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Problem definition. For the standard newsvendor problem with an unknown demand distribution, we

develop an approach that uses data input to construct a distribution ambiguity set with the non-parametric

characteristics of the true distribution, and we use it to make robust decisions.

Academic/Practical relevance. Empirical approach relies on historical data to estimate the true distri-

bution. Although the estimated distribution converges to the true distribution, its performance with limited

data is not guaranteed. Our approach generates robust decisions from a distribution ambiguity set that is

constructed by data-driven estimators for non-parametric characteristics and includes the true distribution

with the desired probability. It fits the situations where data size is small.

Methodology. We apply robust optimization approach with non-parametric information.

Results. Under a fixed method to partition the support of the demand, we construct a distribution ambi-

guity set, build a protection curve as the proxy for the worst-case distribution in the set, and use it to

obtain a robust stocking quantity in closed form. Implementation-wise, we develop an adaptive method to

continuously feed data to update partitions with a prespecified confidence level in their unbiasedness and

adjust the protection curve to obtain robust decisions. We theoretically and experimentally compare the

proposed approach with existing approaches.

Managerial Insights. Our non-parametric approach under adaptive partitioning guarantees that the real-

ized average profit exceeds the worst-case expected profit with a high probability. Using real data sets

from Kaggle.com, it can outperform existing approaches in yielding profit rate and stabilizing the generated

profits, and the advantages are more prominent as service ratio decreases. Non-parametric information is

more valuable than parametric information in profit generation provided that the service requirement is not

too high. Moreover, our proposed approach provides a means of combining non-parametric and parametric

information in a robust optimization framework.
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1. Introduction

The newsvendor problem is the foundation to a class of operations and supply chain models. In

its standard version, a firm stocks a product before knowing the actual demand and satisfies the

realized demand up to stock availability. The firm incurs a marginal cost c and receives a revenue
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p > c for each product sold, while unsold products have no salvage value (Natarajan et al. 2018).

The profit function is Π(q) =E [pmin{Z,q}− cq], where Z is the random demand with distribution

function F (·). The optimal stocking quantity is the µ0-quantile of F (·), where µ0 , 1− c

p
is the

service ratio. In practice, the true distribution function is unknown and decision makers usually

assume some distribution as a rule of thumb. Significant differences can exist between the assumed

and the true distributions, jeopardizing the applicability of the obtained policies. A distribution-free

newsvendor problem has been introduced to tackle distribution uncertainty. Scarf (1958) derives the

stocking quantity that maximizes the minimum expected newsvendor profit when the distribution

satisfies given mean and variance. Lariviere and Porteus (1999) adopt a Bayesian approach to

dynamically learn the underlying distribution. The performance of these approaches depends on

the accuracy of parameter estimates and is therefore not guaranteed to be robust.

Against the backdrop of technology advances that have significantly increased computing power,

firms face the challenge of building innovative models to capture and utilize data in decision

making. For the newsvendor problem, a class of approaches rely on historical data to estimate

the density curve. Rosenblatt (1956) introduces kernel estimation for distribution characteristics.

Common kernel functions are uniform and Gaussian. Ruppert and Cline (1994) modify kernel

density estimation by transformed data. Huh and Rusmevichientong (2009) propose non-parametric

adaptive policies to generate decisions. Despite convergence of the estimated density curve, its

performance is not guaranteed when data size is small because the estimated density curve adjusts

to data input, varying the stocking quantity and realized profit.

We propose an approach that utilizes the non-parametric characteristics of the distribution –

including its support, monotonicity and convexity of its density curve, and specific density values –

to partition the support, construct a distribution ambiguity set that includes the true distribution,

and build a protection curve to approximate the true density curve. Among the partitioning meth-

ods, monotone (full) partitioning, whereby the density curve in a partition is non-decreasing or

non-increasing (monotone convex or concave), requires the smallest (largest) set of non-parametric

characteristics to construct the distribution ambiguity set, but yields the lowest (highest) worst-

case expected profit.

Our main contributions can be summarized as follows. First, to the best of our knowledge, our

proposed approach is the first of its kind to use non-parametric characteristics of the distribution

to form the distribution ambiguity set. This differs from the previous approaches that use para-

metric information – including mean and variance – for the same purpose. The protection curve,

which serves as the proxy for the worst-case distribution in the distribution ambiguity set, approx-

imates the true density curve and enables us to obtain closed-form expressions for robust stocking

quantities. The generated policies are stable and yield less variable realized profits.
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Second, we use empirical distribution to form non-parametric estimators to specify partitions,

construct distribution ambiguity sets, and build protection curves. We analyze convergence prop-

erties of the estimators, investigate the stability of non-parametric characteristics in the formed

partitions with increments in data, and develop the criteria for trusting a partitioning method for

an interval such that the true distribution restricted on this interval is guaranteed to have the

desired non-parametric characteristics with the prespecified confidence level. Our approach feeds

data input to adaptively construct the distribution ambiguity set that includes the true distribu-

tion with the desired probability, and it yields decision policies with a guaranteed likelihood that

the realized average profit exceeds the worst-case expected profit.

Third, we identify a data-size threshold to guide our reliance on empirical distribution or pro-

tection curve in data-driven decision models. Specifically, we can trust the distribution ambiguity

set based directly on empirical distribution to make robust decisions when data size exceeds the

threshold, but trust the distribution ambiguity set based on non-parametric estimators otherwise.

This balances the advantage of empirical distribution for its convergence (for a large data size) and

that of the non-parametric approach for its stability (for a small data size).

Lastly, for the standard newsvendor problem, we make use of real data sets to show that our

non-parametric approach can outperform existing approaches to improve profit rate and stabilize

profit generation, and these advantages become more prominent as the service ratio decreases. Non-

parametric information is more valuable than its parametric counterpart in yielding the expected

profit provided that the service requirement is not too high. Our approach has further advantages

over parametric approaches in worst-case performance guarantee with censored data and faster

convergence of the data-driven estimators used in the approach. Adding non-parametric charac-

teristics to parametric information to form distribution ambiguity sets by our partitioning method

and derive robust decisions can improve the expected profit performance.

The remainder of this paper is organized as follows. Section 2 provides a review of the relevant

literature. Section 3 introduces the partitioning method based on non-parametric characteristics,

defines distribution ambiguity set and protection curve, and presents the estimators for non-

parametric characteristics. Section 4 applies the non-parametric approach to derive robust policies

and presents an adaptive partitioning method in implementation. Section 5 studies the value of

non-parametric information relative to parametric information, with the worst-case expected profit

as the measure. Section 6 presents a series of experiments that justify the effectiveness and prac-

ticality of the non-parametric approach. Section 7 concludes the paper with discussions. All the

proofs are presented in the Appendix.
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2. Literature Review

The basic objective in the standard newsvendor problem is to find the stocking quantity that

balances overstocking and understocking risks. The existing research has adopted two classes of

approaches to tackle this problem with an unknown demand distribution. Scarf (1958) derives

the stocking quantity that maximizes the minimum expected profit for distributions that satisfy

given mean and variance. This ushers in a class of parametric approaches to solve distributionally

robust newsvendor problems. These approaches typically construct an uncertainty set that includes

distributions whose moments or other parameters satisfy certain conditions (e.g. Ben-Tal and

Hochman 1976, Popescu and Wu 2007, Zymler et al. 2013). However, it has two main disadvantages.

One is that the worst-case distribution can yield too conservative a decision (e.g. Gallego and Moon

1993, Goh and Sim 2010, Wang et al. 2016, Zhu et al. 2013). The other is that the moments are

unable to accurately capture the true distribution with limited data input and can be biased with

censored data. Wang et al. (2016) identify a problem instance in which Scarf’s approach performs

less well under exponential distribution. To alleviate the conservatism, some approaches include

the information on higher-order moments (Zuluaga et al. 2009). However, closed-form solutions are

hard to obtain even for computationally tractable single-item newsvendor problems.

Perakis and Roels (2008) include partial information and derive the stocking quantity that

minimizes the newsvendor’s maximum regret of not acting optimally. Levi et al. (2011) solve

the min-max regret problem with information on the absolute mean spread. Yue et al. (2006)

compute the maximum expected value of distribution information (EVDI) that satisfies parametric

conditions for a given quantity and introduce a procedure to obtain the quantity that minimizes the

maximum EVDI. Natarajan et al. (2018) divide the support into multiple partitions and introduce

a second-order statistic on the partitioned demand distribution to capture its asymmetry. As a

special case, the second-order statistic reflects semi-variance when the support is divided into two

partitions, one before and the other after the demand mean. Experiments show that symmetry

information can reduce the expected profit loss, particularly when the true distribution is heavily

tailed. We develop the criteria for choosing partitioning methods on the support. Importantly, our

approach builds a premise of combining parametric information and non-parametric characteristics

to improve expected profit performance.

The second class of approaches make no assumption on the parametric forms of the true distri-

bution. Godfrey and Powell (2001) use a concave adaptive value estimation algorithm to estimate

a piecewise-linear concave function for the expected profit based on the information of remaining

inventories. Levi et al. (2007) adopt a sampling-driven algorithmic framework to compute policies

in single- and multi-period newsvendor problems. Considering distributional robustness, a stan-

dard means of constructing ambiguity set is to choose a statistical distance such as φ-divergence
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(Bayraksan and Love 2015, Jiang and Guan 2016, Sun and Xu 2016) and Wasserstein distance

(Mohajerin Esfahani and Kuhn 2018, Zhao and Guan 2018, Gao and Kleywegt 2016), and find

those distributions that are close to a nominal distribution like empirical distribution. However,

φ-divergence is not rich enough to include relevant distributions because it focuses only on bin-

by-bin comparison and fails to capture (dis)similarity across points (Rubner et al. 2000). Gao and

Kleywegt (2016) consider distributionally robust stochastic optimization (DRSO) with Wasser-

stein distance and characterize conditions for the existence of worst-case distribution whereby

data-driven DRSO problems are tractable. The optimal Wasserstein radius cannot be computed

exactly and estimators have direct effects on performances. Mohajerin Esfahani and Kuhn (2018),

for instance, use posteriori information to estimate the radius in a data-driven portfolio problem.

Wang et al. (2016) present another attempt to allow distributions to deviate from empirical distri-

bution with certain likelihood and derive the optimal decision to maximize the worst-case expected

profit. Our approach is much more general for distribution-free newsvendor problems and performs

well in practical situations.

As an effort to extend to multi-item newsvendor problems, Gallego and Moon (1993) apply

Scarf’s bound to the worst-case expected profits of individual items and apply convex optimization

with known mean and variance. Ben-Tal et al. (2013) apply φ-divergence distance (e.g. chi-squared

divergence; Kullback-Leibler divergence) in a multi-item newsvendor problem with information on

marginal distribution. These models do not consider demand correlation. Hanasusanto et al. (2015)

present a risk-averse multi-item model with information on mean and covariance, and the demand

distribution is known to be a mixture of distinct distributions. Natarajan et al. (2018) consider

partitioned statistics in a multi-item setting. Our paper provides both analytical and experimental

evidence for the value of including non-parametric characteristics to parametric information to

derive robust decisions, and explores newsvendor problems with multiple items.

3. Distribution Ambiguity Set, Protection Curve and Non-parametric
Estimators

For decision models that have a random variable with an unknown distribution, we propose a

data-driven approach that uses non-parametric characteristics of the distribution to construct a

distribution ambiguity set that includes all the distributions with the desired characteristics. Based

on the constructed distribution ambiguity set, we build a protection curve to serve as a proxy for

the worst-case distribution in the set and approximates the true density curve. Our presentation

is focused on the situation where the random variable is continuous and has a density curve on a

continuous support. The definitions, approaches, and discussions can be modified to the situation

where the random variable is discrete and has a mass function on a discrete support.
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3.1. Distribution ambiguity set and protection curve

Consider a random variable Z on [z, z]. The distribution function is F (z), P (Z ≤ z), the density

function is f (0) (z), dP(Z≤z)

dz
, and the first- and second-order derivatives of the density function are

f (1) (z), d2P(Z≤z)

dz2
and f (2) (z), d3P(Z≤z)

dz3
. The following Definition 1 defines the protection curve.

Definition 1. A function c (z) is a protection curve for the true density curve f (0) (z) if
∫ z

y

[

f (0) (z)− c (z)
]

dz ≥ 0,∀y ∈ [z, z].

Proposition 1 presents the property of the protection curve that forms the basis of constructing

distribution ambiguity set.

Proposition 1. Given density curve f (0) (z) of a continuous random variable Z on [z, z] and the

protection curve c (z),
∫ z

z
min{z, q}f (0) (z)dz ≥

∫ z

z
min{z, q} c (z)dz, where q is stocking quantity.

When the protection curve is a density curve, i.e.,
∫ z

z
c (z)dz = 1, the underlying random variable

is first-order stochastically dominated by the random variable that follows the true distribution.

For a given stocking quantity, the expected sales quantity under the true distribution is no less

than that under its protection curve, which provides a conservative sales guarantee.

Definition 2. If a density curve f (0) (z) of a continuous random variable Z on [z, z] satisfies
∫ z

y

[

f (0) (z)− c (z)
]

dz ≥ 0, ∀y ∈ [z, z], then f (0) (z) belongs to the distribution ambiguity set, for

which c (z) serves as a proxy for the worst-case distribution in generating the expected profit.

We construct a distribution ambiguity set to include all the distributions that share the desired

non-parametric characteristics with the true distribution, and use the constructed distribution

ambiguity set to build the protection curve as a safe approximation to the true density curve.

3.2. Partitioning methods

We divide the support [z, z] for the random variable into mutually exclusive partitions
⋃m

i=1[zi, zi]

by one of three methods, which we call monotone, full, and semi-full partitioning. Each method

entails certain non-parametric characteristics of the distribution to define partitions. We construct

the distribution ambiguity set and build the protection curve for each partition, and unionize them

to construct the distribution ambiguity set and build the protection curve on the entire support.

Monotone partitioning

We rely on the monotonicity of the density curve as the main non-parametric characteristic to par-

tition the support. The true density curve in a partition is either non-increasing or non-decreasing.

Figure 1 illustrates protection curves under monotone partitioning. Given a partition [zi, zi], where

the true density curve is non-increasing and has the lowest density li , min
z∈[zi,zi]

f (0) (z), we construct

the distribution ambiguity set as follows:

P[zi,zi]
=

{

P : f (1)(z)≤ 0, min
z∈[zi,zi]

f (0)(z) = li, z ∈ [zi, zi]

}

, (1)
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where f (1)(z) ≤ 0 ensures that the density curve is non-increasing and min
z∈[zi,zi]

f (0)(z) = li ensures

that li is a tight lower bound to the density. By Definition 1, we verify that c(z) = li is a protection

curve, which assumes a constant value equal to the lowest density in the non-increasing partition.

Figure 1 Protection curves under monotone partitioning

Given a partition [zi, zi] where the true density curve is non-decreasing, we construct the distri-

bution ambiguity set as follows:

P[zi,zi]
=
{

P : P{zi ≤ z ≤ zi}= Pi, f
(1)(z)≥ 0, z ∈ [zi, zi]

}

, (2)

where Pi is the cumulative probability that the random variable assumes a value in this partition

and f (1)(z)≥ 0 ensures that the density curve is non-decreasing. In this case, we can verify that

c(z) = Pi

zi−zi
is a protection curve, which assumes a constant value equal to the average density in

the non-decreasing partition.

Full partitioning

The protection curve under monotone partitioning is conservative because the method takes the

lowest density in a non-increasing partition and the average density in a non-decreasing partition

to build protection curves. This to a large extent leads to an underestimate of the chance of

occurrence for demand realization when we apply the protection curve to approximate the true

density curve. To resolve this conservatism, we adopt full partitioning to refine, by incorporating

more non-parametric characteristics, the distribution ambiguity set to build a protection curve

that better fits the true density curve. Specifically, we refine a monotone partition into convex or

concave subpartitions. Consider a partition [zi, zi]. Let the cumulative probability in the partition

be Pi = P{zi ≤ z ≤ zi}, and the maximum and minimum density values be ui = max
z∈[zi,zi]

f (0) (z) and

li = min
z∈[zi,zi]

f (0) (z), respectively. In what follows, we construct the distribution ambiguity set which

depends on the specific shape of the density curve in the partition.

For a non-decreasing and convex partition [zi, zi]:

P[z
i
,zi] =

{

P : P{zi ≤ z ≤ zi}= Pi, min
z∈[z

i
,zi]

f (0)(z) = li, f
(1)(z)≥ 0, f (2)(z)≥ 0

}

. (3)

For a non-increasing and convex partition [zi, zi]:

P[z
i
,zi] =

{

P : P{zi ≤ z ≤ zi}= Pi, max
z∈[z

i
,zi]

f (0)(z) = ui, f
(1)(z)≤ 0, f (2)(z)≥ 0

}

. (4)
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For a non-decreasing and concave partition [zi, zi]:

P[z
i
,zi] =

{

P : P{zi ≤ z ≤ zi}= Pi, max
z∈[z

i
,zi]

f (0)(z) = ui, f
(1)(z)≥ 0, f (2)(z)≤ 0

}

. (5)

For a non-increasing and concave partition [zi, zi]:

P[z
i
,zi] =

{

P : P{zi ≤ z ≤ zi}= Pi, min
z∈[z

i
,zi]

f (0)(z) = li, f
(1)(z)≤ 0, f (2)(z)≤ 0

}

. (6)

The distributions in the distribution ambiguity sets defined in (3)-(6) satisfy the requirements

on the cumulative probability, maximum or minimum density value, monotonicity and convexity

or concavity of the density curve in respective partitions. The protection curve takes a general form

of c (z) = αi + βi (z− zi), z ∈ [zi, zi], where coefficients (αi, βi) depend on the shape of the density

curve and are presented in Table 1. Figure 2 illustrates protection curves under full partitioning.

Observe that the density curve in a partition is approximated by a line which intersects with the

true curve at its maximum or minimum value and shares the same cumulative probability. Thus,

the protection curve is close to the true density curve, whose first-order dominance is ensured.

Table 1 Coefficients for protection curve c (z) = αi +βi (z− z
i
).

partition z ∈ [zi, zi] αi βi

non-decreasing and convex li 2
Pi−l

i(zi−z
i
)

(zi−z
i
)2

non-increasing and convex ui −2
ui(zi−z

i
)−Pi

(zi−z
i
)2

non-decreasing and concave 2Pi

zi−z
i

−ui 2
ui(zi−z

i
)−Pi

(zi−z
i
)2

non-increasing and concave 2Pi

zi−z
i

− li −2
Pi−l

i(zi−z
i
)

(zi−z
i
)2

Figure 2 Protection curves under full partitioning

Semi-full partitioning

A third alternative for partitioning the support is semi-full partitioning, which combines monotone

partitioning and full partitioning. Specifically, the support is divided into non-decreasing monotone

partitions and non-increasing full partitions. The distribution ambiguity set for a non-decreasing

partition is defined in (2) and those for non-increasing convex and concave partitions are defined

in (4) and (6), respectively.
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3.3. Estimators for non-parametric characteristics

We are unable to directly partition the support and build the protection curve because the true

distribution is unknown. Instead, we utilize available data to estimate the distribution function,

density function, and its first- and second-order derivatives, and use these non-parametric estima-

tors to define partitions, cumulative probabilities, maximum and minimum density values.

3.3.1. Data-driven non-parametric estimators

Let the available data (d1, · · · , dn) be independently and identically drawn from a random variable

Z with CDF F (z). The empirical distribution function is defined as F̂ (z) ,

n∑

i=1
I{di≤z}

n
, where

I{di ≤ z} is the indicator function that assumes one if observation di is less than or equal to z

but zero otherwise. The empirical density function is f̂ (0) (z), F̂ (z+λ)−F̂ (z−λ)

2λ
, where λ > 0 is the

half width. Both F̂ (z) and f̂ (0) (z) are stepwise functions. The empirical first- and second-order

derivatives are, respectively, f̂ (1) (z), f̂(0)(z+λ)−f̂(0)(z−λ)

2λ
and f̂ (2) (z), f̂(1)(z+λ)−f̂(1)(z−λ)

2λ
, which are

stepwise functions assuming constants in consecutive intervals. Note that F̂ (z), f̂ (0)(z), f̂ (1)(z), and

f̂ (2)(z) are estimated on (−∞,+∞). The support [z, z] is estimated to be the maximum interval

such that f̂ (0)(z) = 0 for z < z and z > z.

An interval [a, b] ⊆ [z, z] is a monotone partition when f̂ (1) (z1) f̂
(1) (z2) ≥ 0,∀z1, z2 ∈ [a, b]. A

monotone partition [a, b] can be refined into a full partition when f̂ (2) (z1) f̂
(2) (z2)≥ 0,∀z1, z2 ∈ [a, b].

The estimator P̂ for the cumulative probability in the partition P{a≤ z ≤ b} is P̂ = F̂ (b)− F̂ (a).

The estimators l̂ and û for the maximum and minimum density values in [a, b] are, respectively,

l̂= min
z∈[a,b]

f̂ (0) (z) and û= max
z∈[a,b]

f̂ (0) (z).

3.3.2. Convergence properties of estimators

Next, we discuss the convergence properties of estimators F̂ (z) and f̂ (i)(z), i= 0,1,2. Obviously,

the indicator function I{di ≤ z} follows a Bernoulli distribution with parameter F (z), and:

√
n
[

F̂ (z)−F (z)
]

d→N (0, F (z) (1−F (z))) , (7)

where
d→ indicates convergence in distribution. As proved in the Appendix, the asymptotical dis-

tributions for f̂ (i)(z), i = 0,1,2 are:
√
n
[

f̂ (i) (z)− f (i) (z)
]

d→N (0, σi), where σ0 ≤ 1
2
√
2λ
, σ1 ≤ 1

(2λ)2

and σ2 ≤ 1

4
√
2(λ)

3 . With confidence level 1−ω, the pointwise estimate error of F̂ (z) relative to F (z)

and that of f̂ (i) (z) relative to f (i) (z) are, respectively, as follows:

P{|F̂ (z)−F (z)|> gP (n, z,ω)} ≤ ω;P
{
∣

∣

∣
f̂ (i) (z)− f (i) (z)

∣

∣

∣
> gPi (n, z,ω)

}

≤ ω, i= 0,1,2, (8)

where gP (n, z,ω) =
σϕ−1(1−ω

2 )√
n

, gPi (n, z,ω) =
σiϕ

−1(1−ω
2 )√

n
, ϕ−1(·) is the inverse cumulative function of

N(0,1), and σ=
√

F (z)(1−F (z)).
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Uniform estimate errors of f̂ (i) (z) relative to f (i) (z) in any interval [a, b]⊆ [z, z] are:

P

{

max
z∈[a,b]

∣

∣

∣
f̂ (i) (z)− f (i) (z)

∣

∣

∣
> gi (n,ω)

}

≤ ω, i= 0,1,2, (9)

where g0(n,ω) =
Dn(ω)

λ
+ λK0

2
, g1 (n,ω) =

Dn(ω)

λ2 + 2λK1
3

, g2 (n,ω) =
Dn(ω)

λ3 + 7λK2
8

, Ki is the upper

bound for
∣

∣f (i+1) (z)
∣

∣, and Dn(ω) is the Kolmogorov-Smirnov statistic in Waterman and Whiteman

(1978). It can be verified that gpi (n, z,ω) decreases with data size and has a convergence ratio of

O( 1√
n
), while gi(n,ω) comprises two parts: one part decreases with data size at a convergence ratio

of O( 1√
n
) and the other part is independent of data size and non-decreases with half width.

For an unbiased partition [a, b], the estimator P̂ for cumulative probability is based on F̂ (b) and

F̂ (a) and hence has the same convergence ratio as F̂ (z), while the estimators l̂ and û for the min-

imum and maximum density values are based on f̂ (0)(a) or f̂ (0)(b), depending on the monotonicity

of [a, b], and hence have the same convergence ratio as f̂ (0) (z). We discuss the biasedness of the

partitions formed by non-parametric estimators and the means of handling it in Section 4.2.

3.3.3. Stability of non-parametric characteristics

Let F̂n (z) and f̂ (0)
n (z) be the empirical distribution function and empirical density function with

data size n. Recall that they are piecewise linear functions assuming constants in consecutive

intervals. After a new data dn+1 ∈ [z, z] is revealed, they are updated to:

F̂n+1 (z) =

{

nF̂n(z)

n+1
z ∈ [z, dn+1)

nF̂n(z)+1

n+1
z ∈ [dn+1, z]

, f̂
(0)
n+1 (z) =







nf̂
(0)
n (z)

n+1
z ∈ [z, dn+1 −λ)∪ [dn+1 +λ, z]

2nλf̂
(0)
n (z)+1

(2λ)(n+1)
z ∈ [dn+1 −λ,dn+1 +λ)

.

In addition to a scale adjustment of n

n+1
due to an increase in data size, the empirical distribution

function can shift by a factor of 1
n+1

, and the empirical density function can shift by a factor of

1
2λ(n+1)

. The empirical first- and second-order derivatives are updated to:

f̂
(1)
n+1 (z) =



















nf̂
(1)
n (z)

n+1
z ∈ [z, dn+1 − 2λ)∪ [dn+1 +2λ, z]

4nλ2f̂
(1)
n (z)+1

(2λ)2(n+1)
z ∈ [dn+1 − 2λ,dn+1)

4nλ2f̂
(1)
n (z)−1

(2λ)2(n+1)
z ∈ [dn+1, dn+1 +2λ)

,and

f̂
(2)
n+1 (z) =



















nf̂
(2)
n (z)

n+1
z ∈ [z, dn+1 − 3λ)∪ [dn+1 +3λ, z]

8nλ3f̂
(2)
n (z)+1

(2λ)3(n+1)
z ∈ [dn+1 − 3λ,dn+1 −λ)∪ [dn+1 +λ,dn+1 +3λ)

8nλ3f̂
(2)
n (z)−2

(2λ)3(n+1)
z ∈ [dn+1 −λ,dn+1 +λ)

.

Lemma 1 presents preliminary properties of the empirical first- and second-order derivatives.

Lemma 1. Given data size n,
∣

∣

∣
f̂ (1)
n (z)

∣

∣

∣
≥ 1

(2λ)2n
for any z with

∣

∣

∣
f̂ (1)
n (z)

∣

∣

∣
> 0, and

∣

∣

∣
f̂ (2)
n (z)

∣

∣

∣
≥ 1

(2λ)3n

for any z with
∣

∣

∣
f̂ (2)
n (z)

∣

∣

∣
> 0.
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Hence, whenever the empirical first-order (second-order) derivative is non-zero, its norm is

bounded from below by 1

(2λ)2n
( 1

(2λ)3n
), which depends on and decreases with data size and is scaled

by half width. Recall that, given data size n, an interval [a, b] formed by non-parametric estimators

is a monotone partition when f̂ (1)
n (z1) f̂

(1)
n (z2)≥ 0,∀z1, z2 ∈ [a, b]. Proposition 2 reveals how a new

data input influences the monotonicity of the formed partitions.

Proposition 2. Let B = ∪s
i=1Bi, where Bi =

{

z ∈Bi ⊆ [z, z] : f̂ (1)
n (z) = 0

}

belongs to a mono-

tone partition with data size n. As a new data dn+1 is revealed and the empirical density curve is

updated from f̂ (0)
n (z) to f̂

(0)
n+1 (z), the monotonicity of [a, b], which is non-increasing (non-decreasing)

under f̂ (0)
n (z), will change if [a, b] ∩B 6= ∅ and there exists a z ∈ [a, b] ∩B such that f̂

(1)
n+1 (z) > 0

(f̂
(1)
n+1 (z)< 0); otherwise, the monotonicity of the partition will not change.

Similarly, Proposition 3 reveals how a new data input influences the convexity of partitions, where

a partition [a, b] formed by non-parametric estimators is convex or concave when f̂ (2)
n (z1) f̂

(2)
n (z2)≥

0,∀z1, z2 ∈ [a, b].

Proposition 3. Let C = ∪s
i=1Ci, where Ci =

{

z ∈Ci ⊆ [z, z] : f̂ (2)
n (z) = 0

}

belongs to a convex

or concave partition with data size n. As a new data dn+1 is revealed and the empirical density

curve is updated from f̂ (0)
n (z) to f̂

(0)
n+1 (z):

The convexity of a partition [a, b] under f̂ (0)
n (z) will change if 1) [a, b] ∩ {C \ [dn+1 − λ,dn+1 +

λ)} 6= ∅ and there exists a z ∈ [a, b]\ [dn+1 −λ, dn+1 +λ)∩C such that f̂
(2)
n+1 (z)< 0; or 2) [a, b]∩

[dn+1−λ,dn+1+λ) 6= ∅ and there exists a z ∈ (a, b)∩ [dn+1 −λ,dn+1 +λ) such that f̂ (2)
n (z)< 2

(2λ)3n
;

otherwise, the convexity of the partition will not change.

The concavity of a partition [a, b] under f̂ (0)
n (z) will change if [a, b] ∩ C 6= ∅ and there exists a

z ∈ [a, b]∩C such that f̂
(2)
n+1 (z)> 0; otherwise, the concavity of the partition will not change.

Propositions 2 and 3 provide sufficient and necessary conditions for the characteristics of the par-

titions formed by non-parametric estimators to adjust with data input. Together with the updating

procedure, they send the message that our data-driven approach provides a stable instrument to

absorb data input and partition the support. Recall that, after a new data dn+1 is revealed, the

empirical distribution function on the entire support is updated either by a scale adjustment or by

a scale adjustment and a shift factor. However, the monotonicity of an interval remains unaffected

if the empirical first-order derivative in it is updated by a scale adjustment only. Our results show

that the monotonicity changes only when the empirical first-order derivative assumed a value of

zero in [dn+1 − 2λ,dn+1 +2λ), and is updated by both a scale adjustment and a shift factor. Simi-

larly, the convexity of an interval remains unaffected if the empirical second-order derivative in it is

updated by a scale adjustment only. The convexity changes only when the empirical second-order

derivative assumed a value of zero in [dn+1−3λ,dn+1−λ)∪ [dn+1+λ,dn+1+3λ) or assumed a very

small value in [dn+1 −λ,dn+1 +λ), and is updated by both a scale adjustment and a shift factor.
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4. Closed-form Robust Policies and Implementation

We first apply the non-parametric approach under given partitioning method to obtain closed-form

stocking quantities that maximize the worst-case expected profit. We then explore the biasedness

of the partitions formed by non-parametric estimators with available data and develop an adaptive

procedure to build proper protection curves and obtain robust decisions.

4.1. Fixed partitioning

The standard newsvendor problem finds the stocking quantity q that maximizes the expected profit

Π(q) =E[π(q,Z)], where π(q,Z) = pmin{Z,q}− cq. The random demand Z is continuous and fol-

lows an unknown distribution with density curve f (0)(z) on support [z, z]. Under a given partitioning

method, the support [z, z] is partitioned into ∪m
i=1 [zi, zi], with zi = zi+1, i= 1, . . . ,m, z1 = z, zm = z,

and the density curve in a partition [zi, zi] satisfies certain non-parametric characteristics. By total

expectation, the expected profit is expressed as follows:

Π(q) =
m
∑

i=1

E [π (q,Z)|z ∈ [zi, zi]]P{z ∈ [zi, zi]}. (10)

Let P[zi,zi]
be the distribution ambiguity set on [zi, zi] and P =

⋃m

i=1P[zi,zi]
be the distribution

ambiguity set on the entire support. We derive the stocking quantity that maximizes the worst-case

expected profit for the distributions within P as follows:

max
q

min
f(0)(z)∈P

Π(q). (11)

The protection curve serves as the proxy for the worst-case distribution in the distribution

ambiguity set. Under a fixed partitioning method, the optimal solution to problem (11) is obtained

by the corresponding protection curve. Let Fc (·) be the function for the cumulative area under the

protection curve. Obviously, Fc (·) is a non-decreasing function.

We first consider monotone partitioning, whereby the density curve in each partition is non-

decreasing or non-increasing, and denote the protection curve for a partition [zi, zi] by ci (z) = ℓi.

The distribution ambiguity set P[zi,zi]
is defined in (1) for a non-increasing partition or in (2) for a

non-decreasing partition. Proposition 4 offers a closed-form solution for problem (11) in this case.

Proposition 4. Under monotone partitioning, let pi =
∑i

j=1 ℓj
(

zj − zj
)

, i= 1,2, . . . ,m and r=

pm ≤ 1. With µc , r− c

p
, a robust solution to the standard newsvendor problem is qc = F−1

c (µc) =

zi+1 +
µc−pi
ℓi+1

, when pi ≤ µc ≤ pi+1, i= 1,2, . . . ,m− 1.

Note that ℓj
(

zj − zj
)

is the area under the protection curve c(z) = ℓj in partition [zj, zj], and pi

is the cumulative area under the protection curve from partition 1 to i. Obviously, pi ≤ pi+1, i=

1,2, . . . ,m− 1 and Fc (z) = pm = r ≤ 1. The condition pi ≤ µc ≤ pi+1 identifies the partition i+ 1
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that contains µc, which is the service ratio applicable to the protection curve and differs from the

newsvendor service ratio µ0.

We next consider full partitioning, in which case the protection curve for a partition [zi, zi] takes

the general form of c (z) = αi + βi (z− zi) and the distribution ambiguity sets P[zi,zi]
for different

shapes of partitions are defined in (3) to (6).

Proposition 5. Under full partitioning, let pi =
∑i

j=1[αj(zj −zj)+
βj

2
(zj −zj)

2], i= 1,2, . . . ,m,

where αj and βj are given in Table 1. A robust solution to the standard newsvendor problem is

qc = F−1
c (µc), where Fc(z) = pi + [αi+1(z − zi+1) +

βi+1

2
(z − zi+1)

2], pi ≤ µc ≤ pi+1, i = 1,2, . . . ,m,

and µc = µ0 = 1− c

p
.

By Proposition 5, the optimal quantity is obtained as the µ0-quantile of Fc (·). This is similar to

the determination of the optimal stocking quantity with a known distribution F (·), in which case,

the optimal quantity is the µ0-quantile of F (·). Note that the protection curve constructed under

full partitioning satisfies Fc (z) = 1, i.e., the protection curve is a density curve.

We next discuss the solution method under semi-full partitioning, which combines the methods

under monotone and full partitioning and can be modified to obtain robust solutions under adap-

tive partitioning (to be discussed later). Consider [z1, zi] = ∪i
j=1

[

zj, zj
]

, among which k are non-

decreasing monotone partitions and u= i−k are non-increasing full partitions. Let the indices for

the k monotone partitions be {Di
1,D

i
2, . . . ,D

i
k} and those for the u full partitions be {I i1, I i2, . . . , I iu},

with {Di
1,D

i
2, . . . ,D

i
k}∪ {I i1, I i2, . . . , I iu}= {1,2, . . . , i}.

Proposition 6. Under semi-full partitioning, let pi =
∑Di

k

j=Di
1
ℓj(zj − zj) +

∑Iiu

j=Ii1
[αj(zj − zj) +

βj

2
(zj − zj)

2], i= 1, . . . ,m, and r= pm. A robust solution to the standard newsvendor problem is

qc =

{

H−1
c (µc), pi ≤ µc ≤ pi+1, f

(1)(z)≤ 0, z ∈ [zi+1, zi+1]

zi+1 +
µc−pi
ℓi+1

, pi ≤ µc ≤ pi+1, f
(1)(z)≥ 0, z ∈ [zi+1, zi+1]

,

where Hc (z) = pi +
[

αi+1

(

z− zi+1

)

+
βi+1

2

(

z− zi+1

)2
]

and µc = r− c

p
.

Proposition 6 states the robust stocking quantity obtained under semi-full partitioning. With pi

being the cumulative area under the protection curve up to partition i, the condition pi ≤ µc ≤ pi+1

locates the partition that contains µc = r− c

p
. When the identified partition is a full partition, the

optimal quantity is H−1
c (µc), where Hc(·) is an auxiliary function to Fc(·). When it is a monotone

partition, however, the optimal stocking quantity is obtained by interpolation.

Lemma 2. Given a random variable on support [z, z] and stocking quantity q, let Πmono (q),

Πsemi (q), and Πfull (q) be the expected profits generated from the protection curves under monotone,

semi-full, and full partitioning, respectively, then Πmono (q)≤Πsemi (q)≤Πfull (q).
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Lemma 2 states that, among the three partitioning methods, for a given stocking quantity,

monotone partitioning yields the lowest worst-case expected profit because it generates the largest

distribution ambiguity set with the least requirements on non-parametric characteristics, while

full partitioning yields the highest worse-case expected profit despite the least stability of its

distribution ambiguity set that requires the most characteristics. Semi-full partitioning balances

stability and profitability in data-driven robust models.

4.2. Adaptive partitioning

Implementation-wise, we form non-parametric estimators based on data input to partition the

support and construct the distribution ambiguity set. An important issue is how likely the true

distribution belongs to the constructed distribution ambiguity set. To address this issue, we explore

the unbiasedness in the monotonicity and convexity of the partitions formed by non-parametric

estimators. It lays the groundwork to develop a procedure that adaptively feeds data input to

divide, with a prespecified confidence level, the support into unbiased partitions, construct the

distribution ambiguity set, and build the protection curve to obtain a robust stocking quantity.

4.2.1. Unbiasedness in monotonicity and convexity of formed partitions

Consider a subset [a, b]⊆ [z, z]. Given confidence level 1−ω, the monotonicity of [a, b] is unbiased

if P
{

f̂ (1) (z)f (1) (z)≥ 0 : ∀z ∈ [a, b]
}

≥ 1−ω, where f̂ (1) (z) and f (1) (z) are the empirical and true

first-order derivatives, and the convexity of [a, b] is unbiased if P
{

f̂ (2) (z)f (2) (z)≥ 0 : ∀z ∈ [a, b]
}

≥
1−ω, where f̂ (2) (z) and f (2) (z) are the empirical and true second-order derivatives. Proposition

7 provides sufficient conditions to guarantee the unbiasedness in the monotonicity or convexity of

a subset based on uniform convergence of empirical first- and second-order derivatives.

Proposition 7. (Uniform Convergence) Suppose P

{

max
z∈[a,b]

∣

∣

∣
f̂ (i)(z)− f (i)(z)

∣

∣

∣
> gi (n,ω)

}

≤
ω, where gi (n,ω) , i= 1,2 are defined in (9) given n and ω. Let Ωi be the largest subset of [a, b] that

P

{

f̂ (i) (z)f (i) (z)≥ 0 : ∀z ∈Ωi

}

≥ 1−ω and Ui =
{

z ∈ [a, b] :
∣

∣

∣
f̂ (i) (z)

∣

∣

∣
≥ gi (n,ω)

}

, then Ui ⊆Ωi.

Proposition 7 states that, under uniform convergence, for given data size n and confidence

level 1− ω, provided that the norm of the empirical first-order (second-order) derivative on [a, b]

exceeds threshold g1 (n,ω) (g2 (n,ω)), which is the uniform estimate error of the empirical relative

to the true first-order (second-order) derivative, the monotonicity (convexity) of the subset is

guaranteed. As the norm for the empirical first- or second-order derivative increases (
∣

∣

∣
f̂ (1)(z)

∣

∣

∣
or

∣

∣

∣
f̂ (2)(z)

∣

∣

∣
has a higher value), the monotonicity or convexity is more likely to be guaranteed. Note

that uniform convergence is a strong condition. In Figure 3.a), even when the condition based on

uniform convergence in Proposition 7 is violated, it can still hold that f̂ (1) (z)f (1) (z)≥ 0, i.e., the

monotonicity of the partition formed by non-parametric estimators is unbiased.
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Figure 3 Point convergence of empirical first-order derivative

(a) (b)

We next apply point convergence properties, which are discussed in Section 3.3.2, to obtain an

alternative means of guaranteeing the unbiasedness in the monotonicity or convexity of a subset.

Proposition 8. (Point Convergence) Suppose (1) f (i) (z) satisfies the Lipschitz condition,

i.e.,
∣

∣f (i) (z1)− f (i) (z2)
∣

∣≤Li

∣

∣z1 − z2
∣

∣,∀z1, z2 ∈ [a, b] and (2) P

{∣

∣

∣
f̂ (i) (y)− f (i) (y)

∣

∣

∣
> gPi (n,y,ω)

}

≤
ω for a certain y ∈ [a, b], where gPi (n,y,ω) , i = 1,2 are defined in (8) given n and ω. Let

Ωi be the largest subset of [a, b] such that P

{

f̂ (i) (z)f (i) (z)≥ 0 : ∀z ∈Ωi

}

≥ 1 − ω and UP
i =

{

z ∈ [a, b] :
∣

∣

∣
f̂ (i) (z)

∣

∣

∣
≥ gPi (n,y,ω)+ |f̂ (i)(z)− f̂ (i)(y)|+Li |z− y|

}

, then UP
i ⊆Ωi.

By Proposition 8, when the true first-order (second-order) derivative satisfies the Lipschitz con-

dition, any point convergence at y ∈ [a, b], together with the satisfaction of the requirement on the

norm of the empirical first-order (second-order) derivative, guarantees the monotonicity (convexity)

of the partition formed by non-parametric estimators (see Figure 3.b).

4.2.2. Distribution ambiguity set

We first introduce adaptive partitioning under uniform convergence of non-parametric estimators

and then modify it to apply point convergence of the estimators. Given data input and confidence

level 1−ω, we apply Proposition 7 to obtain sets Ui, i= 1,2 so that [z, z] = (U1 ∩U2)∪(U1 \U2)∪U 1.

Recall that the monotonicity of the partitions in U1 and the convexity of the partitions in U2

are guaranteed with confidence level 1− ω, but the monotonicity of the partitions in U 1 is not

guaranteed with the desired confidence level. Let (U1 ∩ U2) ∪ (U1 \ U2) ∪ U1 = ∪m
i=1[zi, zi], where

[zi, zi], i= 1,2, . . . ,m are the partitions. We construct the distribution ambiguity set to contain the

true distribution for each partition as follows:

For a partition [zi, zi]⊆U 1:

P[zi,zi]
= {P : f (0)(z)≥ f

(0)(z),∀z ∈ [zi, zi]}. (12)

For a non-increasing monotone partition [zi, zi]⊆U1 \U2, where f̂ (1)(z)≤ 0,∀z ∈ [zi, zi]:

P[zi,zi]
= {P : li ≥ li ≥ li, f

(1)(z)≤ 0,∀z ∈ [zi, zi]}. (13)

For a non-decreasing monotone partition [zi, zi]⊆U1 \U2, where f̂ (1)(z)≥ 0,∀z ∈ [zi, zi]:

P[zi,zi]
= {P : P i ≥ Pi ≥ P i, f

(1)(z)≥ 0,∀z ∈ [zi, zi]}. (14)
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For a non-decreasing convex partition [zi, zi]⊆U1 ∩U2, where f̂ (1)(z)≥ 0, f̂ (2)(z)≥ 0, ∀z ∈ [zi, zi]:

P[zi,zi]
= {P : li ≥ li ≥ li, P i ≥ Pi ≥ P i, f

(1)(z)≥ 0, f (2)(z)≥ 0,∀z ∈ [zi, zi]}. (15)

For a non-increasing convex partition [zi, zi]⊆U1 ∩U2, where f̂ (1)(z)≤ 0, f̂ (2)(z)≥ 0, ∀z ∈ [zi, zi]:

P[zi,zi]
= {P : ui ≥ ui ≥ ui, P i ≥ Pi ≥ P i, f

(1)(z)≤ 0, f (2)(z)≥ 0,∀z ∈ [zi, zi]}. (16)

For a non-decreasing concave partition [zi, zi]⊆U1∩U2, where f̂ (1)(z)≥ 0, f̂ (2)(z)≤ 0, ∀z ∈ [zi, zi]:

P[zi,zi]
= {P : ui ≥ ui ≥ ui, P i ≥ Pi ≥ P i, f

(1)(z)≥ 0, f (2)(z)≤ 0,∀z ∈ [zi, zi]}. (17)

For a non-increasing concave partition [zi, zi]⊆U1 ∩U2, where f̂ (1)(z)≤ 0, f̂ (2)(z)≤ 0, ∀z ∈ [zi, zi]:

P[zi,zi]
= {P : li ≥ li ≥ li, P i ≥ Pi ≥ P i, f

(1)(z)≤ 0, f (2)(z)≤ 0,∀z ∈ [zi, zi]}. (18)

These distribution ambiguity sets on the partitions are formed by non-parametric estimators and

estimate errors. Specifically, f (0)(z) = f̂ (0)(z)− g0(n,ω), ui = ûi + g0(n,ω), ui = ûi − g0(n,ω), li =

l̂i + g0(n,ω), li = l̂i − g0(n,ω), P i = P̂i + g0(n,ω)(zi − zi), and P i = P̂i − g0(n,ω)(zi − zi). The

distribution ambiguity set P on the support [z, z] can be obtained by unionizing the distribution

ambiguity sets P[zi,zi]
on all partitions [zi, zi], i = 1,2, ...,m. Proposition 9 states the probability

that the true distribution belongs to P.

Proposition 9. Given data size n and confidence level 1− ω, under uniform convergence of

non-parametric estimators, the distribution ambiguity set P includes the true distribution on the

entire support with a probability of at least (1−ω)(1− 2ω), which is nonnegative when ω≤ 0.5.

Thus, under uniform convergence, the true distribution has a guaranteed probability (1−ω)(1−
2ω) of belonging to the distribution ambiguity set formed by non-parametric estimators and their

errors. However, estimate error g0(n,ω) can be large, inflating the distribution ambiguity set. As

gPi (n,y,ω) can be smaller than gi(n,ω) in a given interval, we next apply point convergence proper-

ties of non-parametric estimators to guide partitioning and improve the worst-case expected profit.

Note that partitioning under point convergence guarantees the unbiasedness of non-parametric

characteristics within partitions, while that under uniform convergence guarantees the unbiasedness

on the entire support.

Under point convergence, to guarantee the monotonicity or convexity of a formed partition with

confidence, the norm of f̂ (i)(z) should satisfy |f̂ (i)(z)| ≥ gPi (n,y,ω)+ |f̂ (i)(z)− f̂ (i)(y)|+Li|z−y| for
a certain y in the partition. We first apply full partitioning directly based on f̂ (1)(z) and f̂ (2)(z) to

obtain [z, z] =∪k
j=1[zj, zj]. The Lipshitz condition holds for f (i)(z), i= 0,1,2 provided that f (i+1)(z)
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is continuous in each bounded interval [zj, zj], j = 1,2, . . . , k, enabling us to apply Proposition 8

with a = zj and b = zj to obtain UP
1,j ⊆ [zj, zj] and UP

2,j ⊆ [zj, zj], wherein the monotonicity and

convexity are guaranteed with confidence level 1−w. With UP
1 = ∪k

j=1U
P
1,j and UP

2 = ∪k
j=1U

P
2,j, we

partition the support into [z, z] = (UP
1 ∩UP

2 )∪ (UP
1 \UP

2 )∪UP
1 =∪m

i=1[zi, zi].

With estimate errors gPi (n, z,ω), i= 0,1,2 and gP (n, z,ω), the distribution ambiguity set PP
[zi,zi]

on a partition [zi, zi] can be formed similarly as that under uniform convergence with the follow-

ing adjustments in (12) to (18): f (0)(z) = f̂ (0)(z)− gP0 (n,y,ω)− L0(zi − zi), li = l̂i + gP0 (n, zi, ω),

li = l̂i − gP0 (n, zi, ω), P i = P̂i + gP (n, zi, ω) + gP (n, zi, ω), P i = P̂i − gP (n, zi, ω)− gP (n, zi, ω), ui =

ûi+gP0 (n, zi, ω), and ui = ûi−gP0 (n, zi, ω). Proposition 10 states the probability that the true distri-

bution restricted on [zi, zi] belongs to the distribution ambiguity set PP
[zi,zi]

and the probability that

the true distribution on the support belongs to PP , which is the union of all PP
[zi,zi]

, i= 1,2, . . . ,m.

Proposition 10. Given data size n and confidence level 1 − ω, under point convergence of

non-parametric estimators, the distribution ambiguity set PP
[zi,zi]

includes the true distribution in

partition [zi, zi] with a probability of at least (1− 2ω)(1− 3ω), and the distribution ambiguity set

PP includes the true distribution on the support [z, z] = ∪m
i=1[zi, zi] with a probability of at least

1−m(5ω− 6ω2), which is nonnegative when ω≤ ω0 ,
5
√
m−

√
25m−24

12
√
m

.

Proposition 10 states 1−m(5ω−6ω2) as a lower bound for the probability that the true density

belongs to distribution ambiguity set PP . It bounds the likelihood that the realized average profit

exceeds the worst-case expected profit within the ambiguity set. When partition numberm is small,

the threshold ω0 is not too conservative, and the stated probability bound provides a reasonable

indicator for a given ω < ω0. However, when partition number m is large, the confidence level to

guide support partitioning needs to be sufficiently high (ω is sufficiently low) to ensure that the

stated probability bound has indicative value. Experiments in Section 6.1 reveal that, by applying

point convergence of non-parametric estimators in adaptive partitioning, the realized average profit

exceeds the worst-case expected profit with a probability close to one. It implies a high chance that

the true distribution belongs to the distribution ambiguity set constructed by our approach.

4.2.3. Protection curve and stocking quantities

Under uniform-convergence-based adaptive partitioning, the support is divided into partitions in

subsets U1, U1 \U2, and U1∩U2, i.e., [z, z] = (U1 ∩U2)∪ (U1 \U2)∪U1, with prespecified confidence

level. For the distribution ambiguity set P[zi,zi]
on a partition [zi, zi], we derive protection curve

c(z) = f
(0)(z) when [zi, zi]⊆U 1, and c(z) = li or c(z) =

P i

zi−zi
when [zi, zi]⊆U1 \U2. For a partition

[zi, zi]⊆ U1 ∩U2, the protection curve takes a general form of c (z) = α′
i + β′

i (z− zi), where coeffi-

cients (α′
i, β

′
i) are shown in Table 2. The protection curve for distribution ambiguity set P on the

support is the union of those for P[zi,zi]
, i= 1,2, ...,m on all partitions.
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Table 2 Coefficients for protection curve c (z) = α′

i
+β′

i
(z− z

i
)

partition [zi, zi] αi βi

non-decreasing and convex li 2
P

i
−l

i
(zi−z

i
)

(zi−z
i
)2

non-increasing and convex ui −2
ui(zi−z

i
)−P

i

(zi−z
i
)2

non-decreasing and concave
2P

i

zi−z
i

−ui 2
u
i
(zi−z

i
)−P

i

(zi−z
i
)2

non-increasing and concave
2P

i

zi−z
i

− li −2
P

i
−l

i
(zi−z

i
)

(zi−z
i
)2

Under point-convergence-based adaptive partitioning, the protection curve for distribution ambi-

guity set PP can be built by the same procedure as that under uniform convergence except that

parameters f (0)(z), li, li, ui, ui, P i, P i shall be replaced by those applicable under point convergence.

It should be noted that the protection curve thus built is similar to the one developed under semi-

full partitioning, which is a combination of flat lines and lines with a slope. We can apply the

solution method in Proposition 6 to obtain robust quantities by adaptive partitioning. The like-

lihood that the realized average profit exceeds the worst-case expected profit can be guaranteed,

given the probability that the true distribution belongs to the constructed distribution ambiguity

set, as presented in Propositions 9 and 10 for uniform and point convergence respectively.

4.3. Non-parametric approach versus empirical approach

The empirical density function converges to the true density function as data size increases but the

protection curve provides a safe protection when data size is small. By the convergence property

stated in (9), the empirical density function satisfies P

{

max
z∈[z,z]

∣

∣

∣
f̂ (0)(z)− f (0)(z)

∣

∣

∣
> g0 (n,ω)

}

≤ ω,

where g0 (n,ω) =
Dn(ω)

λ
+ K0λ

2
and |f (1)(z)| ≤K0,∀z. Let ε= g0 (n,ω). An ε-distribution ambiguity

set is defined as P (ε) =

{

P : max
z∈[z,z]

∣

∣

∣
f̂ (0)(z)− f (0)(z)

∣

∣

∣
≤ ε

}

, and max
q

min
f∈P(ε)

[E (π (q, z))] yields a stock-

ing quantity q∗ that maximizes the worst-case expected profit when the true distribution belongs

to P (ε). The realized average profit under this quantity exceeds the worst-case expected profit in

P(ε), which is
∫ z

z
π(q∗, z)(f̂ (0)(z)− g0(n,ω))dz, with a probability of at least 1− ω. To see this,

note that P{
∫ z

z
π(q∗, z)(f̂ (0)(z)− f (0)(z))dz ≤

∫ z

z
π(q∗, z)g0(n,ω)dz} ≥ P{

∫ z

z
π(q∗, z) max

z∈[z,z]
(f̂ (0)(z)−

f (0)(z))dz ≤
∫ z

z
π(q∗, z)g0(n,ω)dz} = P{max

z∈[z,z]
(f̂ (0)(z) − f (0)(z)) ≤ g0(n,ω)} ≥ 1 − ω. It holds that

P{
∫ z

z
π(q∗, z)f (0)(z)dz ≥

∫ z

z
π(q∗, z)(f̂ (0)(z)− g0(n,ω))dz} ≥ 1−ω.

Following a similar logic, we can show that 1− ω also bounds the probability that, under the

stocking quantity obtained by our approach with adaptive partitioning, the realized average profit

exceeds the worst-case expected profit within P (ε). This is regardless of the convergence properties

(uniform vs point) that we apply and the number of partitions. Thus, we obtain an alternative

means of evaluating the effectiveness of our approach. As data size increases and ω and λ approach

zero, P(ε) converges to containing only the true distribution. Given the same confidence level 1−ω,

experiments in Section 6.1 reveal the existence of a threshold such that ε-distribution ambiguity

set P(ε), which is based on empirical density function, is preferred to obtain robust decisions for its
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convergence performance when data size exceeds the threshold, but distribution ambiguity set PP ,

which utilizes point convergence properties, is preferred to obtain safe robust decisions otherwise.

5. Value of Non-parametric Information

Next, we investigate the value of non-parametric characteristics relative to parametric information

in data-driven robust decision models through a comparative study. To that end, we consider a

discrete model in which a random variable follows a mass function. A continuous model can hardly

yield closed-form stocking quantities because the worst-case distribution in the ambiguity set with

non-parametric and parametric information cannot be specified. In a discrete model, the stocking

quantities can be enumerated to overcome this difficulty.

Let random demand Z be discrete with an unknown mass function on [z, z]. Suppose the support

has m partitions, denoted as (zi−1, zi] , i= 1,2, . . . ,m, with [z, z] = (z0, z1]∪(z1, z2]∪ . . .∪(zm−1, zm],

where z0 < z is a nominal value with P{Z ≤ z0} = 0. In partition (zi−1, zi], the random demand

assumes value from a finite set {z1i , z2i , . . . , zni }, with zi−1 = z0i < z1i = zi < z2i < . . . < zni = zi, i.e.,

zi = z1i is the lowest demand in (zi−1, zi] and zi−1 = zni−1 is the largest value of the preceding

partition. Let the parametric information be the first and second moments (ei1, e
i
2) for the random

variable in the partition, and the non-parametric information be based on any protection curve

c(z) that satisfies P{z ∈ [zyi , zi]}−
∫ zi

z
y−1
i

c (z)dz ≥ 0, y ∈ {1,2, . . . n}. The distribution ambiguity set,

which includes both types of information in partition (zi−1, zi], is defined as follows:

Ppn

(zi−1,zi]
= {P :EP

[

zj
∣

∣z ∈ (zi−1, zi]
]

P{z ∈ (zi−1, zi]}= eij, j = 1,2;P{z ∈ [zyi , zi]}−
∫ zi

z
y−1
i

c (z)dz ≥

0, y ∈ {1, · · · , n}}.
(19)

Suppose that the stocking quantity is chosen from a finite set Q= {q1, q2, . . . , qa}. The following

problem maximizes the expected newsvendor profit:

max
a
∑

k=1

Π(qk)xk, subject to :
a
∑

k=1

xk = 1, xk ∈ {0,1} , (20)

where Π(qk) = E [pmin{z, qk}− cqk]. In the formulation, xk is a binary indicator variable, with

xk = 1 if qk is chosen but xk = 0 otherwise. By total expectation, the newsvendor profit under a

given stocking quantity qk can be written as follows:

Π(qk) = p

m
∑

i=1

E [min{z, qk}|z ∈ (zi−1, zi] ]P{z ∈ (zi−1, zi]}− cqk. (21)

For partition (zi−1, zi], the worst-case expected profit in the distribution ambiguity set, which is

defined in (19), can be written as:

inf
P∈Ppn

(zi−1,zi]

E [min{z, qk}|z ∈ (zi−1, zi] ]P{z ∈ (zi−1, zi]}= max
s1,s2,u1,...,un≥0

Υ(s1, s2, u1, . . . , un), (22)
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where Υ(s1, s2, u1, . . . , un) =
∑2

j=1 e
i
jsj +

∑n

l=1 ul

∫ zi

z
l−1
i

c (z)dz, s1 and s2 are the dual variables asso-

ciated with ei1 and ei2, and u1, . . . , un are those associated with
∫ zi

z
l−1
i

c (z)dz, l= 1, . . . , n. These dual

variables satisfy the following inequalities:

s1z
l
i + s2

(

zli
)2

+
l
∑

j=1

uj ≤min
{

zli, qk
}

, l ∈ {1, . . . , n}. (23)

We can construct the distribution ambiguity set solely with parametric or non-parametric infor-

mation by using the relevant type of information in (19), and use Pp and Pn to denote the

respective distribution ambiguity sets. It should be noted that Pp is similar in form to the dis-

tribution ambiguity set constructed in Natarajan et al. (2018), but the partitions are developed

by our non-parametric approach. With non-parametric information included in Pp, Ppn is smaller

than Pp because of the additional constraints to form the set, and the objective function value

for problem (22) under Ppn is no worse than that under Pp. Let the stocking quantities that

maximize the worst-case expected profits under Pp and Pn be q∗p and q∗n, respectively. We use

Gπ ,

[

inf
P∈Pn

Π(q∗n)− inf
P∈Pp

Π
(

q∗p
)

]

to measure the value of non-parametric relative to parametric

information in yielding the worst-case expected profit. Our experiments reveal that non-parametric

information is more valuable (Gπ > 0) unless the service ratio is very high.

5.1. Value of non-parametric information for given stocking quantity

To shed more light on the relative value of using non-parametric information in constructing the

distribution ambiguity set for robust decision making, we compare the expected newsvendor profits

obtained under two types of information for a given stocking quantity. Let πi ,
∫ zi

zi−1
c (z)dz, where

c(z) is the protection curve, be the non-parametric characteristics, and ei1 and ei2 be the parametric

information to construct the distribution ambiguity set for (zi−1, zi] . For a given stocking quantity

qk, we reformulate problem (19) as follows:

inf
P∈Ppn

(zi−1,zi]

E [min{z, qk}|z ∈ (zi−1, zi] ]P{z ∈ (zi−1, zi]}= max
s1,s2,u1≥0

Υ(s1, s2, u1), (24)

where Υ(s1, s2, u1) = ei1s1 + ei2s2 +πiu1, and s1, s2, u1 are the associated dual variables.

The dual variables satisfy the following conditions:

s1zi + s2z
2
i +u1 ≤min{zi, qk} ;s1zi + s2z

2
i +u1 ≤min{zi, qk} ;s1, s2, u1 ≥ 0. (25)

Note that ei1 =
n
∑

l=1

zlip
l
i, where pli is the probability mass for scenario zli. Provided the protection

curve c(z) satisfies
∫ zi

zi−1
c (z)dz =

n
∑

l=1

pli , the following inequalities hold:
ei1
zi
<πi <

ei1
zi

and
ei2
z2
i

<πi <

ei2
z2
i

. Hence, the magnitude of the non-parametric information is bounded by the moments scaled by

the inverse of the lower and upper boundaries for the partition. The candidate optimal solutions
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Table 3 Candidate optimal solutions.

qk (u1, s1, s2)

qk ≤ zi−1 (qk,0,0) ,
(

0, qk
zi
,0
)

,
(

0,0, qk
z2
i

)

zi−1< qk < zi (zi,0,0) ,
(

0, qk
zi
,0
)

,
(

0,0, qk
z2
i

)

,
(

z
i
zi−z

i
qk

zi−z
i

,
qk−z

i

zi−z
i

,0
)

,
(

z
i
z2
i
−z2

i
qk

z2
i
−z2

i

,0,
qk−z

i

z2
i
−z2

i

)

qk ≥ zi (zi,0,0) , (0,1,0) ,
(

0,0, 1
zi

)

,
(

zizi
zi+z

i

,0, 1
zi+z

i

)

to (u1, s1, s2) are listed in Table 3 for different values of qk relative to partition boundaries. The

proofs are provided in the Appendix.

In Table 3, at least one dual variable is zero, indicating that the corresponding parametric or

non-parametric information is inconsequential to the objective function value. Lemma 3 states and

compares the optimal solutions to u∗
1, which is associated with the non-parametric information,

and (s∗1, s
∗
2), which are associated with the parametric information.

Lemma 3. According to formulation (24), given a stocking quantity qk and partition (zi−1, zi] :

1) When qk ≤ zi−1 : u
∗
1 ≥ s∗1 = s∗2 = 0.

2) When zi−1 < qk < zi :

a) s∗2 = 0 if ei1 (zi + zi)− ei2 ≥ ziziπi, in which case, u∗
1 ≥ s∗1 if qk

zi
≤ 1+zi

1+zi
.

b) s∗1 = 0 if ei1 (zi + zi)− ei2 < ziziπi, in which case, u∗
1 ≥ s∗2 if qk

zi
≤ 1+z2i

1+z2
i

.

3) When qk ≥ zi :

a) s∗2 = 0 if ei1 (zi + zi)− ei2 ≥ ziziπi, in which case, u∗
1 = 0.

b) s∗1 = 0 if ei1 (zi + zi)− ei2 < ziziπi, in which case, u∗
1 ≥ s∗2 if zizi ≥ 1.

Lemma 3 states that, when the stocking quantity is below the lower partition boundary (case

1), non-parametric information dominates in yielding the worst-case expected profit, while neither

of the two moments is consequential to the objective function value. Otherwise, either the first

or the second moment is influential, depending on their scale relative to each other. When the

stocking quantity falls in the partition (case 2), non-parametric information is more valuable than

the parametric information that is influential if the scale of stocking quantity is small. As the

stocking quantity inches above the upper boundary (case 3), whenever the second moment is

inconsequential to the objective function value, so is the non-parametric information. However,

when the first moment is inconsequential, the non-parametric information is more valuable than

the second moment when the geometric mean of the lower and upper partition boundaries is not

too small.

Proposition 11. Consider a random demand Z with a mass function on support [z, z] which

has m partitions. Let parametric information be ei1, e
i
2 and non-parametric information be πi for all

partitions (zi−1, zi] , i= 1,2, . . . ,m. Given a stocking quantity qk, from the perspective of yielding
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the worst-case expected profit: 1) if qk < z1, then non-parametric information is more valuable;

2) if z1 ≤ qk < zm, then, let zi ≤ qk < zi (qk = zi, i 6=m) for some i, non-parametric information

is more valuable if
∑i

j=1 πjzj +
∑m

j=i+1 πjqk >
∑i−1

j=1 e
j
1 +

∑m

j=i

e
j
1qk

zj
(
∑i

j=1 πjzj +
∑m

j=i+1 πjqk >
∑i

j=1 e
j
1 +

∑m

j=i+1

e
j
1qk

zj
), while parametric information is more valuable otherwise; 3) if qk ≥ zm,

then parametric information is more valuable.

On the entire support, non-parametric information dominates in yielding the worst-case expected

profit when the chosen stocking quantity is below the lower boundary of the support (and hence

always unable to fully satisfy demand), while parametric information dominates when it is above

the upper boundary of the support (and hence always able to fully satisfy demand). When it falls

in a certain partition, non-parametric information is more valuable when the weighted cumulative

area of all partitions under the protection curve is larger than the scaled first moment, while the

parametric information is more valuable otherwise. Notably, the second moment is inconsequential

to comparison outcomes.

5.2. Remarks on multi-item setting

Our proposed non-parametric approach can be adapted to the situation when the newsvendor

manages multiple items. With non-parametric characteristics of the distribution to form the dis-

tribution ambiguity set and build the protection curve, we can apply the approach to each item

individually provided that marginal data is available. It is also feasible to partition the support

by our non-parametric approach, and include both non-parametric and parametric information in

each partition to form the distribution ambiguity set and derive robust decisions. To that end, in

addition to the first and second moments for each item within each partition as shown in (19), we

add more information on the covariance of demands among items to improve performance.

Specifically, we consider multivariate discrete random demand Z = (Z1,Z2, · · · ,ZT ) for T items,

with realizations z = (z1, z2, · · · , zT ). Suppose Z has X possible realizations
{

z(1), z(2), . . . z(X)
}

with

an unknown joint mass function f
(

z(x)
)

= fx, where z(x) ∈R
T , x= 1,2, ...,X. The stocking quanti-

ties q= (q1, q2, · · · , qT ) for the T items belong to a finite feasible set Q. An item t∈ {1,2, ..., T} has

price pt and cost ct. Let p= (p1, p2, · · · , pT ). Unsold items at the end of period have no salvage value.

Let Θ= {Θ1,Θ2, . . . ,ΘT}, where Θt, t= 1, ..., T is the set of partitions on the support of demand for

item t, and Θi
t = (zt,i−1, zt,i], i= 1, . . . , |Θt| be a partition in Θt. We assume zt ∈ {z1t,i, z2t,i, · · · , znt,i}

in Θi
t, with zt,i−1 = z0t,i < z1t,i = zt,i < z2t,i < . . . < znt,i = zt,i. For the parametric information, let et

be the mean of marginal demand for item t on the support, (eit,1, e
i
t,2) be the first and second

moments of marginal demand for item t in partition Θi
t, and σt1,t2 be the covariance between the

demands for any two items t1 and t2. For the non-parametric information, let ct(z), t= 1,2, ..., T

be the protection curve based on non-parameteric characteristics of the marginal distribution of
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the demand for each item t. With both parametric and non-parametric information to construct

distribution ambiguity set Ppn
Θ , the robust newsvendor problem is formulated as:

max
q∈Q

min
f∈Ppn

Θ

Ef

(

T
∑

t=1

ptmin{zt, qt}−
T
∑

t=1

ctqt

)

We can apply the discrete-choice model to solve this robust optimization problem. Given stocking

quantities q, the inner problem can be formulated as:

inf
f∈Ppn

Θ

E

[

T
∑

t=1

ptmin{zt, qt}
]

=min
X
∑

x=1

(p ·min{z(x), q})fx

s.t.

n
∑

l=1

((zlt,i)
j

X
∑

x=1

(fx
I{z(x)t = zlt,i}))≥ eit,j, j = 1,2,∀i= 1,2, . . . , |Θt| ,∀t= 1, . . . , T ;

n
∑

l=y

X
∑

x=1

(fx
I{z(x)t = zlt,i})≥

∫ zt,i

z
y−1
t,i

ct(z)dz, y ∈ {1,2, . . . n},∀i= 1,2, . . . , |Θt| ,∀t= 1, . . . , T ;

X
∑

x=1

(z
(x)
t1

− et1)(z
(x)
t2

− et2)f
x = σt1,t2 ,∀t1, t2 = 1, . . . , T ;f1, . . . , fX ≥ 0,

where the indicator function I{z(x)t = zlt,i} equals one when the tth attribute of z(x) equals zlt,i and

zero otherwise, and
∑X

x=1 f
x
I{z(x)t = zlt,i} equals the marginal mass probability for realization zlt,i.

The first set of constraints are on the first and second moments of the marginal demand for each

item in all its partitions. The second set of constraints use the non-parametric information based

on the protection curve of the marginal demand for each item in its partitions. The third set of

constraints are on the covariance between the demands for any two items t1 and t2.

This multivariate discrete-choice model can be solved similarly as that for the model with a

single item, except that attention should be given to demand covariance. When the constraints on

covariance are removed, the model can be solved by considering each item individually and the

robust quantity obtained by the single-item model is also optimal to the multi-item model.

6. Experiments

We perform a series of experiments to test the effectiveness and practicability of the proposed

data-driven non-parametric approach.

6.1. Non-parametric approach applied to arbitrary distribution

In this experiment, we randomly draw observations from an arbitrary distribution with a multi-

modal density curve. First, we compare the applications of point and uniform convergence of non-

parametric estimators in adaptively forming partitions by our approach. The unbiased monotone

and convex partitions for a given confidence level can be obtained by Propositions 7 and 8. We
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choose confidence level 1−ω ∈ {0.8,0.85,0.9,0.95}. Let N(UP
i ), i= 1,2 be the data size at which the

“unbiased” range UP
i occupies a certain target proportion of the support under point convergence.

Let N(Ui), i = 1,2 be the counterpart for Ui under uniform convergence. The results when half

width λ= 0.75,1,1.25 with target proportions 50% and 75% are presented in Table 4.

Table 4 Threshold levels for data size to guarantee monotonicity and convexity

ω

Target proportion for U1 or UP

1
Target proportion for U2 or UP

2

≥50% ≥75% ≥50% ≥75%

λ=1 λ=1

N(UP

1
) N(U1) N(UP

1
) N(U1) N(UP

2
) N(U2) N(UP

2
) N(U2)

0.05 600 11,000 4,100 29,000 800 17,000 13,400 131,000

0.10 200 8,900 3,900 28,100 800 14,000 10,200 11,3000

0.15 200 7,900 3,000 28,100 600 12,000 8,100 80,000

0.2 200 7,500 2,700 28,100 200 11,000 7,500 7,6000

λ=0.75 λ=0.75

0.05 500 24,200 28,100 70,000 2,100 17,1000 41,400 730,000

0.10 500 20,500 28,100 59,100 1,600 17,1000 4,700 580,000

0.15 200 19,300 28,100 50,700 1,600 16,0000 4,300 500,000

0.2 200 16,000 28,100 42,500 1,300 14,3000 4,100 450,000

λ=1.25 λ=1.25

0.05 600 2,200 2,200 40,000 300 7,500 700 55,000

0.10 200 2,200 2,200 35,000 300 6,200 600 47,000

0.15 200 2,200 2,200 31,100 200 5,300 500 40,000

0.2 200 2,200 2,200 21,200 200 2,200 400 37,000

Observe that N(UP
i ) is significantly smaller than N(Ui), indicating the superiority of point

convergence over uniform convergence in the amount of data required to guarantee the unbiasedness

of the formed partitions with a prespecified confidence level. Table 4 reveals that the choice of half

width λ impacts the scale of N(UP
1 ) relative to that of N(UP

2 ). N(UP
1 )<<N(UP

2 ) when λ < 1 in

most circumstances, while N(UP
1 )>N(UP

2 ) when λ> 1. A half width slightly above one is favoured

to balance the accuracy of and confidence in guaranteeing unbiasedness, and only a small data size

is needed to ensure the unbiasedness of partitions formed on 50%-75% of the support.

Figure 4 Comparison on profit performance, fixed/adaptive partitioning vs empirical distribution

Next, using the randomly generated data to form distribution ambiguity sets and obtain stocking

quantities by our approach under various partitioning methods and the ε-distribution ambiguity

set, as stated in Section 4.3, we compare profit performance across the methods. Particularly, we
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apply fixed monotone and full partitioning and adaptive partitioning under point convergence with

ω = 0.05 and half width λ= 1.1. With an initial set of 50 data, after a new data is generated in

a period, we use all the available data to obtain a stocking quantity by each method, and match

the obtained quantity with all the data up to the period to calculate the average profit. The

results with selling price p= 10 are shown in Figure 4. Adaptive partitioning underperforms fixed

monotone partitioning when data size is small, i.e., n< 500 (2,500) at c

p
= 0.2 (0.8), and yields an

average profit closer to that under fixed full partitioning as data size increases. The profit obtained

by using ε-distribution ambiguity set is small with limited data input and increases as more data

becomes available. At c

p
= 0.2, our approach under adaptive partitioning outperforms the approach

using ε-distribution ambiguity set when data size is below 4,500. At c

p
= 0.8, the relevant threshold

increases to 50,000. In general, this threshold increases and, therefore, our approach under adaptive

partitioning is more appealing as the cost ratio increases.

Figure 5 Comparison on probability guarantee, fixed/adaptive partitioning vs empirical distribution

(a) Proportion that the average profit exceeds the worst-case expected profit

(b) Proportion that the single realized profit exceeds the worst-case expected profit

We further examine the proportion of periods when the average profit up to the period exceeds

the worst-case expected profit. Figure 5.a) shows that adaptive partitioning attains a proportion

close to 1, much higher than the theoretical bound established in Proposition 10. With the stocking

quantity executed on a long-term basis, decision makers who are concerned about the chance that

the average realized profit exceeds the worst-case expected profit may apply fixed full partitioning

when data size is large. As revealed in the experiment, the probability is above 0.95 when data size

exceeds 1,300 (1,050) at c

p
= 0.8 (0.2). With the stocking quantity executed on a short-term basis,
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we examine the proportion of periods when the single-period realized profit exceeds the worst-case

expected profit. Figure 5.b) shows that adaptive partitioning outperforms fixed partitioning to

protect the realized profit when data size is small, i.e., n < 3,200 (4,500) at c

p
= 0.2 (0.8). From

the perspective of the converging value of this measure, fixed monotone (full) partitioning attains

the highest (lowest) value while adaptive partitioning attains a value in between.

Moreover, we use the same data set to compare the performance of our approach with the worst-

case expected profit in P(ε) under the stocking quantity obtained by adaptive partitioning. Our

approach generates a higher average realized profit in almost all periods and a higher single-period

realized profit in more than 95% of the periods. These results are better than those when we

compare realized profits with the worst-case expected profit in the constructed ambiguity set PP .

Thus, our approach provides a high probability guarantee in yielding expected profit performance.

6.2. Comparison with existing robust approaches based on real data set

Kaggle.com is an online community owned by Google LLC, and it allows users to publish data sets in

a web-based data-science environment. To group data conveniently and compare our approach with

existing approaches for a small data size, we randomly choose a set of 500 data from Kaggle.com for

item 1 in store 4 from January 1, 2013 to May 15, 2014, and denote the data set as {d1, .....d500}. The
data can be retrieved from https://www.kaggle.com/c/demand-forecasting-kernels-only/

data. As detailed information on cost and price is unavailable, we vary the service ratio from set

{0.2,0.3, ...,0.8} and experiment with each scenario.

The approach which uses empirical distribution directly provides a first benchmark. Gallego and

Moon (1993) show that Scarf (1958)’s min-max approach, which is a known parametric approach,

generates close-to-optimal stocking quantities when the random variable follows a normal dis-

tribution. The empirical distribution in our experiment closely resembles a normal distribution,

motivating us to compare our approach to Scarf (1958)’s approach. We also use Wasserstein dis-

tance method in Gao and Kleywegt (2016) in comparison because it outperforms, as far as we

know, many existing approaches that consider distribution distance. Let the cost function for p-

order Wasserstein distance be dp(z1, z2) = |z1 − z2|, p= 1, z1, z2 ∈ [z, z]. The radius of Wasserstein

ball is estimated with confidence level 95%.

For the single-period newsvendor problem, we use {d1, .....d250} to obtain an optimal stocking

quantity by our approach under semi-full partitioning and that for each of the other approaches.

Matching the obtained stocking quantity to every data in {d251, .....d500} yields 250 single-period

profits, based on which we obtain the performance in profit, profit rate (defined as profit

cost
), and

standard deviation of the profit (STD). The measures used in comparison are
Mnonpara−Mbenchmark

Mbenchmark
·

100%, where M indicates the performance, which can be profit, profit rate, or STD, and the
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benchmark refers to the approach with which we compare our non-parametric approach. By this

definition, our approach outperforms in profit or profit rate when the corresponding measure is

positive, and in STD when the corresponding measure is negative.

Figure 6 Results of relative performance with data set from Kaggle.com

Note. The shade area represents where our approach outperforms other approaches in profit rate or STD

Figure 6 reveals that our non-parametric approach yields no significant improvement in profit

compared with the other approaches, but it can outperform in profit rate and STD. Specifically, our

approach outperforms the empirical approach in the three measures. For instance, at a service ratio

of 0.2 ( c
p
= 0.8), it yields 0.83% and 12.41% improvements in profit and profit rate, respectively, and

a 31.32% reduction in STD. Our approach outperforms the min-max approach provided that the

service ratio is not high ( c

p
> 0.3). At a service ratio of 0.3 ( c

p
= 0.7), it achieves 2.08% and 14.04%

improvements in profit and profit rate, respectively, and a 28.20% reduction in STD. Compared

with the Wasserstein distance method, our approach also performs better when the service ratio

is not high ( c

p
> 0.3). At a service ratio of 0.2 ( c

p
= 0.8), on top of a 0.62% improvement in profit,

it achieves a 11.80% improvement in profit rate and a 30.62% reduction in STD. Generally, the

advantages of our approach in improving profit rate and reducing profit variability become more

prominent as the service ratio decreases (value of c

p
increases).

Figure 7 Results of average performance for various input sizes using data set from Kaggle.com

To investigate the effects of input size on relative profit performance, we apply a rolling method

to obtain the optimal stocking quantities using data {d1, . . . , d50},{d1, . . . , d100}, . . . ,{d1, . . . , d450}
from the same data set, with input sizes 50,100, ...,450. In each scenario, the obtained stocking

quantity is matched to the next 50 unused data to calculate profits. Then, we aggregate the results

in all scenarios to obtain the average performance across various sizes of data input. Figure 7 reveals
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a similar pattern as that in Figure 6 on the relative performance of our approach with respect

to the other three approaches. One exception occurs to the average profit performance when the

service ratio is low ( c
p
> 0.4), in which case, our approach underperforms the other approaches.

Nevertheless, it achieves significant improvements in average profit rate and STD. For instance, at

a service ratio of 0.3 ( c
p
= 0.7), compared with the Wasserstein distance method, despite a 7.79%

reduction in average profit, it achieves a 8.66% gain in average profit rate and a 44.34% reduction

in average STD. Thus, our approach provides an effective instrument to managers who value high

return on investment and stability in profit generation.

6.3. Value of non-parametric information

A stream of existing works use parametric information like mean and variance to form the dis-

tribution ambiguity set. By contrast, our approach uses non-parametric characteristics. In this

experiment, we combine the two types of information to construct distribution ambiguity sets by

full partitioning, and obtain optimal stocking quantities and worst-case expected profits to per-

form a comparative examination. We construct a mass function for a discrete random demand

on [12,17] and let candidate stocking quantities be Q = {0,1, . . . ,19}. The worst-case expected

sales quantities for given stocking quantities are shown in Figure 8.a). The three curves corre-

spond to when only non-parametric, only parametric, and both types of information are used.

Non-parametric information generates more sales when the stocking quantity is low (< 16) but

less sales otherwise than parametric information. At low stocking quantities, adding parametric

to non-parametric information is inconsequential to sales generation, but adding non-parametric

to parametric information increases sales. It is more prominent as stocking quantity increases. At

high stocking quantities (> 12), compared with using parametric or non-parametric information

alone, combining the two types of information yields the most sales. The optimal stocking quan-

tities obtained by non-parametric and parametric information (qnπ ,q
p
π) are shown in Figure 8.b).

Observe that the two types of information yield the same stocking quantity when the service ratio

is intermediate ( c

p
∈ [0.45,0.7]). Parametric information yields a larger stocking quantity in most

other circumstances. With the obtained quantities, Figure 8.c) shows that, at a low service ratio

of 0.1 ( c

p
= 0.9), non-parametric information yields a higher expected profit with an improvement

of Gπ = 6.15. Figure 8.d) further shows that non-parametric information outperforms its paramet-

ric counterpart in yielding the expected profit provided the service ratio is not too high, and the

advantage of non-parametric information is more prominent as the service ratio decreases.

Finally, we compare our approach with the second-order statistics approach by Natarajan et al.

(2018), which is a parametric approach using the first moment on the entire support and the

second moment in each partition. Their approach defines exogenous partitions such as equal-length
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Figure 8 Value of non-parametric information

(a) (b)

(c) (d)

partitions and partitions with decreasing length. For comparison purpose, we generate the same

number of partitions by the two approaches. To experiment with the 2-partition method, we use

an asymmetric distribution for a discrete variable on [12,17] and generate full partitions A1 and

A2 by our approach but partitions B1 = [12, e) and B2 = [e,17], where e is the demand mean,

by Natarajan et al. (2018)’s approach, with |A1| 6= |B1| and |A2| 6= |B2|. We engage in a similar

procedure to experiment with the 3-partition method.

Figure 9 Value of non-parametric partitioning

Figure 9 reveals that our non-parametric approach outperforms Natarajan et al. (2018)’s second-

order statistics approach unless the service ratio is high. Specifically, our approach outperforms their

2-partition method when the service ratio is below 0.6 ( c

p
≥ 0.4), and it outperforms their 3-partition

method when the service ratio is below 0.8 ( c
p
≥ 0.2). Moreover, it is valuable to include parametric

information – including the first and second moments – to the non-parametric characteristics in

the partitions to construct the distribution ambiguity set and build the protection curve for robust

decision making. This improves the profit performance relative to that by Natarajan et al. (2018)’s

second-order statistics approach when the service ratio is high, in which case, our approach with

only non-parametric information performs less well.

7. Concluding Remarks

We have proposed a data-driven non-parametric approach and applied it to well-known newsvendor

problems. In decision settings that have a random demand with an unknown distribution, prior
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efforts were dedicated to estimating the distribution by available (often times censored) data. To

avoid the biasedness that may occur, we utilize the non-parametric characteristics of the distribu-

tion to build a protection curve and use it to make decisions. Our approach has two advantages

over traditional approaches using empirical distribution. One is that the constructed protection

curve provides a safe approximation to the true density curve and the realized profits exhibit low

variability. The other is that, even when data size is small, our approach can adaptively update

the protection curve by data input with a given confidence level in the unbiasedness of the formed

partitions to have the desired characteristics. Sections 4.3 and 6.1 provide theoretical analysis and

experimental evidence for choosing between protection curve and empirical distribution to obtain

robust policies.

Our approach can outperform existing approaches to significantly improve profit rate and sta-

bilize profit generation. Using non-parametric information is more effective than parametric infor-

mation in yielding expected profit when the service requirement is not too high. Moreover, it has

advantages in worst-case performance guarantee and convergence ratio. In reality, data is typically

censored. This causes parametric statistics – including sample mean and sample variance – to be

biased, leading to a loss of worst-case guarantee of the expected profit. However, the protection

curve built with censored data, under a proper partitioning method for a given confidence level of

unbiasedness, still protects the true density curve. To see this, let X and Y be, respectively, the

censored and true demand. For a given stocking quantity q, X =min{q,Y }, so that P{X ≤ d} ≤
P{Y ≤ d} ,∀d. Hence, Y is first-order stochastically dominated by X. A protection curve c(z) that

satisfies
∫ z

y
[fX (z)− c (z)]dz ≥ 0,∀y ∈ [z, z] must also satisfy

∫ z

y
[fY (z)− c (z)]dz ≥ 0. Therefore,

our non-parametric approach, when applied to censored data, can still yield a lower bound for the

expected profit under the true distribution.

Our approach also boasts a faster convergence ratio than parametric approaches provided that

the true distribution is not over-stable. Taking the sample mean as an example for parameteric

information. According to the central limit theorem, the sample mean

n∑

i=1
di

n
asymptotically follows

normal distribution with standard deviation σ√
n
, where σ is the standard deviation of the true

distribution. We showed in Section 3.3.2 that the empirical first-order derivative asymptotically

follows normal distribution with standard deviation σ̂1 ≤ 1

(2λ)2
√
n
, where λ is the half width. This

implies that the empirical first-order derivative converges faster than the sample mean if the half

width is large (λ≥ 1) and the true variance is not too small (σ >1/4). Moreover, we reveal, theoreti-

cally in Section 5.1 and experimentally in Section 6.3, that our proposed approach provides a means

of combining non-parametric and parametric information in a robust optimization framework.

Acknowledgments



Liang Xu, Yi Zheng, Li Jiang: Data-driven Non-parametric Robust Newsvendor
Accepted by Manufacturing & Service Operations Management; manuscript no. (MSOM-19-270) 31

The authors are grateful to Professor Brian Tomlin, an associate editor, and two anonymous referees for

their comments and guidance that have significantly improved the presentation and content of the paper.

The research of Liang Xu is supported in part by the National Natural Science Foundation of China under

Grants #U1811462 and #71971177. The research of Li Jiang is supported in part by the National Natural

Science Foundation of China under Grants #71772157 and #71803211.

References

Bayraksan G, Love DK (2015) Data-driven stochastic programming using Phi-divergences. The Operations

Research Revolution, 1–19 (INFORMS).

Ben-Tal A, Den Hertog D, DeWaegenaere A, Melenberg B, Rennen G (2013) Robust solutions of optimization

problems affected by uncertain probabilities. Management Science 59(2):341–357.

Ben-Tal A, Hochman E (1976) Stochastic programs with incomplete information. Operations Research

24(2):336–347.

Gallego G, Moon I (1993) The distribution free newsboy problem: review and extensions. Journal of the

Operational Research Society 44(8):825–834.

Gao R, Kleywegt AJ (2016) Distributionally robust stochastic optimization with Wasserstein distance. arXiv

preprint arXiv:1604.02199 .

Godfrey GA, Powell WB (2001) An adaptive, distribution-free algorithm for the newsvendor problem with

censored demands, with applications to inventory and distribution. Management Science 47(8):1101–

1112.

Goh J, Sim M (2010) Distributionally robust optimization and its tractable approximations. Operations

research 58(4-part-1):902–917.

Hanasusanto GA, Kuhn D, Wallace SW, Zymler S (2015) Distributionally robust multi-item newsvendor

problems with multimodal demand distributions. Mathematical Programming 152(1-2):1–32.

Huh WT, Rusmevichientong P (2009) A nonparametric asymptotic analysis of inventory planning with

censored demand. Mathematics of Operations Research 34(1):103–123.

Jiang R, Guan Y (2016) Data-driven chance constrained stochastic program. Mathematical Programming

158(1-2):291–327.

Lariviere MA, Porteus EL (1999) Stalking information: Bayesian inventory management with unobserved

lost sales. Management Science 45(3):346–363.

Levi R, Perakis G, Uichanco J (2011) Regret optimization for stochastic inventory models with spread

information. Submitted to Operations Research, revision requested .

Levi R, Roundy RO, Shmoys DB (2007) Provably near-optimal sampling-based policies for stochastic inven-

tory control models. Mathematics of Operations Research 32(4):821–839.



Liang Xu, Yi Zheng, Li Jiang: Data-driven Non-parametric Robust Newsvendor
32 Accepted by Manufacturing & Service Operations Management; manuscript no. (MSOM-19-270)

Mohajerin Esfahani P, Kuhn D (2018) Data-driven distributionally robust optimization using the Wasser-

stein metric: Performance guarantees and tractable reformulations. Mathematical Programming 171(1-

2):115–166.

Natarajan K, Sim M, Uichanco J (2018) Asymmetry and ambiguity in newsvendor models. Management

Science 64(7):3146–3167.

Perakis G, Roels G (2008) Regret in the newsvendor model with partial information. Operations Research

56(1):188–203.

Popescu I, Wu Y (2007) Dynamic pricing strategies with reference effects. Operations research 55(3):413–429.

Rosenblatt M (1956) Remarks on Some Nonparametric Estimates of a Density Function. Annals of Mathe-

matical Statistics 27(3):832–837.

Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Interna-

tional journal of computer vision 40(2):99–121.

Ruppert D, Cline DB (1994) Bias reduction in kernel density estimation by smoothed empirical transforma-

tions. The Annals of Statistics 185–210.

Scarf H (1958) A min-max solution of an inventory problem. Studies in the mathematical theory of inventory

and production .

Sun H, Xu H (2016) Convergence analysis for distributionally robust optimization and equilibrium problems.

Mathematics of Operations Research 41(2):377–401.

Wang Z, Glynn PW, Ye Y (2016) Likelihood robust optimization for data-driven problems. Computational

Management Science 13(2):241–261.

Waterman M, Whiteman D (1978) Estimation of probability densities by empirical density functions. Inter-

national Journal of Mathematical Education in Science and Technology 9(2):127–137.

Yue J, Chen B, Wang MC (2006) Expected value of distribution information for the newsvendor problem.

Operations research 54(6):1128–1136.

Zhao C, Guan Y (2018) Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations

Research Letters 46(2):262–267.

Zhu Z, Zhang J, Ye Y (2013) Newsvendor optimization with limited distribution information. Optimization

methods and software 28(3):640–667.

Zuluaga LF, Peña J, Du D (2009) Third-order extensions of Lo’s semiparametric bound for European call

options. European Journal of Operational Research 198(2):557–570.

Zymler S, Kuhn D, Rustem B (2013) Distributionally robust joint chance constraints with second-order

moment information. Mathematical Programming 137(1-2):167–198.


	Introduction
	Literature Review
	Distribution Ambiguity Set, Protection Curve and Non-parametric Estimators
	Distribution ambiguity set and protection curve
	Partitioning methods
	Estimators for non-parametric characteristics
	Data-driven non-parametric estimators
	Convergence properties of estimators
	Stability of non-parametric characteristics


	Closed-form Robust Policies and Implementation
	Fixed partitioning
	Adaptive partitioning
	Unbiasedness in monotonicity and convexity of formed partitions
	Distribution ambiguity set
	Protection curve and stocking quantities

	Non-parametric approach versus empirical approach

	Value of Non-parametric Information
	Value of non-parametric information for given stocking quantity
	Remarks on multi-item setting

	Experiments
	Non-parametric approach applied to arbitrary distribution
	Comparison with existing robust approaches based on real data set
	Value of non-parametric information

	Concluding Remarks



