2

3.

Proof. The proof is similar to that of Proposition 4 and thus is omitted here. �

Proposition EC.5. Every extreme point in Q2
3 is integral in y and u.

Proof. See Online Supplement EC.2.3 for the detailed proof. �

According to Propositions EC.1 - EC.5, we have the following theorem.

Theorem EC.1. When C −V − 2V ≥ 0, we have Q2
3 = conv(P 2

3 ).

Proof. The proof is similar to that of Theorem 1 and thus is omitted here. �

EC.2.1. Proof of Proposition EC.1

Proof. To prove the validity of inequality (EC.21), we consider the shut-down time of the

generator. It is clear that if the generator is offline in period t= 1, i.e., y1 = 0, then p1 = 0 due to

(2e). Inequality (EC.21) becomes 0≤ V (y2−u2) + (C−V −V )(y3−u3−u2), which is valid due to

(2a). Now if the generator is online in period t= 1, then we discuss the cases when the generator

shuts down. (i) If the generator shuts down in period t= 2, i.e., y1 = 1 and y2 = 0, then inequality

(EC.21) converts to p1 ≤ V −C which is valid due to the ramping-down constraints (2g); (ii) If the

generator shuts down in period t= 3, i.e., y1 = y2 = 1 and y3 = 0, then inequality (EC.21) converts

to p1 ≤ V +V −C, which is valid due to (2g); (iii) If the generator shuts down after period t= 3,

i.e., y1 = y2 = y3 = 1, then inequality (EC.21) converts to p1 ≤C −C, which is valid due to (2e).

Similarly by considering the shut-down time, we can prove the validity of inequality (EC.22).

Thus, we omit the details here.

Inequality (EC.23) tightens the upper bound of regulation-down reserve r−2 . Note that r−2 is only

bounded by p2 in (2d). Due to inequality (EC.22), we have an inherent upper bound r−2 ≤ p2 ≤

(V −C)y2 +(C−V )(y3−u3−u2), which can be further tightened by (EC.23) since C−C−2V > 0,

i.e., C + 2V −V <C −V . To show the validity of inequality (EC.23), it is clear that when y2 = 0,

inequality (EC.23) converts to (C+ 2V −V )(y3−u3−u2)≥ 0, which is valid due to (2a). Next, we
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consider the cases with y2 = 1. If the generator starts up in period t= 2, i.e., u2 = 1, which leads

to y2 = y3 = 1 due to (2a), then inequality (EC.23) becomes r−2 ≤ V −C, which is valid because

r−2 ≤ p2 due to inequality (2d) and p2 + r+2 ≤ V −C due to (2e). If the generator starts up before

t= 2, i.e., u2 = 0, then we need to consider two possible shut-down times. First, if the generator

shuts down in period t = 3, i.e., y2 = 1 and y3 = u2 = u3 = 0, then inequality (EC.23) becomes

r−2 ≤ V − C, which is valid due to (2g). Second, if the generator shuts down after period t = 3,

i.e., y2 = y3 = 1, then inequality (EC.23) becomes r−2 ≤ 2V , which is valid because r−2 ≤ r+2 + r−2 =

(p2 + r+2 −p1)+(p1−p2 + r−2 )≤ V +V = 2V , where the last inequality holds due to constraints (2f)

and (2g).

We can show the validity of inequalities (EC.24) and (EC.25) with similar ideas as above, and

thus we omit details here for brevity. Inequality (EC.26) is exactly from P , so it is obviously valid.

Now we show the validity of inequality (EC.27), which strengthens inequality (2e) by considering

the start-up and shut-down decisions. If y2 = 0, then inequality (EC.27) becomes (C−V −2V )(y3−

u3)≥ 0, which is valid due to constraints (2a). If y2 = 1, i.e., the generator is online in period t= 2,

then we discuss when the generator starts up and shuts down.

1. If the generator starts up before period t= 2 and shuts down in period t= 3, i.e., u2 = y3 = 0,

then (EC.27) becomes p2 + r+2 ≤ V + 2V −C, which is valid because p2 ≤ V −C due to (2g),

and r+2 ≤ V + p1− p2 < 2V as p2 + r+2 − p1 ≤ V by constraints (2f) and (2g).

2. If the generator starts up before period t = 2 and shuts down after period t = 3, i.e., u2 =

0, y3 = 1, then (EC.27) becomes p2 + r+2 ≤C −C, which is clearly valid.

3. If the generator starts up in period t= 2, then u2 = y3 = 1, and (EC.27) becomes p2 + r+2 ≤

V −C, which is valid due to ramping-up constraints (2f).

With similar proof ideas, we can also show the validity of inequalities (EC.28) and (EC.29) and

thus omit the details.

Inequalities (EC.30) - (EC.32) are derived to strengthen the ramping-down constraints (2g), and

inequalities (EC.33) - (EC.35) are derived to strengthen the ramping-up constraints (2f). To clarify

how inequality (EC.30) strengthens the ramping-down constraint, we first derive an alternative

representation of (2g) with t= 2, i.e.,

p1− p2 + r−2 ≤ (V −C)y1− (C +V −V )(y2−u2) +V (1− y1) + (C +V −V )u2, (EC.41)

whose RHS is larger than that of inequality (EC.30). That is, inequality (EC.30) strengthens the

RHS of ramping-down constraint (EC.41) by the value of V (1−y1)+(C+V −V )u2, which is non-

negative because V <C +V , y1 ≤ 1, and u2 ≥ 0. Next, we show the validity of inequality (EC.30).

If y1 = 1 and u2 = 0, then inequality (EC.30) is clearly valid since it is the same as (EC.41). If
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y1 = u2 = 0, then y2 = 0, and thus inequality (EC.30) is also valid. If u2 = 1, then y1 = 0 and y2 = 1

due to constraints (2a) - (2b), and inequality (EC.30) converts to p2 ≥ r−2 , which is valid due to

(2d). Thus, we have shown the validity of inequality (EC.30). Following the same idea, we can also

prove the validity of inequalities (EC.31) - (EC.35). We omit the proofs here for brevity.

For the validity of inequality (EC.36), we discuss the online/offline status of the generator.

1. If the generator is offline in period t= 2 and t= 3, then inequality (EC.36) is trivially valid.

2. If the generator is online in period t= 2 and shuts down in period t= 3, i.e., y2 = 1, y3 = 0,

then u2 = u3 = 0 due to (2a) and (2c). Inequality (EC.36) becomes r+2 ≤ 2V , which is valid

based on inequality (EC.24).

3. If the generator starts up in period t= 3, then y3 = u3 = 1 and y2 = u2 = 0. Inequality (EC.36)

converts to p3 + r+3 ≤ V −C, which is valid due to ramping-up constraints (2f).

4. If the generator is online in period t= 2 and t= 3, i.e., y2 = y3 = 1, then u3 = 0 and inequality

(EC.36) converts to p3 + r+3 + r+2 ≤ C − C + V − (C − V )u2. Note that we only need to

prove the case where u2 = 1 with a smaller RHS. When u2 = 1, inequality (EC.36) becomes

p3 + r+3 + r+2 ≤ V −C +V , whose validity can be shown by summing up p3 + r+3 − p2 ≤ V and

p2 + r+2 ≤ V −C, where the second one is due to ramping-up constraints (2f).

The validity proof for inequality (16) also follows the similar technique of inequality (EC.36),

thus we omit the proof here.

Inequality (15) tightens the ramping-down constraints (2g) by introducing variable r+2 . Mean-

while, inequality (EC.37) strengthens the ramping-up constraints (2f) by introducing variable r−2 .

The validity proofs of inequalities (15) and (EC.37) are similar and we only show (15) is valid. To

that end, we discuss the following four possible cases.

1. If y2 = y3 = 0, the validity trivially holds.

2. If y2 = 1 and y3 = 0, then u2 = u3 = 0 and inequality (15) becomes p2 +r+2 ≤ V +2V −C (which

strengthens constraints (2e) since V +2V <C ). It is valid because p2 ≤ V −C due to ramping-

down constraint (2g), and r+2 ≤ 2V since r+2 ≤ r+2 + r−2 = (p2 + r+2 − p1) + (p1 − p2 + r−2 ) ≤

V +V = 2V , where the last inequality holds due to constraints (2f) and (2g).

3. If y2 = 0 and y3 = 1, then u2 = 0 and u3 = 1. Inequality (15) converts to p3 ≥ r−3 , which is valid

due to (2d).

4. If y2 = y3 = 1, then u3 = 0 and inequality (15) becomes p2+r+2 −p3+r−3 ≤ 3V −(C+3V −V )u2.

We further discuss two possible cases in terms of the value of u2.

(a) If u2 = 1, then inequality (15) becomes p2 + r+2 − p3 + r−3 ≤ V −C, which is valid because

p2 + r+2 ≤ V −C due to ramping-up constraints (2f) and p3 ≥ r−3 due to constraints (2d).

(b) If u2 = 0, then inequality (15) becomes p2 + r+2 − p3 + r−3 ≤ 3V , which is valid because

p2 +r+2 −p3 ≤ 2V due to ramping-down constraints (2g) and r−3 ≤ 2V since r−2 ≤ r+2 +r−2 =
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(p2 + r+2 − p1) + (p1 − p2 + r−2 ) ≤ V + V = 2V , where the last inequality holds due to

constraints (2f) and (2g).

For inequality (EC.38), i.e., p1− p2 + p3 + r+3 ≤ (V −C)y1 + (C + V − V )y2 + (C −C)y3− (C −

V )(u2 +u3), it tightens the summation of inequalities (EC.21) and (EC.35), with this summation

represented as p1 − p2 + p3 + r+3 ≤ (V −C)y1 + (C + V − V )y2 + (C −C)y3 − (C − V )(u2 + u3) +

(V −C)(y2−y3 +u3). Note that y2−y3 +u3 ≥ 0 due to constraints (2c). Therefore, we only need to

discuss the case where y2−y3 +u3 = 1, otherwise inequality (EC.38) is the same as the summation

of inequalities (EC.21) and (EC.35), leading to a redundant and clearly valid inequality. Due to

constraints (2a) and (2b), y2 − y3 + u3 = 1 leads to y2 = 1 and y3 = u3 = 0, which further lead to

u2 = 0 and y1 = 1 because the minimum-up time constraints (2a) with L= 2. It such case, inequality

(EC.38) converts to p1− p2 ≤ V , which is valid due to ramping-down constraints (2g).

Finally, inequality (EC.39) can strengthen the summation of inequalities (EC.32) and (EC.35),

i.e., p1− p2 + r+3 + r−3 ≤ (V −C)y1 + (C+V −V )y2 + 2V y3− (C+ 2V −V )(u2 +u3) + (V −C)(y2−

y3 +u3), by the value of (V −C)(y2− y3 +u3). The validity proof for inequality (EC.39) is similar

with that for inequality (EC.38). We omit the details for brevity. �

EC.2.2. Proof of Proposition EC.2

Proof. We prove that dim(Q2
3) = 14 because there are 14 decision variables. We create 15 affinely

independent points in Q2
3. Since ~0 ∈Q2

3, we only need to create the other 14 linearly independent

points in Q2
3, as shown in Table EC.7. It is easy to verify that these points are linearly independent

by Gaussian elimination, leading to a lower triangular matrix. �

Table EC.7 Linearly Independent Points in Q2
3

p1 p2 p3 r+1 r+2 r+3 r−1 r−2 r−3 y1 y2 y3 u2 u3

0 0 0 0 0 0 0 0 0 1 0 0 0 0
V −C 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 C −C 0 0 0 0 0 1 0 0 0 0
V −C 0 0 0 0 0 V −C 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 V −C 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 V 0 0 0 0 1 1 0 0 0
0 V −C 0 0 0 0 0 V −C 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 V −C 0 0 0 0 0 1 0 1
0 0 V −C 0 0 0 0 0 0 0 0 1 0 1
0 0 V −C 0 0 0 0 0 V −C 0 0 1 0 1
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EC.2.3. Proof of Proposition EC.5

Proof. It is sufficient to show that every point z ∈Q2
3 can be written as z =

∑
s∈S λsz

s for some

λs ≥ 0 and
∑

s∈S λs = 1, where zs ∈ P 2
3 , s∈ S with y(zs) and u(zs) binary.

For any given z = (p1, p2, p3, r
+
1 , r

+
2 , r

+
3 , r

−
1 , r

−
2 , r

−
3 , y1, y2, y3, u2, u3) ∈Q2

3, we can pick z1, . . . , z6 ∈

P 2
3 such that

z1 = (p̂11,0,0, r̂
+
11,0,0, r̂

−
11,0,0,1,0,0,0,0),

z2 = (p̂12, p̂22,0, r̂
+
12, r̂

+
22,0, r̂

−
12, r̂

−
22,0,1,1,0,0,0),

z3 = (p̂13, p̂23, p̂33, r̂
+
13, r̂

+
23, r̂

+
33, r̂

−
13, r̂

−
23, r̂

−
33,1,1,1,0,0),

z4 = (0, p̂24, p̂34,0, r̂
+
24, r̂

+
34,0, r̂

−
24, r̂

−
34,0,0,1,1,1,0),

z5 = (0,0, p̂35,0,0, r̂
+
35,0,0, r̂

−
35,0,0,1,0,1),

z6 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0).

In addition, we define λ1 = y1− y2 + u2, λ2 = y2− y3 + u3, λ3 = y3− u2− u3, λ4 = u2, λ5 = u3, and

λ6 = 1− y1−u2−u3. Note that
∑6

s=1 λs = 1. Due to (2a) - (2c), we have λs ≥ 0 for each s∈ [1,6]Z.

It is clear that yi = yi(z) =
∑6

s=1 λsyi(z
s) for i = 1,2 and u2 = u2(z) =

∑4

s=1 λsu2(z
s). So we

only need to determine the values of ω̂
.
= {p̂11, p̂12, p̂13, p̂22, p̂23, p̂24, p̂33, p̂34, p̂35, r̂+11, r̂+12, r̂+13, r̂+22, r̂+23, r̂+24,

r̂+33, r̂
+
34, r̂

+
35, r̂

−
11, r̂

−
12, r̂

−
13, r̂

−
22, r̂

−
23, r̂

−
24, r̂

−
33, r̂

−
34, r̂

−
35} and show that p1 =

∑3

i=1 λip̂1i, p2 =
∑4

i=2 λip̂2i, p3 =∑5

i=3 λip̂3i, r
+
1 =

∑3

i=1 λir̂
+
1i, r

+
2 =

∑4

i=2 λir̂
+
2i, r

+
3 =

∑5

i=3 λir̂
+
3i, r

−
1 =

∑3

i=1 λir̂
−
1i, r

−
2 =

∑4

i=2 λir̂
−
2i,

and r−3 =
∑5

i=3 λir̂
−
3i. The corresponding feasible region for ω̂ is described as A = A1 ∩A2 ∩A3 ∩

A4 ∩ A5, where A1 = {(p̂11, r̂+11, r̂−11) ∈ R3
+ : p̂11 ≥ r̂−11, p̂11 ≤ V − C, p̂11 + r̂+11 ≤ C − C}, A2 =

{(p̂12, r̂+12, r̂−12, p̂22, r̂+22, r̂−22)∈R6
+ : p̂12 ≥ r̂−12, p̂22 ≥ r̂−22, p̂22 ≤ V −C, p̂12 + r̂+12 ≤C−C, p̂22 + r̂+22 ≤C−

C, p̂12− p̂22 + r̂−22 ≤ V, p̂22 + r̂+22− p̂12 ≤ V }, A3 = {(p̂13, r̂+13, r̂−13, p̂23, r̂+23, r̂−23, p̂33, r̂+33, r̂−33) ∈R9
+ : p̂13 ≥

r̂−13, p̂23 ≥ r̂−23, p̂33 ≥ r̂−33, p̂13 + r̂+13 ≤C −C, p̂23 + r̂+23 ≤C −C, p̂33 + r̂+33 ≤C −C, p̂13− p̂23 + r̂−23 ≤

V, p̂23 + r̂+23− p̂13 ≤ V, p̂23− p̂33 + r̂−33 ≤ V, p̂33 + r̂+33− p̂23 ≤ V }, A4 = {(p̂24, r̂+24, r̂−24, p̂34, r̂+34, r̂−34)∈R6
+ :

p̂24 ≥ r̂−24, p̂34 ≥ r̂−34, p̂24 + r̂+24 ≤ V −C, p̂34 + r̂+34 ≤C −C, p̂24− p̂34 + r̂−34 ≤ V, p̂34 + r̂+34− p̂24 ≤ V },

and A5 = {(p̂35, r̂+35, r̂−35)∈R3
+ : p̂35 ≥ r̂−35, p̂35 + r̂+35 ≤ V −C}.

To show that pi =
∑6

s=1 λspi(z
s), r+i =

∑6

s=1 λsr
+
i (zs), and r−i =

∑6

s=1 λsr
−
2 (zs), for i= 1,2,3, it

suffices to prove that given a fixed (y1, y2, y3, u2, u3)∈B = {(y1, y2, y3, u2, u3)∈ [0,1]5 : (2a)− (2c)},

i.e., fixing λi for any i∈ [1,6]Z, for any point (p1, p2, p3, r
+
1 , r

+
2 , r

+
3 , r

−
1 , r

−
2 , r

−
3 ) in the set

C =
{

(p1, p2, p3, r
+
1 , r

+
2 , r

+
3 , r

−
1 , r

−
2 , r

−
3 )∈R9

+ :

p1 ≤ (V −C)λ1 + (V +V −C)λ2 + (C −C)λ3, (EC.42a)

p2 ≤ (V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.42b)
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r−2 ≤ (V −C)λ2 + 2V λ3 + (V −C)λ4, (EC.42c)

r+2 + r−2 ≤ 2V λ2 + 2V λ3 + (V −C)λ4, (EC.42d)

r+3 + r−3 ≤ 2V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.42e)

p1 + r+1 ≤ (C −C)λ1 + (C −C)λ2 + (C −C)λ3, (EC.42f)

p2 + r+2 ≤ (V + 2V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.42g)

p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.42h)

pi ≥ r−i ,∀i= 1,2,3, (EC.42i)

p2− p1 ≤ (V −C)λ2 +V λ3 + (V −C)λ4, (EC.42j)

p1− p2 + r−2 ≤ (V −C)λ1 +V λ2 +V λ3, (EC.42k)

p2− p3 + r−3 ≤ (V −C)λ2 +V λ3 + (V −C)λ4, (EC.42l)

p1− p3 + r−3 ≤ (V −C)λ1 + (V +V −C)λ2 + 2V λ3 +V λ4, (EC.42m)

p3 + r+3 − p1 ≤ 2V λ3 +V λ4 + (V −C)λ5, (EC.42n)

p2 + r+2 − p1 ≤ V λ2 +V λ3 + (V −C)λ4, (EC.42o)

p3 + r+3 − p2 ≤ V λ3 +V λ4 + (V −C)λ5, (EC.42p)

p3 + r+3 + r+2 ≤ 2V λ2 + (C −C +V )λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.42q)

r+2 + r+3 + r−3 ≤ 2V λ2 + 4V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.42r)

p2 + r+2 − p3 + r−3 ≤ (V + 2V −C)λ2 + 3V λ3 + (V −C)λ4, (EC.42s)

p3 + r+3 − p2 + r−2 ≤ 3V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.42t)

p1− p2 + p3 + r+3 ≤ (V −C)λ1 +V λ2 + (C −C +V )λ3 +V λ4 + (V −C)λ5, (EC.42u)

p1− p2 + r+3 + r−3 ≤ (V −C)λ1 +V λ2 + 3V λ3 +V λ4 + (V −C)λ5

}
, (EC.42v)

there exists ω̂ ∈A such that

p1 =
∑3

i=1 λip̂1i, r
+
1 =

∑3

i=1 λir̂
+
1i, r

−
1 =

∑3

i=1 λir̂
−
1i, (EC.43a)

p2 =
∑4

i=2 λip̂2i, r
+
2 =

∑4

i=2 λir̂
+
2i, r

−
2 =

∑4

i=2 λir̂
−
2i, (EC.43b)

p3 =
∑5

i=3 λip̂3i, r
+
3 =

∑5

i=3 λir̂
+
3i, r

−
3 =

∑5

i=3 λir̂
−
3i. (EC.43c)

That is, the linear transformation F : A → C is surjective, where the matrix F is defined by

setting Fi,(3i−2) = λ1, i = 1,4,7; Fi,(3i−1) = λ2, i = 1,4,7; Fi,(3i) = λ3, i = 1,4,7; Fi,(3i−2) = λ2, i =

2,5,8; Fi,(3i−1) = λ3, i= 2,5,8; Fi,(3i) = λ4, i= 2,5,8; Fi,(3i−2) = λ3, i= 3,6,9; Fi,(3i−1) = λ4, i= 3,6,9;

Fi,(3i) = λ5, i= 3,6,9; Fi,j = 0 otherwise.

Note that any point in C can be represented as a convex combination of the extreme points in

C since C is compact. Thus, it suffices to prove that for any extreme point ω ∈ C, there exists a
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point p ∈ A such that Fp= ω. Furthermore, it is sufficient to show this conclusion holds for any

point on the faces of C, i.e., satisfying one of (EC.42a) - (EC.42v) at equality, which implies this

conclusion holds for any extreme point.

Satisfying (EC.42a) at equality. In this case, we have the corresponding set C(EC.42a) as follows,

where C(EC.42a) ⊆C, by substituting (EC.42a) at equality into (EC.42b) - (EC.42v).

C(EC.42a) =
{

(p2, p3, r
+
1 , r

+
2 , r

+
3 , r

−
1 , r

−
2 , r

−
3 )∈R8

+ :

p2 ≤ (V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.44a)

r−2 ≤ (V −C)λ2 + 2V λ3 + (V −C)λ4, (EC.44b)

r+2 + r−2 ≤ 2V λ2 + 2V λ3 + (V −C)λ4, (EC.44c)

r+3 + r−3 ≤ 2V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.44d)

r+1 ≤ (C −V )λ1 + (C −V −V )λ2, (EC.44e)

p2 + r+2 ≤ (V + 2V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.44f)

p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.44g)

r−1 ≤ (V −C)λ1 + (V +V −C)λ2 + (C −C)λ3, (EC.44h)

pi ≥ r−i ,∀i= 2,3, (EC.44i)

p2 ≤ (V −C)λ1 + (2V +V − 2C)λ2 + +(C +V −C)λ3 + (V −C)λ4, (EC.44j)

−p2 + r−2 ≤−(V −C)λ2− (C −V −C)λ3, (EC.44k)

p2− p3 + r−3 ≤ (V −C)λ2 +V λ3 + (V −C)λ4, (EC.44l)

−p3 + r−3 ≤−(C − 2V −C)λ3 +V λ4, (EC.44m)

p3 + r+3 ≤ (V −C)λ1 + (V +V −C)λ2 + (C + 2V −C)λ3 +V λ4 + (V −C)λ5,

(EC.44n)

p2 + r+2 ≤ (V −C)λ1 + (V + 2V −C)λ2 + (C +V −C)λ3 + (V −C)λ4, (EC.44o)

p3 + r+3 − p2 ≤ V λ3 +V λ4 + (V −C)λ5, (EC.44p)

p3 + r+3 + r+2 ≤ 2V λ2 + (C −C +V )λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.44q)

r+2 + r+3 + r−3 ≤ 2V λ2 + 4V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.44r)

p2 + r+2 − p3 + r−3 ≤ (V + 2V −C)λ2 + 3V λ3 + (V −C)λ4, (EC.44s)

p3 + r+3 − p2 + r−2 ≤ 3V λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.44t)

−p2 + p3 + r+3 ≤−(V −C)λ2 +V λ3 +V λ4 + (V −C)λ5, (EC.44u)

−p2 + r+3 + r−3 ≤−(V −C)λ2− (C −C − 3V )λ3 +V λ4 + (V −C)λ5

}
. (EC.44v)
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Note that in C(EC.42a), some inequalities are dominated by others. Inequality (EC.44d) is domi-

nated by the summation of inequalities (EC.44l) and (EC.44u). Inequality (EC.44j) is dominated

by inequality (EC.44a). Inequality (EC.44k) and (EC.44m) are dominated by inequality (EC.44i).

Inequality (EC.44n) is dominated by inequality (EC.44g). Inequality (EC.44o) is dominated by

inequality (EC.44f). Inequality (EC.44p) is dominated by inequality (EC.44u). Inequality (EC.44q)

is dominated by the summation of inequalities (EC.44f) and (EC.44u). Inequality (EC.44r) is

dominated by the summation of inequalities (EC.44s) and (EC.44u). Inequality (EC.44t) is domi-

nated by the summation of inequalities (EC.44b) and (EC.44u). After eliminating the dominated

inequalities, C(EC.42a) can be equivalently represented as

C ′(EC.42a) =
{

(r+1 , r
−
1 , p2, r

+
2 , r

−
2 , p3, r

+
3 , r

−
3 )∈R8

+ :

r+1 ≤ (C −V )λ1 + (C −V −V )λ2, (EC.45a)

r−1 ≤ (V −C)λ1 + (V +V −C)λ2 + (C −C)λ3, (EC.45b)

p2 ≤ (V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.45c)

r−2 ≤ (V −C)λ2 + 2V λ3 + (V −C)λ4, (EC.45d)

r+2 + r−2 ≤ 2V λ2 + 2V λ3 + (V −C)λ4, (EC.45e)

p2 + r+2 ≤ (V + 2V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.45f)

p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.45g)

p2 ≥ r−2 , (EC.45h)

p3 ≥ r−3 , (EC.45i)

p2− p3 + r−3 ≤ (V −C)λ2 +V λ3 + (V −C)λ4, (EC.45j)

p2 + r+2 − p3 + r−3 ≤ (V + 2V −C)λ2 + 3V λ3 + (V −C)λ4, (EC.45k)

−p2 + p3 + r+3 ≤−(V −C)λ2 +V λ3 +V λ4 + (V −C)λ5, (EC.45l)

−p2 + r+3 + r−3 ≤−(V −C)λ2− (C −C − 3V )λ3 +V λ4 + (V −C)λ5

}
. (EC.45m)

Since p1 = (V −C)λ1 + (V + V −C)λ2 + (C −C)λ3, it is clear that we can pick p̂11 = V −C,

p̂12 = V + V − C, and p̂13 = C − C. Then due to the inequalities of A3, we choose r̂+13 = 0. As

we can observe that in C ′(EC.42a), the values of the variables defined in the first period, i.e., r+1

and r−1 , do not affect the values of other variables. Thus, we can first show that r+1 =
∑3

i=1 λir̂
+
1i

and r−1 =
∑3

i=1 λir̂
−
1i hold with r̂+1i, r̂

−
1i ∈ A1, by picking r̂+11 = C − V , r̂+12 = C − V − V if r+1 =

(C − V )λ1 + (C − V − V )λ2; r̂
+
11 = r̂+12 = 0 if r+1 = 0; r̂−11 = V −C, r̂−12 = V + V −C, r̂−13 = C −C if

r−1 = (V −C)λ1 + (V +V −C)λ2 + (C −C)λ3; and r̂−11 = r̂−12 = r̂−13 = 0 if r−1 = 0.

Therefore, we can from now on only discuss the variables defined in the second and third periods.

The corresponding feasible region for ψ̂
.
= {p̂22, p̂23, p̂24, p̂33, p̂34, p̂35, r̂+22, r̂+23, r̂+24, r̂+33, r̂+34, r̂+35, r̂−22, r̂−23,
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r̂−24, r̂
−
33, r̂

−
34, r̂

−
35} is A1 =∩5

i=2A
1
i , where A1

2 = {(p̂22, r̂+22, r̂−22)∈R3
+ : p̂22 ≥ r̂−22, p̂22 ≤ V −C, p̂22 + r̂+22 ≤

V + 2V −C}, A1
3 = {(p̂23, r̂+23, r̂−23, p̂33, r̂+33, r̂−33) ∈ R6

+ : p̂23 ≥ r̂−23, p̂33 ≥ r̂−33, p̂23 + r̂+23 ≤ C −C, p̂33 +

r̂+33 ≤ C −C, p̂23 − p̂33 + r̂−33 ≤ V, p̂33 + r̂+33 − p̂23 ≤ V }, A1
4 = {(p̂24, r̂+24, r̂−24, p̂34, r̂+34, r̂−34) ∈ R6

+ : p̂24 ≥

r̂−24, p̂34 ≥ r̂−34, p̂24 + r̂+24 ≤ V − C, p̂34 + r̂+34 ≤ C − C, p̂24 − p̂34 + r̂−34 ≤ V, p̂34 + r̂+34 − p̂24 ≤ V },

and A1
5 = {(p̂35, r̂+35, r̂−35) ∈ R3

+ : p̂35 ≥ r̂−35, p̂35 + r̂+35 ≤ V −C}. Meanwhile, the constraints with the

variables defined in the second and third periods in C ′(EC.42a) can be described as follows.

C1
(EC.42a) =

{
(p2, r

+
2 , r

−
2 , p3, r

+
3 , r

−
3 )∈R6

+ :

p2 ≤ (V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.46a)

r−2 ≤ (V −C)λ2 + 2V λ3 + (V −C)λ4, (EC.46b)

r+2 + r−2 ≤ 2V λ2 + 2V λ3 + (V −C)λ4, (EC.46c)

p2 + r+2 ≤ (V + 2V −C)λ2 + (C −C)λ3 + (V −C)λ4, (EC.46d)

p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.46e)

p2 ≥ r−2 , (EC.46f)

p3 ≥ r−3 , (EC.46g)

p2− p3 + r−3 ≤ (V −C)λ2 +V λ3 + (V −C)λ4, (EC.46h)

p2 + r+2 − p3 + r−3 ≤ (V + 2V −C)λ2 + 3V λ3 + (V −C)λ4, (EC.46i)

−p2 + p3 + r+3 ≤−(V −C)λ2 +V λ3 +V λ4 + (V −C)λ5, (EC.46j)

−p2 + r+3 + r−3 ≤−(V −C)λ2− (C −C − 3V )λ3 +V λ4 + (V −C)λ5

}
. (EC.46k)

In the following, we will keep fixing one of the inequalities in C1
(EC.42a) at equality, i.e., leading to

a point {p2, p3, r+2 , r+3 , r−2 , r−3 } satisfying this inequality at equality, and show that this point, say

ω̄, can be represented using a point p̂∈A1 such that F p̂= ω̄.

1) Satisfying (EC.46a) at equality. We can pick p̂22 = V − C, p̂23 = C − C and p̂24 = V − C,

which satisfy the constraints in set A1. Due to inequalities of A1, we can fix r̂+23 = r̂+24 = 0,

and the corresponding feasible region for ψ̂ is A2 =∩5
i=2A

2
i , where A2

2 = {(r̂+22, r̂−22)∈R2
+ : r̂−22 ≤

V −C, r̂+22 ≤ 2V }, A2
3 = {(r̂+23, r̂−23, p̂33, r̂+33, r̂−33)∈R5

+ : r̂−23 ≤C−C, p̂33 ≥ r̂−33, p̂33 + r̂+33 ≤C−C},

A2
4 = {(r̂−24, p̂34, r̂+34, r̂−34) ∈R4

+ : r̂−24 ≤ V −C, p̂34 ≥ r̂−34, p̂34 + r̂+34 ≤ V + V −C}, and A2
5 = {(p̂35,

r̂+35, r̂
−
35)∈R3

+ : p̂35 ≥ r̂−35, p̂35 + r̂+35 ≤ V −C}. Meanwhile, C1
(EC.42a) reduces to the following set:

C2
(EC.42a) =

{
(p3, r

+
2 , r

+
3 , r

−
2 , r

−
3 )∈R5

+ :

r+2 ≤ 2V λ2, (EC.47a)

r−2 ≤ (V −C)λ2 + 2V λ3 + (V −C)λ4, (EC.47b)

r+2 + r−2 ≤ 2V λ2 + 2V λ3 + (V −C)λ4, (EC.47c)
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p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, (EC.47d)

p3 ≥ r−3 , (EC.47e)

r+3 + r−3 ≤ 3V λ3 + (V +V −C)λ4 + (V −C)λ5

}
. (EC.47f)

Note that all the inequalities both in C2
(EC.42a) and in each A2

i , i ∈ [2,5]Z contain decision

variables that are defined in the same periods. Thus, it suffices to show that for any extreme

point ω̄ ∈ C2
(EC.42a), there exists a point p̂ ∈ A2 such that F p̂= ω̄. Note that the inequalities

in C2
(EC.42a) are separable with respect to the variables in the second and third periods. Thus,

we define sets C2,t
(EC.42a), t= 2,3 by letting C2,2

(EC.42a) = {(r+2 , r−2 ) ∈ R2
+ : r+2 ≤ 2V λ2, r

−
2 ≤ (V −

C)λ2 +2V λ3 +(V −C)λ4, r
+
2 +r−2 ≤ 2V λ2 +2V λ3 +(V −C)λ4} and C2,3

(EC.42a) = {(p3, r+3 , r−3 )∈

R3
+ : p3 + r+3 ≤ (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5, p3 ≥ r−3 , r+3 + r−3 ≤ 3V λ3 + (V +V −

C)λ4 + (V −C)λ5}. That is, C2
(EC.42a) =∩3

t=2C
2,t
(EC.42a). We consider two possible cases.

1.1) Consider t = 2. We further consider one of the inequalities in C2,2
(EC.42a) is satisfied at

equality as follows.

1.1.1) When r+2 = 2V λ2. We can pick r̂+22 = 2V . Note that we have fixed r̂+23 = r̂+24 = 0. It

is easy to verify that r̂+2i ∈A2, i= 2,3,4, and r+2 =
∑4

i=2 λir̂
+
2i holds. Now the feasible

region of r−2 is 0≤ r−2 ≤ 2V λ3 + (V −C)λ4. If r−2 = 2V λ3 + (V −C)λ4, we can pick

r̂−23 = 2V and r̂−24 = V − C. Otherwise, we can let r̂−23 = r̂−24 = 0. Note that we have

previously set r̂−22 = 0. Now we can easily verify that r̂−2i ∈ A2, i = 2,3,4, and r−2 =∑4

i=2 λir̂
−
2i holds.

1.1.2) When r−2 = (V −C)λ2 + 2V λ3 + (V −C)λ4. We can pick r̂−23 = 2V and r̂−24 = V −C.

Note that we have previously set r̂−22 = 0. Now we can easily verify that r̂−2i ∈A2, i=

2,3,4, and r−2 =
∑4

i=2 λir̂
−
2i holds. Furthermore, now 0 ≤ r+2 ≤ (C + 2V − V )λ2. If

r+2 = (C+ 2V −V )λ2, then we can let r̂+22 =C+ 2V −V or 0 otherwise. Note that we

have fixed r̂+23 = r̂+24 = 0 before. Now it is easy to verify that r̂+2i ∈A2, i= 2,3,4, and

r+2 =
∑4

i=2 λir̂
+
2i holds.

1.1.3) When r+2 +r−2 = 2V λ2 +2V λ3 +(V −C)λ4. Then r−2 = 2V λ2 +2V λ3 +(V −C)λ4−r+2
and C+2V −C ≤ r+2 ≤ 2V λ2. The extreme points of (r+1 , r

−
1 ) are (2V λ2,2V λ3 +(V −

C)λ4) and ((C+2V −C)λ2, (V −C)λ2 +2V λ3 +(V −C)λ4), which have been proved

by previous discussions.

1.2) For t= 3. We further consider one of the inequalities in C2,3
(EC.42a) is satisfied at equality

as follows.

1.2.1) When p3 + r+3 = (C −C)λ3 + (V +V −C)λ4 + (V −C)λ5. Substituting this equality

into C2,3
(EC.42a), we have C2,3′

(EC.42a) = {(p3, r+3 , r−3 )∈R3
+ : p3 +r+3 = (C−C)λ3 +(V +V −

C)λ4 + (V −C)λ5, p3 ≥ r−3 , p3 ≥ r−3 + (C − 3V −C)λ3}.
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A. If C − 3V − C > 0, then we can set p3 = r−3 + (C − 3V − C)λ3. We can let

p̂33 + r̂+33 = C −C, r̂−33 = p̂33 − (C − 3V −C), r̂−34 = p̂34, p̂34 + r̂+34 = V + V −C,

r̂−35 = p̂35, and p̂35 + r̂+35 = V −C, which satisfy the constraints in A2.

B. If C−3V −C ≤ 0, then we can set p3 = r−3 . We can let p̂33+ r̂+33 =C−C, r̂−33 = p̂33,

r̂−34 = p̂34, p̂34 + r̂+34 = V + V −C, r̂−35 = p̂35, p̂35 + r̂+35 = V −C, which satisfy the

constraints in A2.

1.2.2) When p3 = r−3 . Substituting this equality into C2,3
(EC.42a), we have C2,3′

(EC.42a) =

{(p3, r+3 , r−3 )∈R3
+ : p3 + r+3 ≤ (C−C)λ3 + (V +V −C)λ4 + (V −C)λ5, p3 = r−3 , r

+
3 +

p3 ≤ 3V λ3 + (V +V −C)λ4 + (V −C)λ5}.
A. If C−3V −C > 0, then we can set p3 +r+3 = 3V λ3 +(V +V −C)λ4 +(V −C)λ5.

We can let p̂33 + r̂+33 = 3V , r̂−33 = p̂33, r̂
−
34 = p̂34, p̂34 + r̂+34 = V + V −C, r̂−35 = p̂35,

and p̂35 + r̂+35 = V −C, which satisfy the constraints in A2.

B. If C−3V −C ≤ 0, then we can set p3 + r+3 = (C−C)λ3 + (V +V −C)λ4 + (V −
C)λ5. We can let p̂33 + r̂+33 =C −C, r̂−33 = p̂33, r̂

−
34 = p̂34, p̂34 + r̂+34 = V + V −C,

r̂−35 = p̂35, and p̂35 + r̂+35 = V −C, which satisfy the constraints in A2.

1.2.3) When r+3 + r−3 = 3V λ3 + (V + V −C)λ4 + (V −C)λ5, which implies C − 3V −C >

0. Substituting this equality into C2,3
(EC.42a), we have C2,3′

(EC.42a) = {(p3, r+3 , r−3 ) ∈ R3
+ :

p3 +r+3 ≤ (C−C)λ3 +(V +V −C)λ4 +(V −C)λ5, p3 +r+3 ≥ 3V λ3 +(V +V −C)λ4 +

(V −C)λ5, r
+
3 + r−3 = 3V λ3 + (V +V −C)λ4 + (V −C)λ5}.

A. If p3 +r+3 = 3V λ3 +(V +V −C)λ4 +(V −C)λ5, then we can pick p̂33 + r̂+33 = 3V ,

r̂−33 = p̂33, r̂
−
34 = p̂34, p̂34 + r̂+34 = V +V −C, r̂−35 = p̂35, and p̂35 + r̂+35 = V −C, which

satisfy the constraints in A2.

B. If p3 +r+3 = (C−C)λ3 +(V +V −C)λ4 +(V −C)λ5, then we can pick p̂33 + r̂+33 =

C−C, r̂−33 = p̂33, r̂
−
34 = p̂34, p̂34+ r̂+34 = V +V −C, r̂−35 = p̂35, and p̂35+ r̂+35 = V −C,

which satisfy the constraints in A2.

Now we have shown that any point ω̄ satisfying (EC.46a) at equality can be represented by a

point p̂∈A such that F p̂= ω̄. We can also similarly show that this statement holds when the

other inequalities in C are satisfied at equality following the same idea. Due to the similarity,

we omit the details for brevity.

In summary, we have proved that any point ω on the faces of C, there exists a point p∈A such

that Fp= ω. This completes the proof. �

EC.3. Three-Period Convex Hulls under Other Conditions

In this section, we first consider the case where L = ` = 1 and C − V − 2V ≥ 0. The original

constraint set, denoted by P 1
3 , can be described as follows:

P 1
3 :=

{
(p, r+, r−, y, u)∈R3×R3×R3×B3×B2 :
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(14c)− (14h),

yt ≥ ut, t= 2,3, (EC.48a)

yt−1 +ut ≤ 1, t= 2,3
}
. (EC.48b)

Similar to the previous case, we can derive the convex hull representation of P 1
3 as follows:

Theorem EC.2. When L = ` = 1 and C − V − 2V ≥ 0, the convex hull representation for the

three-period set P 1
3 is

Q1
3 = conv(P 1

3 ) =
{

(p, r+, r−, y, u)∈R14 : (14c)− (14e), (EC.26), (EC.40), (EC.48a)− (EC.48b),

p1 ≤ (V −C)y1 +V (y2−u2) + (C −V −V )(y3−u3), (EC.49a)

p1 ≤ (V −C)y1 + (C −V )(y2−u2), (EC.49b)

p2 ≤ (V −C)y2 + (C −V )(y3−u3), (EC.49c)

r−2 ≤ (V −C)y2 + (C + 2V −V )(y3−u3), (EC.49d)

r+2 + r−2 ≤ 2V y2− (C + 2V −V )u2, (EC.49e)

r+3 + r−3 ≤ 2V y3− (C + 2V −V )u3, (EC.49f)

r+3 + r−3 ≤ (C +V −V )(y2−u2) + (V +V −C)y3−V u3, (EC.49g)

p2 + r+2 ≤ (C −C)y2− (C −V )u2, (EC.49h)

p2 + r+2 ≤ (V −C)y2 + 2V (y2−u2) + (C −V − 2V )(y3−u3), (EC.49i)

p3 + r+3 ≤ (C −C)y3− (C −V )u3, (EC.49j)

p3 + r+3 ≤ (C −V −V )(y2−u2) + (V +V −C)y3−V u3, (EC.49k)

p2− p1 ≤ (V −C)y2 + (C +V −V )(y3−u3), (EC.49l)

p1− p2 + r−2 ≤ (V −C)y1 + (C +V −V )(y2−u2), (EC.49m)

p2− p3 + r−3 ≤ (V −C)y2 + (C +V −V )(y3−u3), (EC.49n)

p2− p3 + r−3 ≤ V y2 + (C +V −V )u2, (EC.49o)

p1− p3 + r−3 ≤ (V −C)y1 +V (y2−u2) + (C +V −V )(y3−u3), (EC.49p)

p1− p3 + r−3 ≤ (V −C)y1 + (C + 2V −V )(y2−u2), (EC.49q)

p3 + r+3 − p1 ≤ 2V y3− (C + 2V −V )u3, (EC.49r)

p3 + r+3 − p1 ≤ (C +V −V )(y2−u2) + (V +V −C)y3−V u3, (EC.49s)

p2 + r+2 − p1 ≤ V y2− (C +V −V )u2, (EC.49t)

p3 + r+3 − p2 ≤ V y3− (C +V −V )u3, (EC.49u)

p3 + r+3 + r+2 ≤ 2V y2 + (C −C −V )(y3−u3)− (C + 2V −V )u2, (EC.49v)
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p2 + r+2 − p3 + r−3 ≤ 3V y2− (C + 3V −V )u2, (EC.49w)

p2 + r+2 − p3 + r−3 ≤ (V + 2V −C)y2− 2V u2 + (C +V −V )(y3−u3), (EC.49x)

p3 + r+3 − p2 + r−2 ≤ 3V y3− (C + 3V −V )u3, (EC.49y)

p3 + r+3 − p2 + r−2 ≤ (V +V −C)y3−V u3 + (C + 2V −V )(y2−u2)
}
. (EC.49z)

Theorem EC.3. For the case L= 1, `= 2 and C −V − 2V ≥ 0, the convex hull representation of

the original set is the same as Q1
3 except that (EC.48b) is replaced by (14b). For the case L= 2,

` = 1 and C − V − 2V ≥ 0, the convex hull representation of the original set is the same as Q2
3

except that (14b) is replaced by (EC.48b).

In the following, we provide the convex hull representations for other cases with L = ` = 2 or

L= `= 1. Each of them contains only a subset of inequalities in Q1
3 or Q2

3.

Theorem EC.4. If C ≤ V < C + V, C − V − 2V < 0, and C −C − 2V ≥ 0, then when L= `= 2,

the corresponding convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14 : (14a)− (14e), (EC.21)− (EC.36), (EC.38)− (EC.40)

}
.

When L= `= 1, the convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14 :(14c)− (14e), (EC.26), (EC.40), (EC.48a)− (EC.48b),

(EC.49)− (EC.49g), (EC.49i)− (EC.49t)
}
.

Theorem EC.5. If C ≤ V < C + V, C −C − 2V < 0, and C −C − V ≥ 0, then when L= `= 2,

the corresponding convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14 :(14a)− (14e), (EC.21)− (EC.22), (EC.26)− (EC.31),

(EC.34)− (EC.35), (EC.38), (EC.40)
}
.

When L= `= 1, the convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14 :(14c)− (14e), (EC.26), (EC.40), (EC.48a)− (EC.48b),

(EC.49)− (EC.49b), (EC.49g), (EC.49i)− (EC.49n), (EC.49s)− (EC.49t)
}
.

Theorem EC.6. If C ≤ V < C + V and C −C − V < 0, then when L= `= 2, the corresponding

convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14 : (14a)− (14e), (EC.21)− (EC.22), (EC.26)− (EC.28), (EC.40)

}
.

When L= `= 1, the convex hull representation for the three-period problem is{
(p, r+, r−, y, u)∈R14

+ : (14c)− (14e), (EC.26), (EC.40), (EC.49a)− (EC.49b), (EC.49g), (EC.49i)
}
.
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EC.4. Proofs of Multi-Period Formulations

EC.4.1. Proof of Proposition 6

Proof. (Validity) For the validity of (17), we discuss the following two possible cases.

1. If yt−k = 0, then pt−k = 0 due to constraints (2e). It follows that (17) is valid since yt−s −∑min{k,s+L−1}
i=s ut−i ≥ 0 for all s ∈ [1, k− 1]Z and yt−

∑min{k,L−1}
i=0 ut−i ≥ 0 due to minimum-up

time constraints (2a).

2. If yt−k = 1, then we discuss the following two possible cases in terms of the value of ut−k.

(a) If ut−k = 1, then we have pt−k ≤ V − C due to ramping-up constraints (2f). It follows

that inequality (17) is valid since yt−s −
∑min{k,s+L−1}

i=s ut−i ≥ 0 for all s ∈ [1, k− 1]Z and

yt−
∑min{k,L−1}

i=0 ut−i ≥ 0 due to minimum-up time constraints (2a).

(b) If ut−k = 0, then it means that the generator starts up in a period prior to period t− k.

We further discuss the following two possible cases based on when the generator shuts

down right after period t− k.

i. If the generator shuts down in period t − s for some s ∈ [1, k − 1]Z, i.e., yt−s = 0,

then ut−s = 0 for all s ∈ [s,min{k, k+L− 2}]Z. It follows that (17) becomes pt−k ≤

(V −C)+(k−s−1)V +V
∑s−1

s=1(yt−s−
∑min{k,s+L−1}

i=s ut−i)+(C−V − (k−1)V )(yt−∑min{k,L−1}
i=0 ut−i), which is valid because pt−k ≤ V −C+(k−s−1)V due to ramping-

down constraints (2g), yt−s −
∑min{k,s+L−1}

i=s ut−i ≥ 0 for all s ∈ [1, s− 1]Z, and yt −∑min{k,L−1}
i=0 ut−i ≥ 0 due to minimum-up time constraints (2a).

ii. If the generator shuts down in period t for some t≥ t, then (17) becomes pt−k ≤C−C,

which is valid due to (2e).

(Facet-defining) We create 5T −1 affinely independent points in conv(P ) that satisfy inequality

(17) at equality. Since ~0 ∈ conv(P ), we create the other 5T − 2 linearly independent points in

conv(P ) in the following groups. Here we only consider condition (1), i.e., k = bC−V
V
c+ 1, as the

proof under condition (2) is similar. It follows that C −V − (k− 1)V < V .

First, we create T linearly independent points (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1 as follows.

1) For each α∈ [1, t− k− 1]Z (totally t− k− 1 points), we let

pαs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

r+,αs = r−,αs = 0, ∀s∈ [1, T ]Z, and uαs = 0, ∀s∈ [1, T ]Z.

2) For each α∈ [t− k, t− 1]Z (totally k points), we let

pαs =


V + (α− t+ k)V −C, s∈ [1, t− k− 1]Z
V + (α− s)V −C, s∈ [t− k,α]Z
0, s∈ [α+ 1, T ]Z

, yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

r+,αs = r−,αs = 0, ∀s∈ [1, T ]Z, and uαs = 0, ∀s∈ [1, T ]Z.

3) For each α∈ [t, T ]Z (totally T − t+ 1 points), we let
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pαs =


C −C, s∈ [1, t− k]Z
V + (t− s)V −C, s∈ [t− k+ 1, t− 1]Z
V −C, s∈ [t,α]Z
0, s∈ [α+ 1, T ]Z

, yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

r+,αs = r−,αs = 0, ∀s∈ [1, T ]Z, and uαs = 0, ∀s∈ [1, T ]Z.

Second, we create another T linearly independent points (p̀αs , r̀
+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1 as follows.

4) For each α∈ [1, t− k− 1]Z (totally t− k− 1 points), we let

p̀αs = r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

r̀+,αs = 0, ∀s∈ [1, T ]Z, and ùαs = 0, ∀s∈ [1, T ]Z.

5) For each α∈ [t− k, t− 1]Z (totally k points), we let

p̀αs =


V + (α− t+ k)V −C, s∈ [1, t− k− 1]Z
V + (α− s)V −C, s∈ [t− k,α]Z
0, s∈ [α+ 1, T ]Z

, r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, r̀+,αs = 0, ∀s∈ [1, T ]Z, and ùαs = 0, ∀s∈ [1, T ]Z.

6) For each α∈ [t, T ]Z (totally T − t+ 1 points), we let

p̀αs =


C −C, s∈ [1, t− k]Z
V + (t− s)V −C, s∈ [t− k+ 1, t− 1]Z
V −C, s∈ [t,α]Z
0, s∈ [α+ 1, T ]Z

, r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, r̀+,αs = 0, ∀s∈ [1, T ]Z, and ùαs = 0, ∀s∈ [1, T ]Z.

Next, we create another T linearly independent points (ṕαs , ŕ
+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1 as follows.

7) For each α∈ [1, t− k− 1]Z (totally t− k− 1 points), we let

ṕαs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ŕ+,αs =

{
min{V,C −V }, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ýαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ŕ−,αs = 0, ∀s∈ [1, T ]Z, and úαs = 0, ∀s∈ [1, T ]Z.

8) For each α∈ [t− k, t− 1]Z (totally k points), we let

ṕαs =


V + (α− t+ k)V −C, s∈ [1, t− k− 1]Z
V + (α− s)V −C, s∈ [t− k,α]Z
0, s∈ [α+ 1, T ]Z

,

ŕ+,αs =

{
min{V,C −V − (α− s)V }, s∈ [t− k,α]Z
0, o.w.

, ýαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ŕ−,αs = 0, ∀s∈ [1, T ]Z, and úαs = 0, ∀s∈ [1, T ]Z.

9) For each α∈ [t, T ]Z (totally T − t+ 1 points), we let
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ṕαs =


C −C, s∈ [1, t− k]Z
V + (t− s)V −C, s∈ [t− k+ 1, t− 1]Z
V −C, s∈ [t,α]Z
0, s∈ [α+ 1, T ]Z

,

ŕ+,αs =


0, s∈ [1, t− k]Z
min{V,C −V − (t− s)V }, s∈ [t− k+ 1, t− 1]Z
min{V,C −V }, s∈ [t,α]Z
0, s∈ [α+ 1, T ]Z

, ýαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ŕ−,αs = 0, ∀s∈ [1, T ]Z, and úαs = 0, ∀s∈ [1, T ]Z.

In addition, we create T − 1 linearly independent points (ṗαs , ṙ
+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2 as follows.

10) For each α∈ [2, t− k− 1]Z (totally t− k− 2 points), we let

ṗαs =

{
V −C, s∈ [α,α+L− 1]Z \ {t− k}
0, o.w.

, ṙ+,αs = ṙ−,αs = 0, ∀s∈ [1, T ]Z,

ẏαs =

{
1, s∈ [α,α+L− 1]Z
0, s∈ o.w.

, and u̇αs =

{
1, s= α

0, o.w.
.

Here, if ẏαt−k = ẏαt−k+1 = 1, then we let ṗαt−k = V + V − C. If ẏαt−k = 1 and ẏαt−k+1 = 0, then

ṗαt−k = V −C. If ẏαt−k = 0, then ṗαt−k = 0.

11) For each α∈ [t− k,T ]Z (totally T − t+ k+ 1 points), we let

ṗαs =

{
V −C, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, ṙ+,αs = ṙ−,αs = 0, ∀s∈ [1, T ]Z,

ẏαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and u̇αs =

{
1, s= α

0, o.w.
.

Finally, we create another T −1 linearly independent points (p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2 as follows.

12) For each α∈ [2, t− k− 1]Z (totally t− k− 2 points), we let

p̂αs =

{
V −C, s∈ [α,α+L− 1]Z \ {t− k}
0, o.w.

, r̂−,αs =

{
V −C, s∈ [α,α+L− 1]Z
0, o.w.

,

r̂+,αs = 0, ∀s∈ [1, T ]Z,

ŷαs =

{
1, s∈ [α,α+L− 1]Z
0, s∈ o.w.

, and ûαs =

{
1, s= α

0, o.w.
.

Here, if ŷαt−k = ŷαt−k+1 = 1, then we let p̂αt−k = V + V − C. If ŷαt−k = 1 and ŷαt−k+1 = 0, then

p̂αt−k = V −C. If ŷαt−k = 0, then p̂αt−k = 0.

13) For each α∈ [t− k,T ]Z (totally T − t+ k+ 1 points), we let

p̂αs = r̂−,αs =

{
V −C, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, r̂+,αs = 0, ∀s∈ [1, T ]Z,

ŷαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and ûαs =

{
1, s= α

0, o.w.
.

In summary, we have created 5T −2 points. The points (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1 are linearly inde-

pendent because they form a lower triangular matrix by the construction. Similarly, (p̀αs , r̀
+,α
s , r̀−,αs ,

ỳαs , ù
α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2, and (p̂αs , r̂

+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2 are
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linearly independent. By performing Gaussian elimination among (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1,

(p̀αs , r̀
+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2 and (p̂αs , r̂

+,α
s , r̂−,αs ,

ŷαs , û
α
s )Tα=2, we conclude that all of them are linearly independent. �

EC.4.2. Proof of Proposition 7

Proof. (Validity) It is clear that both (18) and (19) are valid when yt = 0 because in this case,

we have r−t = 0 due to (2d) and (2e) and every term on the RHS of (18) and (19) is nonnegative.

We only need to consider yt = 1.

First, for (18), we further discuss the following two possible cases.

1. If yt+k = 0, then inequality (18) becomes r−t ≤ (V −C), which is valid due to constraints (2g).

2. If yt+k = 1, then we discuss the following three possible cases in terms of the value of ut+k−s

for s∈ [0,min{L− 1, t+ k− 2}]Z.

(a) If ut+k−s = 0 for all s ∈ [0,min{L− 1, t+ k− 2}]Z, then inequality (18) converts to r−t ≤

(k+ 1)V = 2V , which is valid because r−t ≤ r+t + r−t = (pt + r+t − pt−1) + (pt−1− pt + r−t )≤

V +V = 2V .

(b) If ut+k−s = 1 for some s ∈ [0,min{L− 1, k, t+ k− 2}]Z = [0,min{L− 1, k}]Z, then we have

ut = 1. Hence, inequality (18) becomes r−t ≤ (V −C), which is valid due to (2f).

(c) If ut+k−s = 1 for some s ∈ [min{L − 1, k} + 1,min{L − 1, t + k − 2}]Z = [min{L,k +

1},min{L− 1, t+ k− 2}]Z, then inequality (18) converts to r−t ≤ V + (t− s)V −C, which

is valid because r−t ≤ pt ≤ pt + r+t ≤ V + (t− s)V −C due to ramping-up constraints (2f).

Next, for (19), we prove the case L= 1 while the case L≥ 2 can be proved similarly. Then we

have q= max{a∈ S}. We further discuss the following two possible cases in terms of the values of

t1 and t2, where t1 ≤ t is the start-up time of the generator right before t and t2 >max{t, t1 +L−1}

is the time when the generator shuts down right after t.

1. If max{2, t+ q −L+ 1} ≤ t1 ≤ t, i.e., ut1 = 1 for some t1 ∈ [max{2, t+ q −L+ 1}, t]Z. In this

case, we have

r−t ≤ pt ≤ pt + r+t

≤ V + (t− t1)V −C

≤ V −C +
∑

i∈S∪{1}

(di− i)V

yt+i− t+i∑
s=max{2,t+i−L+1}

us


+
(
C +V −V

)yt+k− t+k∑
s=max{2,s′}

us

+ (t− t1)V

= RHS of (19).
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The first inequality holds due to (2d) and the third inequality holds due to ramping-up con-

straints (2f). It follows that (19) is valid.

2. If t1 <max{2, t+ q−L+ 1}, then we further discuss the following two possible cases.

(a) If max{2, t+ q − L+ 1} = 2, then we have t1 < 2, i.e., us = 0 for all s ∈ [2, t]Z, then we

discuss the following two possible cases.

i. If t2 > t + k, i.e., yt+i = 1 for all i ∈ [1, k]Z, then inequality (19) converts to r−t ≤
V +

∑
i∈S∪{1}(di− i)V = kV , which is valid because r−t ≤ 2V due to constraints (2g)

and (2f).

ii. If t < t2 ≤ t+ k, then ys = 1 for all s∈ [t+ 1, t2− 1]Z and ys = 0 for all s∈ [t2, t+ k]Z.

We let p= min{a∈ S ∪{k} : a≥ t2− t}. In this case, we have

r−t ≤ pt ≤ V −C + (t2− t− 1)V

≤ V −C + (p− 1)V

= V −C +
∑

i∈{S∪{1}}∩[1,t2−t−1]Z

(di− i)V

≤ V −C +
∑

i∈{S∪{1}}∩[1,t2−t−1]Z

(di− i)V

+
∑

i∈S∪{1}∩[t2−t,k−1]Z

(di− i)V (yt+i−
t+i∑

s=max{2,t+i−L+1}

us)

+ (C +V −V )(yt+k−
t+k∑

s=max{2,t+k−L+1}

us)

= RHS of (19).

The second inequality is due to constraints (2g), the third inequality is due to the

definition of p, and the third equation is due to the definition of di for any i∈ S∪{1}.
It follows that (19) is valid.

(b) If max{2, t+q−L+1}= t+q−L+1, then we have t+q−L+1> t1, i.e., t1 +L−1< t+q.

We discuss the following two possible cases in terms of t2.

i. If t2 > t+ k, i.e., yt+i = 1 for all i∈ [1, k]Z, then inequality (19) converts to

r−t ≤ V +
∑

i∈{S∪{1}}∩[t1+L−t,k−1]Z

(di− i)V. (EC.50)

Note that
∑

i∈{S∪{1}}∩[t1+L−t,k−1]Z
(di− i)V ≥ (k− q)V ≥ V . It follows that (EC.50) is

valid because in this case we have r−t ≤ 2V ≤ V +
∑

i∈{S∪{1}}∩[t1+L−t,k−1]Z
(di− i)V .

ii. If max{t, t1 +L− 1}< t2 ≤ t+ k, then ys = 1 for all s ∈ [t+ 1, t2− 1]Z and ys = 0 for

all s ∈ [t2, t+ k]Z. Note that if t2 = t+ 1, then we have r−t ≤ V −C ≤ RHS of (19),

indicating the validity of (19). If t2 ≥ t+2, then t1 +L−1 = t1 ≤ t < t+1< t2, where

the first equation is due to the condition L= 1.
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A. If t2 > t + q, then inequality (19) becomes r−t ≤ V + (k − 1)V − C +∑
i∈{S∪{1}}∩[t2−t,k−1]Z

(di− i)V (yt+i−
∑t+i

s=max{2,t+i−L+1} us)+(C+V −V )(yt+k−∑t+k

s=max{2,t+k−L+1} us), which is valid because in this case r−t ≤ V + (t2 − t −

1)V −C ≤ V + (k− 1)V −C due to ramping-down constraints (2g).

B. If t2 ≤ t+ q, then in this case, we have

r−t ≤ V + (t2− t− 1)V −C

≤ V + (q− 1)V −C

= V +
∑

i∈{S∪{1}}∩[1,t2−t−1]Z

(di− i)V −C

≤ V +
∑

i∈{S∪{1}}∩[1,t2−t−1]Z

(di− i)V −C

+
∑

i∈{S∪{1}}∩[t2−t,k−1]Z

(di− i)V (yt+i−
t+i∑

s=max{2,t+i−L+1}

us)

+ (C +V −V )(yt+k−
t+k∑

s=max{2,t+k−L+1}

us)

= RHS of (19).

It follows that (19) is valid.

(Facet-defining) Under the condition k= 1 and t+ k= T , inequality (18) can be rewritten as

r−T−1 ≤
(
V −C

)
yT−1 +

(
C + 2V −V

)yT − T∑
s=max{2,T−L+1}

us

+
T−2∑

s=max{2,T−L+1}

(T − s− 1)V us.

(EC.51)

We create 5T − 1 affinely independent points in conv(P ) that satisfy inequality (EC.51) at

equality. Since ~0 ∈ conv(P ), we create the other 5T − 2 linearly independent points in conv(P ) in

the following groups.

First, we create T linearly independent points (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1 as follows.

1) For each α ∈ [1, T − 2]Z (totally T − 2 points), we create (pα, r+,α, r−,α) ∈ conv(P ) such that

yαs = 1 for all s∈ [1, α]Z and yαs = 0 otherwise; uαs = 0 for all s∈ [2, T ]Z; pαs = r+,αs = r−,αs = 0 for

all s∈ [1, T ]Z.

2) For α= T − 1 (totally one point), we create (pα, r+,α, r−,α)∈ conv(P ) such that yαs = 1 for all

s ∈ [1, α]Z and yαs = 0 otherwise; uαs = 0 for all s ∈ [2, T ]Z; pαs = r−,αs = V −C for all s ∈ [1, α]Z

and pαs = r−,αs = 0 otherwise; r+,αs = 0 for all s∈ [1, T ]Z.

3) For α= T (totally one point), we create (pα, r+,α, r−,α)∈ conv(P ) such that yαs = 1 for all s∈

[1, α]Z and yαs = 0 otherwise; uαs = 0 for all s∈ [2, T ]Z; pαs = r−,αs = V for all s∈ [1, T −2]Z∪{T}

and pαs = r−,αs = 2V otherwise; r+,αs = 0 for all s∈ [1, T ]Z.
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Second, we create another T −1 linearly independent points (p̃α, r̃+,α, r̃−,α)∈ conv(P ) as follows.

4) For each α ∈ [1, T − 2]Z (totally T − 2 points), we create (p̃α, r̃+,α, r̃−,α) ∈ conv(P ) such that

ỹαs = 1 for each s ∈ [1, α]Z and ỹαs = 0 otherwise; ũαs = 0 for all s ∈ [2, T ]Z; p̃αs = V −C for all

s∈ [1, α]Z and p̃αs = 0 otherwise; r̃+,αs = r̃−,αs = 0 for all s∈ [1, T ]Z.

5) For α= T − 1 (totally one point), we let (p̃α, r̃+,α, r̃−,α) ∈ conv(P ) such that ỹαs = 1 for s= T

and ỹαs = 0 otherwise; ũαs = 1 for s= T and ũαs = 0 otherwise; p̃αs = V −C for s= T and p̃αs = 0

otherwise; r̃+,αs = r̃−,αs = 0 for all s∈ [1, T ]Z.

Next, we create another T linearly independent points (ṗα, ṙ+,α, ṙ−,α)∈ conv(P ) as follows.

6) For each α ∈ [1, T − 2]Z (totally T − 2 points), we create (ṗα, ṙ+,α, ṙ−,α) ∈ conv(P ) such that

ẏαs = 1 for each s ∈ [1, α]Z and ẏαs = 0 otherwise; u̇αs = 0 for all s ∈ [2, T ]Z; ṙ+,αs = V for all

s∈ [1, α]Z and ṙ+,αs = 0 otherwise; ṗαs = ṙ−,αs = 0 for all s∈ [1, T ]Z.

7) For each α= T −1 (totally one point), we create (ṗα, ṙ+,α, ṙ−,α)∈ conv(P ) such that ẏαs = 1 for

each s ∈ [1, α]Z and ẏαs = 0 otherwise; u̇αs = 0 for all s ∈ [2, T ]Z; ṙ+,αs = V for all s ∈ [1, α− 1]Z,

ṙ+,αs = C + V − V for s = α and ṙ+,αs = 0 otherwise; ṗαs = ṙ−,αs = V − C for s = α and ṗαs =

ṙ−,αs = 0 otherwise.

8) For each α= T (totally one point), we create (ṗα, ṙ+,α, ṙ−,α) ∈ conv(P ) such that ẏαs = 1 for

each s ∈ [1, α]Z and ẏαs = 0 otherwise; u̇αs = 0 for all s ∈ [2, T ]Z; ṗαs = C −C for s= T − 1 and

ṗαs =C −C −V otherwise; ṙ+,αs = V for s= T and ṙ+,αs = 0 otherwise; ṙ−,αs = 2V for s= T − 1

and ṙ−,αs = 0 otherwise.

Next, we generate another T −1 linearly independent points (p̂α, r̂+,α, r̂−,α)∈ conv(P ) as follows.

9) For each α ∈ [1, T − 2]Z (totally T − 2 points), we create (p̂α, r̂+,α, r̂−,α) ∈ conv(P ) such that

ŷαs = 1 for each s ∈ [1, α]Z and ŷαs = 0 otherwise; ûαs = 0 for all s ∈ [2, T ]Z; p̂αs = r̂−,αs = V −C
for all s∈ [1, α]Z and p̂αs = r̂−,αs = 0 otherwise; r̂+,αs = 0 for all s∈ [1, T ]Z.

10) For α = T − 1 (totally one point), we create (p̂α, r̂+,α, r̂−,α) ∈ conv(P ) such that ŷαs = 1 for

s = T and ŷαs = 0 otherwise; ûαs = 1 for s = T and ûαs = 0 otherwise; p̂αs = r̂−,αs = V − C for

s= T and p̂αs = r̂−,αs = 0 otherwise; r̂+,αs = 0 for all s∈ [1, T ]Z.

Next, we create T − 1 linearly independent points (p̌α, ř+,α, ř−,α)Tα=2 ∈ conv(P ) as follows.

11) For each α∈ [2,max{2, T −L+ 1}− 2]Z (totally max{0, T −L− 2} ≡ [T −L− 2]+ points), we

let (p̌α, ř+,α, ř−,α) ∈ conv(P ) such that y̌αs = 1 for all s ∈ [α,α+L− 1]Z and y̌αs = 0 otherwise;

ǔαs = 1 for s= α and ǔαs = 0 otherwise; p̌αs = ř+,αs = ř−,αs = 0 for all s∈ [1, T ]Z.

12) If T − L− 1 > 0, then for α = max{2, T − L+ 1} − 1 (totally 1 point if T − L− 1 > 0 ), we

let (p̌α, ř+,α, ř−,α) ∈ conv(P ) such that y̌αs = 1 for all s ∈ [α,α+L− 1]Z and y̌αs = 0 otherwise;

ǔαs = 1 for s = α and ǔαs = 0 otherwise; p̌αs = ř−,αs = V − C for all s ∈ [α,α + L − 1]Z, and

p̌αs = ř−,αs = 0 otherwise; ř+,αs = 0 for all s∈ [1, T ]Z.

Note that if T −L− 1> 0, then we have created T −L− 1 points. Otherwise, we did not

create any point.
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13) For each α ∈ [max{2, T − L + 1}, T − 1]Z (totally min{T − 2,L − 1} points), we let

(p̌α, ř+,α, ř−,α) ∈ conv(P ) such that y̌αs = 1 for all s ∈ [α,T ]Z and y̌αs = 0 otherwise; ǔαs = 1 for

s= α and ǔαs = 0 otherwise; p̌αs = ř−,αs = V −C + (s−α)V for all s ∈ [α,T − 2]Z, p̌αs = ř−,αs =

V − C + (T − 1 − α)V for all s ∈ [T − 1, T ]Z and p̌αs = ř−,αs = 0 otherwise; ř+,αs = 0 for all

s∈ [1, T ]Z.

14) For each α = T (totally one point), we let (p̌α, ř+,α, ř−,α) ∈ conv(P ) such that y̌αs = 1 for all

s ∈ [α,T ]Z and y̌αs = 0 otherwise; ǔαs = 1 for s= α and ǔαs = 0 otherwise; p̌αs = ř+,αs = ř−,αs = 0

for all s∈ [1, T ]Z.

Finally, we create another point as follows.

15) For α= T (totally one point), we create (p̂α, r̂+,α, r̂−,α) ∈ conv(P ) such that ŷαs = 1 for s= T

and ŷαs = 0 otherwise; ûαs = 1 for s = T and ûαs = 0 otherwise; r̂+,αs = V − C for s = T and

r̂+,αs = 0 otherwise; p̂αs = r̂−,αs = 0 for all s∈ [1, T ]Z.

In summary, we have created 5T − 2 points. The points of (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1

are linearly independent because they form a lower triangular matrix by the construc-

tion. Similarly, (p̀αs , r̀
+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2 and

(p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2 are linearly independent. By performing Gaussian elimination among

(pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1, (p̀αs , r̀

+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs ,

u̇αs )Tα=2, and (p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2, we conclude that all of them are linearly independent. �

EC.4.3. Proof of Proposition 9

Proof. (Validity) For the validity of (20), we discuss the following four possible cases.

1. If yt = 0, then ut = ut−1 = 0 due to constraints (2a) and L∈ [2, T − 1]Z. According to (2d) and

(2e), we have r−t = r+t = 0 and inequality (20) is clearly valid.

2. If yt = 1 and ut = 1, then yt−1 = ut−1 = 0 due to minimum-up time constraints (2a) and L ∈
[2, T − 1]Z. Inequality (20) becomes r+t + r−t ≤ V −C and its validity is proved by constraints

(2d) and (2f).

3. If yt = 1, ut = 0, and ut−1 = 1, then (20) converts to r+t + r−t ≤ V + V − C, which is valid

according to the above case.

4. If yt = 1 and ut−1 = ut = 0, then yt−1 = 1 and inequality (20) becomes r+t + r−t ≤ 2V , which is

valid because r+t + r−t = (pt + r+t − pt−1) + (pt−1− pt + r−t )≤ V +V = 2V , where the inequality

holds due to (2f) and (2g).

(Facet-defining) We create 5T −1 affinely independent points in conv(P ) that satisfy inequality

(20) at equality. Since ~0 ∈ conv(P ), we create the other 5T − 2 linearly independent points in

conv(P ) in the following groups.

First, we create T linearly independent points (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1 as follows.

1) For each α∈ [1, t− 1]Z (totally t− 1 points), we let
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pαs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

r+,αs = r−,αs = 0, ∀s∈ [1, T ]Z, and uαs = 0, ∀s∈ [1, T ]Z.

2) For α= t (totally one point), we let

pαs =


V, s∈ [1, α− 1]Z
V −C, s= α

0, s∈ [α+ 1, T ]Z

, r+,αs =

{
2V −V +C, s= t

0, o.w.
, r−,αs =

{
V −C, s= t

0, o.w.
,

yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and uαs = 0, ∀s∈ [1, T ]Z.

3) For each α∈ [t+ 1, T ]Z (totally T − t points), we let

pαs =


V, s∈ [1, t]Z
V −C, s∈ [t+ 1, α]Z
0, s∈ [α+ 1, T ]Z

, r+,αs =

{
2V −V +C, s= t

0, o.w.
, r−,αs =

{
V −C, s= t

0, o.w.
,

yαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and uαs = 0, ∀s∈ [1, T ]Z.

Second, we create another T linearly independent points (p̀αs , r̀
+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1 as follows.

4) For each α∈ [1, t− 1]Z (totally t− 1 points), we let

p̀αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, r̀+,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

,

ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and ùαs = 0, ∀s∈ [1, T ]Z.

5) For α= t (totally one point), we let

p̀αs =


V, s∈ [1, α− 1]Z
V −C, s= α

0, s∈ [α+ 1, T ]Z

, r̀+,αs =


V −C, s∈ [1, α− 1]Z
2V −V +C, s= α

0, s∈ [α+ 1, T ]Z

,

r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and ùαs = 0, ∀s∈ [1, T ]Z.

6) For each α∈ [t+ 1, T ]Z (totally T − t points), we let

p̀αs =


V, s∈ [1, t]Z
V −C, s∈ [t+ 1, α]Z
0, s∈ [α+ 1, T ]Z

, r̀+,αs =


V −C, s∈ [1, t− 1]Z ∪ [t+ 1, α]Z
2V −V +C, s= t

0, s∈ [α+ 1, T ]Z

r̀−,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ỳαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and ùαs = 0, ∀s∈ [1, T ]Z.

Next, we create another T linearly independent points (ṕαs , ŕ
+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1 as follows.

7) For each α∈ [1, t− 1]Z (totally t− 1 points), we let

ṕαs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ŕ+,αs =

{
V −C, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, ŕ−,αs = 0, ∀s∈ [1, T ]Z,

ýαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and úαs = 0, ∀s∈ [1, T ]Z.

8) For each α∈ [t, T ]Z (totally T − t+ 1 points), we let
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ṕαs =


V, s∈ [1, t− 1]Z
V −C, s∈ [t,α]Z
0, s∈ [α+ 1, T ]Z

, ŕ+,αs =


V −C, s∈ [1, t− 1]Z ∪ [t+ 1, α]Z
2V −V +C, s= t

0, s∈ [α+ 1, T ]Z

,

ŕ−,αs =

{
V −C, s= t

0, o.w.
, ýαs =

{
1, s∈ [1, α]Z
0, s∈ [α+ 1, T ]Z

, and úαs = 0, ∀s∈ [1, T ]Z.

In addition, we create T − 1 linearly independent points (ṗαs , ṙ
+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2 as follows.

9) For each α∈ [2, t− 2]Z (totally t− 3 points), we let

ṗαs =


V −C, s∈ [α,α+L− 1]Z \ {t− 1}
V, s= [α,α+L− 1]Z ∩{t− 1} and if t∈ [α,α+L− 1]Z
0, o.w.

,

ṙ+,αs =

{
2V −V +C, s∈ [α,α+L− 1]Z ∩{t}
0, s∈ o.w.

, ṙ−,αs =

{
V −C, s∈ [α,α+L− 1]Z ∩{t}
0, s∈ o.w.

,

ẏαs =

{
1, s∈ [α,α+L− 1]Z
0, s∈ o.w.

, and u̇αs =

{
1, s= α

0, o.w.
.

10) For α= t− 1 (totally one points), we let

ṗαs =


V −C, s∈ {t− 1}∪ [t+ 1,min{α+L− 1, T}]Z
V +V −C, s= t

0, o.w.

,

ṙ+,αs = 0, ∀s∈ [1, T ]Z, ṙ−,αs =

{
V +V −C, s∈ {t}∩ [α,min{α+L− 1, T}]Z
0, o.w.

,

ẏαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and u̇αs =

{
1, s= α

0, o.w.
.

11) For α= t (totally one points), we let

ṗαs =

{
V −C, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, ẏαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and

u̇αs =

{
1, s= α

0, o.w.
, ṙ+,αs = 0, ∀s∈ [1, T ]Z, ṙ−,αs =

{
V −C, s∈ {t}∩ [α,min{α+L− 1, T}]Z
0, o.w.

.

12) For each α∈ [t+ 1, T ]Z (totally T − t points), we let

ṗαs =

{
V −C, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, ṙ+,αs = ṙ−,αs = 0, ∀s∈ [1, T ]Z,

ẏαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and u̇αs =

{
1, s= α

0, o.w.
.

Finally, we create another T −1 linearly independent points (p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2 as follows.

13) For each α∈ [2, t− 2]Z (totally t− 3 points), we let

p̂αs =


V −C, s∈ [α,α+L− 1]Z \ {t− 1}
V, s= [α,α+L− 1]Z ∩{t− 1} and if t∈ [α,α+L− 1]Z
0, o.w.

,

r̂−,αs =

{
V −C, s∈ [α,α+L− 1]Z
0, s∈ o.w.

, r̂+,αs =

{
2V −V +C, s∈ [α,α+L− 1]Z ∩{t}
0, s∈ o.w.

,

ŷαs =

{
1, s∈ [α,α+L− 1]Z
0, s∈ o.w.

, and ûαs =

{
1, s= α

0, o.w.
.
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14) For α= t− 1 (totally one point), we let

p̂αs =


V −C, s∈ [α,min{α+L− 1, T}]Z \ {t}
V +V −C, s= t

0, o.w.

,

r̂+,αs = 0, ∀s∈ [1, T ]Z, r̂−,αs =


V +V −C, s∈ {t}∩ [α,min{α+L− 1, T}]Z
V −C, s∈ [α,min{α+L− 1, T}]Z \ {t}
0, o.w.

,

ŷαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and ûαs =

{
1, s= α

0, o.w.
.

15) For each α∈ [t, T ]Z (totally T − t+ 1 points), we let

p̂αs = r̂−,αs =

{
V −C, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, r̂+,αs = 0, ∀s∈ [1, T ]Z,

ŷαs =

{
1, s∈ [α,min{α+L− 1, T}]Z
0, o.w.

, and ûαs =

{
1, s= α

0, o.w.
.

In summary, we have created 5T − 2 points. The points (pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1 are

linearly independent because they form a lower triangular matrix by the construc-

tion. Similarly, (p̀αs , r̀
+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs , u̇

α
s )Tα=2 and

(p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2 are linearly independent. By performing Gaussian elimination among

(pαs , r
+,α
s , r−,αs , yαs , u

α
s )Tα=1, (p̀αs , r̀

+,α
s , r̀−,αs , ỳαs , ù

α
s )Tα=1, (ṕαs , ŕ

+,α
s , ŕ−,αs , ýαs , ú

α
s )Tα=1, (ṗαs , ṙ

+,α
s , ṙ−,αs , ẏαs ,

u̇αs )Tα=2 and (p̂αs , r̂
+,α
s , r̂−,αs , ŷαs , û

α
s )Tα=2, we conclude that all of them are linearly independent. �

EC.4.4. Proof of Proposition 10

Proof. We show the validity of inequality (21) by discussing the following two possible cases in

terms of the value of yt.

1. If yt = 0, then ut−s = 0 for all s ∈ [0,min{k,L− 1}]Z due to constraints (2a). Inequality (21)

becomes −pt−k + r−t−k ≤ 0, which is valid due to constraints (2d).

2. If yt = 1, then we consider the following two possible cases.

(a) If ut−s = 0 for all s∈ [0,min{k,L− 1}]Z, then inequality (21) converts to pt + r+t − pt−k +

r−t−k ≤ (k+2)V , which is valid because pt+ r+t −pt−k ≤ kV due to ramping-up constraints

(2f), and r−t−k ≤ 2V due to constraints (2g) (i.e., r−t−k ≤ V +pt−k−pt−k−1) and constraints

(2f) (i.e., pt−k− pt−k−1 ≤ pt−k + r+t−k− pt−k−1 ≤ V ).

(b) If ut−s = 1 for some s∈ [0,min{k,L− 1}]Z, then inequality (21) becomes pt + r+t − pt−k +

r−t−k ≤ V + sV −C, which is valid because pt + r+t −pt−k ≤ V + sV −C due to ramping-up

constraints (2f) and r−t−k ≤ pt−k due to constraints (2g) and (2f).

The facet-defining proof is similar to that of Proposition 9 and thus is omitted here. �
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EC.5. Proof of Theorem 3

Proof. We first derive a dynamic programming algorithm to solve problem (22) and then refor-

mulate the dynamic program into a linear program, which can be further reformulated to be an

integral formulation by duality theory.

First, to derive a dynamic program for problem (22), we define two value functions V↑(t) and

V↓(t). We use V↑(t) to denote the optimal value from period t to the end if the generator starts

up in period t (i.e., yt−1 = 0 and yt = 1), and V↓(t) to denote the optimal value from period t to

the end if the generator shuts down in period t+ 1 (i.e., yt = 1 and yt+1 = 0). Meanwhile, we use

C(t, k) to denote the optimal value if the generator starts up in period t and shuts down in period

k + 1; that is, the optimal value of a economic dispatch problem considering the generator that

stays online since periods t through period k. Therefore, we can derive the corresponding dynamic

programming algorithm by setting the following bellman equations:

V↑(t) = min
k∈[min{min{t+L−1,

T−1},1+T (t−1)},T−1]Z

{
SD +C(t, k) +V↓(k),C(t, T ) +V↓(T )

}
, ∀t∈ [1, T ]Z,(EC.52a)

V↓(t) = min
k∈[t+`+1,T ]Z

{
SU +V↑(k),0

}
, ∀t∈ [1, T − `− 1]Z, (EC.52b)

V↓(t) = 0, ∀t∈ [T − `,T ]Z. (EC.52c)

Meanwhile, we use z to denote the optimal value of problem (22) and it follows that

z = min
t∈[2,T ]Z

{
SU +V↑(t), V↑(1),0

}
. (EC.53)

Note that equations (EC.52a) indicate that when the generator stays online since period t, it

either stays online until period k after satisfying the minimum-up time requirement or until the

end; equations (EC.52b) indicate that when the generator shuts down in period t+ 1, it either

stays offline until period k after satisfying the minimum-down time requirement or until the end;

equations (EC.52c) indicate that once the generator shuts down in a period later than T − `, it

cannot start up again due to the minimum-down time requirement.

Next, by converting (EC.52) and (EC.53) to constraints, we reformulate the above dynamic

program with (EC.52) and (EC.53) as the following equivalent linear program:

max z (EC.54a)

(αt) s.t. z ≤ SU +V↑(t), ∀t∈ [2, T ]Z, (EC.54b)

(α1) z ≤ V↑(1), t= 1, (EC.54c)

(βtk) V↑(t)≤ SD +C(t, k) +V↓(k),

∀k ∈ [min{t+L− 1, T − 1}, T − 1]Z,∀t∈ [2, T ]Z, (EC.54d)
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(βtk) V↑(t)≤ SD +C(t, k) +V↓(k),∀k ∈ [1, T − 1]Z, t= 1, (EC.54e)

(βtk) V↑(t)≤C(t, T ) +V↓(T ), ∀t∈ [1, T ]Z, (EC.54f)

(γtk) V↓(t)≤ SU +V↑(k), ∀k ∈ [t+ `+ 1, T ]Z,∀t∈ [1, T − `− 1]Z, (EC.54g)

(θt) V↓(t) = 0, ∀t∈ [T − `,T ]Z, (EC.54h)

z ≤ 0, V↓(t)≤ 0, ∀t∈ [1, T − `− 1]Z. (EC.54i)

Note that this linear program cannot be solved directly because C(t, k) represents an optimization

problem by itself for each given feasible t and k. In the following, we replace C(t, k) with its equiv-

alent formulation due to duality theory and thereby provide an integral formulation to reformulate

(EC.54). To that end, we use the notations in the brackets on the left side of problem (EC.54) to

denote the dual variables of constraints (EC.54b) - (EC.54i).

First, given any feasible (t, k) ∈ T K, we characterize C(t, k) by considering three possible cases

in terms of the values of t and k: (i) t ≥ 2 and k ≤ T − 1; (ii) t ≥ 2 and k = T ; (iii) t = 1 and

k≤ T − 1; and (iv) t= 1 and k= T . For the first case, C(t, k) can be calculated as follows:

C(t, k) = min
k∑
s=t

φs (EC.55a)

(λ−s ) s.t. −ps + r−s ≤ 0, ∀s∈ [t, k]Z, (EC.55b)

(λ+
s ) ps + r+s ≤C −C, ∀s∈ [t, k]Z, (EC.55c)

(µt) pt + r+t ≤ V −C, (EC.55d)

(µk) pk ≤ V −C, (EC.55e)

(σ+
s ) ps + r+s − ps−1 ≤ V, ∀s∈ [t+ 1, k]Z, (EC.55f)

(σ−s ) ps−1− ps + r−s ≤ V, ∀s∈ [t+ 1, k]Z, (EC.55g)

(δsj) φs ≥ νsj ps + νsjC +ϕj + RUr+s + RDr−s , ∀s∈ [t, k]Z, j ∈ [1,N ]Z. (EC.55h)

In the above model, we use the notations in the brackets on the left side of problem (EC.55)

to denote the dual variables of constraints (EC.55b) - (EC.55h). For the second case, i.e., t ≥ 2

and k = T , C(t, T ) can be calculated in the same way except that constraint (EC.55e) should be

removed because the generator does not have to shut down in period T + 1 if it stays online until

time T . For the third case, i.e., t= 1 and k≤ T − 1, C(1, k) can be calculated in the same way to

(EC.55) except that constraint (EC.55d) should be removed because the generator is allowed to

stay in either online or offline status in the first period. For the fourth case, i.e., t= 1 and k = T ,

both constraints (EC.55d) and (EC.55e) should be removed.

Next, we replace C(t, k) in (EC.54) with its equivalent optimization models for any feasible

(t, k)∈ T K. To that end, we take the dual of model (EC.55) and include its dual formulation into
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(EC.54). In particular, for the case where t≥ 2 and k≤ T − 1, the corresponding dual formulation

can be described as follows:

C(t, k) = max
k∑
s=t

(C −C)λ+
s + (V −C)(µt +µk) +

k∑
s=t+1

V (σ+
s +σ−s ) +

k∑
s=t

N∑
j=1

(νsjC +ϕj)δsj

(EC.56a)

(qttk) s.t. λ+
t −λ−t +µt−σ+

t+1 +σ−t+1−
N∑
j=1

νtjδtj = 0, (EC.56b)

(qktk) λ+
k −λ−k +µk +σ+

k −σ−k −
N∑
j=1

νkj δkj = 0, (EC.56c)

(qstk) λ+
s −λ−s +σ+

s −σ+
s+1−σ−s +σ−s+1−

N∑
j=1

νsj δsj = 0, ∀s∈ [t+ 1, k− 1]Z, (EC.56d)

(mt
tk) λ+

t +µt−
N∑
j=1

RUδtj ≤ 0, (EC.56e)

(ms
tk) λ+

s +σ+
s −

N∑
j=1

RUδsj ≤ 0, ∀s∈ [t+ 1, k]Z, (EC.56f)

(nttk) λ−t −
N∑
j=1

RDδtj ≤ 0, (EC.56g)

(nstk) λ−s +σ−s −
N∑
j=1

RDδsj ≤ 0, ∀s∈ [t+ 1, k]Z, (EC.56h)

(wstk)
N∑
j=1

δsj = 1, ∀s∈ [t, k]Z, (EC.56i)

λ±s ≤ 0, ∀s∈ [t, k]Z, µt ≤ 0, µk ≤ 0, σ±s ≤ 0, ∀s∈ [t+ 1, k]Z,

δsj ≥ 0, ∀j ∈ [1,N ]Z, s∈ [t, k]Z, (EC.56j)

where we use the notations in the brackets on the left side of problem (EC.56) to denote the

dual variables of constraints (EC.56b) - (EC.56j). When k= T , the same dual formulation can be

obtained except that the dual variable µk should be removed from model (EC.56). Similarly, when

t= 1, dual variable µt should be removed from model (EC.56). For simplicity, we refer to (EC.56)

as the dual formulation for any feasible (t, k), where µk is removed from (EC.56) when k= T and

µt is removed when t= 1.

Therefore, by redefining C(t, k) as a decision variable and replacing it with its dual formulation

in (EC.54), an integrated linear program can be obtained as follows:

max z (EC.57a)

s.t. (EC.54b)− (EC.54i), (EC.57b)
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(ptk) C(t, k)≤
k∑
s=t

(C −C)λ+
s + (V −C)(µt +µk) +

k∑
s=t+1

V (σ+
s +σ−s ) +

k∑
s=t

N∑
j=1

(νsjC +ϕj)δsj,

∀t∈ [2, T ]Z, k ∈ [min{t+L− 1, T − 1}, T − 1]Z, (EC.57c)

(ptk) C(t, k)≤
T∑
s=t

(C −C)λ+
s + (V −C)µt +

T∑
s=t+1

V (σ+
s +σ−s ) +

T∑
s=t

N∑
j=1

(νsjC +ϕj)δsj,

∀t∈ [2, T ]Z, k= T, (EC.57d)

(ptk) C(t, k)≤
k∑
s=t

(C −C)λ+
s + (V −C)µk +

k∑
s=t+1

V (σ+
s +σ−s ) +

k∑
s=t

N∑
j=1

(νsjC +ϕj)δsj,

∀t= 1, k ∈ [1, T − 1]Z, (EC.57e)

(ptk) C(t, k)≤
T∑
s=t

(C −C)λ+
s +

T∑
s=t+1

V (σ+
s +σ−s ) +

T∑
s=t

N∑
j=1

(νsjC +ϕj)δsj, t= 1, k= T, (EC.57f)

(EC.56b)− (EC.56j), ∀(t, k)∈ T K, (EC.57g)

where (EC.57c), (EC.57d), (EC.57e), and (EC.57f) represent the objective function (EC.56a) under

the case (1) t≥ 2 and k ≤ T − 1, (2) t≥ 2 and k = T , (3) t= 1 and k ≤ T − 1, and (4) t= 1 and

k = T , respectively. We use the notations in the brackets on the left side of problem (EC.57) to

denote the dual variables of constraints (EC.57c) - (EC.57f).

By strong duality, we take the dual of the above linear program (EC.57) and obtain the equivalent

dual linear program as follows.

min
T∑
t=2

SUαt +
T−1∑
k=1

SDβ1k +
T∑
t=2

T−1∑
k=t+L−1

SDβtk +
T−`−1∑
t=1

T∑
k=t+`+1

SUγtk +
∑

(t,k)∈T K

k∑
s=t

wstk

(EC.58a)

s.t.
T∑
t=1

αt ≤ 1, (EC.58b)

−αt +
T∑
k=1

βtk = 0, t= 1, (EC.58c)

−αt +
T∑

k=min{t+L−1,T}

βtk = 0, ∀t∈ [2, `+ 1]Z, (EC.58d)

−αt +
T∑

k=min{t+L−1,T}

βtk−
t−`−1∑
k=1

γkt = 0, ∀t∈ [`+ 2, T ]Z, (EC.58e)

−
t−L+1∑
k=1

βkt +
T∑

k=t+`+1

γtk ≤ 0, ∀t∈ [1, T − `− 1]Z, (EC.58f)

θt−
t−L+1∑
k=1

βkt = 0, ∀t∈ [T − `,T ]Z, (EC.58g)

ptk−βtk = 0, ∀(t, k)∈ T K, (EC.58h)

qstk +ms
tk ≤ (C −C)ptk, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (EC.58i)
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−qstk +nstk ≤ 0, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (EC.58j)

qttk +mt
tk ≤ (V −C)ptk, ∀(t, k)∈ T K with t≥ 2, (EC.58k)

qktk ≤ (V −C)ptk, ∀(t, k)∈ T K with k≤ T − 1, (EC.58l)

qs−1tk − qstk +nstk ≤ V ptk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (EC.58m)

qstk +ms
tk− qs−1tk ≤ V ptk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (EC.58n)

wstk− νsj qstk−RUms
tk−RDnstk ≥ (νsjC +ϕj)ptk, ∀(t, k)∈ T K,∀s∈ [t, k]Z,∀j ∈ [1,N ]Z,

(EC.58o)

α,β, γ, p,m,n≥ 0. (EC.58p)

Due to (EC.58h), we replace p with β and obtain the following equivalent formulation:

min
T∑
t=2

SUαt +
T−1∑
k=1

SDβ1k +
T∑
t=2

T−1∑
k=t+L−1

SDβtk +
T−`−1∑
t=1

T∑
k=t+`+1

SUγtk +
∑

(t,k)∈T K

k∑
s=t

wstk

(EC.59a)

s.t.
T∑
t=1

αt ≤ 1, (EC.59b)

−αt +
T∑
k=1

βtk = 0, t= 1, (EC.59c)

−αt +
T∑

k=min{t+L−1,T}

βtk = 0, ∀t∈ [2, `+ 1]Z, (EC.59d)

−αt +
T∑

k=min{t+L−1,T}

βtk−
t−`−1∑
k=1

γkt = 0, ∀t∈ [`+ 2, T ]Z, (EC.59e)

−
t−L+1∑
k=1

βkt +
T∑

k=t+`+1

γtk ≤ 0, ∀t∈ [1, T − `− 1]Z, (EC.59f)

θt−
t−L+1∑
k=1

βkt = 0, ∀t∈ [T − `,T ]Z, (EC.59g)

qstk +ms
tk ≤ (C −C)βtk, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (EC.59h)

−qstk +nstk ≤ 0, ∀(t, k)∈ T K,∀s∈ [t, k]Z, (EC.59i)

qttk +mt
tk ≤ (V −C)βtk, ∀(t, k)∈ T K with t≥ 2, (EC.59j)

qktk ≤ (V −C)βtk, ∀(t, k)∈ T K with k≤ T − 1, (EC.59k)

qs−1tk − qstk +nstk ≤ V βtk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (EC.59l)

qstk +ms
tk− qs−1tk ≤ V βtk, ∀(t, k)∈ T K,∀s∈ [t+ 1, k]Z, (EC.59m)

wstk− νsj qstk−RUms
tk−RDnstk ≥ (νsjC +ϕj)βtk, ∀(t, k)∈ T K,∀s∈ [t, k]Z,∀j ∈ [1,N ]Z,

(EC.59n)
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α,β, γ,m,n≥ 0. (EC.59o)

Following the same proof for Theorem 1 and Proposition 1 in Guan et al. (2018), we can show

that the extreme points of the polytope (EC.59b) - (EC.59o) are binary with respect to α, β, γ, and

θ, and accordingly there exists an optimal solution, which is binary with respect to α, β, γ, and θ,

to the formulation (EC.59) due to the linear objective function. Meanwhile, similar to Proposition

2 in Guan et al. (2018), we can also show that if (α∗, β∗, γ∗, θ∗, q∗,m∗, n∗) is an optimal solution to

the formulation (EC.59), then we have the solution (p∗, r+∗, r−∗, y∗, u∗) with

p∗s =
∑

(t,k)∈T K,t≤s≤k

qs∗tk , r
+∗
s =

∑
(t,k)∈T K,t≤s≤k

ms∗
tk , r

−∗
s =

∑
(t,k)∈T K,t≤s≤k

ns∗tk ,

y∗s =
∑

(t,k)∈T K,t≤s≤k

β∗tk, and u∗s = α∗s +
∑

(t,k)∈T K,k=s

γ∗tk, ∀s∈ [1, T ]Z

is an optimal solution to the original problem (22). It follows that Theorem 3 holds. �
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