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A B S T R A C T

Purpose: Motion artifacts induced by breathing variations are common in 4D-MRI images. This study aims to
reduce the motion artifacts by developing a novel, robust 4D-MRI sorting method based on anatomic feature
matching and applicable in both cine and sequential acquisition.
Method: The proposed method uses the diaphragm as the anatomic feature to guide the sorting of 4D-MRI images.
Initially, both abdominal 2D sagittal cine MRI images and axial MRI images were acquired. The sagittal cine MRI
images were divided into 10 phases as ground truth. Next, the phase of each axial MRI image is determined by
matching its diaphragm position in the intersection plane to the ground truth cine MRI. Then, those matched
phases axial images were sorted into 10-phase bins which were identical to the ground truth cine images. Finally,
10-phase 4D-MRI were reconstructed from these sorted axial images. The accuracy of reconstructed 4D-MRI data
was evaluated by comparing with the ground truth using the 4D eXtended Cardiac Torso (XCAT) digital phantom.
The effects of breathing signal, including both regular (cosine function) and irregular (patient data) in both axial
cine and sequential scanning modes, on reconstruction accuracy were investigated by calculating total relative
error (TRE) of the 4D volumes, Volume-Percent-Difference (VPD) and Center-of-Mass-Shift (COMS) of the esti-
mated tumor volume, compared with the ground truth XCAT images.
Results: In both scanning modes, reconstructed 4D-MRI images matched well with ground truth with minimal
motion artifacts. The averaged TRE of the 4D volume, VPD and COMS of the EOE phase in both scanning modes
are 0.32%/1.20%/�0.05 mm for regular breathing, and 1.13%/4.26%/�0.21 mm for patient irregular breathing.
Conclusion: The preliminary evaluation results illustrated the feasibility of the robust 4D-MRI sorting method
based on anatomic feature matching. This method provides improved image quality with reduced motion artifacts
for both cine and sequential scanning modes.
1. Introduction

In radiation therapy, respiratory motion management is of signifi-
cance, especially in the abdominal and thoracic cancers, where the organ
and tumor motion is a major component of the treatment uncertainties.
Four-dimensional (4D) imaging adds time as the fourth dimension into
3D volumetric images to introduce temporal information, especially the
respiratory motion, into the spatial information. Generally, 4D imaging is
generated by re-ordering and re-binning the data, whether reconstructed
images or raw data, into pre-defined phase bins to reveal clear body
respiratory motion during an entire breathing cycle without blurring in
the motion path. Currently, the clinical standard of 4D imaging technique
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for radiation therapy is 4D Computed Tomography (CT). It is commonly
used to evaluate and manage patient respiratory motion, especially for
the lung and abdominal cancers.1,2

Recently, 4D Magnetic Resonance Imaging (MRI) has become an
emerging technique for imaging respiratory motion.3–12 4D-MRI is a
promising respiratory motion management modality with excellent
soft-tissue contrast for tumor delineation with no known radiation haz-
ard to the patients, compared with 4D-CT. A number of methods have
been proposed for 4D-MRI development and have shown promising re-
sults for clinical applications. A detailed review of the 4D-MRI techniques
can be found in the literature, and thus won’t be detailed here.13 In short,
current 4D-MRI techniques are mostly based on retrospective sorting,
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either in image space for 2D acquisitions or in k-space for 3D image ac-
quisitions. These 4D-MRI techniques often assume reproducible breath-
ing patterns; thus, the sorting process will cause the motion artifact when
breathing variation occurs, which presents as tissue discontinuities of the
anatomic structures in the reconstructed 4D-MRI images in image-based
sorting (2D acquisition) or as image blurring in k-space-based sorting (3D
acquisition).

This study aims to develop a motion robust image-based 4D-MRI
sorting method based on anatomic feature matching which can effec-
tively reduce breathing variation induced motion artifacts. In this study,
we developed an anatomic feature matching-based (AFM) 4D-MRI sort-
ing method for both cine and sequential 2DMR acquisitions, and assessed
the robustness of this method for irregular breathing using both simu-
lated and patient breathing signals via a simulation study on a digital
human phantom.

2. Methods & materials

2.1. The AFM 4D-MRI sorting method

2.1.1. Overall study design
Fig. 1 shows the overall workflow of the proposed AFM 4D-MRI

sorting method. The general idea is to acquire two groups of orthog-
onal MRI images, then detect the anatomic features in the two image
groups, and finally sort the images into different bins by matching their
anatomic features to directly preserve better organ/tissue structure. In
this method, we chose the diaphragm as the landmark feature to be
detected and matched. The reasons for choosing the diaphragm are 1)
tumor motion is primarily influenced by the diaphragm motion; 2) the
respiratory motion is more dominant in the superior–inferior (SI) direc-
tion, which can be captured by the diaphragm; and 3) the diaphragm
structure can be easily extracted from images due to the naturally defined
border between liver and lung.

This detailed AFM 4D-MRI sorting method is described below in three
steps:

(1) Image acquisition: Two groups of orthogonal scans are acquired in
this process. The first group is the single-slice sagittal cine images
located at the right diaphragm peak location (where the dia-
phragm is most superior). They are acquired over several
breathing cycles. The second group is the axial slices located at
multiple positons acquired over a volume of interest, which is the
4D-MR scan. The acquisition mode of this axial scan can be either
cine mode or sequential mode.
Fig. 1. The overall workflow of the anatomic fea
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(2) Diaphragm Extraction: The second step is to detect the diaphragm
in those two groups of images. For the sagittal single-slice cine
images, 10 reference images representing 10 respiratory phase
bins in a breathing cycle are first selected according to the dia-
phragm motion in the images. Then the diaphragm structures in
these 10 sagittal images are extracted by a region-growing based
method as shown in Fig. 214 Note that, to improve the detection
accuracy, the diaphragm is identified with two steps. This
extraction method consists of the following sub-steps: (a) manual
selection of a seed point inside the liver region in the sagittal
image and selection of a 9-by-9 pixel matrix around the seed point;
(b) calculation of the image intensity threshold of the liver by
averaging the 3 maximum intensity values and 3 minimum in-
tensity values in the matrix to reduce the influence of noise and
filtering of the image intensity using this threshold to be within
the liver intensity range; (c) using the region-growing algorithm to
extract the liver boundary by searching image pixels within the
threshold starting from the seed point; (d) using Otsu’s method to
change the image into a binary format.15 This method will change
the body intensity into 1 and change the lung and background
intensity into 0, and filling the holes inside the body in the binary
image; (e) using the region-growing algorithm to extract the body
boundary by growing from the seed point; (f) Due to the
well-defined natural contrast of the liver and lung, the boundary
of diaphragm is clear and accurate in the two boundaries obtained
in steps (c) and (e). taking the overlap part of these two bound-
aries to extract the diaphragm structure; (g) extracting the dia-
phragm from next sagittal slice by using the centroid of the
grown-region in step (c) as the seed point of next iteration to
make the process more automated. The 10 diaphragm structures
extracted from the sagittal images that represent 10 different
respiratory bins are used in later steps to guide the sorting process
of axial slices. The diaphragm positions in axial slices are extrac-
ted by a peak-valley detection algorithm. The profiles of the
intersection line of each axial image and single-slice cine image
(Yellow dash line in Fig. 1) are analyzed by a peak-valley detec-
tion program to find the boundary point of liver and lung due to
the naturally defined contrast of liver and lung. The peak-valley
detection program is developed in Matlab (MathWorks, Natick,
MA) to find true peaks and valleys in the image line profile by
ignoring small local fluctuations caused by imaging noise.

(3) Sorting by diaphragm matching reference sagittal images to axial
images: The sorting process is performed by matching the dia-
phragm position in the axial images with the 10 reference dia-
phragm structures extracted from sagittal images and then sort the
ture matching-based 4D-MRI sorting method.



Fig. 2. The workflow of extracting diaphragm structures from the sagittal cine MRI images.
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axial images into the corresponding phase bins. The diaphragm
boundary extracted from the sagittal reference images can be
described as Lrefi ðxÞ, where i represents the phase bin 1-10. The
boundary from the axial slices can be represented as Laxial4D i ðxÞ.
The sorting process to get the 3D volume of phase i (which is 4D i)
can be considered as finding the axial slice set that can minimize
the difference between Laxial4D i ðxÞ and Lrefi ðxÞ. This process can be
expressed as:

Diff ¼
XN
x¼1

���Laxial4D i ðxÞ�Lrefi ðxÞ
��� (1)

4D i¼ argmin
�
Diff

�
Laxial4D i ðxÞ;Lrefi ðxÞ

��
(2)

2.1.2. Strategy for sorting slices outside the diaphragm region
The beginning and ending slices in the axial MRI scanmay not contain

diaphragm structures. The diaphragm matching method is then com-
bined with other sorting methods to assign those slices into their corre-
sponding bins. In this method, these out-of-diaphragm images are sorted
based on the maximum cross-correlation (CC) of the profiles in the
sagittal/axial images at the sagittal-axial intersecting plane. The cross-
correlation can be defined as the formula below:

CC¼Eððx� xÞðy� yÞÞ
σxσy

(3)

where the x represents the pixels of the profile in sagittal image and y
represents the pixels of the profile in axial image. E represents the
expectation and σ means the standard deviation.

For example, an out-of-diaphragm axial slice can be assigned into
phase bin N when:

max
�
CCsagi1 ;…;CCsagi10

�¼CCsagiN (4)

where CCsagii means the cross correlation between the axial profile and
the sagittal profile of phase i.

2.1.3. Strategy for sorting slices outside the diaphragm region
Following the sorting process, each axial slice can be assigned to a

certain phase bin corresponding to the diaphragm position. However,
there might be empty bins for a certain phase at certain slice location. To
solve this problem, a strategy is implemented to first copy the same slice
from the phase in opposite slope. If that phase bin is also empty, then
copy the slice from adjacent slices in the same phase. If the previous bins
are empty, copy the same slice from adjacent phases. In addition, there
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might be bins for a certain slice location at a certain phase that are over-
filled with multiple images. To solve this situation, another strategy is
implemented to keep the slice which has the largest sagittal-axial inter-
secting profile cross correlation of the corresponding phase. After every
slice bin of each phase is filled with only one image, then the ten 3D
volumes are reconstructed by combining the axial slices together, and
then further reconstructing a 4D volume.

2.1.4. Phase sorting
The conventional phase sorting method is also applied in every

simulation case to further compare with the anatomic feature matching
methods [26]. For a known breathing signal, a peak/valley detection is
performed to detect every breathing peak during a scan. The interval
between two neighboring peaks is regarded as a single respiratory cycle
and then is divided into 10 equally-spaced bins. Each image will be
assigned into a phase bin if its acquisition time stamp falls into the cor-
responding bin in that cycle. The strategy for empty phase bins is the
same as the anatomic feature matching method. However, for the
redundant images in one phase bin, the image acquired at the closest
time point to the bin center is kept.
2.2. Digital phantom simulation study

2.2.1. Materials
This 4D-MRI sorting technique was developed and evaluated using

the 4D extended Cardiac Torso (XCAT) digital phantom to simulate the
image acquisition and reconstruction.16 The XCAT images were created
in the activity mode with organs’ intensities assigned as in T2-weighted
MR images. The liver lesion is set to be 30 mm in diameter and to move
with liver together during respiration. The respiratory motion of the
XCAT digital phantom is controlled by the input breathing signals.

2.2.2. Breathing simulation
The effects of breathing signals, including both regular and irregular

in both axial cine and sequential modes, are simulated and investigated.
First, cine and sequential scans are simulated with a regular cosine
breathing pattern in XCAT digital phantom. The parameters of the
simulated images are set to mimic the real MRI scan: voxel size: 1.67 �
1.67 � 1.67 mm3; frame rate: 0.3 s/frame; respiratory rate: 3.1 s/cycle;
maximum diaphragm displacement: 3 cm.

Secondly, cine and sequential scans with three types of irregular
breathing profiles are simulated in the XCAT digital phantom. The pa-
rameters of the simulated images are set to mimic the real MRI scan:
voxel size: 1.67 � 1.67 � 5.00 mm3; frame rate: 0.3 s/frame; maximum
diaphragm displacement: 3 cm. Three types of irregular breathing



Fig. 4. One example of the patient breathing curves used for raw MRI data
simulation. The patient breathing signal is acquired by the RPM system.
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profiles are simulated based on simple cosine signal as is shown in Fig. 3:
(a) cosine signal with changing periods; (b) cosine signal with changing
amplitudes; and (c) cosine signal with changing periods and amplitudes.
In addition, five patients’ breathing signals acquired with the Real-time
Position Management (RPM) system (Varian Medical Systems, Palo
Alto, CA) are used to simulate the cine and sequential scans in the XCAT
digital phantom. As is shown in Fig. 4, these signals are preprocessed to
remove some extreme peaks and valleys before using for scan simulation.

2.3. Assessment

Three metrics were implemented to further evaluate the performance
of this anatomic matching based sorting method regarding its volumetric
accuracies of both whole 4D image and tumor.

Total relative error (TRE) measures the relative difference between
the reconstructed image and the ground truth image over the whole 4D
volume. If two images are identical, the TRE will be 1. TRE can be
calculated by the formula below:

TRE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf � fGTÞ2

q
ffiffiffiffiffiffiffi
f 2GT

q � 100% (5)

where f is the reconstructed 4D image and fGT is the ground truth image.
Tumors in the images were automatically contoured using an in-

house developed Matlab program. Then the Volume-Percent-Difference
(VPD) metric is utilized to estimate the accuracy of tumor volume in
the 4D images compared with the ground truth images. VPD was calcu-
lated using the formula below:

VPD¼ jV[V0 � V\V0j
V0

� 100% (6)

where V0 is the tumor volume in the ground truth image and V is the
tumor volume in the reconstructed 4D images. VPD will be 0 if the two
4D images sets are identical.

Center-of-Mass-Shift (COMS) represents the shift of the tumor center;
Fig. 3. Simulated irregular breathing curves used for raw MRI data simulation:
(a) cosine curve with changing period; (b) cosine curve with changing ampli-
tude; and (c) cosine curve with changing period and amplitude.
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ideally it is 1 when the reconstructed image perfectly is matched with the
ground truth. It was estimated using the formula below:

COMS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2 þ Δz2

p
(7)

where Δx, Δy and Δx is the center-of-mass distance from the tumor vol-
ume in 4D image to the tumor in the ground truth.

3. Results

Fig. 5 shows the result of the 4D images generated by the anatomic
feature matching-based method, as compared to the conventional phase
sorting (Phase S) method and the ground truth images in both cine and
sequential acquisitionmodes with a regular cosine breathing pattern. The
subtraction of the reconstructed 4D images by anatomic feature matching
from the ground truth (GT) images, or the difference maps, are also
generated for better visual evaluation. Only first five phases of the 4D
image set including the end of exhalation (EOE) and end of inhalation
(EOI) phases are displayed in the figure. In the difference map (5d), it can
be found that the reconstructed images from the anatomic feature
matching method matched well with the ground truth images with
minimal artifacts. In the 30% phase bin, artifacts are visible in the heart
region, which are indicated by the blue arrows. These artifacts are caused
by the difference between the nonsynchronous periods of heart motion
and respiratory motion, which is not the major consideration of this
study. In the red box in Fig. 5, it can be observed that the images
generated by anatomic feature matching method can preserve a clear and
smooth diaphragm structure, while the diaphragm boundary is blurred in
the phase sorting method. The red arrows in Fig. 5 also indicate the
tumor volume comparison. The result of both cine and sequential ac-
quisitions showed good consistency with the ground truth.

Fig. 6 shows the reconstruction results of the anatomic feature based
on matching-based sorting method using one example simulated cosine-
based irregular signal with changing period and amplitude, compared
with the conventional phase sorting method (6b, 6e) and the ground
truth images (6c, 6f) in both cine and sequential acquisition modes. Fig. 7
shows the reconstruction results based on the anatomic featurematching-
based sorting method using one example patient irregular breathing
signal compared with the conventional phase sorting method and the
ground truth images in both cine and sequential acquisition modes. As is
indicated in the difference maps between the sorted images and the
ground truth, the anatomic feature matching-based sorting method can
generate 4D MRI images with minimal artifacts. Compared with the re-
sults of conventional phase sorting, this method can provide better
anatomic structure consistency. It can be found from the red boxes and
red arrows in the figures that the artifacts in the phase sorting result are
more obvious as truncated diaphragm boundary and distorted tumor
shapes compared with the proposed method. This improvement made by
the anatomic feature matching method is strengthened with larger ir-
regularity of the breathing pattern, which can be observed by comparing
the results in Figs. 6 and 7. In addition, both the cine and sequential
acquisition modes showed promising results with the anatomic feature
matching-based 4D-MRI sorting method in irregular breathing.

Table 1 shows the quantitative evaluation of the anatomic feature



Fig. 5. For regular breathing pattern: (a) The ground
truth 4D image in first 5 phases. (b) 5-phase phase
sorting result of cine acquisition. (c) 5-phase
anatomic feature matching-based sorting result of
cine acquisition. (d) Difference map between the
ground truth and the anatomic feature matching-
based sorting result in cine mode. (e) 5-phase phase
sorting result of sequential acquisition. (f) 5-phase
anatomic feature matching-based sorting result of
sequential acquisition. (g) Difference map between
the ground truth and the anatomic feature matching-
based sorting result in sequential mode.

Fig. 6. For simulated irregular breathing with
changing period and amplitude: (a) The ground truth
4D image in first 5 phases. (b) 5-phase phase sorting
result of cine acquisition. (c) 5-phase anatomic
feature matching-based sorting result of cine acqui-
sition. (d) Difference map between the ground truth
and the anatomic feature matching-based sorting
result in cine mode. (e) 5-phase phase sorting result
of sequential acquisition. (f) 5-phase anatomic
feature matching-based sorting result of sequential
acquisition. (g) Difference map between the ground
truth and the anatomic feature matching-based sort-
ing result in sequential mode.

Fig. 7. For patient irregular breathing signal #1: (a)
The ground truth 4D image in first 5 phases. (b) 5-
phase phase sorting result of cine acquisition. (c) 5-
phase anatomic feature matching-based sorting
result of cine acquisition. (d) Difference map be-
tween the ground truth and the anatomic feature
matching-based sorting result in cine mode. (e) 5-
phase phase sorting result of sequential acquisition.
(f) 5-phase anatomic feature matching-based sorting
result of sequential acquisition. (g) Difference map
between the ground truth and the anatomic feature
matching-based sorting result in sequential mode.

Table 1
Regular breathing evaluation results using three different metrics.

Case TRE VPD COMS

Cine 0.28% 1.16% 0.06 mm
Sequential 0.35% 1.23% 0.04 mm
Mean_AFM 0.32% 1.20% 0.05 mm
Mean_PhaseS 0.77% 1.87% 0.10 mm
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matching-based sorting method for both cine and sequential acquisition
in regular breathing pattern, regarding the accuracy of whole 4D image
volume and the estimated tumor volume in the 4D images. It can be
indicated from this table that this anatomic feature matching-based
sorting method can provide good tumor volume consistency on average
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with minimal 4D volume difference with the ground truth. Both cine and
sequential modes can reconstruct 4D-MRI images with improved accu-
racy and clear organ/tissue structures with minimum mismatch.

Table 2 and Table 3 show the quantitative evaluation of the anatomic
feature matching-based sorting method compared with the conventional
phase sortingmethod for both cine and sequential acquisition in irregular
breathing patterns, including simulated and patient breathing respec-
tively, regarding the accuracy of whole 4D image volume intensity and
the estimated tumor volume in the 4D images. It can be found from these
tables that the anatomic featuring matching-based 4D-MRI sorting
method can provide accurate volumetric information about the tumor
and body compared with the conventional phase sorting results. The
minimal values of TRE, VPD and COMS for this proposed method can
indicate the reduced motion artifacts regarding the image quality.



Table 2
Simulated irregular breathing result evaluation.

Case# TRE VPD COMS

Cine Prd 0.79% 4.19% 0.19 mm
Amp 1.09% 4.98% 0.21 mm
PrdAmp 0.93% 6.51% 0.31 mm
Mean 0.93% 5.23% 0.24 mm

Seq. Prd 1.22% 4.91% 0.30 mm
Amp 1.39% 5.93% 0.31 mm
PrdAmp 1.39% 7.37% 0.36 mm
Mean 1.33% 6.07% 0.32 mm

Mean_AFM 1.02% 5.65% 0.28 mm
Mean_PhaseS 1.13% 10.47% 0.49 mm

Note: Prd: the cosine-based breathing signal is changing in period only. Amp: the
cosine-based breathing signal is changing amplitude only. PrdAmp: the cosine-
based breathing signal is changing in both period and amplitude.

Table 3
Patient irregular breathing result evaluation.

Case# TRE VPD COMS

Cine 1 0.97% 6.05% 0.50 mm
2 1.09% 5.89% 0.25 mm
3 1.26% 9.91% 0.36 mm
4 0.93% 5.37% 0.23 mm
5 1.03% 7.90% 0.28 mm
Mean 1.06% 7.02% 0.32 mm

Seq. 1 1.10% 5.52% 0.10 mm
2 1.13% 8.05% 0.15 mm
3 1.27% 8.54% 0.53 mm
4 1.37% 7.58% 0.14 mm
5 1.17% 7.10% 0.18 mm
Mean 1.21% 7.36% 0.42 mm

Mean_AFM 1.13% 4.26% 0.37 mm
Mean_PhaseS 2.97% 25.85% 1.23 mm
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Besides, the values for the cine acquisition and sequential acquisition are
very close in the implement of two different kinds of irregular breathing
signals, which shows the feasibility of this sorting method in both MRI
acquisition modes.

4. Discussion

Breathing variation related artifacts are inherent in the conventional
4D MRI images, which can be shown as discontinuities in the organ
structures. Different approaches have been developed to reduce this
motion artifact. For instance, Hu et al.11 developed a prospective 4D-MRI
technique to implement an amplitude-based gating system to avoid the
imaging during the irregular breathing patterns. Liang et al.17 developed
a retrospective 4D-MRI sorting method as probability-based multi-cycle
sorting to incorporate breathing variation information in the sorting
process to reduce the related artifacts. But due to the sorting scheme, this
probability-based multi-cycle sorting cannot be applied in cine acquisi-
tion, which will limit the choices of imaging sequences and the related
contrast selection.

In this study, a robust 4D-MRI sorting method based on anatomic
feature matching was developed and investigated to largely reduce the
breathing variation related artifacts due to another new approach, which
is to directly preserve the organ/tissue structures by aligning or matching
them in two group of orthogonal images. The methods mentioned above
utilized external breathing signals to guide the sorting or reconstruction
procedure, which requires additional synchronization and correlation of
the scan and breathing signal. This new method utilized the change of
anatomic feature in images to form the bins and to guide the sorting
process, which can provide better validity and accuracy. In addition,
some of the previous methods are only applicable in a specific data
acquisition mode. However, for the anatomic feature matching method,
it is feasible in both cine and sequential mode, which enables a wider
46
choice of imaging sequences and contrasts.
As is shown in the results, the reconstructed 4D-MRI images are in

great consistency with the ground truth and show substantially reduced
motion artifacts and clearer organ structures compared with the con-
ventional phase sorting method. This is more obvious in the patient
breathing case, where the anatomic feature matching-based sorting
method can still generate images with smooth organ structures and
minimal artifacts, while the irregular breathing pattern strongly in-
fluences the performance of phase sorting method. The artifacts are more
likely to be found in the EOI phase in the reconstructed images, while the
EOE phase images show better consistency with the ground truth. This is
consistent with the fact that EOI is the less stable phase in a breathing
cycle and EOE is the more stable phase. It can also be found from the
quantitative analysis that this new sorting method can provide good
overall volumetric accuracy with only 1.13% total relative error, and as
small as 7.19% volume difference and 0.37 mm center-of-mass shift for
the target volume, which is greatly improved compared with the con-
ventional method.

In addition, from Tables 1–3 it can be found that the result of cine
acquisition provides slightly better consistency with the ground truth
than the result of the sequential acquisition. This is potentially due to the
different scanning strategies of these two scan modes. All the simulated
scans have the same number of scan repetitions; that is, 20 times. For the
cine acquisition, it continuously obtains images at one slice position over
several breathing cycles to provide continuous diaphragm motion.
However, for the sequential acquisition which acquire images slice
location by slice location, this process is more random, and it is harder to
predict the completeness for the slices to fill all the phase bins.

First of all, this 4D-MRI sorting method based on anatomic feature
matching is tested only on the XCAT digital phantom. Only 5 clinical
patient breathing signals were utilized to simulate the raw MRI data.
Further investigation using more patient breathing signals is needed to
study the significance of this new sorting method. Besides, only the
diaphragm extraction part has been practiced on real patient images so
far. The performance of this method in patient image data needs to be
further tested to evaluate its robustness and accuracy in different patient
scenarios.

The patient breathing data used in this study was preprocessed to
eliminate some extreme peaks and valleys that might be caused by
coughing or other large motion during the acquisition. Thus, the simu-
lation process only simulates images under free breathing without
extreme irregularity. Since the 2D images are sorted by matching
anatomic feature from the images of an averaged breathing curve. The
presence of coughing and large motion can cause insufficient useful data
and might further result in empty phase bins. The influence of the
extreme irregularity can be investigated by adding large peaks and val-
leys in the breathing signal in simulation.

In addition, the current diaphragm extraction methods still need
manual operation in the very first step. It needs to be further automated
to improve the robustness and operation speed, with a goal of full
automation. The simulated MRI images generated from XCAT have good
pixel intensity contrast, which makes the diaphragm extraction less
sensitive to the noise and resolution limitation. Therefore, this extraction
method need to be further improved to provide more accurate results in
the patient image, which has higher noise and more complicated pixel
intensity shifts.

Another limitation of this study is that this sorting method can only
work for the axial slices which contain the diaphragm structure. For real
patient data with larger slice thickness, the number of slice positions that
meets this requirement might be limited. Smaller slice thickness allows
more slices within the diaphragm region, but can be more sensitive to the
breathing irregularity, and it needs more time in the acquisition. Larger
slices thickness can shorten the acquisition time and make the sorting
process less sensitive to the irregularity, however, it will limit the reso-
lution and number of slices to cover the diaphragm. In this study, the slice
thickness is set as 0.5 cm, which is common in the 4D-MRI scans. To sort
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other axial slices outside the diaphragm region, this method needs to be
hybridized with other 4D-MRI sorting methods, or to utilize other
anatomic features to generate the 4D-MRI volume for the whole
abdominal region. Other possible anatomic landmarks like the body
surface, lung boundary and other large-contrast edges may be investi-
gated in the future to test the feasibility.

5. Conclusion

A 4D-MRI technique based on anatomic feature matching method has
been developed and evaluated in a digital phantom. It utilizes the dia-
phragm structure as the landmark feature in two groups of orthogonal
images to guide the sorting process. This anatomic feature matching-
based method is feasible and can be applied in both cine and sequen-
tial acquisition modes. In addition, it is less susceptible to breathing
variations and can generate 4D-MRI images with significantly reduced
motion artifacts.
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