
1 

Mathematical programming formulations for robust airside terminal traffic flow optimisation 1 

problem 2 

Kam K.H. Ng, Chun-Hsien Chen, C.K.M. Lee 3 

4 

Full text available at: 5 

https://www.sciencedirect.com/science/article/abs/pii/S0360835221000231 6 

7 

Doi:  8 

https://doi.org/10.1016/j.cie.2021.107119 9 

10 

APA reference: 11 

Ng, K. K. H., Chen, C.-H., & Lee, C. K. M. (2021). Mathematical programming formulations for 12 

robust airside terminal traffic flow optimisation problem. Computers & Industrial 13 

Engineering, 107119. doi: https://doi.org/10.1016/j.cie.2021.107119. 14 

15 

IEEE reference: 16 

[1] K. K. H. Ng, C.-H. Chen, and C. K. M. Lee, "Mathematical programming formulations for17 

robust airside terminal traffic flow optimisation problem," Comput Ind Eng, p. 107119,18 

2021/01/14/ 2021, doi: https://doi.org/10.1016/j.cie.2021.107119.19 

20 

21 

22 

23 

https://doi.org/10.1016/j.cie.2021.107119 

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This is the Pre-Published Version.

https://www.sciencedirect.com/science/article/abs/pii/S0360835221000231
https://doi.org/10.1016/j.cie.2021.107119
https://doi.org/10.1016/j.cie.2021.107119
https://doi.org/10.1016/j.cie.2021.107119


2 

 

Mathematical programming formulations for robust airside terminal traffic flow 1 

optimisation problem 2 

Kam K.H. NG a, Chun-Hsien CHEN b,*, C.K.M. LEE c 
3 

a Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong 4 

Kong SAR, China 5 
b School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 6 

639798, Singapore 7 
c Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 8 

China 9 

 10 

* Corresponding author. 11 

Address: School of Mechanical and Aerospace Engineering, Nanyang Technological University, North Spine, N3.2-B1-12 

02c, 50 Nanyang Avenue, Singapore 637460, Singapore. Tel.: +65 8311 8226 13 

 14 

Email Address: kam.kh.ng@polyu.edu.hk (Kam K.H. NG), mchchen@ntu.edu.sg (C.-H. CHEN), ckm.lee@polyu.edu.hk 15 

(C.K.M. LEE) 16 

 17 

 18 

Acknowledgment 19 

The authors would like to express their gratitude and appreciation to the anonymous reviewers, the editor-in-chief and the 20 

editorial members for providing valuable comments for the continuing improvement of this article. The research is 21 

supported by Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, 22 

Hong Kong SAR, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore and 23 

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR. Our 24 

gratitude is also extended to the Research Committee and the Interdisciplinary Division of Aeronautical and Aviation 25 

Engineering, The Hong Kong Polytechnic University for support of the project (BE3V) and Department of Industrial and 26 

Systems Engineering, The Hong Kong Polytechnic University for support of the project (RU8H). The authors would like 27 

to express their appreciation to the Hong Kong International Airport and FlightGlobal for their assistance with the data 28 

collection. 29 

 30 

Declarations of interest: The authors declare that they have no known competing financial interests or personal 31 

relationships that could have appeared to influence the work reported in this paper. 32 

  33 

mailto:kam.kh.ng@polyu.edu.hk
mailto:mchchen@ntu.edu.sg
mailto:ckm.lee@polyu.edu.hk


3 

 

Mathematical programming formulations for robust airside terminal traffic flow 1 

optimisation problem 2 

 3 

Abstract 4 

The robust traffic flow modelling approach offers a perspicacious and holistic surveillance for flight activities in a nearby 5 

terminal manoeuvring area. The real time flight information expedites the streaming control of terminal operations using 6 

computational intelligence. Hence, in order to reduce the adverse effect of severe uncertainty and the impact of delay 7 

propagation, the amplified disruption along with the terminal traffic flow network can be leveraged by using robust 8 

optimisation. The transit time from entry waypoint to actual landing time is uncertain since the true airspeed is affected by 9 

the wind direction and hazardous aviation weather in the terminal manoeuvring area. Robust optimisation for TTFP is to 10 

generate a solution against the uncertain outcomes, which implies that less effort by the ATC to perform re-scheduling is 11 

required. In addition, two decomposition methods are presented and proposed in this work. The computational performance 12 

of traditional Benders Decomposition will largely be affected by the infeasibility in the subsystem and resolution of 13 

infeasible solution in the second-stage optimisation problem resulting in a long iterative process. Therefore, we presented 14 

an enhanced Benders Decomposition method to tackle the infeasibility in the subsystem. As shown in the numerical 15 

experiments, the proposed method outperforms the traditional Benders Decomposition algorithm using Wilcoxon-signed 16 

ranks test and achieved a 58.52% improvement of solution quality in terms of solving one-hour flight traffic scenarios with 17 

an hour computation time limit.  18 

 19 

Keywords: decomposition methods, robust optimisation, min-max approach, airside terminal traffic flow problem 20 

 21 

 22 

1. Introduction 23 

Terminal Traffic Flow Problem (TTFP) considers a schedule to determine the approach path selection, approach route, 24 

number of aeronautical holding and the landing time in the Terminal Manoeuvring Area (TMA). Adverse weather 25 

conditions may induce air traffic delay and Air Traffic Control (ATC) needs to take care all the actions of approaching 26 

flights and ensure smooth traffic in the TMA (Wee et al., 2018). Solving the TTFP is complex as various decision required 27 

to be made and the performance of a schedule is subjected to the current air traffic situation and traffic control regulation 28 

(Ng et al., 2017a). The increased number of passengers and airlines induces the volume of air transportation (Eltoukhy et 29 

al., 2017; Lee et al., 2018; Ng et al., 2018). The air route network is far more complex than as more air routes and runway 30 

facilities have been introduced (Francis et al., 2004; Gelhausen et al., 2013; Lee et al., 2019). This is also the major issues 31 

that most of the international airports have experiences heavy air traffic delay and rescheduling issue in the past two decades 32 

(Farhadi et al., 2014; Ng et al., 2015; Wu & Law, 2019). Furthermore, the efficiency of ATC is also subjected to the 33 

operational manners and adverse weather condition (Samà et al., 2015, 2017b). The exogenous uncertainty may reduce the 34 

air route capacity and contribute to the delay of flight arrival and departure time (Ng et al., 2017a; Wee et al., 2019). We, 35 

therefore, believed that the consideration of uncertainty in TTFP is necessary to help ATC to design a smooth approaching 36 

ATC schedule (Ng & Lee, 2017; Samà et al., 2017a; Samà et al., 2017b). 37 

 38 

The approaching time is not deterministic as the current weather condition and route traffic situation are not accurately 39 

predicted (Campanelli et al., 2016; Kafle & Zou, 2016; Pyrgiotis et al., 2013). Terminal traffic flow capacity deficiencies 40 

may increase the possibility of delay propagation and flight delay in subsequent ATC activities (Samà et al., 2017a; Samà 41 

et al., 2017b). Ng et al. (2017a) suggested that robust optimisation for TTFP can accommodate the effect of aggregate 42 
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delays and the effect of uncertain parameters in a schedule to achieve high level of solution robustness. Other than the 1 

considerations of uncertainty parameters in ATC, resolving potential conflict and collision-free approach route solution 2 

should be considered in the model (Qian et al., 2017). An efficient air transportation system must satisfy the needs of 3 

smooth airport operations, manageable ATC and utilisation of air routes and runway resources (Gillen et al., 2016). 4 

 5 

Most of the literature only considered the runway properties, including runway resources, runway assignment. sequencing 6 

problem and safety requirement, in the mathematical model, namely Aircraft Sequencing and Scheduling Problem (ASSP) 7 

(Guépet et al., 2017; Herrema et al., 2019; Ng et al., 2018). Air Landing Problem (ALP) and Air Take-off Problem (ATP) 8 

are the special runway setting of ASSP (Ng & Lee, 2016a, 2016b; Ng et al., 2017a). Recent research suggested that the 9 

final approach operations are affected by the manner of ATC (Hansen & Zou, 2013; Zou & Hansen, 2012). Therefore, it is 10 

important to consider the approach route selection, aeronautical decision and air route operations in the decision making 11 

(Samà et al., 2017b). The simple model of TTFP is formulated by no-wait job shop scheduling and proposed by Bianco et 12 

al. (1997). Samà et al. (2014) presented an alternative graph approach to formulate the TTFP. However, the variables and 13 

parameters in the abovementioned models are in deterministic. 14 

 15 

The expected and actual operation time may be affected by the uncertain parameters. Indeed, close monitoring of all flights’ 16 

activities can resolve the problem of uncertainty in ATC, but a more advanced computational unit is required to re-schedule 17 

when the predetermined schedule is be disrupted (Du et al., 2020). The contemporary research suggested that the uncertain 18 

parameters took into the consideration of mathematical modelling and the robust optimisation model can yield a solution 19 

that is vulnerable to disruption (Liang et al., 2018). Stochastic and robust optimisation are the available methods to resolve 20 

the uncertainty model. Stochastic process considered the uncertain parameters as a probability-guarantee distribution from 21 

the historical data (Jacquillat & Odoni, 2015a, 2015b; Jacquillat et al., 2016). When only limited information on the 22 

uncertain parameters is available, robust optimisation offers a risk-averse approach by interval-based uncertain parameters 23 

instead of statistical control of uncertainty distribution of the parameters (Aissi et al., 2009; Gabrel et al., 2014; Hu et al., 24 

2016). Ben-Tal et al. (2010) firstly proposed the soft robust model against the downside performance and the worst-case 25 

scenarios. Absolute robustness, robust deviation and relative deviation are well-known robust optimisation methods (Xu et 26 

al., 2013). Ng et al. (2017a) proposed a min-max regret approach in hedging the uncertain operational time for mixed-27 

mode parallel runway operations.  28 

 29 

The robust solution is developed through satisfying the constraints generated by the realisation of the worst-case scenarios 30 

(Li et al., 2019c; Wang et al., 2019; Yang et al., 2020). Using the exact algorithm in solving robust optimisation problem 31 

significantly increases the overall computational burden compared to solving deterministic or stochastic models. Given the 32 

nature of two-stage optimisation in the min-max and min-max regret approach, approximate algorithms, such as heuristics 33 

and meta-heuristics, are applicable. Ng et al. (2017a) proposed an Efficient Artificial Bee Colony (EABC) algorithm to 34 

develop a robust ASSP schedule. The efficiency of the computational performance outperforms the Genetic Algorithm (GA) 35 

and Hybrid Artificial Bee Colony (HABC) algorithm. Additionally, Liu et al. (2016) proposed quantum Ant Colony 36 

Optimisation (ACO) for the path optimisation problem. However, meta-heuristics offer a close-to-optimal solution and do 37 

not guarantee a proof-of-optimal condition (Elbeltagi et al., 2005; Ng et al., 2018; Ng et al., 2017b). Alternatively, the 38 

Bender’s Decomposition (BD) approach for robust optimisation has been well studied (Bodur & Luedtke, 2016; Bruni et 39 

al., 2017, 2018; Kergosien et al., 2017). Compared to the Branch-and-Bound (B&B) algorithm, decomposing the model 40 
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by partitioning the decision variables using the BD algorithm enhances the convergence process (Makui et al., 2016; 1 

Martins de Sá et al., 2018; Zarrinpoor et al., 2018). In this connection, the iterative relaxation procedure is considered to 2 

solve the two-stage optimisation approach in robust optimisation (Cao et al., 2010). Various enhancement scheme on 3 

decomposition algorithms were proposed for robust optimisation in the literature, such as Accelerating BD (Makui et al., 4 

2016; Zarrinpoor et al., 2018), BD algorithm with Combinatorial Benders cuts method (BD algorithm with the CBC method) 5 

(Cao et al., 2010), BD with tightened lower bound enhancement (Bruni et al., 2017, 2018), and improved BD (Bodur & 6 

Luedtke, 2016). 7 

 8 

Robust policy is preferable when uncertainty in TMA is inevitable. As for deterministic model for TTFP, one could argue 9 

that reactive scheduling approaches can be performed when latest traffic information is available. This required a superior 10 

computational performance to achieve real-time or near-time decision since TTFP is a NP-hard problem (Ng et al., 2018). 11 

Furthermore, re-scheduling needs to acquire a close monitoring of all flight activities in the TMA and the latest coordinate 12 

of the approach flights (Ng et al., 2020; Ng et al., 2017a). Comparatively, robust optimisation for TTFP inherently optimise 13 

the solution over the worst-case scenarios when the model is subjected to the deterministic variability, which indicates that 14 

the scheduling for TTFP has less vulnerability to disruption, such as hazardous aviation weather in the TMA, current traffic 15 

situation and variability of approach speed (Li et al., 2019a; Li et al., 2019b). Less effort is required by the ATC to perform 16 

re-scheduling.  17 

 18 

1.1. Contribution of the research 19 

The contributions of this article are outlined below. First, an alternative path method to construct the approach path problem 20 

is developed. Instead of using the no-wait job-shop scheduling or the alternative graph method, the TTFP model has limited 21 

available approach paths from the origin node (entry waypoint) to the destination node (runway). The proposed model is 22 

formulated by using Directed Acyclic Graph (DAG), which is a graph that is directed and has no cycles linking the other 23 

edges (Ballestín & Leus, 2009; Bruni et al., 2017). Second, a min-max approach for the robust TTFP is introduced. The 24 

robust solution is practical and vulnerable to scheduling disruption. Hence, the imprecision of transit time induced by the 25 

minimal disturbance of constant flight speed for approach paths within a TMA is presented. Third and foremost, two 26 

decomposition methods to solve the proposed robust model are proposed to solve the two-stage optimisation model since 27 

the robust TTFP model cannot be solved directly with the property of nonlinearity. A combinatorial cuts method and an 28 

enhancement scheme on the first-stage problem are proposed to guarantee a possible convergence to optimise and increase 29 

the computational efficiency and solution quality. 30 

 31 

1.2. Organisation of the paper 32 

After describing the general background of the robust TTFP and the state-of-the-art robust optimisation and algorithms, 33 

the complete formulation of the deterministic TTFP is presented in Section 2. Section 3 illustrates the cardinality of the 34 

uncertainty set and robust model with the decomposition framework for TTFP, while Section 4 describes two novel 35 

algorithmic components using a Bender’s decomposition structure. The descriptions of the test instances and computational 36 

results are illustrated in Section 5. The summary of the research and the concluding remarks are raised in Section 6. 37 

 38 

2. Problem formulation of the deterministic terminal traffic flow model 39 

The mathematical formulation of the deterministic traffic flow model is presented in this section. The Standard terminal 40 
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arrival routes (STARs) and aeronautical holding for each flight can be assigned by the ATC under area control jurisdiction. 1 

The set of STARs is a set of alternative routes from the entry waypoint of the Terminal Transition Routes (TTR) to the 2 

runway(s). The area control jurisdiction of ATC is the area of TMA, started from the terminal airspace sector boundary. 3 

The entry waypoint refers to the geographical coordinates on the terminal airspace sector boundary between the Air Traffic 4 

Service (ATS) route and navigation route (Ng et al., 2018). Aeronautical holding is sometimes required when there is heavy 5 

traffic on terminal air space or particular air route (Ng et al., 2017a). In this work, the model can coordinate the current 6 

traffic and aeronautical holding assignment to achieve better operational efficiency and flexibility within the decision 7 

horizon. 8 

 9 

2.1. Assumption of the model 10 

There are several assumptions of the proposed model. The set of approach paths is assumed to be deterministic in the 11 

decision horizon. Any changes of the network structure are not available in the model. Furthermore, any missed approaches, 12 

emergency operations and abnormal ATC operations in the decision horizon are neglected in the proposed model. The 13 

transportation time between waypoint is assumed to fall into an interval case due to the turbulence of weather conditions 14 

and wind resistance. Finally, in the case airport, mono-aeronautical holding is sufficient and the number of holding per 15 

racetrack pattern is limited to one. 16 

 17 

2.2. A toy alternative paths model for explanation 18 

To understand the design of alternative path approach, the following section presents the major components in the 19 

deterministic model for TTFP with graphical representation. The approach paths from entry waypoint 𝑢𝑖1

𝑠  to runway 𝑢𝑖1

𝑒  20 

for all flights 𝑖1 ∈ 𝐼 with a decision horizon are considered in the model. For each flight, ATC determines the best approach 21 

path from a set of alternative paths. Fig. 1 depicts the alternative path approach for TTFP. Flight 𝑖1 enters from entry 22 

waypoint 1 , while flight 𝑖2  enter from entry waypoint 2 . The set of alternative paths for flights 𝑖1  and 𝑖2  are 23 

(𝑜, 1,3,6,8, 𝑑) , (𝑜, 1,3,4,6,8, 𝑑) , (𝑜, 1,5,6,8, 𝑑) , (𝑜, 1,5,7,8, 𝑑) ∈ 𝑃𝑖1
  and (𝑜, 2,5,6,8, 𝑑) , (o, 2,5,7,8, d) , (o, 2,7,8, d) ∈24 

𝑃𝑖2
 respectively. Nodes 3 and 4 indicates the same waypoint but node 4 is regarded as an artificial node to present the 25 

entry waypoint after performing one turn of aeronautical holding.  26 

 27 



7 

 

 1 

Fig. 1. A schematic diagram of the alternative paths approach for TTFP 2 

 3 

Conflict resolution between flights is a method to avoid potential conflict on shared air route resources and to ensure stable 4 

approaches for all incoming flights. Path coordination and aeronautical holding are the two common approaches for conflict 5 

resolution. 6 

 7 

We presume that the longitudinal separation is insufficient and that there is a potential conflict on waypoint 6 if flight 𝑖1 8 

considers (𝑜, 1,3,6,8, 𝑑) ∈ 𝑃𝑖1
, while flight 𝑖2 choose  (𝑜, 2,5,6,8, 𝑑) ∈ 𝑃𝑖2

 for approach in Fig. 2. In such a case, the path 9 

coordination method adopts the conflict detection on each node and determines a feasible solution by coordinating the path 10 

planning and choosing the valid paths for both flights 𝑖1 and 𝑖2. Conflict can be resolved by using re-routing strategy for 11 

flight 𝑗 from (𝑜, 2,5,6,8, 𝑑) ∈ 𝑃𝑖2
 to (𝑜, 2,7,8, 𝑑) ∈ 𝑃𝑖2

. Paths with a dotted line indicate a path planning with conflict at 12 

waypoint 6, while paths with a solid line demonstrate a valid path planning by considering path coordination as shown in 13 

Fig. 2. 14 

 15 

Fig. 2. A schematic diagram of conflict resolution by path coordination 16 

 17 

The path coordination approach may not be feasible, since air routes are fixed and resources are limited. Aeronautical 18 

holding attempts to impose a delay on an aircraft by keeping it on hold in a racetrack pattern in order to impose a delay 19 

adjustment program and to minimise the overall delay in the ATC system. Fig. 3 presents a schematic diagram of a mono-20 

aeronautical holding approach. A mono-aeronautical holding is represented by a recursive arc on the same node. An 21 

artificial node 4  is introduced to distinguish paths with aeronautical holding (𝑜, 1,3,4,6,8, 𝑑) ∈ 𝑃𝑖1
  or without 22 

aeronautical holding (𝑜, 1,3,6,8, 𝑑) ∈ 𝑃𝑖1
Given a same scenario that both flights have potential conflict on waypoint 6, 23 

flight 𝑖  may perform mono-aeronautical holding on waypoint 3  by using (𝑜, 1,3,4,6,8, 𝑑) ∈ 𝑃𝑖1
  to impose the delay 24 

program on the actual arrival time on waypoints 6 and 8.  25 

 26 
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 1 

Fig. 3. A schematic diagram of the mono-aeronautical holding 2 

2.3. The deterministic terminal traffic flow model 3 

The TTFP model consists of a set of waypoints 𝑉 and a set of air route 𝐸 as a directed graph 𝐺 = (𝑉, 𝐸). In the decision 4 

horizon, the model determines the optimal approach path 𝑝𝑖1
= (𝑜, 𝑢𝑖1

𝑠 , … , 𝑢𝑖1

𝑒 , 𝑑) from a set of alternative paths 𝑃𝑖1
 for 5 

each flight 𝑖1, 𝑖2, 𝑖3 ∈ 𝐼. The set of alternative paths 𝑃𝑖1
 is deterministic. Waypoints 𝑜 and 𝑑 are the dummy nodes in the 6 

TTFP model. The entry waypoint 𝑢𝑖1

𝑠  is subjected to the departed airport and air route network. The destination waypoint 7 

𝑢𝑖1

𝑒  is the runway. The air route is any valid pair of waypoints and (𝑢, 𝑣) ∈ 𝐸 indicate the connection of the directed graph. 8 

The set of waypoints of a path is 𝑉
𝑖1

𝑝𝑖1 . Therefore, the collection of all valid waypoint from a set of alternative paths can be 9 

represented by 𝑉
𝑖1

𝑝𝑖1 ⊂ 𝑉. Intuitively, the set of air route of a pair is 𝐸
𝑖1

𝑝𝑖1 ⊂ 𝐸. In this connection, 𝑉𝑖1
, 𝑉𝑖2

∈ 𝑉, 𝐸𝑖1
, 𝐸𝑖2

∈ 𝐸 10 

in digraph 𝐺. For more detail of the design and description of the deterministic model, readers are referred to Ng et al. 11 

(2020). 12 

 13 

A solution 𝑋  is constructed by 𝜑
𝑖1

𝑝𝑖1   and 𝑧𝑖1𝑖2𝑢 . The decision variable 𝜑
𝑖1

𝑝𝑖1   is used to determine the selection of an 14 

approach path 𝑝𝑖1
∈ 𝑃𝑖1

  for each flight 𝑖1 ∈ 𝐼 , while 𝑧𝑖1𝑖2𝑢 denotes the sequential relationship of flights 𝑖1  and 𝑖2  on 15 

waypoint 𝑢  if both flights will pass through the same waypoint. The arrival time at each node 𝑢  is presented by a 16 

continuous decision variable 𝜏
𝑖1𝑢

𝑝𝑖1 , which is associated with selected path 𝑝𝑖1
 and its corresponding transit waypoint 𝑢 ∈17 

𝑉
𝑖1

𝑝𝑖1 . The weight coefficient associated with the path selection 𝑤
𝑖1

𝑝𝑖1  indicates the preference of path selection. 𝑤
𝑖1

𝑝𝑖1  is 18 

equal to the maximum number of holdings along the path. In this regard, zero aeronautical holding would be preferable in 19 

path selection when there is a conflict of longitudinal separation. The completion time 𝐶 indicates the time at which all 20 

flights arrive at the runway in the model for TTFP. The notations and decision variables are presented in 錯誤! 書籤的自21 

我參照不正確。. The deterministic TTFP model is mixed-integer linear programming (MILP) and NP-hard problem (Ng 22 

et al., 2020).  23 

 24 

 25 
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Table 1 1 

Notations and decision variables. 2 

Notations Explanation 

𝑖1, 𝑖2, 𝑖3 Flight ID 𝑖1, 𝑖2, 𝑖3 ∈ 𝐼 

𝑢, 𝑣, 𝜋 Transit waypoint 𝑢, 𝑣, 𝜋 ∈ 𝑉 

𝑢𝑖1

𝑠  The entry waypoint for flight 𝑖1, 𝑢𝑖1

𝑠 ∈ 𝑉 

𝑢𝑖1

𝑒  The approaching runway for flight 𝑖1, 𝑢𝑖1

𝑒 ∈ 𝑉 

𝑜 Dummy variable of origin node 𝑜 ∈ 𝑉 

𝑑 Dummy variable of destination node 𝑑 ∈ 𝑉 

𝐸𝑇𝑖1
 Estimated time of arrival at the terminal airspace sector boundary 

𝑤
𝑖1

𝑝𝑖1  The weight coefficient associated with the path selection 𝑝𝑖1
∈ 𝑃𝑖1

 

𝑀 Large artificial variable 

𝑡𝑖1(𝑢,𝑣) The mean travel time from nodes 𝑢 to 𝑣 for flight 𝑖1 

𝑡̃𝑖1(𝑢,𝑣) The interval of the travel time from nodes 𝑢 to 𝑣 for flight 𝑖1, 𝑡̃𝑖1(𝑢,𝑣) = [𝑡𝑖1(𝑢,𝑣), 𝑡𝑖1(𝑢,𝑣)], 

where 𝑡𝑖1(𝑢,𝑣) = 𝑡𝑖1(𝑢,𝑣) + 𝑡̂𝑖1(𝑢,𝑣) 

𝛿𝑖1𝑖2
 Separation time on air route between flight 𝑖1 and 𝑖2 

Decision variables Explanation 

𝑋 A solution 𝑋 is constructed by 𝜑
𝑖1

𝑝𝑖1  and 𝑧𝑖1𝑖2𝑢 

𝜑
𝑖1

𝑝𝑖1  1, if flight 𝑖1 is assigned to the path 𝑝𝑖1
; 0, otherwise 

𝑧𝑖1𝑖2𝑢 1, if flight 𝑖1 is before flight 𝑖2 on node 𝑢 (not necessary immediately); 0, otherwise 

𝜏
𝑖1𝑢

𝑝𝑖1  The arrival time on node 𝑢 using path 𝑝𝑖1
 for flight 𝑖, 𝜏

𝑖1𝑢

𝑝𝑖1 ≥ 0 

𝐶 The completion time of the terminal traffic flow model  

 3 

The complete deterministic model is shown as follows: 4 

 5 

𝐹(𝑋) = min ∑ ∑ 𝑤
𝑖1

𝑝𝑖1 𝜑
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ 𝐶 
(1) 

𝑠. 𝑡.  

∑ 𝜑
𝑖1

𝑝𝑖1 = 1

𝑝𝑖1∈𝑃𝑖1

, ∀𝑖1 ∈ 𝐼 
(2) 

𝑧𝑖1𝑖2𝑢 + 𝑧𝑖2𝑖1𝑢 ≤ 1, ∀𝑖1, 𝑖2 ∈ 𝐼, 𝑖1 < 𝑖2, ∀𝑢 ∈ 𝑉𝑖2
∩ 𝑉𝑖1

 (3) 

𝜑
𝑖1

𝑝𝑖1 + 𝜑
𝑖2

𝑝𝑖2 ≤ 𝑧𝑖2𝑖1𝑢 + 𝑧𝑖1𝑖2𝑢 + 1, ∀𝑖1, 𝑖2 ∈ 𝐼, 𝑖1 ≠ 𝑖2, ∀𝑢 ∈ 𝑉𝑖2
∩ 𝑉𝑖1

, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀𝑝𝑖2
∈ 𝑃𝑖2

 (4) 

𝑧𝑖1𝑖3𝑢 ≥ 𝑧𝑖1𝑖2𝑢 + 𝑧𝑖2𝑖3𝑢 − 1, ∀𝑖1, 𝑖2, 𝑖3 ∈ 𝐼, 𝑖1 ≠ 𝑖2 ≠ 𝑖3, ∀𝑢 ∈ 𝑉𝑖1
∩ 𝑉𝑖2

∩ 𝑉𝑖3
 (5) 

𝜏
𝑖1𝑜

𝑝𝑖1 ≥ 𝐸𝑇𝑖1
𝜑

𝑖1

𝑝𝑖1 , ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

 (6) 

𝜏
𝑖1𝑢

𝑝𝑖1 ≤ 𝑀𝜑
𝑖1

𝑝𝑖1 , ∀𝑖1 ∈ 𝐼, ∀𝑢 ∈ 𝑃𝑖1
 (7) 

𝐶 ≥ 𝜏
𝑖1𝑑

𝑝𝑖1 , ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

 (8) 

𝜏
𝑖1𝑣

𝑝𝑖1 − 𝜏
𝑖1𝑢

𝑝𝑖1 ≥ 𝑡𝑖1(𝑢,𝑣) − M (1 − 𝜑
𝑖1

𝑝𝑖1) , ∀𝑖1 ∈ 𝐼, 𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (9) 

∑ 𝜏𝑖𝑢
𝑝𝑖

𝑝𝑖∈𝑃𝑖

𝑢∈𝑉
𝑖
𝑝

− ∑ 𝜏
𝑗𝑢

𝑝𝑗

𝑝𝑗∈𝑃𝑗

𝑢∈𝑉
𝑗
𝑝

≥ 𝛿𝑗𝑖 − 𝑀(1 − 𝑧𝑗𝑖𝑢), ∀𝑖, 𝑗, ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 ∖ {𝑜, 𝑑} 
(10) 

𝜑
𝑖1

𝑝𝑖1 ∈ {0,1}, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

 (11) 

𝑧𝑖1𝑖2𝑢 ∈ {0,1}, ∀𝑖1, 𝑖2 ∈ 𝐼, 𝑖1 ≠ 𝑖2, ∀𝑢 ∈ 𝑉𝑖1
∩ 𝑉𝑖2

 (12) 
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𝜏
𝑖1𝑢

𝑝𝑖1 ∈ ℝ+, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀𝑜, 𝑢, 𝑑 ∈ 𝑃𝑖1
 (13) 

 1 

The model is designed as a minimisation problem of weighted path assignment and completion time with an Objective 2 

function (1). Constraint set (2) enforces that each flight can only select one path from a set of alternate paths. Constraint 3 

set (3) computes the sequence at node 𝑢  using the binary variable 𝑧𝑖1𝑖2𝑢 .  Constraint set (4) confirms the sequential 4 

relationship of flights 𝑖1  and 𝑖2  at node 𝑢 , where node 𝑢  must be a complementary element of 𝑉𝑖1
  and 𝑉𝑖2

 , while 5 

Constraint set (5) explains triangular inequality for flights 𝑖1, 𝑖2 and 𝑖3. The arrival time at the entry waypoint is equal to 6 

the time 𝐸𝑇𝐴𝑖1
 when flight 𝑖1 first appears in the TMA by Constraint set (6). 𝜏

𝑖1𝑢

𝑝𝑖1  is a non-zero number when path 𝑝𝑖1
 7 

is selected by Constraint set (7) using the decision variable 𝜑
𝑖1

𝑝𝑖1 . Constraint set (8) computes the completion time, where 8 

𝐶 indicates the completion time of the schedule. Constraint set (9) ensures the respect of travelling time for flight 𝑖1 from 9 

waypoints 𝑢 to 𝑣. Constraint set (10) is the air route longitudinal separation and conflict-free requirements. Constraints 10 

(11) and (12) indicate that 𝜑
𝑖1

𝑝𝑖1  and 𝑧𝑖1𝑖2𝑢 are binary variables, while 𝜏
𝑖1𝑢

𝑝𝑖1  denotes a positive real number by Constraint 11 

set (13).  12 

 13 

 14 

3. The decomposition framework of the robust terminal traffic flow model 15 

In this section, a robust TTFP considers the transit time uncertainty raised by the slight perturbation of cruise speed. The 16 

transit time in an air route within a TMA usually falls into an interval case as the travel time of all flights is subject to the 17 

variability of actual cruise speed and assigned speed, dynamic weather situation and air route traffic. To reduce the 18 

vulnerability to scheduling disruption, a robust criterion is introduced to increase the resilience level of traffic flow 19 

scheduling. The robust criterion is a conservative approach in hedging uncertainty and protecting the uncertainty against 20 

the worst-case scenarios.  21 

 22 

3.1. The cardinality of the uncertainty set 23 

The robust TTFP model attempts to undertake the consideration of travel time uncertainty between waypoints while, at the 24 

same time, minimising the completion time of the schedule. In this model, the transit time 𝑡̃𝑖1(𝑢,𝑣) falls into an interval 25 

𝑡̃𝑖1(𝑢,𝑣) = {𝑡𝑖1(𝑢,𝑣), 𝑡𝑖1(𝑢,𝑣)}  to represent the discrepancy of estimated and actual transit times on approach track using 26 

Equation (14). 𝑡𝑖1(𝑢,𝑣) is denoted as the lower bound of transit time, while 𝑡𝑖1(𝑢,𝑣) indicates the upper bound of transit time. 27 

𝑡̂𝑖1(𝑢,𝑣)  indicates the deviation between 𝑡𝑖1(𝑢,𝑣)  and 𝑡𝑖1(𝑢,𝑣) . In this connection, 𝑡𝑖1(𝑢,𝑣) = 𝑡𝑖1(𝑢,𝑣) + 𝑡̂𝑖1(𝑢,𝑣) . The lower 28 

bound of the transit time between waypoints equals to the actual air route distance divided by the economics speed of an 29 

aircraft, which is presented in Section 5.1. It is unlikely that the estimated transit time is equal to the actual travel time in 30 

operations, as an uncertain travel time between waypoints is subject to minimal perturbation of constant flight speed, 31 

weather conditions, wind resistance and the level of scheduling resilience. The variance of transit time will be discussed in 32 

more detail in Section 5.1. The robust TTFP model is presented in a two-stage optimisation framework. 33 

 34 

Φ = {𝑡̃𝑖1(𝑢,𝑣), ∀𝑖1 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
|𝑡̃𝑖1(𝑢,𝑣) = 𝑡𝑖1(𝑢,𝑣) + 𝑡̂𝑖1(𝑢,𝑣)𝜃𝑖1(𝑢,𝑣)|𝜃𝑖1(𝑢,𝑣) ∈ {0,1}} (14) 
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3.2. The robust terminal traffic flow model under travel time uncertainty 1 

As one of the main contributions of this research, we next present the decomposition framework for robust TTFP. The 2 

robust TTFP comprises the first-stage optimisation problem to handle the path assignment and approaching sequence using 3 

the alternative path approach and the second-stage optimisation problem to compute the travel time and completion time 4 

of a schedule. When an uncertainty set of transit time is considered, the model is convex but non-linear, which cannot be 5 

directly solved with B&B or B&C solvers. Therefore, a decomposition framework is suggested with the incorporation of 6 

optimality cutting plate method in order to solve the model using MILP solver. The objective function (1) of the robust 7 

TTFP model under transit time uncertainty is revised in section 3.2.1. The completion time of the schedule under worst-8 

case scenario is defined in section 3.2.2. In this section, we emphasise the approach deriving the dual form of the second-9 

stage optimisation problem and generating corresponding cuts to the first-stage optimisation problem. 10 

 11 

3.2.1. The first-stage optimisation problem 12 

In a general decomposition framework, the recursive approach is to produce a solution from the first-stage optimisation 13 

problem and design appropriate cuts by solving the second-stage optimisation problem. The first-stage optimisation 14 

problem produces a feasible solution by considering the binary and integer variables to reduce solution time. In the 15 

deterministic TTFP model, the decision variables 𝜑
𝑖1

𝑝𝑖1  and 𝑧𝑖1𝑖2𝑢 construct the solution. The formulation of the first-stage 16 

optimisation problem is shown as follows: 17 

 18 

𝑓(𝑋) = min ∑ ∑ 𝑤
𝑖1

𝑝𝑖1 𝜑
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ 𝑑(𝝋, 𝒛) 

,where 𝑑(𝝋, 𝒛) is the completion time of the schedule under worst-case scenario. 

(15) 

𝑠. 𝑡.  

(2) – (5) and (11) – (12)  

 19 

3.2.2. The second-stage optimisation problem 20 

Dividing the original problem into two outer and inner optimisation problem, the robust counterpart via duality becomes 21 

tractable (Bertsimas et al., 2013; Mulvey et al., 1995; Siddiqui et al., 2011). The solution obtained from the first-stage 22 

optimisation problem will feed into the second-stage optimisation problem. The optimal solution of the second-stage 23 

optimisation problem is determined by the parameterisation of the 𝝋, 𝒛. Given a fixed value of the integer value 𝜑̂ and ẑ 24 

from the master problem, a primal second-stage optimisation problem is obtained. The primal second-stage optimisation 25 

problem is an independent model with an objective function of the minimisation of the completion time of a schedule over 26 

the uncertain set Φ . By introducing the uncertain parameter 𝑡̃𝑖1𝑢𝑣  as stated in Section 3.1, the primal second-stage 27 

optimisation problem seeks to maximise the uncertain travel time 𝑡̃𝑖1𝑢𝑣 between waypoints and minimise the completion 28 

time of a schedule by fixing 𝝋, 𝒛. 29 

 30 

𝑑(𝝋, 𝒛) = min
𝜏

max
𝑡∈Φ

𝐶 (16) 

𝑠. 𝑡.  

(6) – (8), (10) and (13)  

𝜏
𝑖1𝑣

𝑝𝑖1 − 𝜏
𝑖1𝑢

𝑝𝑖1 ≥ 𝑡̃𝑖1(𝑢,𝑣) − M (1 − 𝜑
𝑖1

𝑝𝑖1) , ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣, ∀𝑡 ∈ Φ (17) 
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 1 

The primal second-stage optimisation problem is intractable as the model consists of min-max operators in the objective 2 

function. By utilising the dual information, solving the robust TTFP is computationally achievable under a few assumptions 3 

of robust optimisation. First, generating the constraints from the second-stage optimisation problem and developing a 4 

cutting method can further strengthen the convergence of the first-stage optimisation problem. Second, the dual subproblem 5 

is a normalisation strategy to linearly transform the model from a min-max problem to a max-max problem. The dual form 6 

of the second-stage optimisation problem can be obtained by introducing the dual variables 𝑎
𝑖1

𝑝𝑖1 , 𝑏
𝑖1

𝑝𝑖1 , 𝑞
𝑖1𝑢

𝑝𝑖1 , 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1  and 7 

ℎ𝑖1𝑖2𝑢 to the Constraints (6), (7), (8), (10) and (17). The dual form of the second-stage optimisation problem is yielded 8 

from the primal form of the second-stage optimisation problem using dual theory. Particularly, the dual variable 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1  is 9 

a binary variable, with the special dual transformation taking place when the matrix of 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1  is a unimodular matrix, 10 

which is a special case in the network flow model (Ford Jr & Fulkerson, 2015; Montemanni & Gambardella, 2005). The 11 

matrix is a unimodular matrix when the determinant of every square of the submatrices satisfies the condition of −1, 0 or 12 

1. The complete formulation of the dual second-stage optimisation problem by the Equations (18) – (28) is presented as 13 

follows: 14 

 15 

𝑑(𝝋, 𝒛) = max
𝑎,𝑏,𝑞,𝑔,ℎ

max
𝜃

∑ ∑ (𝐸𝑇𝑖1

𝐻𝐶𝐼𝜑̂
𝑖1

𝑝𝑖1) 𝑏
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂
𝑖1

𝑝𝑖1) 𝑞
𝑖1𝑢

𝑝𝑖1

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

 

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) + 𝑡̂𝑖1(𝑢,𝑣)𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 − 𝑀 (1 − 𝜑̂
𝑖1

𝑝𝑖1)) 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

 

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧̂𝑖2𝑖1𝑢))ℎ𝑖2𝑖1𝑢

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖1,𝑖2≠𝑖1∈𝐼𝑖2∈𝐼

 

(18) 

𝑠. 𝑡.  

∑ ∑ 𝑎
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

≤ 1 
(19) 

𝑏
𝑖1

𝑝𝑖1 + 𝑞
𝑖1𝑜

𝑝𝑖1 − 𝑔
𝑖1(𝑜,𝑢𝑖1

𝑠 )

𝑝𝑖1 − ∑ ℎ𝑖1𝑖2𝑜

𝑖2,𝑖1≠𝑖2∈𝐼

+ ∑ ℎ𝑖2𝑖1𝑜

𝑖1,𝑖1≠𝑖2∈𝐼

≤ 0, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(o, 𝑢𝑖1

𝑠 ) ∈ 𝐸𝑖1
 

(20) 

−𝑎
𝑖1

𝑝𝑖1 + 𝑞
𝑖1𝑑

𝑝𝑖1 + 𝑔
𝑖1(𝑢𝑖1

𝑒 ,𝑑)

𝑝𝑖1 − ∑ ℎ𝑖1𝑖2𝑑

𝑖2,𝑖1≠𝑖2∈𝐼

+ ∑ ℎ𝑖2𝑖1𝑑

𝑖2,𝑖1≠𝑖2∈𝐼

≤ 0, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢𝑖1

𝑒 , 𝑑) ∈ 𝐸𝑖1
 

(21) 

𝑞
𝑖1𝑣

𝑝𝑖1 + 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1 − 𝑔
𝑖1(𝑣,𝜋)

𝑝𝑖1 − ∑ ℎ𝑖1𝑖2𝑣

𝑖2,𝑖1≠𝑖2∈𝐼

𝑣∈𝑉𝑖2∩𝑉𝑖1∖{𝑜,𝑑}

+ ∑ ℎ𝑖2𝑖1𝑣

𝑖2,𝑖1≠𝑖1∈𝐼

𝑣∈𝑉𝑖1∩𝑉𝑖2\{𝑜,𝑑}

≤ 0, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, 

∀(𝑢, 𝑣), (𝑣, 𝜋) ∈ 𝐸𝑖1
, 𝑢 < 𝑣, 𝑣 < 𝜋 ∖ {𝑜, 𝑑} 

(22) 

𝑎
𝑖1

𝑝𝑖1 ∈ 𝑅+, ∀𝑖1 ∈ 𝐼 (23) 

𝑏
𝑖1

𝑝𝑖1 ∈ 𝑅+, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

 (24) 

𝑞
𝑖1𝑢

𝑝𝑖1 ∈ 𝑅−, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀𝑢 ∈ 𝑉𝑖1
 (25) 

𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1 ∈ {0,1}, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (26) 

ℎ𝑖2𝑖1𝑢 ∈ 𝑅+, ∀𝑖1, 𝑖2 ∈ 𝐼, 𝑖1 ≠ 𝑖2, ∀𝑢 ∈ 𝑉𝑖1
∩ 𝑉𝑖2

∖ {𝑜, 𝑑} (27) 
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𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 ∈ {0,1}, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (28) 

 1 

The robust optimisation computes the robust solution by realising the uncertain parameters as either an upper bound or 2 

lower bound value in worst case optimisation and optimising the objective function. The dual variable 𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1  is associated 3 

with the realisation of an interval case of the travel time between waypoints, while the completion time of a schedule in 4 

the dual-problem is a joint decision of the dual variables 𝑎
𝑖1

𝑝𝑖1 , 𝑏
𝑖1

𝑝𝑖1 , 𝑞
𝑖1𝑢

𝑝𝑖1 , 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1  and ℎ𝑖2𝑖1𝑢. The objective function in 5 

the dual form is bilinear with the term 𝑡̂𝑖1(𝑢,𝑣)𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1 . However, 𝜃 and 𝑔 are disjoint. In this connection, there is 6 

an optimal solution at the extreme points of the disjoint polyhedral (Horst & Tuy, 2013; Montemanni & Gambardella, 7 

2005). Denoting 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1  and 𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1  as binary variables and the nature of the disjoint polyhedral, Constraints (29) – (32) 8 

convert the dual form of the second-stage optimisation problem into a linear form as follow:  9 

 10 

𝑑(𝝋, 𝒛) = max
𝑎,𝑏,𝑞,𝑔,ℎ,𝜃

∑ ∑ (𝐸𝑇𝑖1
𝜑̂

𝑖1

𝑝𝑖1) 𝑏
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂
𝑖1

𝑝𝑖1)𝑞
𝑖1𝑢

𝑝𝑖1

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑̂
𝑖1

𝑝𝑖1 )) 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝑤
𝑖1(𝑢,𝑣)

𝑝𝑖1

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧̂𝑖2𝑖1𝑢))ℎ𝑖2𝑖1𝑢

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖1,𝑖1≠𝑖2∈𝐼𝑖2∈𝐼

 

(29) 

𝑠. 𝑡.  

𝑤
𝑖1(𝑢,𝑣)

𝑝𝑖1 ≤ 𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 , ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (30) 

𝑤
𝑖1(𝑢,𝑣)

𝑝𝑖1 ≤ 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1 , ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (31) 

𝑤
𝑖1(𝑢,𝑣)

𝑝𝑖1 ≥ 0, ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (32) 

(19) – (28)  

 11 

4. Illustrations of the decomposition methods 12 

Decomposition framework for solving certain large-scale combinatorial optimisation problem by partitioning the decision 13 

variables into complicating variables 𝑦 and non-complicating variables 𝑥 (Benders, 1962). Benders (1962) explained that 14 

solving large-scale combinatorial optimisation problems is time-consuming. The general idea of benders decomposition is 15 

to fix the non-complicating variables 𝑥 (usually binary and integer variables) and solve the model with the complicating 16 

variables 𝑦 (usually continuous variables) (Bagger et al., 2018).  17 

 18 

The decomposition framework for robust TTFP is presented in Section 3.2. However, due to a weak connection of the 19 

feasible region between the first-stage and second-stage optimisation problem, the iterative process of the framework may 20 

enter into a deadlock. To be more specific, a valid cut must be generated at each iteration to reduce the search region and 21 

continue the progress towards an optimal solution. Therefore, one well-known cutting scheme and one proposed 22 

enhancement strategy are developed in Sections 4.1 and 4.2, respectively. The combinatorial cuts method is able to tackle 23 
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the situation when the solution from the subproblem is infeasible. However, Saharidis and Ierapetritou (2010) argues that 1 

the convergence of the decomposition algorithm is slow as combinatorial cuts method is regarded as no good cuts. In order 2 

to improve the convergence, additional restrictions and additional constraints on the first-stage optimisation problem could 3 

lead to a fast convergence process. Therefore, to avoid the generation of the Minimum Infeasible Subsystems (MISs) cut, 4 

we propose an enhancement scheme for the master problem. 5 

 6 

4.1. Combinatorial cuts method 7 

In the general decomposition framework, the infeasibility of second-stage optimisation problem implies that the original 8 

problem is unbounded or the feasible region of the primal problem is empty (Cao et al., 2010; de Sá et al., 2013; Li et al., 9 

2018). Nonetheless, the robust model does not benefit from the general Benders cut, as the solution produced by the first-10 

stage optimisation problem is not necessarily feasible in the second-stage optimisation problem. Given the special structure 11 

of the robust model for TTFP, the general Benders cut in the TTFP may cause the deadlock situation when no valid cuts 12 

was obtained by solving the subproblem in the previous iteration. Hooker (2011) and Fischetti et al. (2010) introduced a 13 

cutting plane scheme by MISs to tackle infeasibility in the subproblem. In this section, combinatorial Bender’s cuts are 14 

presented. This algorithm is denoted as BD algorithm with the CBC method. 15 

 16 

4.1.1. Benders optimality cut 17 

When the second-stage optimisation problem is solved, a Benders optimality cut is generated and will be added to the 18 

formulation of the first-stage optimisation problem. By solving the dual form of the subproblem, the optimal dual variables 19 

can be retrieved at the 𝜁 th iteration by Equation (33). The completion time of a schedule 𝐶  must satisfy the dual 20 

information at the 𝜁th iteration. Using the Benders dual method, the optimality cut at the 𝜁th iteration can be obtained by 21 

Equation (34),while Equation (35) illustrates the feasibility cut at the 𝜁th iteration when subproblem is unbounded. 22 

 23 

𝐶 = ∑ ∑ (𝐸𝑇𝑖1
𝜑̂

𝑖1

𝑝𝑖1) 𝑏
𝑖1

𝑝𝑖1𝜁

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑̂
𝑖1

𝑝𝑖1) 𝑞
𝑖1𝑢

𝑝𝑖1𝜁

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+  ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑̂
𝑖1

𝑝𝑖1 )) 𝑔
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

 

+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝑤
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧̂𝑖2𝑖1𝑢)) ℎ𝑖2𝑖1𝑢

𝜁

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖2,𝑖1≠𝑖2∈𝐼𝑖1∈𝐼

 

(33) 

𝐶 ≥ ∑ ∑ (𝐸𝑇𝑖1
𝜑

𝑖1

𝑝𝑖1) 𝑏̂
𝑖1

𝑝𝑖1𝜁

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑
𝑖1

𝑝𝑖1 ) 𝑞̂
𝑖1𝑢

𝑝𝑖1𝜁

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑
𝑖1

𝑝𝑖1 )) 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

 

+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧𝑖2𝑖1𝑢)) ℎ̂𝑖2𝑖1𝑢

𝜁

𝑢∈𝑉𝑖1∩𝑉𝑖12∖{𝑜,𝑑}𝑖2,𝑖1≠𝑖2∈𝐼𝑖1∈𝐼

 

(34) 

0 ≥ ∑ ∑ (𝐸𝑇𝑖1
𝜑

𝑖1

𝑝𝑖1) 𝑏̂
𝑖1

𝑝𝑖1𝜁

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑
𝑖1

𝑝𝑖1) 𝑞̂
𝑖1𝑢

𝑝𝑖1𝜁

𝑢∈𝑉𝑖1𝑝𝑖𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑
𝑖1

𝑝𝑖1 )) 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

 

(35) 
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+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧𝑖2𝑖1𝑢)) ℎ̂𝑖2𝑖1𝑢

𝜁

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖2,𝑖2≠𝑖1∈𝐼𝑖1∈𝐼

 

 1 

 2 

4.1.2. Minimal infeasible subsystems  3 

The rationale for developing a cut using MISs from the subproblem is to avoid a deadlock when the subproblem is infeasible 4 

during the convergence process. If the linear system is infeasible, the cut generated by the MISs enforces the subsystem to 5 

change at least one binary variable(s) 𝝋 and 𝒛 breaking the infeasibility. The MISs cut will further restrict the solution 6 

space of the master problem using Equation (36). 7 

 8 

∑ ∑ 𝜑
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1|𝜑
𝑖1

𝑝𝑖1
𝜉

=0
𝑖1∈𝐼

+ ∑ ∑ ∑ 𝑧𝑖2𝑖1𝑢

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}|𝑧
𝑖2𝑖1𝑢
𝜉

=0𝑖2,𝑖1≠𝑖2∈𝐼𝑖1∈𝐼

+ ∑ ∑ (1 − 𝜑
𝑖1

𝑝𝑖1)

𝑝𝑖1∈𝑃𝑖1|𝜑
𝑖1

𝑝𝑖1
𝜉

=1
𝑖1∈𝐼

+ ∑ ∑ ∑ (1 − 𝑧𝑖2𝑖1𝑢)

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}|𝑧
𝑖2𝑖1𝑢
𝜉

=1𝑖2,𝑖1≠𝑖2∈𝐼𝑖1∈𝐼

≥ 1 

(36) 

 9 

4.1.3. Combinatorial Benders cuts method 10 

The BD with CBC method is derived from the Benders dual and MISs methods (Hooker, 2011). In this connection, The 11 

Benders cuts by Equations (38) and (39) and the MISs cut 𝜉 ∈ Π from the infeasible region by Equation (40) can be 12 

enumerated. The complete first-stage optimisation problem is shown as follows. Table 2 presents the pseudo code of the 13 

CBC algorithm. 14 

 15 

𝑓(𝑋) = min ∑ ∑ 𝑤
𝑖1

𝑝𝑖1 𝜑
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ 𝐶 
(37) 

𝑠. 𝑡.  

(2) – (5) and (11), (12)  

𝐶 ≥ ∑ ∑ (𝐸𝑇𝑖1
𝜑

𝑖1

𝑝𝑖1) 𝑏̂
𝑖1

𝑝𝑖1𝜁

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑
𝑖1

𝑝𝑖1 ) 𝑞̂
𝑖1𝑢

𝑝𝑖1𝜁

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑
𝑖1

𝑝𝑖1 )) 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1
𝑝𝑖1

∈𝑃𝑖1
𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧𝑖2𝑖1𝑢)) ℎ̂𝑖2𝑖1𝑢

𝜁

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖2,𝑖1≠𝑖1∈𝐼𝑖1∈𝐼

, ∀𝜁 ∈ Λ𝜌 

(38) 
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0 ≥ ∑ ∑ (𝐸𝑖1
𝜑

𝑖1

𝑝𝑖1) 𝑏̂
𝑖1

𝑝𝑖1𝜁

𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑀𝜑
𝑖1

𝑝𝑖1) 𝑞̂
𝑖1𝑢

𝑝𝑖1𝜁

𝑢∈𝑉𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡𝑖1(𝑢,𝑣) − 𝑀 (1 − 𝜑
𝑖1

𝑝𝑖1)) 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑡̂𝑖1(𝑢,𝑣))𝜃
𝑖1(𝑢,𝑣)

𝑝𝑖1 𝑔̂
𝑖1(𝑢,𝑣)

𝑝𝑖1𝜁

(𝑢,𝑣)∈𝐸𝑖1𝑝𝑖1∈𝑃𝑖1𝑖1∈𝐼

+ ∑ ∑ ∑ (𝑆𝑖2𝑖1
− 𝑀(1 − 𝑧𝑖2𝑖1𝑢)) ℎ̂𝑖2𝑖1𝑢

𝜁

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}𝑖2,𝑖1≠𝑖1∈𝐼𝑖1∈𝐼

, ∀𝜁 ∈ Λ𝜚 

(39) 

∑ ∑ 𝜑
𝑖1

𝑝𝑖1

𝑝𝑖1∈𝑃𝑖1|𝜑
𝑖1

𝑝𝑖1
𝜉

=0
𝑖1∈𝐼

+ ∑ ∑ ∑ 𝑧𝑖2𝑖1𝑢

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}|𝑧
𝑖2𝑖1𝑢
𝜉

=0𝑖2,𝑖1≠𝑖1∈𝐼𝑖1∈𝐼

+ ∑ ∑ (1 − 𝜑
𝑖1

𝑝𝑖1)

𝑝𝑖1∈𝑃𝑖1|𝜑
𝑖1

𝑝𝑖1
𝜉

=1
𝑖1∈𝐼

+ ∑ ∑ ∑ (1 − 𝑧𝑖2𝑖1𝑢)

𝑢∈𝑉𝑖1∩𝑉𝑖2∖{𝑜,𝑑}|𝑧
𝑖2𝑖1𝑢
𝜉

=1𝑖2,𝑖1≠𝑖2∈𝐼𝑖1∈𝐼

≥ 1, ∀𝜉 ∈ Π 

(40) 

 1 

 2 

Table 2 3 

The pseudo code of combinatorial Benders cuts method 4 

1 Set 𝑈𝐵 = ∞, 𝐿𝐵 = −∞, 𝑖𝑡𝑒𝑟 = 0, 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  

2 While 𝐺𝑎𝑝 ≥ 𝐸𝑥𝑖𝑡𝐺𝑎𝑝 and 𝐶𝑃𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝐶𝑃𝑈𝑙𝑖𝑚𝑖𝑡  do  

3      Solve first-stage optimisation problem (2) – (5), (11) – (12), (15)  

4      𝐿𝐵 ← ψ𝑀𝑃(𝜑, 𝑧)  

5      Solve linear form of dual second-stage optimisation problem (29) – (32), (31) – (40)  

6      Add optimality cut (34) to first-stage optimisation problem, if second-stage optimisation problem 

is feasible 

 

7      Add feasibility cut (35) to first-stage optimisation problem, if second-stage optimisation problem 

is unbounded 

 

8      Add MISs cut (36) to first-stage optimisation problem, if second-stage optimisation problem is 

infeasible 

 

9      Update 𝑈𝐵 ← 𝜓𝑠𝑝(𝑎, 𝑏, 𝑞, 𝑔, ℎ, 𝜃), if necessary  

10      𝐺𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵) 𝑈𝐵⁄   

11      𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1  

12 End  

 5 

4.2. Enhanced decomposition algorithm 6 

This section presents the enhancement on the first-stage optimisation problem, which is referred as the Enhanced Benders 7 

Decomposition (EBD). From the previous section, the infeasibility of the subproblem exists when the first-stage 8 

optimisation problem does not the convergence process of the two-stage optimisation framework to be a feasible region. 9 

Instead of considering the MISs to tighten the searching from the feasible region, a restriction scheme on the feasibility of 10 

𝝋 and 𝒛 in both the two-stage optimisation framework is developed. 11 

 12 

4.2.1. Modification on the first-stage optimisation problem 13 

The dual function of the second-stage optimisation problem is to compute the completion time of a schedule and to 14 

maximise the uncertain travel time. Comparatively, the extreme point scenario from the first-stage optimisation problem 15 

by considering the lower bound scenario of travel time 𝑡𝑖1𝑢𝑣
𝐿𝐵  using Equation (41) ensures feasibility in the second-stage 16 

optimisation problem. This inequality states that the transit time from waypoints 𝑢 to 𝑣 must be larger or equal to the 17 
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lower bound transit time in the deterministic case. The amended formulation of the first-stage optimisation problem is 1 

shown as follows: 2 

 3 

(15)  

     𝑠. 𝑡.  

𝜏
𝑖1𝑣

𝑝𝑖1 − 𝜏
𝑖1𝑢

𝑝𝑖1 ≥ 𝑡𝑖1(𝑢,𝑣)
𝐿𝐵 − M(1 − 𝜑

𝑖1

𝑝𝑖1), ∀𝑖1 ∈ 𝐼, ∀𝑝𝑖1
∈ 𝑃𝑖1

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 (41) 

(6) – (8) and (10)  

 4 

The enhancement of the first-stage optimisation problem moderates the computational effort in the second-stage 5 

optimisation problem. Only optimality cuts is generated from each iteration. The pseudo code of enhanced Benders 6 

decomposition is presented in Table 3. 7 

 8 

Table 3 9 

The pseudo code of enhanced Benders decomposition 10 

1 Set 𝑈𝐵 = ∞, 𝐿𝐵 = −∞, 𝑖𝑡𝑒𝑟 = 0, 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  

2 While 𝐺𝑎𝑝 ≥ 𝐸𝑥𝑖𝑡𝐺𝑎𝑝 and 𝐶𝑃𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝐶𝑃𝑈𝑙𝑖𝑚𝑖𝑡  do  

3      Solve first-stage optimisation problem (2) – (8), (10) – (12), (15), (41)  

4      𝐿𝐵 ← ψ𝑀𝑃(𝜑, 𝑧)  

5      Solve linear form of dual second-stage optimisation problem (29) – (32), (31) – (40)  

6      Add optimality cut (34) to first-stage optimisation problem, if second-stage optimisation problem 

is feasible 

 

7      Add feasibility cut (35) to first-stage optimisation problem, if second-stage optimisation problem 

is unbounded 

 

8      Update 𝑈𝐵 ← 𝜓𝑠𝑝(𝑎, 𝑏, 𝑞, 𝑔, ℎ, 𝜃), if necessary  

9      𝐺𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵) 𝑈𝐵⁄   

10      𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1  

11 End  

 11 

 12 

5. Results of experiments 13 

5.1. Description of the test instances 14 

In this paper, one set of instances is considered for the robust TTFP. We aimed at investigating the algorithm performance 15 

regarding the computational efficiency with the consideration of variables manipulation. Therefore, a set of random 16 

instances generated by discrete distribution is evaluated in the numerical experiments. The set of instances follows the 17 

distribution of real data in April 2018 at The Hong Kong International Airport (HKIA). The data was obtained by a licensed 18 

Application Programming Interface (API) from FlightGlobal. A total of 14,496 arrival records were extracted after clearing 19 

the missing values.  20 

 21 

In the robust model, we believed that the expected and the actual transit time on approach route are deviated, as the minimal 22 

perturbation of the flight speed is subject to the weather performance, wind direction and speed, turbulence and the degree 23 

of the system-level fault resilience of the ATC. In practice, the actual speed is not purely constant, even if a flight is assigned 24 

a fixed speed on the approach route. Furthermore, in robust optimisation, the robust solution is totally protected by the 25 

realisation of the uncertainty set. In this connection, the robust solution guarantees feasibility in actual operation if we are 26 

confident that the uncertain parameters are fluctuated within the interval. The following is the general setting of the robust 27 
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model for TTFP. Equations (42) and (43) explain that the interval of the transit time is determined by the speed variations 1 

𝜔𝑖1
  and 𝜔𝑖1

 , given a fixed transit distance between nodes 𝜅(𝑢,𝑣) . Table 4 presents the normal speed profile (knots) 2 

regarding the different sizes of the flights. Table 5 introduces the longitudinal separation (in nautical miles) between 3 

adjacent approaching flights.  4 

 5 

𝑡𝑖1(𝑢,𝑣) =
𝜅(𝑢,𝑣)

𝜔𝑖1

, ∀𝑖1 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 

(42) 

𝑡̂𝑖1(𝑢,𝑣) =
𝜅(𝑢,𝑣)

𝜔𝑖1

−
𝜅(𝑢,𝑣)

𝜔𝑖1

, ∀𝑖1 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖1
, 𝑢 < 𝑣 

(43) 

 6 

Table 4 7 

Normal speed profile regarding the flight classes 8 

𝑘𝑛𝑜𝑡𝑠a 𝐿𝑆𝐹 𝑀𝑆𝐹 𝑆𝑆𝐹 

𝜔𝑖 250 250 275 

𝜔𝑖 300 270 295 

∆𝜐𝑖 50 20 20 
a: 𝜐𝑖  𝑘𝑛𝑜𝑡𝑠 = 3600 𝜐𝑖  𝑁𝑀 𝑠⁄ , 𝑆𝑆𝐹: Small size flight; 𝑀𝑆𝐹: Medium size flight; 𝐿𝑆𝐹: Large size flight 9 
 10 

Table 5 11 

Longitudinal separation distance (in nautical miles) 12 

𝑁𝑀 𝐿𝑆𝐹 𝑀𝑆𝐹 𝑆𝑆𝐹 

𝐿𝑆𝐹 4 5 7 

𝑀𝑆𝐹 3 3 5 

𝑆𝑆𝐹 3 3 3 

𝑆𝑆𝐹: small size flight; 𝑀𝑆𝐹: medium size flight; 𝐿𝑆𝐹: large size flight 13 

 14 

Fig. 4 presents the STARs and geographical positions of the holding circles. As the length of the holding pattern is sufficient 15 

to tackle the conflict situation of the air route setting at the HKIA, a mono-aeronautical holding pattern is imposed in the 16 

setting of the model (Artiouchine et al., 2008). In accordance with the assumption and the instance of the environmental 17 

setting, 10 entry waypoints and 26 alternative paths are constructed in our model as shown in Fig. 5. 18 
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 1 

Fig. 4. The air route network in the terminal manoeuvring area 2 
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  1 

 2 

Fig. 5. Digraph representation of the arrival paths with mono-aeronautical holding  3 

 4 

The design of the random instances generated by discrete distribution is presented. The characteristics of the testing 5 

instances attempt to imitate the patterns found in the real-world scenarios of HKIA in April 2018. Fig. 6 summarises the 6 

average arrival movement at hourly intervals, as the arrival patterns usually depend on the air traffic demand and the 7 

preferences of passengers. Normally, heavy traffic occurs during the operating time from 9:00 hours to 22:00 hours, while 8 

the normal and light traffic is also indicated in Fig. 6. Table 6 provides the statistical record of the arrival movement using 9 

average, standard deviation and minimum and maximum values of the air traffic movement.  10 

 11 

Fig. 6. Average value of the number of flights’ approaching traffic movements 12 
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 1 

Table 6 2 

Statistical summary of the approaching movements in Hong Kong (April 2018) 3 

Traffic 

class 

Approaching movement per hour 

𝜇 𝜎 𝐿𝐵 𝑈𝐵 

Heavy 27.9 1.48 24.90 29.87 

Normal 14.9 2.10 12.20 17.97 

Light 4.07 3.35 0.40 8.04 

 4 

Heavy traffic problem is usually caused by the overcrowded traffic on the same approach route, constraints on the 5 

longitudinal separation and the vortex generated by the aircraft engine. Since our model concerns the air traffic in HKIA 6 

scenarios, the generated instances follow the discrete patterns from real-world instances. The discrete distribution of the 7 

STARs and aircraft sizes from historical data are analysed as a reference to generate the test instances for numerical 8 

experiments. The corresponding distributions are shown in Table 7 and Table 8. For each setting, three instances were 9 

generated following the discrete probabilistic distributions. The number of arrival flights for light, normal and heavy traffic 10 

were 𝐼 = 2, 4, 6, 8, 𝐼 = 12, 14, 16, 18 and 𝐼 = 24, 26, 28, 30, respectively. A total of 36 test instances were generated.  11 

 12 

Table 7 13 

The distribution of standard terminal arrival routes from historical data (April 2018) 14 

STAR 1 2 3 4 5 6 7 8 9 10 

Heavy 

traffic 

Frequency 817 862 3831 559 495 151 503 381 1532 2578 

Ratio 6.98% 7.36% 32.72% 4.77% 4.23% 1.29% 4.30% 3.25% 13.08% 22.02% 

Normal 

traffic 

Frequency 37 66 632 223 147 41 55 41 385 539 

Ratio 1.71% 3.05% 29.18% 10.30% 6.89% 1.89% 2.54% 1.89% 17.77% 24.88% 

Light 

traffic 

Frequency 0 3 176 29 33 45 28 20 82 205 

Ratio 0.00% 0.48% 28.34% 4.67% 5.31% 7.25% 4.51% 3.22% 13.20% 33.10% 

STARs: Standard terminal arrival routes 15 

 16 

Table 8 17 

The distribution of aircraft sizes from historical data (April 2018) 18 

Flight size SSF MSF LSF 

Heavy 

traffic 

Frequency 4245 3202 2552 

Ratio 42.45% 32.02% 25.52% 

Normal 

traffic 

Frequency 666 696 804 

Ratio 30.75% 32.13% 37.12% 

Light 

traffic 

Frequency 178 175 268 

Ratio 28.66% 28.18% 43.16% 

𝑆𝑆𝐹: small size flight; 𝑀𝑆𝐹: medium size flight; 𝐿𝑆𝐹: large size flight 19 

 20 
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5.2. Computational analysis 1 

The computation was performed with the configuration of Intel Core I7 3.60GHz CPU and 16 GB RAM under the Windows 2 

7 Enterprise 64-bit operating environment. The proposed decomposition algorithms were coded using C# language with 3 

Microsoft Visual Studio 2017 and IBM ILOG CPLEX optimisation Studio 12.8.0. The value of big 𝑀 is 107. 4 

 5 

5.2.1. Measurement 6 

In order to evaluate the algorithm’s performance, the optimality gap of the decomposition framework is evaluated in the 7 

computational analysis. First, each instance represents a traffic scenario of one hour at the HKIA. Therefore, the 8 

computational limit 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  was enforced by 3,600 seconds. The stopping criteria of the two-stage optimisation 9 

framework was determined by the gap between 𝑈𝐵 and 𝐿𝐵 or the computational time over 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡, which is 3600 10 

seconds. In this connection, the convergence of optimal condition 𝐿𝐵 ≥ 𝑈𝐵  within the 𝐶𝑃𝑈_𝑙𝑖𝑚𝑖𝑡  is one of the 11 

measurements in the computational analysis. The optimality gap is represented by Equation (44) to indicate the solution 12 

quality at the end of the computations. zero value represents an optimal condition, while positive 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 % 13 

illustrates an approximated or close-to-optimal solution. Second, the convergence rate was analysed.  14 

 15 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 % (𝑂𝐺%) =  
𝑈𝐵 − 𝐿𝐵

𝑈𝐵
 

(44) 

 16 

5.3. Computational results 17 

With the aim of evaluating the performance of the two proposed algorithms, the computational results present the general 18 

findings in accordance with the statistical randomly generated instances. Three traffic scenarios were evaluated with 19 

different numbers of flights considered in the system. The computational results by the BD algorithm with the CBC method 20 

and EBD algorithm for light, normal and heavy traffic scenarios are presented in Table 9, Table 10 and Table 11 21 

respectively. Detailed results are presented in Appendix A (see Table 15, Table 16 and Table 17). 22 

 23 

Regarding the solution quality, the EBD algorithm outperforms the BD algorithm with the CBC method. As for light traffic 24 

scenarios (see Table 9), the BD algorithm with CBC method and EBD algorithms were both able to converge to the global 25 

optimal point except for in one instance. As for the instances of normal and heavy traffic scenarios, the solutions of the BD 26 

algorithm with the CBC method were not able to converge to the global optimal point within the one-hour computation 27 

time. As for the instances with the number of flights being 12, the EBD algorithm could obtain an optimal solution, while 28 

for other instances, the EBD algorithm guarantees a close-to-optimal solution (see Table 10 and Table 11).  29 

  30 
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 1 

Table 9 2 

Computational performance for statistical randomly generated instances from light traffic scenarios 3 

Instance The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 

2 

a 4951.14 4951.14 0.00% 0.18 4951.14 4951.14 0.00% 0.17 

b 6739.58 6739.58 0.00% 0.03 6739.58 6739.58 0.00% 0.09 

c 6370.82 6370.82 0.00% 1.51 6370.82 6370.82 0.00% 1.83 

4 

a 6325.82 6325.82 0.00% 36.76 6325.82 6325.82 0.00% 10.33 

b 8578.31 8578.31 0.00% 0.25 8578.31 8578.31 0.00% 0.33 

c 8578.31 8578.31 0.00% 0.15 8578.31 8578.31 0.00% 0.46 

6 

a 5436.14 5436.14 0.00% 2.91 5436.14 5436.14 0.00% 1.17 

b 5436.14 5436.14 0.00% 3.02 5436.14 5436.14 0.00% 1.32 

c 6968.02 6968.02 0.00% 2.78 6968.02 6968.02 0.00% 25.74 

8 

a 8094.31 8094.31 0.00% 3.99 8094.31 8094.31 0.00% 9.92 

b 7721.23 7721.23 0.00% 38.59 7721.23 7721.23 0.00% 1.56 

c 7061.65 0 100.00% 3600 6704.02 6704.02 0.00% 2.44 

𝐶𝑃𝑈: computation time in seconds; bold value: best algorithm gap in percentage 4 

 5 

 6 

Table 10 7 

Computational performance for statistical randomly generated instances from normal traffic scenarios 8 

Instance The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 

12 

a 9007.79 0 100.00% 3600 8069.98 8069.98 0.00% 40.59 

b 8761.88 0 100.00% 3600 8050.31 8050.31 0.00% 9.95 

c 8960.61 0 100.00% 3600 8504.31 8504.31 0.00% 3.13 

14 

a 8971.29 0 100.00% 3600 8260.98 7156.67 13.37% 3600 

b 7930.85 0 100.00% 3600 7036.28 6313 10.28% 3600 

c 8221.77 0 100.00% 3600 7241.1 5808.67 19.78% 3600 

16 

a 9796 0 100.00% 3600 8252.13 6098.81 26.09% 3600 

b 9079.71 0 100.00% 3600 8103.23 7046.67 13.04% 3600 

c 8938.41 0 100.00% 3600 7349.24 6444.67 12.31% 3600 

18 

a 9479.68 0 100.00% 3600 8132.23 6528.67 19.72% 3600 

b 9425.81 0 100.00% 3600 7545.06 6709.88 11.07% 3600 

c 7935.84 0 100.00% 3600 6919.9 5301.32 23.39% 3600 

𝐶𝑃𝑈: computation time in seconds; bold value: best algorithm gap in percentage 9 

 10 
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Table 11 1 

Computational performance for statistical randomly generated instances from heavy traffic scenarios 2 

Instance The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 𝑈𝐵 𝐿𝐵 𝑂𝐺% 𝐶𝑃𝑈 

24 

a 9854.4 0 100.00% 3600 7496.81 6101.67 18.61% 3600 

b 10314.33 0 100.00% 3600 7933.27 6596.67 16.85% 3600 

c 10762.67 0 100.00% 3600 8366.11 6988.87 16.46% 3600 

26 

a 11143.12 0 100.00% 3600 9290.61 6390.45 31.22% 3600 

b 11218.62 0 100.00% 3600 8508.47 7317.21 14.00% 3600 

c 11575.27 0 100.00% 3600 8519.39 6843.33 19.67% 3600 

28 

a 10137.11 0 100.00% 3600 7786.68 6439.24 17.30% 3600 

b 10137.11 0 100.00% 3600 8342.03 7504.33 10.04% 3600 

c 11107.23 0 100.00% 3600 7980.74 6496.67 18.60% 3600 

30 

a 11100.38 0 100.00% 3600 8668.39 6332.14 26.95% 3600 

b 11100.38 0 100.00% 3600 8828.95 6526.67 26.08% 3600 

c 11100.38 0 100.00% 3600 8826.13 6324.67 28.34% 3600 

𝐶𝑃𝑈: computation time in seconds; bold value: best algorithm gap in percentage 3 

 4 

To illustrate the descriptive statistical difference between the BD algorithm with CBC method and the EBD algorithm, the 5 

average performance of computation time, average 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 % are presented in Table 12. The computation time 6 

increased along with the complexity of air traffic. As for the instances with normal and heavy traffic, both algorithms could 7 

not obtain the optimal solutions. Indeed, the upper bound still decreased along with the computation. However, 100% of 8 

Average 𝑂𝐺% represents a condition where no valid Benders cuts were added to tighten the lower bound value in the 9 

master problem using the BD algorithm with CBC method. Comparatively, the EBD algorithm obtained valid cuts with the 10 

Average 𝑂𝐺% value of 12.42% and 20.4% for instances with normal and heavy traffic respectively, which indicates more 11 

valid Benders’ cuts using the EBD algorithm. The EBD algorithm yield a 58.52% improvement (69.44% - 10.92%) than 12 

the BD algorithm with CBC method. Table 13 presents the descriptive statistics of the proposed algorithms. The EBD 13 

algorithm has low mean value 𝜇 and standard deviation 𝜎 than the BD algorithm with CBC method.  14 

 15 

Table 12 16 

Comparison of the average performance across different traffic scenarios 17 

 BD algorithm with CBC method EBD algorithm 

 Average CPU Average 𝑂𝐺% Average CPU Average 𝑂𝐺% 

Light traffic 307.51 8.33% 4.61 0.00% 

Normal traffic 3600 100% 2704.47 12.42% 

Heavy traffic 3600 100% 3600 20.40% 

Overall 2502.51 69.44% 2103.03 10.92% 

 18 

 19 

 20 
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 1 

Table 13 2 

The descriptive statistics of the proposed algorithms with sample size of 36 3 

 𝜇 𝜎 Min. Max. 
25th 

percentiles 

50th 

percentiles 

75th 

percentiles 

BD algorithm with CBC 

method 
69.44% 46.72% 0.00% 100.00% 0.00% 100.00% 100.00% 

EBD algorithm 10.92% 10.50% 0.00% 31.22% 0.00% 11.69% 19.41% 

 4 

 5 

Wilcoxon-signed ranks test is performed to evaluate the convergence performance (𝑂𝐺% ) between the two proposed 6 

algorithms through paired sample cases in statistical analysis. This testing is suitable for the two samples which cannot be 7 

assumed to be normally distributed. The statistical analysis was conducted with the software IBM SPSS Statistics 22. Table 8 

14 presents the comparison of the convergence performance using Wilcoxon-signed ranks test. The result shows that the 9 

paired sample testing obtained a p-value 𝑝 ≤ 0.001, which indicate the strength of the effect size is large. We can conclude 10 

that the EBD algorithm outperforms the BD algorithm with CBC method. 11 

 12 

Table 14 13 

Wilcoxon-signed ranks test between the two proposed algorithms 14 

Algorithms (sample size = 36) Z score Asmp. Sig. (2 tailed) Strength of the effect size 

EBD algorithm v.s. BD algorithm with CBC method -4.374 0.000 Large effect 

 15 

5.4. Managerial insights 16 

A novel alternative path approach for robust terminal traffic flow problem using a min-max criterion is proposed. Current 17 

research still focuses on the reassignment method or ground delay programs to alleviate and partially absorb the effect of 18 

disrupted scheduling and passenger unease. We addressed that the transit time from a enter route to the runway is uncertain. 19 

The non-stochastic events and exogenous delay may be caused by unanticipated weather disruption, turbulence, wind 20 

direction and system-level fault resilience. The propagation of airside delay risk at the terminal area may affect the 21 

predetermined scheduling solution and induce the possibility of re-routing. With the introduction of uncertainty parameters 22 

in robust optimisation the vulnerability to disruption can further be improved. Fault-driven re-scheduling efforts and 23 

aggregate delays can be alleviated and partially absorbed using robust criteria in scheduling. In order to balance the quality 24 

of decision making and worst case risk over the uncertainty, Robust schedule for TTFP offers a method to construct a 25 

solution with certain level of solution robustness and provide robust decision by considering the ambiguity of underlying 26 

distribution of unknown parameters. With the recent advancement of optimisation methods, it can effectively obtain a near 27 

optimal with reasonable time of computation for commercial engineering applications. A certain level of solution 28 

robustness should not be neglected in ATC operations. The propagation of terminal traffic delays can attribute to the cause 29 

of rescheduling and scheduling intervention in daily operation. Robust optimisation is a promising approach that can 30 

leverage the delay propagation and guarantee a certain level of solution robustness under the limited knowledge on the 31 

distribution of the underlying uncertainty. The delay costs caused by rising air traffic demands includes administration 32 

costs for ASSP reassignment, the ripple effect on subsequent flight scheduling, the financial cost of delayed management 33 
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and passenger dissatisfaction can be reduced. 1 

 2 

 3 

 4 

6. Concluding remarks 5 

This research presents a novel alternative path approach for the robust TTFP under exogenous uncertainty. The uncertainty 6 

of the travel time is affected by the unpleasant weather conditions and turbulence in TMA. Therefore, the min-max criterion 7 

is suggested in the model. We aim to develop a robust schedule that has less vulnerable to disruption and less effect on the 8 

change of predefined schedule. By introducing the uncertain transit time between waypoints in arrival decision 9 

management, ATC can obtain a solution that is less sensitivity to disruption of approaching flight time, which imply a less 10 

chance on adjusting the approaching schedule in operation.  11 

 12 

Regarding the solution produced by the two-stage robust optimisation, in the robust TTFP, the first-stage optimisation 13 

problem does not guarantee feasibility in the second-stage optimisation problem. Therefore, two modifications of the 14 

decomposition approaches, namely BD algorithm with CBC method and EBD, are proposed. To meet the practical 15 

requirements, the computational analysis mainly focused on the efficiency of convergence within reasonable computational 16 

limit by the two proposed algorithms. The computational results illustrate that the EBD outperforms the BD with CBC 17 

method with the 58.52% improvement of optimality gap on average within an hour computational limit. The Wilcoxon-18 

signed ranks test also empirically proved that there is a significant difference between the optimality gap of EBD algorithm 19 

and BD algorithm with CBC method in the numerical experiment. Enumerating all possible worst-case scenarios is time-20 

consuming. However, a closer optimality gap implies a better solution against the uncertainty outcome and disruption. The 21 

proposed method can achieve better solution quality than the benchmarking algorithm.  22 

 23 

Several future directions can be taken in relation to the proposed model. First, the uncertainty environment in the proposed 24 

model is purely conservative. A decision maker may sacrifice a proportion of the robustness of a schedule with less 25 

protection, with respect to uncertainty using adjustable robust criteria. Second, the assumption of the terminal traffic flow 26 

model can be released in accordance with the structure of a TMA and the airport. For instance, a dynamic change of wind 27 

direction will affect the approach route in different time scenarios. Third, an investigation of other computational 28 

approaches in robust optimisation methods is of importance to the practical usage in actual ATC. Third, the design of the 29 

scheduling in robust optimisation for TTFP may affect the posterior schedule. The integration of rolling horizon and robust 30 

optimisation could be combined to obtain a more comprehensive schedule design. Furthermore, adjustable robust 31 

optimisation could also be incorporated to amend the posterior ATC schedule when more information regarding the 32 

uncertain parameters are available.   33 

 34 

  35 
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Appendices 1 

Appendix A. Detailed computational results for the BD algorithm with CBC method and the EBD algorithm 2 

Table 15 3 

The number of iterations, optimality cuts and MISs cut for statistical randomly generated instances from light traffic 4 

scenarios 5 

   The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 # 𝑀𝐼𝑆𝑠 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 

2 

a 0.00% 3 3 0 0 0.00% 2 2 0 

b 0.00% 3 3 0 0 0.00% 2 2 0 

c 0.00% 16 16 0 0 0.00% 27 27 0 

4 

a 0.00% 326 325 0 1 0.00% 63 63 0 

b 0.00% 8 8 0 0 0.00% 3 3 0 

c 0.00% 8 8 0 0 0.00% 3 3 0 

6 

a 0.00% 55 35 0 20 0.00% 7 7 0 

b 0.00% 55 35 0 20 0.00% 7 7 0 

c 0.00% 31 30 0 1 0.00% 91 91 0 

8 

a 0.00% 37 23 0 14 0.00% 18 18 0 

b 0.00% 238 197 0 41 0.00% 5 5 0 

c 100.00% 4272 4208 0 64 0.00% 4 4 0 

# 𝑜𝑝𝑡 𝑐𝑢𝑡: number of optimality cuts; # 𝑓𝑒𝑎 𝑐𝑢𝑡: number of feasibility cuts; # 𝑀𝐼𝑆𝑠: number of cuts generated by MISs 6 

 7 

 8 

Table 16 9 

The number of iterations, optimality cuts and MISs cut for statistical randomly generated instances from normal traffic 10 

scenarios 11 

   The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 # 𝑀𝐼𝑆𝑠 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 

12 

a 100.00% 4316 4299 0 17 0.00% 11 11 0 

b 100.00% 5506 1810 0 3696 0.00% 5 5 0 

c 100.00% 5782 5781 0 1 0.00% 6 6 0 

14 

a 100.00% 3575 2481 0 1094 13.37% 910 910 0 

b 100.00% 3386 3385 0 1 10.28% 6823 6823 0 

c 100.00% 4212 577 0 3635 19.78% 1281 1281 0 

16 

a 100.00% 1350 2 0 1348 26.09% 1533 1533 0 

b 100.00% 2127 2126 0 1 13.04% 1824 1824 0 

c 100.00% 2011 1940 0 71 12.31% 3544 3544 0 

18 

a 100.00% 854 4 0 850 19.72% 641 641 0 

b 100.00% 762 760 0 2 11.07% 4216 4216 0 

c 100.00% 837 776 0 61 23.39% 1858 1858 0 

# 𝑜𝑝𝑡 𝑐𝑢𝑡: number of optimality cuts; # 𝑓𝑒𝑎 𝑐𝑢𝑡: number of feasibility cuts; # 𝑀𝐼𝑆𝑠: number of cuts generated by MISs 12 
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 1 

Table 17 2 

The number of iterations, optimality cuts and MISs cut for statistical randomly generated instances from heavy traffic 3 

scenarios 4 

   The BD algorithm with CBC method EBD algorithm 

𝐼 set 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 # 𝑀𝐼𝑆𝑠 𝑂𝐺% 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 # 𝑜𝑝𝑡 𝑐𝑢𝑡 # 𝑓𝑒𝑎 𝑐𝑢𝑡 

24 

a 100.00% 78 16 0 62 18.61% 367 367 0 

b 100.00% 91 21 0 70 16.85% 307 307 0 

c 100.00% 91 13 0 78 16.46% 320 320 0 

26 

a 100.00% 44 1 0 43 31.22% 107 107 0 

b 100.00% 61 2 0 59 14.00% 422 422 0 

c 100.00% 36 2 0 34 19.67% 398 398 0 

28 

a 100.00% 33 8 0 25 17.30% 883 883 0 

b 100.00% 33 8 0 25 10.04% 1214 1214 0 

c 100.00% 5 2 0 3 18.60% 395 395 0 

30 

a 100.00% 3 1 0 2 26.95% 128 128 0 

b 100.00% 3 1 0 2 26.08% 141 141 0 

c 100.00% 3 1 0 2 28.34% 71 71 0 

# 𝑜𝑝𝑡 𝑐𝑢𝑡: number of optimality cuts; # 𝑀𝐼𝑆𝑠: number of cuts generated by MISs 5 

  6 
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