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1 Introduction

Demand surges –the significant demand increments in addition to the regular demand in a supply

network– arise from various sources such as natural (e.g., a hurricane or tsunami) and man-made

disasters (e.g., an oil spill or fire), structural demand such as acquisition and winning large contracts,

new product introductions and viral products (Huang et al. 2016). In order to mitigate the

disruptive impact of sudden demand surges on firms’ inventory flow and production processes,

firms usually either build up reactive capacities (Huang et al. 2016) or keep a certain amount of

reserved inventories as a reactive buffer at warehouses in different geographical locations (Liu et al.

2016). In the latter case, the reserved inventories are often managed separately from the regular

inventories that are used to satisfy the daily demand. For example, Johnson and Johnson (J&J)

reserves inventories at their regional warehouses for possible demand surges from sudden disruptions

(Sheffi 2005a, b). In particular, they set a red line on the inventory level at each warehouse so that

the amount of inventory stored at each warehouse cannot go below the red line (Sheffi 2005a pp.

173-174). Similarly, the International Federation of Red Cross and Red Crescent Societies (IFRC)

requires their suppliers to reserve and store an agreed amount of emergency relief commodities,

either at their premises or in regional warehouses in Dubai, Kuala Lumpur, and Panama. The

IFRC therefore has a constant guaranteed level of pre-positioned reserved inventories (RIs) at

dedicated locations (www.ifrc.org).

When demand surge occurs at some specific location(s), the pre-positioned RIs at other non-

surge locations need to be deployed to the surge-occurring location(s). Such deployment process

creates a time lag between the demand and the arrival of the RIs, which results in an immediate

mismatch between supply and demand and leads to a significant loss of demand. Consequently,

firms, governments and non-for-profit organizations often target at minimizing the expected total

unmet demand, i.e., the immediate mismatch between the supply of the RIs and the demand surge

(see Huang et al. 2016). This is especially relevant for a supply network where the RIs are kept at

multiple geographically different locations.

The pre-positioning of RIs in a supply network is challenging because of the uncertainties

from both supply and demand sides. On the one hand, the deployment process is uncertain, which

requires positive lead times that may vary with respect to the geographical locations of the allocated

RIs and the demand surge locations. Consequently, the arrival sequence of RIs to a demand surge

location may be uncertain. Also, the allocated RIs may be damaged in various degrees depending on

the impact of the demand surge or the deployment process. On the other hand, the demand surge
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process itself may also be uncertain. In particular, the geographical locations of demand surges are

usually highly uncertain (see detailed examples given in Huang et al. 2016) with its probability of

occurrence at the different locations estimated through the historical data. Besides, once a demand

surge occurs, its process may exhibit different time-evolving patterns. As a result, its attributes

such as magnitude, duration, and variability of the surge may also be highly uncertain.

In this paper, we investigate how a central planner would strategically allocate and deploy RIs

among different locations so as to mitigate the impact of demand surges. In particular, we study

how uncertainties involved in both pre-positioning and deployment stages affect the firm’s decisions.

We formulate the firm’s allocation and deployment problem as a two-stage stochastic optimization

problem with supply and demand uncertainties.

In the deployment stage, we first derive the expected total unmet demand given the demand

occurrence locations in closed form and examine its properties by using a novel ranking function

that characterizes the arrival sequence of reserved inventories. Then, we show that the structure

of the optimal deployment policy, given a set of affected locations, is similar to a ‘nested’ policy

with respect to the shadow price at each location, where a shadow price represents the marginal

reduction of the expected total unmet demand due to one unit increase of the RI. In particular, the

set of locations with the highest shadow price is a subset of the affected locations, and they retain

all their own RIs under optimality; a deployment can only happen from one location with a smaller

shadow price to another location with a larger shadow price; and each affected location sequentially

receives deployments from other locations (including itself) according to their shadow prices from

the highest to the lowest. We also show that when the delivery lead time from a location m to

an affected location n increases, the central planner should either increase the deployment amount

from the location(s) that is (are) closer to n (compared to m) to satisfy the additional demand

arising from the increased lead time, or decrease the deployment amount from the location(s) that

is (are) at or farther away from n (again compared to m) because of the reduction of the future

demand. We then compare the expected total unmet demand under the optimal deployment policy

under different stochastic demand processes.

In the pre-positioning stage, the optimal allocation quantity at a location is positive only if the

expected shadow price at that location is equal to a certain constant value. In particular, we show

that when the Hessian matrix of the expected total unmet demand with respect to the allocation

quantities is monotone, the optimal allocation quantity is increasing in the total amount of RIs. We

then introduce the first order stochastic dominance on probability distributions that are defined on

sets and characterize its equivalent representation using probability aggregation and disaggregation.
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Using the properties of the first order stochastic dominance, we show that the expected total unmet

demand is larger when one of the following is true: the demand surges tend to occur simultaneously

at more locations, the probability distribution of the demand surge locations is more dispersed, the

post-surge delivery takes a longer time, more demand arrives earlier, or the demand has a higher

volatility. If more demand arrives earlier, then the amount of RIs that can be used to satisfy the

demand is less due to the positive delivery lead time and thus, results in a larger expected total

unmet demand. If the arrival demand is more volatile, then the probability that a larger demand

arrives within a shorter time period is higher and hence, the expected total unmet demand is larger.

The remainder of this paper is organized as follows. We review the related literature in Section

2. The model formulation is discussed in Section 3. In Section 4, we derive the expected total unmet

demand and analyze the optimal post-surge deployment policy. We characterize the properties of

the optimal pre-surge allocation policy in Section 5 and discuss the impact of various factors on

the expected total unmet demand. Section 6 concludes the paper. All the proofs are relegated to

the online appendix.

2 Literature Review

Our work is closely related to the emerging studies of inventory planning for the random demand

surge. Liu et al. (2016) consider pre-positioning reserved inventories with the objective to minimize

operational cost while Huang et al. (2016) consider joint inventory stocking and capacity reserving

problems for sudden demand surges. Our paper complements Liu et al. (2016) and Huang et al.

(2016) by considering demand location uncertainty and delivery lead times. Also our focuses are

different: we consider minimizing supply-demand mismatch while they consider cost minimization.

Thus, our model is more suitable for the inventory products critical for human lives such as medicine

and vaccine. Another related study is Wang et al. (2015), in which the authors investigate the relief

inventory dispatch after the surge occurrence to minimize the unsatisfied demand. They decompose

the dynamic deployment problem as a two multi-period multi-commodity network flow problems.

Different from their work, we focus on finding the optimal RI pre-positioning and deployment

policies by taking into account dynamics and uncertainties involved in the deployment process. Ni

et al. (2018) use a min-max robust model to solve similar research questions for disaster response

operations. However, in their paper, the demand surges are treated as random variables instead of

time-evolving stochastic processes. Hence, they do not consider the transshipment lead time issue.

In contrast, our model considers the transshipment lead times and captures the key features of the

pre-positioning and deployment problem.
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The benefit of reserving RIs is similar to that of physical/virtual inventory transshipment (see,

e.g., Robinson 1990; Archibald and Thomas 1997; Rudi et al. 2001; Axsäter 2003; Dong and Rudi

2004; Zhang 2005; Herer and Tzur 2006; Sošić 2006; Hu et al. 2008; Zhao 2008; Huang and Sošić

2010; Liu et al. 2016). Under inventory transshipment, pooling benefits are achieved by sometimes

serving demand at one location using inventory at another (see Paterson et al. 2011 for a review).

Similarly, our paper benefits from pooling because the inventory reserve at one location can be sent

to meet demand at other locations.

Studies on the lost-sales inventory system are also related. See Zipkin (2008a, 2008b), the review

paper of Bijvank and Vis (2011), and the references therein for the related studies. Although results

from the existing inventory management literature can be generally applied to pre-positioning of the

reserved inventory, these studies usually base the optimization decision on performance measures

such as cost, service level, and profit. In demand surge responses, particularly those related to

humanitarian relief, the inventory management decision is primarily concerned with minimizing the

unmet demand. This is different from the objectives found in the traditional inventory literature.

We note that our study can be applied to the inventory planning for disaster preparedness.

The inventory pre-positioning has been a topic of interest in humanitarian organizations. Perhaps

the most related work in this literature are Salmerón and Apte (2010) and Rawls and Turnquist

(2010), where the former considers a stochastic model by incorporating uncertainties on disaster

magnitudes while the latter addresses the pre-positioning problem by considering the uncertainty

about if or where a natural disaster will occur. Neither, however, considers the time-evolving

dynamics of supply and demand processes. Natarajan and Swaminathan(2014) study the optimal

inventory procurement and replenishment in the presence of funding constraints under the context

of humanitarian operations. The objective of our paper is also consistent with the central mission

of humanitarian organizations to minimize the loss of life (Thomas 2003).

3 Model Setup

A central planner, such as a firm, a humanitarian organization, or a government, pre-positions

M units of RIs to N stocking locations such as warehouses, denoted by N = {1,2, ...,N}, to

anticipate sudden demand surges. Let Sn be the amount of RIs that the central planner allocates

to n. Then, S1 + S2 + · · · + SN = M . At time zero, demand surge(s) occur(s) at a subset of

locations η ⊆ N and then demands may arrive sequentially at these locations over time. The

central planner uses the pre-positioned RIs to respond to the demand surge(s) within a certain

time interval [0, T ]. For example, in the disaster response stage, the first 72 hours are crucial for
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the humanitarian organizations/governments to plan and carry out the relief process (Duran et

al., 2011); according to Centers for Disease Control and Prevention and American Water Works

Association (2012), after the maximum respond time, large-scale international rescue teams arrive

and meet all victims’ needs. Suppose one unit of demand requires one unit of RI, and the demand

is lost if he/she does not immediately receive the RI. The central planner needs to decide the

allocation and deployment of the RIs before and after the surge(s) occur(s).

We assume that the amount of RIs available for deployment at a location is uncertain and

depends on where the demand surge(s) occur(s). In general, the loss of RIs are mainly caused

by two factors: bad management (e.g., mis-storage or misplacement) during the regular time, and

the demand surge itself. At location n, let νn ∈ [0, 1] denote the fraction of RIs available in the

regular time due to the first factor and αn ∈ [0, 1] be the fraction of RIs that would survive after

the occurrence of demand surge. Then, the fraction of RIs available for deployment at location n

given the set of demand surge locations η, denoted by νηn ∈ [0, 1], can be expressed as νηn = νn −

νn (1− αn) 1(n ∈ η), where 1(·) is the indicator function. When νn = 1, νηn = 1−(1− αn) 1(n ∈ η)

and the loss of RIs only depends on whether the demand surge has occurred at location n. When

αn = 1, νηn = νn and the loss of RIs is only due to the inventory mis-management in the regular

time. Given the RI allocation in the pre-positioning stage, S, and the set of affected locations, η,

denote sηmn as the amount of RI deployed from the stocking location m to affected location n. Then

sηmn = 0 for n /∈ η1 and
∑

n∈η s
η
mn = νηmSm, m ∈ N . Denote s = (sηmn)N×N as the deployment

policy given η and the pre-positioning policy S. Figure 1 illustrates the sequence of events regarding

the dynamics of RI pre-positioning and supply before and during the demand surge.

time
Pre‐positioning 
of reserved 
inventories

Demand surges occur 
at a set of  locations

Demand arrives 
continuously over time at 
the affected locations

Reserved inventories arrive 
in lump sum at different 
time epochs at different 
locations  End of local response 

to demand surge

Deployment of 
reserved 
inventories

0 T

Pre-positioning 
stage

Deployment stage

Figure 1: The Dynamics of RIs Before and After the Demand Surge

Our objective is to minimize the expected total unmet demand within the maximum response

time T . Huang et al. (2016) consider a similar objective that maximizes the total demand that can

1It is obvious that deploying RIs to a location with no demand surge is suboptimal, therefore, sηmn = 0 for n /∈ η.
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be met immediately. Given deployment policy s, denote the expected total unmet demand up to

time T as Lηd(s|S) ≡ Lηd(s). Then, at the deployment stage, the central planner solves the following

optimization problem for the optimal deployment policy s∗,

(D) Min
s
Lηd(s) (1)

s.t.
∑
n∈η

sηmn = νηmSm,∀η ⊆ N ,m ∈ N ,

sηmn ≥ 0,∀η ⊆ N ,m,n ∈ N .

Let Lp(S) = Eη
[
Lηd(s

∗)
]

be the expected total unmet demand up to time T under the optimal

deployment policy. At the pre-positioning stage, the central planner solves for the optimal pre-

positioning vector S∗,

(P) L∗(M) = Min
S
Lp(S),

s.t.

N∑
n=1

Sn = M,Sn ≥ 0,∀n ∈ N ,

where L∗(M) is the minimum expected total unmet demand given the total number of RIs.

Demand Surge and Time-evolving Process

Suppose conditioning on that some demand surges occur at time zero, the probability that they

simultaneously occur at a set of locations η is Pη, η ⊆ N . Denote

Π =

P

∣∣∣∣∣ ∑
η⊆N

Pη = 1;Pη ≥ 0


as the set of all possible demand surge distribution Ps.2 Clearly, Π is a convex and compact subset

of R2N . Here, we abuse the use of notation and let η also be the random variable defined on

(N , 2N ,P) representing the set of affected locations given that some demand surge has actually

occurred. Once a demand surge has occurred at a location, it may result in different scenarios.

Without loss of generality, we assume a single scenario setting where the magnitude of demand surge

is fixed. The results also hold under the multiple scenarios where the demand-surge magnitude

has multiple levels. We refer the readers to an earlier version of this paper for the detail of

the multiple scenario setting. Let (X ,F ,P) be a measurable space with probability measure P.

Denote Dn : [0, T ] × X → [0,∞) as a measurable mapping representing the cumulative demand

process at location n and Fn
t = σ{Dn(s), 0 ≤ s ≤ t} as the filtration generated by Dn(t). Let

2Here, we assume the demand surge has occurred at at least one location, that is, P(∅) = 0. This is because both
pre-positioning and deployment decisions are made to reduce the demand loss during the surge, when there is no
demand surge, i.e., η = ∅, the pre-positioning and deployment decisions become irrelevant.
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F = σ{∪n∈NFn
T }. Then, Dn(t) is a random variable representing the cumulative number of

demand arrivals up to time t if the surge occurs at n, and {Dn(t), t ∈ [0, T ]} is a continuous-time

stochastic process defined on the common measurable space (X ,F ,P) with positive increments.

We further assume that Dn(t) has a density function on a continuous support. Examples of such

stochastic processes include Gamma processes and log-normal processes, etc. Similar to Huang et

al. (2016), we do not assume any parametric forms of the demand process in our analysis. For

any time epoch t ∈ [0, T ], Dn(t) has a finite mean µn(t) and a finite standard deviation σn(t). We

also assume the boundary condition Dn(0) = 0 almost everywhere (a.e.). Thus, µn(0) = 0 and

σn(0) = 0. Table 1 summarizes the frequently used notations.

4 Deployment Stage

In this section, we first characterize the expected total unmet demand and discuss its properties

using a ranking function that is specific to the set of affected locations. Next, we discuss the impact

of delivery lead times on the expected total unmet demand and the optimal deployment policy.

Last, we discuss the impact of demand process on the expected total unmet demand.

4.1 Properties of Expected Total Unmet Demand and Optimal Deployment
Policy

At time zero, when a demand surge occurs at location n, n ∈ η, we assume that other locations

immediately deploy their RIs according to the deployment policy s.3 Denote lmn as the shortest

delivery lead time from location m to n. We assume that lmn is deterministic, lnn = 0 and lmn > 0

for all n 6= m, and the delivery lead times are symmetric: lnm = lmn. Without loss of generality,

we also assume the delivery lead time is the shortest time among all possible delivery routes; that

is, lmn ≤ lmk + lkn, for all m,n,k ∈ N . Let l ≡ (lnm)N×N be the delivery lead time matrix for all

locations. We define the following ranking functions to characterize the deployment process.

Location ranking function. Given n ∈ N , let n(k) be the location that has the kth shortest

delivery lead time to n, k ∈ (1, 2, · · · , N) (namely, the location ranking function). If there is a tie

among the lead times, then the ranking of the tied locations can be arbitrary.4 Naturally, n(1) = n;

the location with the shortest delivery time to n is n itself, with a delivery lead time of lnn = 0. To

facilitate our analysis, we define an artificial location ranked as the (N+1)th fastest to any location

3This strategy minimizes the total unmet demand with respect to any realized sample path of the demand arrival
process so long as the delivered items at each location arrive in the same sequence as they are deployed. For the sake
of space saving, we do not include the model and proofs of this result in the paper.

4The arbitrary assignment of tied locations will allow us to obtain one expression of the unmet demand given a
deployment policy. However, it will not affect the value of the number of unmet demand.

8



Table 1: Summary of Frequently Used Notations

N number of locations stockpiling the reserved inventory (RI)
M total amount of reserved inventories
T maximum response time
N inventory stockpiling location set {1,2, . . . ,N}
m,n location indices, m,n ∈ N
η a subset of N representing the set of the affected locations
νηn the fraction of RIs available for deployment at location n
νn the fraction of RIs available in the regular periods at location n
αn the fraction of RIs that would survive if demand surge occurs at location n
lmn = lnm shortest delivery lead time from m/n to n/m, lnn = 0
l delivery lead time matrix (lmn)N×N
n(k) ranking function, the kth fastest delivery location to n

n(1) = n and 0 = ln(1)n ≤ ln(2)n ≤ · · · < ln(N)n ≤ ln(N+1)n ≡ T .

(when there is a tie among the delivery lead times, the ranking of tied locations
can be arbitrary)

n−1(m) the inverse function of n(k); if n(k) = m, then n−1(m) = k
RN+ N -dimension non-negative real-value vector space [0,∞)N

Sm reserved inventories at location m
S the pre-positioning vector of reserved inventories (S1, S2, ...SN)
S∗ optimal pre-positioning vector of reserved inventories (S∗1, S

∗
2, ...S

∗
N)

sηmn the amount of RIs deployed from m to n when demand surges
occur at the set of locations η

s the deployment matrix given the set of affected locations η, s = (sηmn)N×N
s∗ the optimal deployment matrix given the set of affected locations η, s = (sη∗mn)N×N
Pη probability of demand surge occurring at location set η conditioning on that surges

have actually occurred, 0 < Pη < 1,
∑

η⊆N Pη = 1

P conditional demand surge probability distribution (Pη)
Dn(t) cumulative demand up to time t given that a surge has occurred at location n;

Dn(0) = 0
µn(t), σn(t) mean and standard deviation of Dn(t); µn(0) = 0, σn(0) = 0
D(n, k) cumulative demand up to the end of the kth time bucket at location n
Dnk number of demand arrived during the kth time bucket [ln(k)n, ln(k+1)n) at location n

Lnk unmet demand up to time ln(k+1)n at location n; Ln0 = 0

Lηd(s) expected total unmet demand up to time T given the set of demand surge locations η
and deployment policy s

Lp(S) expected total unmet demand up to time T under the optimal deployment
given RI allocation S

L∗(M) expected total unmet demand up to time T under the optimal allocation S∗
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n ∈ N , and let ln(N+1)n ≡ T .5 For any location n, the ranking function determines the sequence of

supply arrivals, 0 = ln(1)n < ln(2)n ≤ ln(3)n ≤ · · · ≤ ln(N)n ≤ ln(N+1)n ≡ T . For example, consider

the ranking function for location 1, by definition 1(1) = 1. If 1(2) = 4, then the location with the

2nd shortest delivery lead time to 1 is 4 and it has a delivery lead time l41.

Ranking index function. Define n−1(m), n,m ∈ N as the inverse function of n(k) (namely, the

ranking index function). This generates a ranking index of m with respect to n, according to the

ordering of the delivery lead times required to deliver RIs to n from all locations. Following the

aforementioned example, we have 1−1(1) = 1 and 1−1(4) = 2.

Given deployment policy s, when a demand surge occurs at location n ∈ η, RIs that are pre-

positioned at n, sηnn, are immediately used to satisfy the arriving demands. In the meantime, other

locations deliver their pre-positioned RIs to n. When a delivery arrives, the total amount of RIs

available at n would increase by a lump sum that equals the total amount of RIs that has just

arrived. Thus, the supply-demand matching process at a specific surge location n can be divided

into N time buckets with the kth bucket defined as [ln(k)n, ln(k+1)n), k = 1, 2, · · · , N , which is the

time interval between the arrival of the kth and (k + 1)th delivery to n. In such way, the total

amount of RIs that can be used to satisfy the arrival demands at n within a given time bucket only

depends on the inventory level at the beginning of that time bucket after the delivery has arrived.

Denote Dnk as the number of demand arrivals at n that need the immediate RI supply within the

kth time bucket, and let Dn0 = 0; denote D (n, k) as the cumulative demand up to the end of the

kth time bucket. Then D (n, k) = Dn(ln(k+1)n) and

Dnk = D (n, k)−D (n, k − 1) ≥ 0 a.e..

If the available RIs at the beginning of a time bucket cannot meet all the demand arrivals within

that time bucket, those who do not receive the RIs will be lost. Note that the terms unmet demand

and loss are sometimes used interchangeably. Thus, the total unmet demand can be characterized

by discretizing the supply-demand matching process into each time bucket.

Denote s(n) =
(
sn(1)n, sn(2)n, · · · , sn(N)n

)
as the RI deployment vector with the elements sorted

according to the ranking of the delivery lead times to n in ascending order. In this section, we drop

the superscript η on sηmn for simplicity. Within the first time bucket [ln(1)n, ln(2)n) = [0, ln(2)n), only

the RIs at n, sn(1)n = snn units is available. Similarly, within the second time bucket [ln(2)n, ln(3)n),

only the RIs at n (if any are left from the previous period) plus the RIs delivered from n(2) are

available; in this case,
[
sn(1)n −D (n, 1)

]+
+ sn(2)n units are available, where x+ = max(x, 0).

5If the transportation infrastructure from m to n is totally destroyed, then n is inaccessible to m and thus, we
let lmn ≡ T (recall that T is the maximal response time).
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Let Lnk , k = 0, 1, · · · , N be the total unmet demand up to time ln(k+1)n at n, and Ln0 = 0.

Then, it can be computed recursively,

Ln0 = 0 and Lnk =

[
D (n, k)− Lnk−1 −

k∑
i=1

sn(i)n

]+

+ Lnk−1, ∀k ∈ {1, 2, · · · , N},n ∈ η

and expressed in the following closed form:

Lnk = max
0≤i≤k

{
D (n, i)−

i∑
v=1

sn(v)n

}
, ∀k ∈ {1, 2, · · · , N},n ∈ η.

Moreover, Lnk is jointly convex and supermodular in s(n) on RN+ and coordinatewise decreasing

in smn, m ∈ N . The closed form expression of Lnk enables us to derive Lηd(s), the expected total

unmet demand given the deployment policy s, as stated in (1):

Lηd(s) =
∑
n∈η

EP

[
max

0≤k≤N

{
D (n, k)−

k∑
v=1

sn(v)n

}]
.

To facilitate the further analysis, we define

0∑
u=1

au = 0,
i∑

u=i+1

au = 0, and
i∑

u=r+1

au = −
r∑

u=i+1

au if r > i,

for a given sequence of real numbers {au}∞u=1. Define πη(i), i = 1, 2, ... as a set of locations with

the ith largest shadow price under the optimal deployment policy, and (πη)−1 (m) as the rank of

the shadow price at location m. (πη)−1 (m) = i, m ∈ N , if and only if m ∈ πη(i). The following

proposition summarizes the structure of the optimal deployment policy.

Proposition 1. The optimal deployment policy satisfies (1) πη(1) ⊆ η; (2) for any n ∈ πη(1), we

have s∗nn = Sn; (3) for any m ∈ πη(i), s∗mn > 0 only if (πη)−1 (n) ≤ i; and (4) given any affected

location n ∈ η, for all k such that s∗n(k)n > 0, (πη)−1 (n(k)) is increasing in k.

Proposition 1 provides the central planner some information about the priority level (or impor-

tance level) of RIs at different locations. The first statement of Proposition 1 shows that the set of

locations with the largest shadow price (highest priority) is a subset of the affected locations. The

second statement implies that those affected locations with the largest shadow price keep all their

own RIs and do not deploy anything to other affected locations. Note that the affected locations

that are not in this subset may still deploy some RIs to other affected locations under optimality.

The third statement indicates that a deployment can only happen from one location with a smaller

shadow price to another location with a larger shadow price. The last statement shows that when

RIs must be deployed from multiple source locations to one affected location, those deployments

must be arranged in a descending order according to the source locations’ shadow prices.
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4.2 Impact of Delivery Lead Time on Optimal Deployment Policy

For any demand surge location n ∈ η, if the delivery lead time lmn increases, the cumulative

demand up to the (n−1(m) − 1)th time bucket, D(n,n−1(m) − 1) increases. Thus, one would

expect that the expected unmet demand would increase. As a result, one would also expect that it

is optimal to send more RIs to n for deployments that arrive earlier than lmn to cover the demand

up to the (n−1(m)− 1)th time bucket and less for those that arrive at lmn or later. However, this

statement is not always true. To see this, we present the impact of the delivery lead time on the

expected total unmet demand and its first-order derivatives with respect to any deployment policy

in the following Proposition 2. We then show the impact of the delivery lead time on both the

optimal expected total unmet demand and the optimal deployment policy in Proposition 3.

Proposition 2. When demand surge occurs at the location set η, given n ∈ η, (1) the expected total

unmet demand Lηd(s) is increasing in lmn, (2) the marginal expected total unmet demand,
∂Lηd(s)

∂sn(i)n
,

is decreasing in lmn for all i = 1, ...,n−1(m) − 1 but increasing in lmn for all i = n−1(m), ..., N ,

and (3) when lmn increases, the change in
∂Lηd(s)

∂sn(i)n
is decreasing in both i = 1, ...,n−1(m) − 1 and

i = n−1(m), ..., N .

The first statement of Proposition 2 shows that when the delivery lead time lmn increases, the

expected loss would increase because the cumulative demand D(n,n−1(m) − 1) increases for any

sample path. The second statement implies that when the delivery from a location m to an affected

location n is lengthened, those RIs delivered earlier from other locations become more important

(because they need to cover demands in a longer time span) while those RIs delivered later from

other locations become less important (because they only need to cover demands in a shorter time

span). The third statement indicates that lengthening leadtime lmn has a larger impact on those

deployments happening nearby the deployment from m to n than those farther away from it. This

is because the deployments from a closer location are more likely to be used as lmn increases,

whereas those from a farther location are less likely to be used. In other words, as lmn increases,

the deployments arriving before lmn become more important and those arriving at or later than

lmn become less important. This impact, however, decreases as the locations are ranked away from

m.

The monotonic impact of the delivery lead times on the expected total unmet demand under the

optimal deployment policy can be characterized by adopting the stochastic comparison arguments.

Intuitively, the longer the delivery lead times, the larger and more uncertain the cumulative demand

up to the arrival of the RIs, and hence the larger the expected total unmet demand. However, it
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is notoriously difficult to examine the impact of the delivery lead times on the optimal deployment

policy because, despite the expected total unmet demand is convex that ensures the optimal solution

can be found by local search, we still need to evaluate and compare the change of the expected

total unmet demand in every feasible direction with respect to the change of the deployment policy.

The comparison of the change of the expected total unmet demand in different directions requires

additional mathematical properties besides joint convexity. However, the expected total unmet

demand, given an allocation policy Sm, m ∈ N , is neither supermodular nor submodular in the

deployment policy (the feasible domain of the deployment policy is not a sub-lattice and it cannot

be converted to a sub-lattice using simple linear transformations), and it is also not multimodular

in the deployment matrix and delivery lead times (see Altman et al. (2003) for the definition

of multimodularity) and cannot be converted to a multimodular function through simple linear

transformations. Consequently, we are only able to partially characterize the impact of the delivery

lead times on the optimal deployment policy by applying the second-order properties given in

Proposition 2.

Below, we provide the monotonicity result of the expected total unmet demand and the optimal

deployment policy with respect to the delivery lead times.

Proposition 3. Assume that demand surges occur at the location set η and for any location n ∈ η,

if the delivery lead time from m to n, lmn increases, (1) the optimal expected total unmet demand

Lηd(s
∗) increases. Moreover, if the optimal deployment policy is unique, then we have (2) either for

any location m′ that satisfies n−1(m′) < n−1(m), at least one of the optimal deployment quantities

s∗m′n increases, or for any location m′ that satisfies n−1(m′) ≥ n−1(m), at least one of the optimal

deployment quantities s∗m′n decreases, and (3) there exists a k < n−1(m) such that the cumulative

optimal deployment quantities
∑k

v=1 s
∗
n(v)n increases, and/or there exists a k ≥ n−1(m) such that

the cumulative optimal deployment quantities
∑k

v=1 s
∗
n(v)n decreases.

The first statement of Proposition 3 implies that the optimal expected total unmet demand

increases in the delivery lead times. This is because for any given deployment policy, when the

delivery lead time from location m to n increases, the demand in the (n−1(m) − 1)th bucket is

larger and hence the expected loss is higher. Moreover, the second statement suggests that if we

increase lmn, two cases may occur under optimality. One possibility is that when the delivery lead

time from location m to n increases, then the delivery quantity from some location m′ that is

closer to location n than m would increase. The increment is then used to cover the additional

demand in the (n−1(m) − 1)th bucket at n due to the increase of the delivery lead time lmn.
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Another possibility is that when the delivery lead time from location m to n increases, the delivery

quantity from some location m′ that is farther away from location n than m would decrease. This

is because the delivery quantities that arrive later than lmn has less value since the demand in the

n−1(m)th bucket decreases. Consequently, we can obtain the similar result with respect to the

cumulative deployment quantities at the surge location n when lmn increases, which is stated in

the last statement of Proposition 3.

Recall that the expected total unmet demand Lηd can be fully characterized by the cumulative

demand up to the kth time bucket D(n, k), k = 1, ..., T + 1, and the location ranking functions

of the affected locations. As a result, analyzing the impact of delivery lead times is equivalent

to analyzing the demand processes and the location ranking functions. This is because one can

normalize all lead times such that the time length between successive RI arrivals is one and rescale

the demand process so that the demand in each time bucket is equivalent to the demand in the

corresponding original unnormalized time unit. Thus, below we focus on analyzing the impact of

demand processes.

4.3 Impact of Demand Processes on the Expected Total Unmet Demand

For any demand surge location n ∈ η, the expected total unmet demand Lnd is an increasing and

convex function of D(n, i), i = 1, 2...N , the cumulative demand up to the end of the ith time

bucket. Thus, the expected total unmet demand increases if more demands arrive earlier or the

demand arrival process is more uncertain. To see this, we first provide the following definition.

Definition 1. For any two continuous-time stochastic processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}6,

1. the stochastic process {X(t), t ≥ 0} first-order stochastically dominates the stochastic process

{Y (t), t ≥ 0}, i.e., X(·) �st Y (·), if and only if given any t = ξ, random variables X(ξ) and

Y (ξ) satisfy X(ξ) ≥st Y (ξ);

2. the stochastic process {X(t), t ≥ 0} second-convex-order stochastically dominates the stochas-

tic process {Y (t), t ≥ 0}, i.e., X(·) �cx Y (·), if and only if given any t = ξ, random variables

X(ξ) and Y (ξ) satisfy X(ξ) ≥cx Y (ξ);

3. the stochastic process {X(t), t ≥ 0} increasingly second-convex-order stochastically dominates

the stochastic process {Y (t), t ≥ 0}, i.e., X(·) �icx Y (·), if and only if given any t = ξ,

random variables X(ξ) and Y (ξ) satisfy X(ξ) ≥icx Y (ξ).7

6See Shaked and Shanthikumar (2006) for the definition of ≥st, ≥cx and ≥icx.
7Alternatively, parts (1) - (3) can be defined using sample path arguments. Take part 1 for example: X(·) �st Y (·),
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Suppose the demand surge occurs at n ∈ η. It can be easily shown that if two demand processes

D1
n(·) and D2

n(·) satisfy D1
n(·) �st D2

n(·), D1
n(·) �cx D2

n(·), or D1
n(·) �icx D2

n(·), Lηd(s
∗) is larger

under D1
n(·) than under D2

n(·). In particular, when demand arrives earlier, the demand process

is stochastically larger and hence, Lηd(s
∗) is larger. Let κn ≥ 0 be the largest possible cumulative

demand up to time T , that is,

κn = inf{κ|Dn(T ) ≤ κ a.e.}.

Then, the expected total unmet demand Lηd(s
∗) takes the largest value

∑
n∈η [κn − s∗nn]+ when the

demands at the affected locations occur only at time zero and equals κn. This provides an upper

bound for Lηd(s
∗) when the support of the demand process is known.

Lηd(s
∗) is also larger when the demand process is more uncertain. By applying Lemma 1 from

Feng and Shanthikumar (2017), we can construct the following demand process to generate the

largest uncertainty while fixing µn(t), the mean of the cumulative demand process: Dn(t) is a

demand process where customers arrive in a lump sum of size κn (the largest possible demand size)

with the probability that the demand arrives before t is µn(t)/κn. By constructing this process,

Lηd(s
∗) takes the largest value

∑
n∈η

∫ T
0

(
κn −

∑k(t)
v=1 s

∗
n(v)n

)+
dµn(t)/κn, where k(t) ∈ {1, 2, 3...}

and satisfies ln(k(t))n ≤ t < ln(k(t)+1)n. This provides an upper bound for Lηd(s
∗) when the mean of

the demand process is known.

For the rest of the paper, we assume that the demand process {Dn(t), t ≥ 0} at location n ∈ η

is independent of η, the set of demand surge locations. We have the following result.

Proposition 4. For any two sets of affected locations η ⊆ η′ ⊆ N , we must have Lηd(s
∗) ≤ Lη

′

d (s∗).

The following corollary provides comparisons of the expected total unmet demand when the

demand processes can be transformed from one to another by rescaling the time t.

Corollary 1. For any two demand processes D̄1
n(t) and D̄2

n(t), if there exist two increasing func-

tions g1(t) and g2(t), g1(t) ≥ g2(t) ≥ 0 for all t ≥ 0 such that for some demand process D̄n(t),

D̄1
n(t) has the same distribution as D̄n(g1(t)) and D̄2

n(t) has the same distribution as D̄n(g2(t)) for

all t ≥ 0, then Lηd(s
∗) is larger under D̄1

n(t) than under D̄2
n(t).

5 Pre-positioning Stage

In this section, we discuss the allocation of RIs before demand surge occurs. We identify the

conditions under which the optimal allocation is coordinate-wise increasing in the total amount of

if and only if given any t = ξ, there exist random variable Xξ that has the same distribution as X(ξ) and random
variable Yξ that has the same distribution as Y (ξ) such that Xξ ≥ Yξ in sample path.
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RIs. We also introduce the first order stochastic dominance (FOSD) on the probability distribution

of the surge locations and show that the expected total unmet demand increases in the order of

FOSD on the demand surge occurring probabilities.

5.1 The Optimal RI Allocation and Its Monotonicity Property

According to the constrained deployment problem (D) (see §3 and §4), Lηd(s
∗) is jointly convex

in S and coordinatewise decreasing in Sn, n ∈ N . Note that at the pre-positioning stage, before

the demand surge occurs, the expected total unmet demand, Lp(S) = Eη
[
Lηd(s

∗)
]
, is a linear

combination of Lηd(s
∗). Thus, Lp(S) is also jointly convex in S and coordinatewise decreasing in

Sn, n ∈ N . Given an allocation policy, let λ = Eη [νηnπn] be the expected shadow price of location

n under the optimal deployment policy. Because the shadow prices are non-negative and Lηd(s
∗)

is jointly convex in S, it can be shown that L∗(M) = Lp(S∗) is always decreasing and convex in

M according to the constrained optimization problem (P). Thus, under optimality, the expected

total unmet demand is decreasing in the total amount of RIs. However, the marginal reduction of

the expected total unmet demand decreases as the number of RI increases.

Because Lp(S) is jointly convex in S, for the pre-positioning problem (P), the KKT condi-

tions are also sufficient conditions. Therefore, the shadow price under optimality λ∗ is a constant

independent of location n. The KKT conditions for the optimal allocation policy S∗ are

∂Lp(S∗)
∂Sn

= −λ∗ if S∗n > 0; and
∂Lp(S∗)
∂Sn

≥ −λ∗ if S∗n = 0.

Thus, under optimality, the locations that store positive amounts of RIs have identical partial

derivative values that equal the negative shadow price, i.e., −λ∗.

Below we provide sufficient conditions under which the optimal allocation is increasing in M ,

the total amount of RIs.

Proposition 5. The optimal allocation is coordinate-wise increasing in M if the following matrix
∂2Lp(S)
∂S1∂S1

· · · ∂2Lp(S)
∂S1∂SN

...
. . .

...
∂2Lp(S)
∂SN∂S1

· · · ∂2Lp(S)
∂SN∂SN


−1 ε

...
ε

 (2)

is element-wise non-negative for some ε > 0 and all S ≥ 0. In particular, the Hessian matrix of

Lp(S) satisfies the above sufficient condition if it is monotone8 for all S ≥ 0. Suppose demand surge

only occurs at one location; then there exists an optimal allocation policy that is coordinate-wise

8A matrix is monotone if its inverse is element-wise positive (see Mangasarian 1968 for equivalent definitions of
monotone matrices).
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increasing in M if there exists a set of vertical {0, 1} vectors uk, k = 1, ...,K such that the Hessian

matrix can be represented as (
∂2Lp(S)

∂S2
n

)
N×N

=

K∑
k=1

ckuku
′
k,

where u
′
k is the transpose of uk and ck > 0 for all k = 1, ...,K. Also, if S is a two dimensional

vector, there always exists an optimal allocation policy that is coordinate-wise increasing in M .

Proposition 5 provides sufficient conditions under which the optimal allocation policy is coordinate-

wise increasing in M . Note that Proposition 5 does not impose any (local) modularity conditions

on the objective function. Instead, the sufficient condition implies that all of the row vectors of

the inverse Hessian matrix lay in the half-space of the N -dimensional vector space, in which the

inner product of the row vectors to (1, ..., 1)1×N is non-negative. This condition is weaker than

the objective function being M \-convex, under which the inverse Hessian matrix is a diagonally

dominant M -matrix.

If demand surge occurs only at a single location, then it is optimal to deploy all units to the

demand surge location. Let Pn denote the probability of demand surge occurring at n. Then,

∂Lp(S)
∂Sn

can be explicitly expressed as

∂Lp(S)

∂Sn
= −

∑
m∈N

Pmν
m
n

N∑
k=m−1(n)

Prob

(
k∑

u=r+1

Dmu ≥
k∑

u=r+1

νmm(u)Sm(u),∀r = 0, 1, · · · , N

)
.

The sufficient condition becomes the row diagonally dominant property on the Hessian matrix. To

see this, consider {0, 1} column vectors uij (i 6= j) with the ith and jth elements equal to 1 and

the rest equal to 0, and uii with the ith element equal to 1 and the rest equal to zero. Then,(
∂2Lp(S)

∂S2
n

)
N×N

=
N∑

i,j=1

cijuiju
′
ij ,

where cij =
∂2Lp(S)
∂Si∂Sj

for i 6= j and cii =
∂2Lp(S)

∂S2
i
−
∑

j6=i
∂2Lp(S)
∂Si∂Sj

.

5.2 Demand Surge Occurring Probability

We start this subsection with a two-location hurricane strike example (N = {1,2}). There exist

various scenarios for the striking events. For the illustration purpose, we consider the following three

typical ones. In the first scenario (Scenario 1), the demand surge only occurs at either one location

with equal probability. That is, the demand surge probability distribution P1 is P 1
{1} = P 1

{2} = 1/2

and the hurricane only strikes either 1 or 2 but never both simultaneously. In the second scenario
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(Scenario 2), the demand surge may simultaneously occur at both locations with the demand surge

probability distribution P2 to be P 2
{1,2} = P 2

{1} = P 2
{2} = 1/3. That is, hurricane strikes either

1, or 2, or both simultaneously, with an equal chance. In the third scenario (Scenario 3), the

demand surges always simultaneously occur at both locations and the demand surge probability

distribution P3 is P 3
{1,2} = 1. That is, hurricane always simultaneously strikes locations 1 and 2.

It can be shown that, in this two-location example, as the demand surges occur more likely at more

locations, the minimum expected total unmet demand becomes larger.

In general, is it always true that the expected total unmet demand is higher if demand surges

are more likely to simultaneously occur at more locations? In order to answer this question,

we need to compare the expected total unmet demand under different demand surge probability

distributions, where the demand surge probability distributions are probability measures defined

on the class of subsets of locations. As such, in this section, we develop stochastic comparison

tools to compare probability distributions defined on sets. Specifically, we introduce the first order

stochastic dominance (�FOSD) for distributions defined on sets. We will show that this stochastic

order is parallel to that defined on real numbers in Shaked and Shanthilkumar (2006).

Below, we first provide the formal definition of the first order stochastic dominance for distri-

butions defined on sets. We then show some of its properties and apply them to the conditional

demand surge probability distributions to discuss their impact on the expected total unmet demand.

5.2.1 Definition of the First Order Stochastic Dominance for Distributions Defined
on Sets

Define a binary random variable for location i ∈ N , denoted by Xi, and let

Xi =

{
1, when demand surge occurs at i,
0, otherwise.

Then, for any subset of locations η ∈ 2N , the conditional probability distribution P = (Pη) ∈ Π

corresponds to an N dimensional 0-1 multivariate distribution (X1, ..., XN ), i.e.,

Pη = Prob(Xi = 1, i ∈ η;Xj = 0, j /∈ η).

Consequently, the distribution on set P captures the joint distribution of demand surges at all

locations. As a result, defining a stochastic order for distributions defined on sets is equivalent

to defining a multivariate order for random variables (X1, ..., XN ) defined on {0, 1}N . To better

present our insights, below we directly define the first order stochastic dominance on the conditional

probability distributions P ∈ Π. However, we may refer to P and (X1, ..., XN ) interchangeably in

the later discussion.
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We say that a real valued set function f defined on 2N is increasing if and only if for any

subsets S ⊆ T ∈ 2N , we have f(S) ≤ f(T ). The definition of the first order stochastic dominance

for distributions defined on sets is as follows.

Definition 2. For any conditional probability distributions P1 and P2 defined on 2N , P1 �FOSD
P2 if and only if for any increasing set function f defined on 2N , we have E

[
f |P1

]
≥ E

[
f |P2

]
.

Analogue to the first order stochastic dominance defined on real valued random variables in

Shaked and Shanthikumar (2006), Definition 2 provides an equivalent definition of the first order

stochastic dominance for random variables defined on sets.

Definition 2 also allows us to compare our FOSD order with the majorization orders defined in

Xu and Li (2000). In particular, our FOSD order implies the majorization order from the roots

(≥Tr) defined in Xu and Li (2000) (see Definition 2.1) since for any set K ⊆ N ,

fK(S) =

{
1, K ⊆ S,
0, otherwise,

is an increasing function defined on 2N . However, the reverse is not necessarily true. Con-

sider a three-location example with location set N = {1,2,3} and the following two conditional

distributions: P1(1) = P1(2) = P1(1,2) = P1(1,3) = P1(2,3) = 0.1, P1(3) = 0.09, and

P1(1,2,3) = 0.41; P2(1) = P2(2) = P1(1,3) = 0.2, P1(1,2) = P1(3) = 0, P1(2,3) = 0.1,

and P1(1,2,3) = 0.3. Then, we have P1 ≥Tr P2. However, consider the increasing function

f(S) =

{
1, S 6= {3},
0, S = {3},

under which E[f |P1] = 0.91 < E[f |P2] = 1. Thus, P1 is not FOSD larger than P2.

For any conditional probability distribution P ∈ Π, the majorization order from the roots in Xu

and Li (2000) is equivalent to the upper orthant order in Shaked and Shanthilkumar (2006) (see

equation 6.G.1) for the corresponding N dimensional 0-1 multivariate random variables. From the

above discussion, our FOSD order also implies the upper orthant order. Moreover, the marginal

distribution of (X1, ..., XN ) can be determined by P as Prob(Xi = 1) =
∑

i∈S,S⊆N P(S) for all

i ∈ N . For the multivariate distribution (X1, ..., XN ) with the same marginal distribution, our

FOSD order implies the positive quadrant order (PQD), see equations 9.A.1 and 9.A.15 in Shaked

and Shanthilkumar (2006).

To better understand whether one distribution FOSD dominates the other distribution defined

on sets, we first introduce two concepts, disaggregation and aggregation, for a given conditional

demand surge probability distribution.
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Definition 3. (Disaggregation) For any conditional demand surge probability distribution P ∈ Π,

a probability distribution P̄ is a disaggregation of P on the multiset of 2N if it satisfies Pη =
∑

i P̄ηi

for any η ⊆ N , where ηi is the ith duplicate of η and P̄ηi is its probability.

Disaggregation of a probability distribution basically keeps some event set unchanged but divide

the event’s probability into smaller ones. To illustrate, consider a disaggregation of P1 in the

aforementioned two-location hurricane strike example. Suppose the hurricane strike can be classified

into two event features: without flooding (denoted with superscript 1 on location set) and with

flooding (denoted with superscript 2 on location set). Then, the following distribution is an example

of disaggregation of P1: P̄ 1
{1}1 = 1/3, P̄ 1

{1}2 = 1/6, P̄ 1
{2}1 = 1/3 and P̄ 1

{2}2 = 1/6. In this way, 1/2,

the overall probability of striking location 1 or 2 is divided into 1/3 for the event without flooding

and 1/6 for the event with flooding.

We next introduce the concept aggregation.

Definition 4. (Aggregation) For any disaggregation Q, a conditional demand surge probability

distribution Q̂ is an aggregation of Q if for some partition {Σj , j = 1, 2, ...} of the multiset of 2N

we have Q̂∪ηi∈Σj
=
∑

ηi∈Σj
Qηi for all j = 1, 2, ....

Let us continue with the disaggregation result of the above two-location hurricane example.

Suppose people observe that hurricane with a flooding feature happens if and only if hurricane

strikes locations 1 and 2 simultaneously. Hence, there is no need to separate these two locations

for this scenario. One can use the union set {1,2} to record the affected locations for the events

with flooding feature. An aggregation of the disaggregation result in the foregoing two-location

hurricane example is ˆ̄P 1
{1,2} = P̄ 1

{1}2 + P̄ 1
{2}2 = 1/3, ˆ̄P 1

{1} = P̄ 1
{1}1 = 1/3 and ˆ̄P 1

{2} = P̄ 1
{2}1 = 1/3.

This aggregation result is exactly P2. Hence, we can say that P2 can be generated from P1, by

first disaggregation and then aggregation. Note that the outcome of conducting disaggregation

or aggregation operations may not be unique. That is, multiple distributions can be generated

through applying disaggregation-aggregation operations. The following proposition demonstrates

that the generated distribution is FOSD larger than the original distribution.

Proposition 6. For any P1,P2 ∈ Π, P1 �FOSD P2 if and only if P1 can be generated from P2 by

first applying disaggregation to P2 and then conducting aggregation over the disaggregation result.

That is, there exists some disaggregation and aggregation of P2 such that P1 = ˆ̄P2.

Proposition 6 implies that the conditional distribution that demand surges would occur at every

location is FOSD larger than any other distributions. If one conditional demand surge probability
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distribution is FOSD larger than another conditional demand surge probability distribution, then

the demand surges under the former distribution would occur simultaneously at more locations with

higher probabilities. This is the intuitive understanding of the stochastic comparison of two distribu-

tions defined on sets. In the foregoing two-location hurricane example, P3 �FOSD P2 �FOSD P1.

Moreover, the proof of Proposition 6 implies that the FOSD order can be represented by the

set of all simple transformations. Mathematically speaking, denote EK as a set function that takes

the value of one at K and zero at all other sets, i.e.,

EK(S) =

{
1, if S = K,
0, otherwise.

Tσ,ρ,δ∗(P) is a simple transformation of P if Tσ,ρ,δ∗(P) = P +
∑

S∈σ,T∈ρ,S⊂T δST (ET − ES) is a

probability distribution on 2N , where σ, ρ ⊆ 2N , σ ∩ ρ = ∅, and δ∗ = {δST |δST ≥ 0, S ∈ σ, T ∈ ρ}.

Define the set of all simple transformations as I =
{
Tσ,ρ,δ∗ |σ, ρ ∈ 2N , σ ∩ ρ = ∅, δ∗ ≥ 0

}
. Then,

P2 ≥FOSD P1 if and only if there exists a Tσ,ρ,δ∗ such that Tσ,ρ,δ∗(P1) = P2. Below, we illustrate

this simple transformation by referring back to the aforementioned two-location hurricane example.

let ρ = {{1,2}} be the singleton set that contains the set of two locations and σ = {{1}, {2}} the

set that contains two singleton sets of one location. Then, we have T = {1,2} and S = {1} or {2}.

The simple transformation between the demand surge probability distributions P1 and P2 can be

written as P2 = P1 + 1
6

(
E{1,2} − E{1}

)
+ 1

6

(
E{1,2} − E{2}

)
. For example,

P2
{1} = P1

{1} +

(
E{1,2}({1})− E{1}({1})

)
6

+

(
E{1,2}({1})− E{2}({1})

)
6

=
1

2
+

0− 1

6
+

0− 0

6
=

1

3
.

Similarly, we can get P3 = P2 + 1
3

(
E{1,2} − E{1}

)
+ 1

3

(
E{1,2} − E{2}

)
.

5.2.2 The Impact of Demand Surge Probability Distributions

We now apply the FOSD order defined by us for the distributions defined on sets to investigate the

impact of demand surge probability distributions on the expected total unmet demand. First, our

FOSD order also implies positive correlations of the 0-1 random variables X1, ..., XN .

Proposition 7. P1 �FOSD P2 implies that for any i1, i2, ..., im ∈ N ,

1. E[Πm
k=1Xik ] is larger under P1 than under P2.

2.
∑m

k=1Xik is stochastically larger (in the sense of the univariate first order stochastic dom-

inance defined in Shaked and Shanthilkumar 2006) under P1 than that under P2 for m =

1, ..., N .
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The proof is straightforward from the aggregation of the probability distributions and hence

is omitted here. Note that the functions h(xi1 , ..., xim) = xi1 ...xim , i1, i2, ..., im ∈ N is a class

of coordinate-wise increasing and supermodular functions defined on {0, 1}N . The first state-

ment of Proposition 7, P1 �FOSD P2 implies E[h(Xi1 , ..., Xim)|P1] ≥ E[h(Xi1 , ..., Xim)|P2] for

all i1, i2, ..., im ∈ N . Therefore, the FOSD order P1 �FOSD P2 implies E[g(X1, ..., XN )|P1] ≥

E[g(X1, ..., XN )|P2] for all gs defined on {0, 1}N that are linear combinations of the functions

h(xi1 , ..., xim), i1, i2, ..., im ∈ N with non-negative coefficients.

While the conventional correlation of random variables emphasizes on Xis simultaneously taking

a smaller value 0 and a larger value 1, our FOSD order emphasizes only on the event that the

random variables Xis simultaneously taking the value of 1. This difference allows us to capture

the increasing of the expected loss when demand surge occurs at more locations. The second

statement of Proposition 7 implies that if the conditional demand surge probability distributions

satisfy P1 �FOSD P2, the probability that demand surge occurs at multiple locations is larger

under P1.

When P is the conditional demand surge probability distribution, the probability of no disaster

occurring is zero, that is, P(X1 = 0, ..., XN = 0) = 0. Therefore, if P1 �FOSD P2, then there

exists a pair Xi and Xj such that the covariance Cov(Xi, Xj), the correlation Corr(Xi, Xj), and

the conditional probability P (Xi = 1|Xj = 1) are larger under P1 than those under P2. When

N = 2, we have the following properties regarding the FOSD order.

Proposition 8. If N = 2 and P1 �FOSD P2 are two conditional demand surge probability distri-

butions, Cov(X1, X2), Corr(X1, X2), and P (X1 = 1|X2 = 1) are larger under P1 than those under

P2.

The proof is straightforward through the computation of each term and thus is omitted here.

Propositions 4 and 6 jointly lead to the following result.

Proposition 9. For any two demand surge occurring probabilities P1 �FOSD P2, we have L∗(M)

is larger under P1 than under P2.

Proposition 9 implies that if demand surges tend to simultaneously occur at more locations, it

is more difficult to satisfy demands. This result can be easily extended to the distributions which

are mixtures of P1 and P2. Consider a mixture distribution Pα = αP1 + (1− α)P2 with a scalar

α ∈ [0, 1]. Then, for any two distributions P1 �FOSD P2, Pα is stochastically larger in α in the

FOSD order, i.e., Pα1 �FOSD Pα2 for all α1 > α2. This coupled with Proposition 9 leads to
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the following Corollary 2, where we explicitly write L∗(M,P) to replace L∗(M) for the purpose of

clarity.

Corollary 2. For any conditional demand surge probability distributions P1 �FOSD P2, P1,P2 ∈

Π, L∗(M,Pα) is increasing in α.

6 Conclusion

In this study, we examine both the optimal pre-positioning and the optimal deployment decisions

of the reserved inventories within a supply network. Our aim is to minimize the expected total

unmet demand during a demand surge. We incorporate the dynamics of both the supply and

demand processes by considering the demand processes as general stochastic processes and the

supply processes as sequences of the arrival epochs of the RIs transhipped from the unaffected

locations to affected locations within the supply network. We then derive the expected total unmet

demand and describe its properties.

For the deployment problem (after the occurrence of the demand surge), we show that the

optimal deployment policy is a ‘nested’-type policy with respect to the shadow price of each location.

A subset of the affected locations have the highest shadow prices. Under optimality, they keep their

inventory and only deploy to themselves. Affected locations receive the RIs from the non-affected

locations in the decreasing order of their shadow prices.

For the pre-positioning decision problem, the optimal allocation policy balances the expected

shadow price of each location. By stochastic comparison, we show that the expected total unmet

demand is larger if any of the following is true: the demand surges occur simultaneously at more

locations, the probability distribution of the demand surge location is more dispersed, the post-

surge delivery takes a longer time, more demand arrives at the early times, or the demand has a

higher volatility. These findings, we believe, have deepened our understanding of the operations of

RI pre-positioning and deployment.

Acknowledgments

We are grateful to the departmental editor Professor Qi Feng, an anonymous senior editor, and

two anonymous referees for very helpful comments and suggestions. Dr. Pengfei Guo acknowledges

the financial support by the Research Grants Council of Hong Kong (GRF grant number: PolyU

15508518). Dr. Fang Liu was supported by the Ministry of Education, Singapore under grant

number AcRF M4011199.010. The corresponding author, Dr. Yulan Wang is also affiliated with

23



the Hong Kong Polytechnic University Shenzhen Research Institute and acknowledges the financial

supports from the National Natural Science Foundation of China (Grant No. 71971184) and the

Research Grants Council of Hong Kong (RGC Reference No. PolyU 598813).

References

Altman, E., B. Gaujal, and A. Hordijk. 2003. Discrete-event control of stochastic networks:

multimodularity and regularity. Springer, Berlin.

Archibald, T. W., S.A.E. Sassen. and L. C. Thomas. 1997. An optimal policy for a two depot

inventory problem with stock transfer. Management Science, 43, 173-183.
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Online Appendix

“Pre-positioning and Deployment of Reserved Inventories in a Supply Network:

Structural Properties ”

In the proofs, for notational simplicity, we some times use the non-boldface letters to represent

the location index of the corresponding boldface letters.

Proof of Proposition 1: We need the following two lemmas to prove Proposition 1.

Lemma 1. ∂Lηd(s)/∂smn exists if and only if

Prob

(
k∑
u=r

Dnu =

k∑
u=r

sn(u)n

)
= 0,

for all r = 1, ..., N and k = 0, ..., N . If ∂Lηd(s)/∂smn exists, then it has the following expression:

∂Lηd(s)

∂smn
= −

N∑
k=n−1(m)

Prob

(
k∑

u=r+1

Dnu >

k∑
u=r+1

sn(u)n,∀r = 0, 1, · · · , N

)
for all n ∈ η (3)

and ∂Lηd(s)/∂smn = 0 for all n ∈ N\η. In addition, if Dn(t) has a positive density function, then

∂2Lηd(s)

∂s2
mn

≥
∂2Lηd(s)

∂smn∂sm′n
,∀m,m′ ∈ N ,m 6= m′.

Lemma 1 illustrates how the expected total unmet demand would change with respect to the

deployment quantity from m to n. When the deployment quantity increases, the expected total

unmet demand is reduced by the probability that this quantity is used in some time bucket after its

arrival at location n, which can be decomposed into the sum of probabilities that it is used in the

kth time bucket for k ≥ n−1(m). Moreover, the second order property implies that the marginal

effect of using RIs at location m to relieve demand at location n is more sensitive to the change

of the inventory amount at m itself than that at another location m
′
. This second order property

can be utilized to show the monotonicity results for the optimal allocation decision in the latter

part of the paper.

Proof of Lemma 1: Because Lηd(s) is the sum of the expected total unmet demand at each

affected location n, by definition, the left and right derivative of Lηd(s) with respect to smn are

∂Lη−d (s)

∂smn
= −

N∑
k=n−1(m)

Prob

(
D(n, k)−

k∑
u=1

sn(u)n ≥ D(n, r)−
r∑

u=1

sn(u)n, ∀ r = 0, 1, 2, ...N

)

and

∂Lη+
d (s)

∂smn
= −

N∑
k=n−1(m)

Prob

(
D(n, k)−

k∑
u=1

sn(u)n > D(n, r)−
r∑

u=1

sn(u)n, ∀ r = 0, 1, 2, ...N

)
,

1
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respectively. Thus,
∂Lη−d (s)

∂smn
=

∂Lη+
d (s)

∂smn
if and only if

Prob

(
k∑
u=r

Dnu =
k∑
u=r

sn(u)n

)
= 0,

for all r = 1, ..., N and k = 0, ..., N . If
∂Lηd(s)

∂smn
exists,

∂Lηd(s)

∂smn
= −

N∑
k=n−1(m)

Prob

(
D(n, k)−

k∑
u=1

sn(u)n ≥ D(n, r)−
r∑

u=1

sn(u)n, ∀ r = 0, 1, 2, ...N

)

= −
N∑

k=n−1(m)

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=1

sn(u)n −
r∑

u=1

sn(u)n, ∀ r = 0, 1, 2, ...N

)

= −
N∑

k=n−1(m)

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

sn(u)n,∀ r = 0, 1, 2, ...N

)
.

We now show how to prove the second-order derivative relationship. For any s(n) ≥ 0, a scalar

δ ≥ 0, and a sample path of {Dn(t), 0 ≤ t ≤ T}, n ∈ η, consider locations m,m′ ∈ N and m′ 6= m.

Define sm(n) =
(
smn(1)n, s

m
n(2)n, . . . , s

m
n(N)n

)
, where smn(v)n = sn(v)n +δ if n(v) = m and smn(v)n = sn(v)n

if n(v) 6= m; sm
′

(n) =
(
sm
′

n(1)n, s
m′

n(2)n, . . . , s
m′

n(N)n

)
, where sm

′

n(v′)n = sn(v′)n + δ if n(v′) = m′ and

sm
′

n(v′)n = sn(v′)n if n(v′) 6= m′.

With respect to location n, the rankings of locations m and m′ are either (1) n−1(m′) < n−1(m),

or (2) n−1(m′) > n−1(m). Now, first consider the case that n−1(m′) < n−1(m). For any integer

r ∈ [0, N ] and k ≥ n−1(m), we have the following three scenarios.

(i). r ≤ n−1(m′). Then
∑k

u=r+1 s
m
n(u)n =

∑k
u=r+1 s

m′

n(u)n. Thus, D(n, k)−D(n, r) ≥
∑k

u=r+1 s
m
n(u)n

implies D(n, k)−D(n, r) ≥
∑k

u=r+1 s
m′

n(u)n.

(ii). n−1(m′) < r ≤ n−1(m). Then
∑k

u=r+1 s
m
n(u)n =

∑k
u=r+1 s

m′

n(u)n+δ. Thus, D(n, k)−D(n, r) ≥∑k
u=r+1 s

m
n(u)n implies D(n, k)−D(n, r) ≥

∑k
u=r+1 s

m′

n(u)n.

(iii). r > n−1(m). Then
∑k

u=r+1 s
m
n(u)n =

∑k
u=r+1 s

m′

n(u)n. Thus, D(n, k)−D(n, r) ≥
∑k

u=r+1 s
m
n(u)n

implies D(n, k)−D(n, r) ≥
∑k

u=r+1 s
m′

n(u)n.

Therefore, the event
{
D(n, k)−D(n, r) ≥

∑k
u=r+1 s

m
n(u)n,∀r = 0, 1, ..., N

}
is a subset of the event{

D(n, k)−D(n, r) ≥
∑k

u=r+1 s
m′

n(u)n,∀r = 0, 1, ..., N
}

. As this holds in general for any given sam-

ple path, for any k ≥ n−1(m),

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

smn(u)n, ∀r = 0, 1, ..., N

)

≤ Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

sm
′

n(u)n,∀r = 0, 1, ..., N

)
.
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Next, consider the case that n−1(m′) > n−1(m). Note that

N∑
k=n−1(m)

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

sn(u)n,∀r = 0, 1, ..., N

)

=
N∑

k=n−1(m)

Prob

(
D(n, k)−

k∑
v=1

sn(v)n ≥ D(n, r)−
r∑

v=1

sn(v)n,∀r = 0, 1, ..., N

)

= Prob

(
arg max

0≤k≤N

{
D(n, k)−

k∑
v=1

sn(v)n

}
⊆
{
n−1(m), · · · , N

})

and the fact that
∑k

v=1 s
m
n(v)n ≥

∑k
v=1 s

m′

n(v)n for all k ≥ n−1(m), and
∑k

v=1 s
m
n(v)n =

∑k
v=1 s

m′

n(v)n

for all k < n−1(m). Thus, D(n, k)−
∑k

v=1 s
m
n(v)n ≤ D(n, k)−

∑k
v=1 s

m′

n(v)n for all k ≥ n−1(m), and

D(n, k)−
∑k

v=1 s
m
n(v)n = D(n, k)−

∑k
v=1 s

m′

n(v)n for all k < n−1(m). Therefore, if

arg max
0≤k≤N

{
D(n, k)−

k∑
v=1

smn(v)n

}
⊆
{
n−1(m), · · · , N

}
,

we can have arg max0≤k≤N

{
D(n, k)−

∑k
v=1 s

m′

n(v)n

}
⊆
{
n−1(m), · · · , N

}
. Hence

N∑
k=n−1(m)

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

smn(u)n,∀r = 0, 1, ..., N

)

≤
N∑

k=n−1(m)

Prob

(
D(n, k)−D(n, r) ≥

k∑
u=r+1

sm
′

n(u)n,∀r = 0, 1, ..., N

)
.

Then, define sm and sm
′

as the deployment policy with (m,n)th and (m′, n)th entry equal to

smn + δ and sm′n + δ, respectively. Combining the above two cases and from (3), we have

∂Lηd(s
m)

∂smn
≥
∂Lηd(s

m′)

∂smn
.

Consequently,

∂2Lηd(s)

∂s2
mn

= lim
δ→0

∂Lηd(sm)

∂smn
− ∂Lηd(s)

∂smn

δ
≥ lim

δ→0

∂Lηd(sm
′
)

∂smn
− ∂Lηd(s)

∂smn

δ
=

∂2Lηd(s)

∂smn∂sm′n
.

The following lemma can be directly obtained from (3).

Lemma 2. The partial derivatives
∂Lηd(s)

∂sn(i)n
are increasing in i for all n ∈ η.

Lemma 2 implies that the sooner the RIs arrive at an affected location, the more they can reduce

the expected total unmet demand. Thus, there exists an optimal deployment policy s∗ such that

3
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(1) there is no circular deployment, i.e., s∗n1n2
s∗n2n3

· · · s∗nkn1
= 0, for all n1,n2, ...,nk ∈ N because

otherwise, we can reduce the expected total unmet demand by reducing sn1n2 , sn2n3 , ..., and snmn1

and increasing sn1n1 , sn2n2 , ..., and snknk ; and (2) there is no mutual deployment, i.e., if n1,n2 ∈ η,

n−1
1 (m2) < n−1

1 (m1) and n−1
2 (m1) < n−1

2 (m2), then s∗m1n1
s∗m2n2

= 0, because otherwise, we can

improve the deployment policy by reducing sm1n1 and sm2n2 . For example, locations 1 and 2

are affected locations. Location 3 is closer to location 1 while location 4 is closer to location 2.

Then, simultaneously sending RIs from location 3 to location 2 and from location 4 to location 1

is suboptimal.

Now we are ready to proof Proposition 1. (1) We proof by contradiction. If there exists a

location m with rank 1 and m /∈ η, then there exists a location n ∈ η such that s∗mn > 0. From

Lemma 2, we know that −πm = ∂L
∂s∗mn

> ∂L
∂s∗nn

≥ −pπn. This contradicts m ∈ πη(1). (2) Similar

to (1), if there exists n ∈ πη(1) such that s∗nn < Sn, then there exists a location n′ ∈ η such that

s∗n′n > 0. Following the same argument in (1), this contradicts n ∈ πη(1). (3) and (4) can also be

obtained following the similar arguments in (1).

Proof of Proposition 2: (1) For a given n ∈ η, and a sample path ofDn(t), we haveD(n,n−1(m)−

1) is increasing in lmn while D(n, k), k 6= n−1(m)− 1 stays unchanged. As a result,

max
0≤k≤N

{
D(n, k)−

k∑
v=1

sn(v)n

}

increases in lmn. Thus, taking expectations over Dn(t) for all n ∈ η, we have Lηd(s) is increasing in

lmn.

(2) Note that from Lemma 1,
∂Lηd(s)

∂smn
satisfies

∂Lηd(s)

∂smn
= −Prob

(
max

n−1(m)≤k≤N
{D(n, k)−

k∑
v=1

sn(v)n} ≥ max
0≤k≤n−1(m)−1

{D(n, k)−
k∑
v=1

sn(v)n}

)
.

When lmn increases, D(n,n−1(m) − 1) increases, thus, for any m′ such that n−1(m′) < n−1(m),

∂Lηd(s)

∂sm′n
decreases in lmn; for any m′ such that n−1(m′) ≥ n−1(m),

∂Lηd(s)

∂sm′n
increases in lmn.
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(3) For any m′ such that n−1(m′) < n−1(m), consider increasing lmn by a positive ∆l, then

∂Lηd(s)

∂sm′n

∣∣∣∣
lmn+∆l

−
∂Lηd(s)

∂sm′n

∣∣∣∣
lmn

=

−Prob

(
max

n−1(m′)≤k≤N
{D(n, k)−

k∑
v=1

sn(v)n} < max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n},D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn

< max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n},

D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn+∆l

> max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n}


For any m′′ such that n−1(m′′) < n−1(m′), if we have

max
n−1(m′′)≤k≤N

{D(n, k)−
k∑
v=1

sn(v)n} < max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n},

then

max
n−1(m′)≤k≤N

{D(n, k)−
k∑
v=1

sn(v)n} < max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n},

and

max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n} = max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n}

hold.

As a result. we have thatD(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn

< max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n}

impliesD(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn

< max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n};

andD(n,n−1(m)− 1)−
n−1(m−1)∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn+∆l

> max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n}

impliesD(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn+∆l

> max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n}.
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Thus,

∂Lηd(s)

∂sm′n

∣∣∣∣
lmn+∆l

−
∂Lηd(s)

∂sm′n

∣∣∣∣
lmn

=

−Prob

(
max

n−1(m′)≤k≤N
{D(n, k)−

k∑
v=1

sn(v)n} < max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n},D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn

< max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n},

D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn+∆l

> max
0≤k≤n−1(m′)−1

{D(n, k)−
k∑
v=1

sn(v)n}


≤ −Prob

(
max

n−1(m′′)≤k≤N
{D(n, k)−

k∑
v=1

sn(v)n} < max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n},D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn

< max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n},

D(n,n−1(m)− 1)−
n−1(m)−1∑

v=1

sn(v)n

∣∣∣∣∣∣
lmn+∆l

> max
0≤k≤n−1(m′′)−1

{D(n, k)−
k∑
v=1

sn(v)n}


=

∂Lηd(s)

∂sm′′n

∣∣∣∣
lmn+∆l

−
∂Lηd(s)

∂sm′′n

∣∣∣∣
lmn

.

That is, when lmn increases, the change of
∂Lηd(s)

∂sm′n
decreases in m′ for all n−1(m′) < n−1(m).

Similarly, we can show the same is true for all n−1(m′) ≥ n−1(m). Finally, the change is positive

at n−1(m′) = n−1(m) + 1 but negative at m′ = m. Thus, part (3) holds.

We now consider the deployment decision problem (D) stated in §3. Since Lηd(s) is convex in s,

the Karush-Kuhn-Tucker (KKT) conditions are also sufficient conditions for the optimal deployment

decision. Under the KKT conditions, there exists a constant πm ≥ 0, m ∈ N , such that the left

and right derivatives of Lηd(s) with respect to smn satisfy

∂Lη−d (s∗)

∂smn
≤ −πm, and

∂Lη+
d (s∗)

∂smn
≥ −πm, if s∗mn > 0; and

∂Lη+
d (s∗)

∂smn
≥ −πm, if s∗mn = 0,

for all m ∈ N and n ∈ η. If ∂Lηd(s
∗)/∂smn exists, then

∂Lηd(s
∗)

∂smn
= −πm, if s∗mn > 0; and

∂Lηd(s
∗)

∂smn
≥ −πm, if s∗mn = 0,

for all m ∈ N and n ∈ η. Here, πm can be explained as the shadow price at location m, which

can be used to measure the priority level of location m. A location with a higher shadow price has

a higher priority. If ∂Lηd(s
∗)/∂smn exists, the amount deployed from m to each affected location

6
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n either equals zero or has a shadow price of πm that is independent of the affected location.

Lemma 2 indicates that the shadow prices of the locations delivering to the affected location n

are decreasing in the ranking function of n. Thus, under optimality, locations with higher shadow

prices sequentially receive RIs from those with lower shadow prices in the descending order of their

shadow prices. Moreover, because Lηd(s
∗) is jointly convex in S and coordinately decreasing in

Sm, m ∈ N , the expected total unmet demand under the optimal deployment is decreasing in the

amount of RIs allocated to (or available at) each location. As a result, from the Envelop theorem,

the shadow price of each location n is decreasing in Sn (or νηnSn). In addition, according to Lemma

1 and because of the supermodularity of Lηd(s) in s, the shadow price of each location is more

sensitive to the change of RIs at its own location than that at other locations. In other words, if

we increase the available amount of RIs at a location, then the shadow price at this location would

decrease at a higher rate than that at other locations.

Proof of Proposition 3: (1) Given the deployment matrix s, when lmn increases, D(n,n−1(m)−

1) stochastically increases. Because LηN is an increasing function of D(n,n−1(m)−1), by definition

of the first-order stochastic dominance in Shaked and Shanthilkumar (2006), we have EP[LηN ] is in-

creasing in lmn. Thus, Lηd(s) is increasing in lmn. Taking the minimum over all possible deployment

policies, Lηd(s
∗) is also increasing in lmn.

(2) Given lmn and the corresponding optimal deployment policy s∗, consider any feasible per-

turbation of s∗, ε. Denote N ×|η| base matrices eji′ with (j, i′)th entry equal to 1 and other entries

zero. Then ε can be decomposed into ε =
∑

i,i′∈η,j∈N a
j
ii′γ

j
ii′ , where ajii′ ∈ R and γjii′ = eji − eji′ .

Then,

0 ≤
[
Lηd(s

∗ + ε)− Lηd(s
∗)
]
|lmn = EP

[
max

0≤k≤N

{
D(n, k)−

k∑
v=1

(
sn(v)n +

N∑
u=1

(
an(v)
nu − an(v)

un

))}]
lmn

− EP

[
max

0≤k≤N

{
D(n, k)−

k∑
v=1

sn(v)n

}]
lmn

If for all n−1(m′) < n−1(m),
∑N

u=1

(
am
′

nu − am
′

un

)
< 0, and for all n−1(m′) ≥ n−1(m),

∑N
u=1

(
am
′

nu − am
′

un

)
>

0, then because of the second part of Proposition 2, we have that for an arbitrary small δ > 0,

EP

[
max

0≤k≤N

{
D(n, k)−

k∑
v=1

(
sn(v)n +

N∑
u=1

(
an(v)
nu − an(v)

un

))}
− max

0≤k≤N

{
D(n, k)−

k∑
v=1

sn(v)n

}]
lmn

≤ EP

[
max

0≤k≤N

{
D(n, k)−

k∑
v=1

(
sn(v)n +

N∑
u=1

(
an(v)
nu − an(v)

un

))}
− max

0≤k≤N

{
D(n, k)−

k∑
v=1

sn(v)n

}]
lmn+δ

=
[
Lηd(s

∗ + ε)− Lηd(s
∗)
]
|lmn+δ.

7
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Because of the uniqueness of the optimal solution, s∗ + ε is not optimal.

(3) can be shown directly following (2) by considering the cumulative deployment quantities.

Proof of Proposition 4: For any η ⊆ η′, let s∗
′

be the minimizer of the expected total unmet

demand Lη
′

d

(
s∗
′
)

and s∗ be the minimizer of the expected total unmet demand Lηd (s∗). Because

the demand processes D(n, t) n ∈ η is independent of η and η′, provided that the demand surge

has occurred at n, we must have

Lη
′

d

(
s∗
′
)

=
∑
n∈η′

EP

[
max

0≤k≤N

{
D (n, k)−

k∑
v=1

s∗
′

n(v)n

}]

≥
∑
n∈η

EP

[
max

0≤k≤N

{
D (n, k)−

k∑
v=1

s∗
′

n(v)n

}]
≥ Lηd (s∗) .

Proof of Proposition 5: We prove the monotonicity result by showing that the greedy algorithm

below converges to an optimal allocation policy. Liu (2017) introduces an algorithm that increases

the decision variables in multiple coordinates. Here, we construct a greedy algorithm that also

increases the decision variables in multiple coordinates. Assume the tolerance level tol > 0, consider

the following greedy algorithm,

Greedy Algorithm:

Step 1. Set the initial values S = 0.

Step 2. If −tol ≤
∑N

n=1 Sn −M ≤ tol, then set S∗n = Sn and stop; otherwise, go to the next step.

Step 3. Compute
∂Lp(S)
∂Sn

, n = 1, ..., N to find locations with the steepest descending direction

and add a marginal amount of RIs at those locations. We use a vector ∆S to record the

marginal increased amount at all locations. Then we set its nth-element ∆Sn ≥ 0 for

n ∈ arg minm

{
∂Lp(S)
∂Sm

}
and set ∆Sn = 0 for n /∈ arg minm

{
∂Lp(S)
∂Sm

}
, under the require-

ment that arg minm

{
∂Lp(S)
∂Sm

}
⊆ arg minm

{
∂Lp(S+∆S)

∂Sm

}
. Set S = S + ∆S and go back to Step

2.

Below, we show that if the greedy algorithm terminates at a feasible solution, then it satisfies

the KKT conditions and hence is optimal.

To do so, we only need to show that a nonzero ∆S exists in every iteration. At Step 2 of

any iteration, we must maintain the elements in arg minn{∂Lp(S)
∂Sn

} as ∆S increases, which implies

that the first order derivative in all directions of arg minn{∂Lp(S)
∂Sn

} have the same increment. Let

8
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i1, i2, ..., ik be the directions in arg minn{∂Lp(S)
∂Sn

}. When ∆S is sufficiently small, the above state-

ment is equivalent to that ∆S is the solution to the following equation
∂2Lp(S)
∂Si1∂Si1

· · · ∂2Lp(S)
∂Si1∂Sik

...
. . .

...
∂2Lp(S)
∂Sik∂Si1

· · · ∂2Lp(S)
∂Sik∂Sik


 ∆Si1

...
∆Sik

 =

 ε
...
ε


for some ε > 0. Because the Hessian is monotone, the inverse of the sub-Hessian matrix is an

element-wise non-negative matrix. Thus,

 ∆Si1
...

∆Sik

 =


∂2Lp(S)
∂Si1∂Si1

· · · ∂2Lp(S)
∂Si1∂Sik

...
. . .

...
∂2Lp(S)
∂Sik∂Si1

· · · ∂2Lp(S)
∂Sik∂Sik


−1 ε

...
ε

 (4)

is element-wise non-negative.

If demand surge occurs at a single location n, then the optimal deployment policy is to deploy

all RIs to the demand surge location, i.e., s∗mn = Sm. Because Lnd is supermodar in smn, the Hessian

matrix is a non-negative symmetric matrix. Furthermore, if the Hessian matrix can be represented

by the {0, 1} vectors, then from Theorem 3.2 in Dellacherie et al. (2016), the Hessian matrix is a

symmetric potential of order n. Thus, its inverse is a row diagonally dominant M -matrix. This

implies that the solution in (4) is non-negative and nonezero. This hence proves Proposition 5 for

the single location case.

If there are only two locations, the sub-Hessian matrix is at most a two by two matrix. Using

the cross dominance property in Lemma 1, the diagonal elements of the inverse of the Hessian

matrix is always larger in absolute value than the off diagonal elements. Thus, ∆S can be found

by multiplying the inverse of the sub-Hessian matrix with a vector of all ones. Thus, Proposition

5 holds for the two location case.

Proof of Corollary 1: The first result is obvious. For the second result, we only need to show

that ā < ∞. By definition of f(t), there exits a t̃ > 0 such that f(t) is increasing and convex

on [0, t̃] and increasing and concave on [t̃,∞). Let a1 = f(t̃)/t̃. Then, because f(t) is increasing

and convex on [0, t̃], we must have a1t ≥ f(t) for all t ∈ [0, t̃]. Note that f(t) is increasing and

concave on [t̃,∞) and it has no interception with x = 0 (another concave function). Therefore,

by the separation theorem, there exists 0 < a2 < ∞ such that a2t ≥ f(t) for all t ∈ [t̃,∞). Let

a = max{a1, a2}, then we have the second result. Similarly, we can derive the last result.

Proof of Proposition 6: We prove Proposition 6 in two parts.

9
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(a) The disaggregation-then-aggregation process of generating P1 from P2 implies that P1 �FOSD
P2.

By definition P1 = ˆ̄P2. For any increasing function f , f(∪ηi∈Σjη
i) ≥ f(ηi). Thus, E[f |P1] =∑

j P1(∪ηi∈Σjη
i)f(∪ηi∈Σjη

i) ≥
∑

j

∑
ηi∈Σj

P̄2(ηi)f(ηi) = E[f |P2].

(b) P1 �FOSD P2 implies that there exists a disaggregation-then-aggregation process between

P1 and P2.

We just need to show that if P1 cannot be generated by disaggregation-then-aggregation from

P2, then P1 is not FOSD larger or equal to P2.

Note that for any multi-set ηi that is generated from a disaggregation of P2, P̄ 2
ηi

probability

has been passed to some set ξ in the aggregation step to generate P1 such that η ⊆ ξ ⊆ N .

We denote η → ξ as the transformation that moves a positive probability from set η to ξ during

the disaggregation and aggregation processes. Consider three sets S1 ⊆ S2 ⊆ S3, and S1 → S2

and S2 → S3. Then there exists an equivalent transformation such that either S1 → S2 and

S1 → S3, or S1 → S3 and S2 → S3, depending on the probability distribution P2 and the amount of

probability mass moving from one set to another. As a result, for any (disaggregation-aggregation)

transformation, there always exists a simple transformation T : P2 → P1 such that for every set

S ⊆ N with P1(S) 6= P2(S), it is either a pure recipient, i.e., T → S for some T ⊆ N but does not

exist T ′ ⊆ N such that S → T ′, or a pure sender i.e., S → T for some T ⊆ N but does not exist

T ′ ⊆ N such that T ′ → S. As a result, if P2 can be converted to P1 by some simple transformation,

then for S ⊆ N , it is a pure recipient if and only if P1(S) > P2(S) and a pure sender if and only if

P1(S) < P2(S). Thus, studying the disaggregation and aggregation of P is equivalent to studying

the simple transformations T .

Given two probability distributions P1 and P2, we divide 2N into three mutually exclusive

classes: the senders σ =
{
S|P1(S) < P2(S), S ⊆ N

}
, the receivers ρ =

{
S|P1(S) > P2(S), S ⊆ N

}
,

and the invariants ι =
{
S|P1(S) = P2(S), S ⊆ N

}
. Then, P1 �FOSD P2 if and only if there exists

a simple transformation T : P2 → P1 such that the probabilities can be transferred from the set of

senders to the receivers. Equivalently, the following transportation problem has a feasible solution:

(PT ) max 1

s.t.
∑

T∈ρ,S⊂T
xST = P2(S)−P1(S), for all S ∈ σ,

∑
S∈σ,S⊂T

xST = P1(T )−P2(T ), for all T ∈ ρ,

xST ≥ 0, for all S ∈ σ, T ∈ ρ, and S ⊂ T.
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The transportation problem (PT) has a feasible solution if and only if for any σ′ ⊆ σ we have∑
S∈σ′

(
P2(S)−P1(S)

)
≤
∑
∃S∈σ′,S⊂T,T∈ρ

(
P1(T )−P2(T )

)
. That is, the total amount of proba-

bilities sent out from σ′ should be not greater than the maximum capacity the adjacent receivers

can receive.

Thus, for any P1 and P2 such that P1 is NOT FOSD larger than P2, there exists σ′ ⊆ σ such

that
∑

S∈σ′
(
P2(S)−P1(S)

)
>
∑
∃S∈σ′,S⊂T,T∈ρ

(
P1(T )−P2(T )

)
. Rearranging the terms, we have∑

S∈σ′ P
2(S) +

∑
∃S∈σ′,S⊂T,T∈ρ P2(T ) >

∑
∃S∈σ′,S⊂T,T∈ρ P1(T ) +

∑
S∈σ′ P

1(S).

Consider the increasing set function that equals 1 for all sets that contain some set from σ′ and

equal 0 for all other sets:

fσ′(K) =

{
1, if there exists some set S ∈ σ′ such that S ⊆ K,
0, otherwise.

We compare its expected value under P1 and P2 as follows:

E[f |P2] =
∑

∃S∈σ′,S⊆K
P2(K)

=
∑
S∈σ′

P2(S) +
∑

∃S∈σ′,S⊂T,T∈ρ
P2(T ) +

∑
∃S∈σ′,S⊂I,I∈ι

P2(I)

=
∑
S∈σ′

P2(S) +
∑

∃S∈σ′,S⊂T,T∈ρ
P2(T ) +

∑
∃S∈σ′,S⊂I,I∈ι

P1(I)

>
∑
S∈σ′

P1(S) +
∑

∃S∈σ′,S⊂T,T∈ρ
P1(T ) +

∑
∃S∈σ′,S⊂I,I∈ι

P1(I)

=
∑

∃S∈σ′,S⊆K
P1(K)

= E[f |P1].

The inequality follows from the fact that
∑

S∈σ′ P
2(S)+

∑
∃S∈σ′,S⊂T,T∈ρ P2(T ) >

∑
∃S∈σ′,S⊂T,T∈ρ P1(T )+∑

S∈σ′ P
1(S). Thus, (b) is true.

Proof of Proposition 9: Because P1 �FOSD P2 we have P1 = ˆ̄P2. Note that L∗(M) does not

change when P2 is changed to P̄2. However, according to Proposition 4, for a given allocation

policy, the expected total unmet demand would increase under aggregation. Thus, the optimal

expected total unmet demand would also increase under aggregation.
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